1 //===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a CFL-based context-insensitive alias analysis
11 // algorithm. It does not depend on types. The algorithm is a mixture of the one
12 // described in "Demand-driven alias analysis for C" by Xin Zheng and Radu
13 // Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to
14 // Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the
15 // papers, we build a graph of the uses of a variable, where each node is a
16 // memory location, and each edge is an action that happened on that memory
17 // location. The "actions" can be one of Dereference, Reference, Assign, or
18 // Assign.
19 //
20 // Two variables are considered as aliasing iff you can reach one value's node
21 // from the other value's node and the language formed by concatenating all of
22 // the edge labels (actions) conforms to a context-free grammar.
23 //
24 // Because this algorithm requires a graph search on each query, we execute the
25 // algorithm outlined in "Fast algorithms..." (mentioned above)
26 // in order to transform the graph into sets of variables that may alias in
27 // ~nlogn time (n = number of variables.), which makes queries take constant
28 // time.
29 //===----------------------------------------------------------------------===//
30
31 #include "StratifiedSets.h"
32 #include "llvm/ADT/BitVector.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/None.h"
35 #include "llvm/ADT/Optional.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/Passes.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstVisitor.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/ValueHandle.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Allocator.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <forward_list>
52 #include <memory>
53 #include <tuple>
54
55 using namespace llvm;
56
57 #define DEBUG_TYPE "cfl-aa"
58
59 // Try to go from a Value* to a Function*. Never returns nullptr.
60 static Optional<Function *> parentFunctionOfValue(Value *);
61
62 // Returns possible functions called by the Inst* into the given
63 // SmallVectorImpl. Returns true if targets found, false otherwise.
64 // This is templated because InvokeInst/CallInst give us the same
65 // set of functions that we care about, and I don't like repeating
66 // myself.
67 template <typename Inst>
68 static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &);
69
70 // Some instructions need to have their users tracked. Instructions like
71 // `add` require you to get the users of the Instruction* itself, other
72 // instructions like `store` require you to get the users of the first
73 // operand. This function gets the "proper" value to track for each
74 // type of instruction we support.
75 static Optional<Value *> getTargetValue(Instruction *);
76
77 // There are certain instructions (i.e. FenceInst, etc.) that we ignore.
78 // This notes that we should ignore those.
79 static bool hasUsefulEdges(Instruction *);
80
81 const StratifiedIndex StratifiedLink::SetSentinel =
82 std::numeric_limits<StratifiedIndex>::max();
83
84 namespace {
85 // StratifiedInfo Attribute things.
86 typedef unsigned StratifiedAttr;
87 LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
88 LLVM_CONSTEXPR unsigned AttrAllIndex = 0;
89 LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1;
90 LLVM_CONSTEXPR unsigned AttrUnknownIndex = 2;
91 LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 3;
92 LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
93 LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
94
95 LLVM_CONSTEXPR StratifiedAttr AttrNone = 0;
96 LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex;
97 LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone;
98
99 // \brief StratifiedSets call for knowledge of "direction", so this is how we
100 // represent that locally.
101 enum class Level { Same, Above, Below };
102
103 // \brief Edges can be one of four "weights" -- each weight must have an inverse
104 // weight (Assign has Assign; Reference has Dereference).
105 enum class EdgeType {
106 // The weight assigned when assigning from or to a value. For example, in:
107 // %b = getelementptr %a, 0
108 // ...The relationships are %b assign %a, and %a assign %b. This used to be
109 // two edges, but having a distinction bought us nothing.
110 Assign,
111
112 // The edge used when we have an edge going from some handle to a Value.
113 // Examples of this include:
114 // %b = load %a (%b Dereference %a)
115 // %b = extractelement %a, 0 (%a Dereference %b)
116 Dereference,
117
118 // The edge used when our edge goes from a value to a handle that may have
119 // contained it at some point. Examples:
120 // %b = load %a (%a Reference %b)
121 // %b = extractelement %a, 0 (%b Reference %a)
122 Reference
123 };
124
125 // \brief Encodes the notion of a "use"
126 struct Edge {
127 // \brief Which value the edge is coming from
128 Value *From;
129
130 // \brief Which value the edge is pointing to
131 Value *To;
132
133 // \brief Edge weight
134 EdgeType Weight;
135
136 // \brief Whether we aliased any external values along the way that may be
137 // invisible to the analysis (i.e. landingpad for exceptions, calls for
138 // interprocedural analysis, etc.)
139 StratifiedAttrs AdditionalAttrs;
140
Edge__anondc6bc0680111::Edge141 Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A)
142 : From(From), To(To), Weight(W), AdditionalAttrs(A) {}
143 };
144
145 // \brief Information we have about a function and would like to keep around
146 struct FunctionInfo {
147 StratifiedSets<Value *> Sets;
148 // Lots of functions have < 4 returns. Adjust as necessary.
149 SmallVector<Value *, 4> ReturnedValues;
150
FunctionInfo__anondc6bc0680111::FunctionInfo151 FunctionInfo(StratifiedSets<Value *> &&S, SmallVector<Value *, 4> &&RV)
152 : Sets(std::move(S)), ReturnedValues(std::move(RV)) {}
153 };
154
155 struct CFLAliasAnalysis;
156
157 struct FunctionHandle : public CallbackVH {
FunctionHandle__anondc6bc0680111::FunctionHandle158 FunctionHandle(Function *Fn, CFLAliasAnalysis *CFLAA)
159 : CallbackVH(Fn), CFLAA(CFLAA) {
160 assert(Fn != nullptr);
161 assert(CFLAA != nullptr);
162 }
163
~FunctionHandle__anondc6bc0680111::FunctionHandle164 ~FunctionHandle() override {}
165
deleted__anondc6bc0680111::FunctionHandle166 void deleted() override { removeSelfFromCache(); }
allUsesReplacedWith__anondc6bc0680111::FunctionHandle167 void allUsesReplacedWith(Value *) override { removeSelfFromCache(); }
168
169 private:
170 CFLAliasAnalysis *CFLAA;
171
172 void removeSelfFromCache();
173 };
174
175 struct CFLAliasAnalysis : public ImmutablePass, public AliasAnalysis {
176 private:
177 /// \brief Cached mapping of Functions to their StratifiedSets.
178 /// If a function's sets are currently being built, it is marked
179 /// in the cache as an Optional without a value. This way, if we
180 /// have any kind of recursion, it is discernable from a function
181 /// that simply has empty sets.
182 DenseMap<Function *, Optional<FunctionInfo>> Cache;
183 std::forward_list<FunctionHandle> Handles;
184
185 public:
186 static char ID;
187
CFLAliasAnalysis__anondc6bc0680111::CFLAliasAnalysis188 CFLAliasAnalysis() : ImmutablePass(ID) {
189 initializeCFLAliasAnalysisPass(*PassRegistry::getPassRegistry());
190 }
191
~CFLAliasAnalysis__anondc6bc0680111::CFLAliasAnalysis192 ~CFLAliasAnalysis() override {}
193
getAnalysisUsage__anondc6bc0680111::CFLAliasAnalysis194 void getAnalysisUsage(AnalysisUsage &AU) const override {
195 AliasAnalysis::getAnalysisUsage(AU);
196 }
197
getAdjustedAnalysisPointer__anondc6bc0680111::CFLAliasAnalysis198 void *getAdjustedAnalysisPointer(const void *ID) override {
199 if (ID == &AliasAnalysis::ID)
200 return (AliasAnalysis *)this;
201 return this;
202 }
203
204 /// \brief Inserts the given Function into the cache.
205 void scan(Function *Fn);
206
evict__anondc6bc0680111::CFLAliasAnalysis207 void evict(Function *Fn) { Cache.erase(Fn); }
208
209 /// \brief Ensures that the given function is available in the cache.
210 /// Returns the appropriate entry from the cache.
ensureCached__anondc6bc0680111::CFLAliasAnalysis211 const Optional<FunctionInfo> &ensureCached(Function *Fn) {
212 auto Iter = Cache.find(Fn);
213 if (Iter == Cache.end()) {
214 scan(Fn);
215 Iter = Cache.find(Fn);
216 assert(Iter != Cache.end());
217 assert(Iter->second.hasValue());
218 }
219 return Iter->second;
220 }
221
222 AliasResult query(const Location &LocA, const Location &LocB);
223
alias__anondc6bc0680111::CFLAliasAnalysis224 AliasResult alias(const Location &LocA, const Location &LocB) override {
225 if (LocA.Ptr == LocB.Ptr) {
226 if (LocA.Size == LocB.Size) {
227 return MustAlias;
228 } else {
229 return PartialAlias;
230 }
231 }
232
233 // Comparisons between global variables and other constants should be
234 // handled by BasicAA.
235 // TODO: ConstantExpr handling -- CFLAA may report NoAlias when comparing
236 // a GlobalValue and ConstantExpr, but every query needs to have at least
237 // one Value tied to a Function, and neither GlobalValues nor ConstantExprs
238 // are.
239 if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) {
240 return AliasAnalysis::alias(LocA, LocB);
241 }
242
243 AliasResult QueryResult = query(LocA, LocB);
244 if (QueryResult == MayAlias)
245 return AliasAnalysis::alias(LocA, LocB);
246
247 return QueryResult;
248 }
249
250 bool doInitialization(Module &M) override;
251 };
252
removeSelfFromCache()253 void FunctionHandle::removeSelfFromCache() {
254 assert(CFLAA != nullptr);
255 auto *Val = getValPtr();
256 CFLAA->evict(cast<Function>(Val));
257 setValPtr(nullptr);
258 }
259
260 // \brief Gets the edges our graph should have, based on an Instruction*
261 class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
262 CFLAliasAnalysis &AA;
263 SmallVectorImpl<Edge> &Output;
264
265 public:
GetEdgesVisitor(CFLAliasAnalysis & AA,SmallVectorImpl<Edge> & Output)266 GetEdgesVisitor(CFLAliasAnalysis &AA, SmallVectorImpl<Edge> &Output)
267 : AA(AA), Output(Output) {}
268
visitInstruction(Instruction &)269 void visitInstruction(Instruction &) {
270 llvm_unreachable("Unsupported instruction encountered");
271 }
272
visitPtrToIntInst(PtrToIntInst & Inst)273 void visitPtrToIntInst(PtrToIntInst &Inst) {
274 auto *Ptr = Inst.getOperand(0);
275 Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
276 }
277
visitIntToPtrInst(IntToPtrInst & Inst)278 void visitIntToPtrInst(IntToPtrInst &Inst) {
279 auto *Ptr = &Inst;
280 Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown));
281 }
282
visitCastInst(CastInst & Inst)283 void visitCastInst(CastInst &Inst) {
284 Output.push_back(
285 Edge(&Inst, Inst.getOperand(0), EdgeType::Assign, AttrNone));
286 }
287
visitBinaryOperator(BinaryOperator & Inst)288 void visitBinaryOperator(BinaryOperator &Inst) {
289 auto *Op1 = Inst.getOperand(0);
290 auto *Op2 = Inst.getOperand(1);
291 Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone));
292 Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone));
293 }
294
visitAtomicCmpXchgInst(AtomicCmpXchgInst & Inst)295 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
296 auto *Ptr = Inst.getPointerOperand();
297 auto *Val = Inst.getNewValOperand();
298 Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
299 }
300
visitAtomicRMWInst(AtomicRMWInst & Inst)301 void visitAtomicRMWInst(AtomicRMWInst &Inst) {
302 auto *Ptr = Inst.getPointerOperand();
303 auto *Val = Inst.getValOperand();
304 Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
305 }
306
visitPHINode(PHINode & Inst)307 void visitPHINode(PHINode &Inst) {
308 for (unsigned I = 0, E = Inst.getNumIncomingValues(); I != E; ++I) {
309 Value *Val = Inst.getIncomingValue(I);
310 Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone));
311 }
312 }
313
visitGetElementPtrInst(GetElementPtrInst & Inst)314 void visitGetElementPtrInst(GetElementPtrInst &Inst) {
315 auto *Op = Inst.getPointerOperand();
316 Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone));
317 for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I)
318 Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone));
319 }
320
visitSelectInst(SelectInst & Inst)321 void visitSelectInst(SelectInst &Inst) {
322 // Condition is not processed here (The actual statement producing
323 // the condition result is processed elsewhere). For select, the
324 // condition is evaluated, but not loaded, stored, or assigned
325 // simply as a result of being the condition of a select.
326
327 auto *TrueVal = Inst.getTrueValue();
328 Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone));
329 auto *FalseVal = Inst.getFalseValue();
330 Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone));
331 }
332
visitAllocaInst(AllocaInst &)333 void visitAllocaInst(AllocaInst &) {}
334
visitLoadInst(LoadInst & Inst)335 void visitLoadInst(LoadInst &Inst) {
336 auto *Ptr = Inst.getPointerOperand();
337 auto *Val = &Inst;
338 Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
339 }
340
visitStoreInst(StoreInst & Inst)341 void visitStoreInst(StoreInst &Inst) {
342 auto *Ptr = Inst.getPointerOperand();
343 auto *Val = Inst.getValueOperand();
344 Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone));
345 }
346
visitVAArgInst(VAArgInst & Inst)347 void visitVAArgInst(VAArgInst &Inst) {
348 // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does
349 // two things:
350 // 1. Loads a value from *((T*)*Ptr).
351 // 2. Increments (stores to) *Ptr by some target-specific amount.
352 // For now, we'll handle this like a landingpad instruction (by placing the
353 // result in its own group, and having that group alias externals).
354 auto *Val = &Inst;
355 Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll));
356 }
357
isFunctionExternal(Function * Fn)358 static bool isFunctionExternal(Function *Fn) {
359 return Fn->isDeclaration() || !Fn->hasLocalLinkage();
360 }
361
362 // Gets whether the sets at Index1 above, below, or equal to the sets at
363 // Index2. Returns None if they are not in the same set chain.
getIndexRelation(const StratifiedSets<Value * > & Sets,StratifiedIndex Index1,StratifiedIndex Index2)364 static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets,
365 StratifiedIndex Index1,
366 StratifiedIndex Index2) {
367 if (Index1 == Index2)
368 return Level::Same;
369
370 const auto *Current = &Sets.getLink(Index1);
371 while (Current->hasBelow()) {
372 if (Current->Below == Index2)
373 return Level::Below;
374 Current = &Sets.getLink(Current->Below);
375 }
376
377 Current = &Sets.getLink(Index1);
378 while (Current->hasAbove()) {
379 if (Current->Above == Index2)
380 return Level::Above;
381 Current = &Sets.getLink(Current->Above);
382 }
383
384 return NoneType();
385 }
386
387 bool
tryInterproceduralAnalysis(const SmallVectorImpl<Function * > & Fns,Value * FuncValue,const iterator_range<User::op_iterator> & Args)388 tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns,
389 Value *FuncValue,
390 const iterator_range<User::op_iterator> &Args) {
391 const unsigned ExpectedMaxArgs = 8;
392 const unsigned MaxSupportedArgs = 50;
393 assert(Fns.size() > 0);
394
395 // I put this here to give us an upper bound on time taken by IPA. Is it
396 // really (realistically) needed? Keep in mind that we do have an n^2 algo.
397 if (std::distance(Args.begin(), Args.end()) > (int)MaxSupportedArgs)
398 return false;
399
400 // Exit early if we'll fail anyway
401 for (auto *Fn : Fns) {
402 if (isFunctionExternal(Fn) || Fn->isVarArg())
403 return false;
404 auto &MaybeInfo = AA.ensureCached(Fn);
405 if (!MaybeInfo.hasValue())
406 return false;
407 }
408
409 SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end());
410 SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters;
411 for (auto *Fn : Fns) {
412 auto &Info = *AA.ensureCached(Fn);
413 auto &Sets = Info.Sets;
414 auto &RetVals = Info.ReturnedValues;
415
416 Parameters.clear();
417 for (auto &Param : Fn->args()) {
418 auto MaybeInfo = Sets.find(&Param);
419 // Did a new parameter somehow get added to the function/slip by?
420 if (!MaybeInfo.hasValue())
421 return false;
422 Parameters.push_back(*MaybeInfo);
423 }
424
425 // Adding an edge from argument -> return value for each parameter that
426 // may alias the return value
427 for (unsigned I = 0, E = Parameters.size(); I != E; ++I) {
428 auto &ParamInfo = Parameters[I];
429 auto &ArgVal = Arguments[I];
430 bool AddEdge = false;
431 StratifiedAttrs Externals;
432 for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) {
433 auto MaybeInfo = Sets.find(RetVals[X]);
434 if (!MaybeInfo.hasValue())
435 return false;
436
437 auto &RetInfo = *MaybeInfo;
438 auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs;
439 auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs;
440 auto MaybeRelation =
441 getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index);
442 if (MaybeRelation.hasValue()) {
443 AddEdge = true;
444 Externals |= RetAttrs | ParamAttrs;
445 }
446 }
447 if (AddEdge)
448 Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign,
449 StratifiedAttrs().flip()));
450 }
451
452 if (Parameters.size() != Arguments.size())
453 return false;
454
455 // Adding edges between arguments for arguments that may end up aliasing
456 // each other. This is necessary for functions such as
457 // void foo(int** a, int** b) { *a = *b; }
458 // (Technically, the proper sets for this would be those below
459 // Arguments[I] and Arguments[X], but our algorithm will produce
460 // extremely similar, and equally correct, results either way)
461 for (unsigned I = 0, E = Arguments.size(); I != E; ++I) {
462 auto &MainVal = Arguments[I];
463 auto &MainInfo = Parameters[I];
464 auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs;
465 for (unsigned X = I + 1; X != E; ++X) {
466 auto &SubInfo = Parameters[X];
467 auto &SubVal = Arguments[X];
468 auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs;
469 auto MaybeRelation =
470 getIndexRelation(Sets, MainInfo.Index, SubInfo.Index);
471
472 if (!MaybeRelation.hasValue())
473 continue;
474
475 auto NewAttrs = SubAttrs | MainAttrs;
476 Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs));
477 }
478 }
479 }
480 return true;
481 }
482
visitCallLikeInst(InstT & Inst)483 template <typename InstT> void visitCallLikeInst(InstT &Inst) {
484 SmallVector<Function *, 4> Targets;
485 if (getPossibleTargets(&Inst, Targets)) {
486 if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands()))
487 return;
488 // Cleanup from interprocedural analysis
489 Output.clear();
490 }
491
492 for (Value *V : Inst.arg_operands())
493 Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll));
494 }
495
visitCallInst(CallInst & Inst)496 void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); }
497
visitInvokeInst(InvokeInst & Inst)498 void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); }
499
500 // Because vectors/aggregates are immutable and unaddressable,
501 // there's nothing we can do to coax a value out of them, other
502 // than calling Extract{Element,Value}. We can effectively treat
503 // them as pointers to arbitrary memory locations we can store in
504 // and load from.
visitExtractElementInst(ExtractElementInst & Inst)505 void visitExtractElementInst(ExtractElementInst &Inst) {
506 auto *Ptr = Inst.getVectorOperand();
507 auto *Val = &Inst;
508 Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone));
509 }
510
visitInsertElementInst(InsertElementInst & Inst)511 void visitInsertElementInst(InsertElementInst &Inst) {
512 auto *Vec = Inst.getOperand(0);
513 auto *Val = Inst.getOperand(1);
514 Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone));
515 Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
516 }
517
visitLandingPadInst(LandingPadInst & Inst)518 void visitLandingPadInst(LandingPadInst &Inst) {
519 // Exceptions come from "nowhere", from our analysis' perspective.
520 // So we place the instruction its own group, noting that said group may
521 // alias externals
522 Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll));
523 }
524
visitInsertValueInst(InsertValueInst & Inst)525 void visitInsertValueInst(InsertValueInst &Inst) {
526 auto *Agg = Inst.getOperand(0);
527 auto *Val = Inst.getOperand(1);
528 Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone));
529 Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone));
530 }
531
visitExtractValueInst(ExtractValueInst & Inst)532 void visitExtractValueInst(ExtractValueInst &Inst) {
533 auto *Ptr = Inst.getAggregateOperand();
534 Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone));
535 }
536
visitShuffleVectorInst(ShuffleVectorInst & Inst)537 void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
538 auto *From1 = Inst.getOperand(0);
539 auto *From2 = Inst.getOperand(1);
540 Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone));
541 Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone));
542 }
543 };
544
545 // For a given instruction, we need to know which Value* to get the
546 // users of in order to build our graph. In some cases (i.e. add),
547 // we simply need the Instruction*. In other cases (i.e. store),
548 // finding the users of the Instruction* is useless; we need to find
549 // the users of the first operand. This handles determining which
550 // value to follow for us.
551 //
552 // Note: we *need* to keep this in sync with GetEdgesVisitor. Add
553 // something to GetEdgesVisitor, add it here -- remove something from
554 // GetEdgesVisitor, remove it here.
555 class GetTargetValueVisitor
556 : public InstVisitor<GetTargetValueVisitor, Value *> {
557 public:
visitInstruction(Instruction & Inst)558 Value *visitInstruction(Instruction &Inst) { return &Inst; }
559
visitStoreInst(StoreInst & Inst)560 Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); }
561
visitAtomicCmpXchgInst(AtomicCmpXchgInst & Inst)562 Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
563 return Inst.getPointerOperand();
564 }
565
visitAtomicRMWInst(AtomicRMWInst & Inst)566 Value *visitAtomicRMWInst(AtomicRMWInst &Inst) {
567 return Inst.getPointerOperand();
568 }
569
visitInsertElementInst(InsertElementInst & Inst)570 Value *visitInsertElementInst(InsertElementInst &Inst) {
571 return Inst.getOperand(0);
572 }
573
visitInsertValueInst(InsertValueInst & Inst)574 Value *visitInsertValueInst(InsertValueInst &Inst) {
575 return Inst.getAggregateOperand();
576 }
577 };
578
579 // Set building requires a weighted bidirectional graph.
580 template <typename EdgeTypeT> class WeightedBidirectionalGraph {
581 public:
582 typedef std::size_t Node;
583
584 private:
585 const static Node StartNode = Node(0);
586
587 struct Edge {
588 EdgeTypeT Weight;
589 Node Other;
590
Edge__anondc6bc0680111::WeightedBidirectionalGraph::Edge591 Edge(const EdgeTypeT &W, const Node &N) : Weight(W), Other(N) {}
592
operator ==__anondc6bc0680111::WeightedBidirectionalGraph::Edge593 bool operator==(const Edge &E) const {
594 return Weight == E.Weight && Other == E.Other;
595 }
596
operator !=__anondc6bc0680111::WeightedBidirectionalGraph::Edge597 bool operator!=(const Edge &E) const { return !operator==(E); }
598 };
599
600 struct NodeImpl {
601 std::vector<Edge> Edges;
602 };
603
604 std::vector<NodeImpl> NodeImpls;
605
inbounds(Node NodeIndex) const606 bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); }
607
getNode(Node N) const608 const NodeImpl &getNode(Node N) const { return NodeImpls[N]; }
getNode(Node N)609 NodeImpl &getNode(Node N) { return NodeImpls[N]; }
610
611 public:
612 // ----- Various Edge iterators for the graph ----- //
613
614 // \brief Iterator for edges. Because this graph is bidirected, we don't
615 // allow modificaiton of the edges using this iterator. Additionally, the
616 // iterator becomes invalid if you add edges to or from the node you're
617 // getting the edges of.
618 struct EdgeIterator : public std::iterator<std::forward_iterator_tag,
619 std::tuple<EdgeTypeT, Node *>> {
EdgeIterator__anondc6bc0680111::WeightedBidirectionalGraph::EdgeIterator620 EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter)
621 : Current(Iter) {}
622
EdgeIterator__anondc6bc0680111::WeightedBidirectionalGraph::EdgeIterator623 EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {}
624
operator ++__anondc6bc0680111::WeightedBidirectionalGraph::EdgeIterator625 EdgeIterator &operator++() {
626 ++Current;
627 return *this;
628 }
629
operator ++__anondc6bc0680111::WeightedBidirectionalGraph::EdgeIterator630 EdgeIterator operator++(int) {
631 EdgeIterator Copy(Current);
632 operator++();
633 return Copy;
634 }
635
operator *__anondc6bc0680111::WeightedBidirectionalGraph::EdgeIterator636 std::tuple<EdgeTypeT, Node> &operator*() {
637 Store = std::make_tuple(Current->Weight, Current->Other);
638 return Store;
639 }
640
operator ==__anondc6bc0680111::WeightedBidirectionalGraph::EdgeIterator641 bool operator==(const EdgeIterator &Other) const {
642 return Current == Other.Current;
643 }
644
operator !=__anondc6bc0680111::WeightedBidirectionalGraph::EdgeIterator645 bool operator!=(const EdgeIterator &Other) const {
646 return !operator==(Other);
647 }
648
649 private:
650 typename std::vector<Edge>::const_iterator Current;
651 std::tuple<EdgeTypeT, Node> Store;
652 };
653
654 // Wrapper for EdgeIterator with begin()/end() calls.
655 struct EdgeIterable {
EdgeIterable__anondc6bc0680111::WeightedBidirectionalGraph::EdgeIterable656 EdgeIterable(const std::vector<Edge> &Edges)
657 : BeginIter(Edges.begin()), EndIter(Edges.end()) {}
658
begin__anondc6bc0680111::WeightedBidirectionalGraph::EdgeIterable659 EdgeIterator begin() { return EdgeIterator(BeginIter); }
660
end__anondc6bc0680111::WeightedBidirectionalGraph::EdgeIterable661 EdgeIterator end() { return EdgeIterator(EndIter); }
662
663 private:
664 typename std::vector<Edge>::const_iterator BeginIter;
665 typename std::vector<Edge>::const_iterator EndIter;
666 };
667
668 // ----- Actual graph-related things ----- //
669
WeightedBidirectionalGraph()670 WeightedBidirectionalGraph() {}
671
WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> && Other)672 WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other)
673 : NodeImpls(std::move(Other.NodeImpls)) {}
674
675 WeightedBidirectionalGraph<EdgeTypeT> &
operator =(WeightedBidirectionalGraph<EdgeTypeT> && Other)676 operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) {
677 NodeImpls = std::move(Other.NodeImpls);
678 return *this;
679 }
680
addNode()681 Node addNode() {
682 auto Index = NodeImpls.size();
683 auto NewNode = Node(Index);
684 NodeImpls.push_back(NodeImpl());
685 return NewNode;
686 }
687
addEdge(Node From,Node To,const EdgeTypeT & Weight,const EdgeTypeT & ReverseWeight)688 void addEdge(Node From, Node To, const EdgeTypeT &Weight,
689 const EdgeTypeT &ReverseWeight) {
690 assert(inbounds(From));
691 assert(inbounds(To));
692 auto &FromNode = getNode(From);
693 auto &ToNode = getNode(To);
694 FromNode.Edges.push_back(Edge(Weight, To));
695 ToNode.Edges.push_back(Edge(ReverseWeight, From));
696 }
697
edgesFor(const Node & N) const698 EdgeIterable edgesFor(const Node &N) const {
699 const auto &Node = getNode(N);
700 return EdgeIterable(Node.Edges);
701 }
702
empty() const703 bool empty() const { return NodeImpls.empty(); }
size() const704 std::size_t size() const { return NodeImpls.size(); }
705
706 // \brief Gets an arbitrary node in the graph as a starting point for
707 // traversal.
getEntryNode()708 Node getEntryNode() {
709 assert(inbounds(StartNode));
710 return StartNode;
711 }
712 };
713
714 typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT;
715 typedef DenseMap<Value *, GraphT::Node> NodeMapT;
716 }
717
718 // -- Setting up/registering CFLAA pass -- //
719 char CFLAliasAnalysis::ID = 0;
720
721 INITIALIZE_AG_PASS(CFLAliasAnalysis, AliasAnalysis, "cfl-aa",
722 "CFL-Based AA implementation", false, true, false)
723
createCFLAliasAnalysisPass()724 ImmutablePass *llvm::createCFLAliasAnalysisPass() {
725 return new CFLAliasAnalysis();
726 }
727
728 //===----------------------------------------------------------------------===//
729 // Function declarations that require types defined in the namespace above
730 //===----------------------------------------------------------------------===//
731
732 // Given an argument number, returns the appropriate Attr index to set.
733 static StratifiedAttr argNumberToAttrIndex(StratifiedAttr);
734
735 // Given a Value, potentially return which AttrIndex it maps to.
736 static Optional<StratifiedAttr> valueToAttrIndex(Value *Val);
737
738 // Gets the inverse of a given EdgeType.
739 static EdgeType flipWeight(EdgeType);
740
741 // Gets edges of the given Instruction*, writing them to the SmallVector*.
742 static void argsToEdges(CFLAliasAnalysis &, Instruction *,
743 SmallVectorImpl<Edge> &);
744
745 // Gets the "Level" that one should travel in StratifiedSets
746 // given an EdgeType.
747 static Level directionOfEdgeType(EdgeType);
748
749 // Builds the graph needed for constructing the StratifiedSets for the
750 // given function
751 static void buildGraphFrom(CFLAliasAnalysis &, Function *,
752 SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);
753
754 // Gets the edges of a ConstantExpr as if it was an Instruction. This
755 // function also acts on any nested ConstantExprs, adding the edges
756 // of those to the given SmallVector as well.
757 static void constexprToEdges(CFLAliasAnalysis &, ConstantExpr &,
758 SmallVectorImpl<Edge> &);
759
760 // Given an Instruction, this will add it to the graph, along with any
761 // Instructions that are potentially only available from said Instruction
762 // For example, given the following line:
763 // %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
764 // addInstructionToGraph would add both the `load` and `getelementptr`
765 // instructions to the graph appropriately.
766 static void addInstructionToGraph(CFLAliasAnalysis &, Instruction &,
767 SmallVectorImpl<Value *> &, NodeMapT &,
768 GraphT &);
769
770 // Notes whether it would be pointless to add the given Value to our sets.
771 static bool canSkipAddingToSets(Value *Val);
772
773 // Builds the graph + StratifiedSets for a function.
774 static FunctionInfo buildSetsFrom(CFLAliasAnalysis &, Function *);
775
parentFunctionOfValue(Value * Val)776 static Optional<Function *> parentFunctionOfValue(Value *Val) {
777 if (auto *Inst = dyn_cast<Instruction>(Val)) {
778 auto *Bb = Inst->getParent();
779 return Bb->getParent();
780 }
781
782 if (auto *Arg = dyn_cast<Argument>(Val))
783 return Arg->getParent();
784 return NoneType();
785 }
786
787 template <typename Inst>
getPossibleTargets(Inst * Call,SmallVectorImpl<Function * > & Output)788 static bool getPossibleTargets(Inst *Call,
789 SmallVectorImpl<Function *> &Output) {
790 if (auto *Fn = Call->getCalledFunction()) {
791 Output.push_back(Fn);
792 return true;
793 }
794
795 // TODO: If the call is indirect, we might be able to enumerate all potential
796 // targets of the call and return them, rather than just failing.
797 return false;
798 }
799
getTargetValue(Instruction * Inst)800 static Optional<Value *> getTargetValue(Instruction *Inst) {
801 GetTargetValueVisitor V;
802 return V.visit(Inst);
803 }
804
hasUsefulEdges(Instruction * Inst)805 static bool hasUsefulEdges(Instruction *Inst) {
806 bool IsNonInvokeTerminator =
807 isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst);
808 return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator;
809 }
810
valueToAttrIndex(Value * Val)811 static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) {
812 if (isa<GlobalValue>(Val))
813 return AttrGlobalIndex;
814
815 if (auto *Arg = dyn_cast<Argument>(Val))
816 // Only pointer arguments should have the argument attribute,
817 // because things can't escape through scalars without us seeing a
818 // cast, and thus, interaction with them doesn't matter.
819 if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
820 return argNumberToAttrIndex(Arg->getArgNo());
821 return NoneType();
822 }
823
argNumberToAttrIndex(unsigned ArgNum)824 static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) {
825 if (ArgNum >= AttrMaxNumArgs)
826 return AttrAllIndex;
827 return ArgNum + AttrFirstArgIndex;
828 }
829
flipWeight(EdgeType Initial)830 static EdgeType flipWeight(EdgeType Initial) {
831 switch (Initial) {
832 case EdgeType::Assign:
833 return EdgeType::Assign;
834 case EdgeType::Dereference:
835 return EdgeType::Reference;
836 case EdgeType::Reference:
837 return EdgeType::Dereference;
838 }
839 llvm_unreachable("Incomplete coverage of EdgeType enum");
840 }
841
argsToEdges(CFLAliasAnalysis & Analysis,Instruction * Inst,SmallVectorImpl<Edge> & Output)842 static void argsToEdges(CFLAliasAnalysis &Analysis, Instruction *Inst,
843 SmallVectorImpl<Edge> &Output) {
844 assert(hasUsefulEdges(Inst) &&
845 "Expected instructions to have 'useful' edges");
846 GetEdgesVisitor v(Analysis, Output);
847 v.visit(Inst);
848 }
849
directionOfEdgeType(EdgeType Weight)850 static Level directionOfEdgeType(EdgeType Weight) {
851 switch (Weight) {
852 case EdgeType::Reference:
853 return Level::Above;
854 case EdgeType::Dereference:
855 return Level::Below;
856 case EdgeType::Assign:
857 return Level::Same;
858 }
859 llvm_unreachable("Incomplete switch coverage");
860 }
861
constexprToEdges(CFLAliasAnalysis & Analysis,ConstantExpr & CExprToCollapse,SmallVectorImpl<Edge> & Results)862 static void constexprToEdges(CFLAliasAnalysis &Analysis,
863 ConstantExpr &CExprToCollapse,
864 SmallVectorImpl<Edge> &Results) {
865 SmallVector<ConstantExpr *, 4> Worklist;
866 Worklist.push_back(&CExprToCollapse);
867
868 SmallVector<Edge, 8> ConstexprEdges;
869 while (!Worklist.empty()) {
870 auto *CExpr = Worklist.pop_back_val();
871 std::unique_ptr<Instruction> Inst(CExpr->getAsInstruction());
872
873 if (!hasUsefulEdges(Inst.get()))
874 continue;
875
876 ConstexprEdges.clear();
877 argsToEdges(Analysis, Inst.get(), ConstexprEdges);
878 for (auto &Edge : ConstexprEdges) {
879 if (Edge.From == Inst.get())
880 Edge.From = CExpr;
881 else if (auto *Nested = dyn_cast<ConstantExpr>(Edge.From))
882 Worklist.push_back(Nested);
883
884 if (Edge.To == Inst.get())
885 Edge.To = CExpr;
886 else if (auto *Nested = dyn_cast<ConstantExpr>(Edge.To))
887 Worklist.push_back(Nested);
888 }
889
890 Results.append(ConstexprEdges.begin(), ConstexprEdges.end());
891 }
892 }
893
addInstructionToGraph(CFLAliasAnalysis & Analysis,Instruction & Inst,SmallVectorImpl<Value * > & ReturnedValues,NodeMapT & Map,GraphT & Graph)894 static void addInstructionToGraph(CFLAliasAnalysis &Analysis, Instruction &Inst,
895 SmallVectorImpl<Value *> &ReturnedValues,
896 NodeMapT &Map, GraphT &Graph) {
897 const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
898 auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
899 auto &Iter = Pair.first;
900 if (Pair.second) {
901 auto NewNode = Graph.addNode();
902 Iter->second = NewNode;
903 }
904 return Iter->second;
905 };
906
907 // We don't want the edges of most "return" instructions, but we *do* want
908 // to know what can be returned.
909 if (isa<ReturnInst>(&Inst))
910 ReturnedValues.push_back(&Inst);
911
912 if (!hasUsefulEdges(&Inst))
913 return;
914
915 SmallVector<Edge, 8> Edges;
916 argsToEdges(Analysis, &Inst, Edges);
917
918 // In the case of an unused alloca (or similar), edges may be empty. Note
919 // that it exists so we can potentially answer NoAlias.
920 if (Edges.empty()) {
921 auto MaybeVal = getTargetValue(&Inst);
922 assert(MaybeVal.hasValue());
923 auto *Target = *MaybeVal;
924 findOrInsertNode(Target);
925 return;
926 }
927
928 const auto addEdgeToGraph = [&Graph, &findOrInsertNode](const Edge &E) {
929 auto To = findOrInsertNode(E.To);
930 auto From = findOrInsertNode(E.From);
931 auto FlippedWeight = flipWeight(E.Weight);
932 auto Attrs = E.AdditionalAttrs;
933 Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
934 std::make_pair(FlippedWeight, Attrs));
935 };
936
937 SmallVector<ConstantExpr *, 4> ConstantExprs;
938 for (const Edge &E : Edges) {
939 addEdgeToGraph(E);
940 if (auto *Constexpr = dyn_cast<ConstantExpr>(E.To))
941 ConstantExprs.push_back(Constexpr);
942 if (auto *Constexpr = dyn_cast<ConstantExpr>(E.From))
943 ConstantExprs.push_back(Constexpr);
944 }
945
946 for (ConstantExpr *CE : ConstantExprs) {
947 Edges.clear();
948 constexprToEdges(Analysis, *CE, Edges);
949 std::for_each(Edges.begin(), Edges.end(), addEdgeToGraph);
950 }
951 }
952
953 // Aside: We may remove graph construction entirely, because it doesn't really
954 // buy us much that we don't already have. I'd like to add interprocedural
955 // analysis prior to this however, in case that somehow requires the graph
956 // produced by this for efficient execution
buildGraphFrom(CFLAliasAnalysis & Analysis,Function * Fn,SmallVectorImpl<Value * > & ReturnedValues,NodeMapT & Map,GraphT & Graph)957 static void buildGraphFrom(CFLAliasAnalysis &Analysis, Function *Fn,
958 SmallVectorImpl<Value *> &ReturnedValues,
959 NodeMapT &Map, GraphT &Graph) {
960 for (auto &Bb : Fn->getBasicBlockList())
961 for (auto &Inst : Bb.getInstList())
962 addInstructionToGraph(Analysis, Inst, ReturnedValues, Map, Graph);
963 }
964
canSkipAddingToSets(Value * Val)965 static bool canSkipAddingToSets(Value *Val) {
966 // Constants can share instances, which may falsely unify multiple
967 // sets, e.g. in
968 // store i32* null, i32** %ptr1
969 // store i32* null, i32** %ptr2
970 // clearly ptr1 and ptr2 should not be unified into the same set, so
971 // we should filter out the (potentially shared) instance to
972 // i32* null.
973 if (isa<Constant>(Val)) {
974 bool Container = isa<ConstantVector>(Val) || isa<ConstantArray>(Val) ||
975 isa<ConstantStruct>(Val);
976 // TODO: Because all of these things are constant, we can determine whether
977 // the data is *actually* mutable at graph building time. This will probably
978 // come for free/cheap with offset awareness.
979 bool CanStoreMutableData =
980 isa<GlobalValue>(Val) || isa<ConstantExpr>(Val) || Container;
981 return !CanStoreMutableData;
982 }
983
984 return false;
985 }
986
buildSetsFrom(CFLAliasAnalysis & Analysis,Function * Fn)987 static FunctionInfo buildSetsFrom(CFLAliasAnalysis &Analysis, Function *Fn) {
988 NodeMapT Map;
989 GraphT Graph;
990 SmallVector<Value *, 4> ReturnedValues;
991
992 buildGraphFrom(Analysis, Fn, ReturnedValues, Map, Graph);
993
994 DenseMap<GraphT::Node, Value *> NodeValueMap;
995 NodeValueMap.resize(Map.size());
996 for (const auto &Pair : Map)
997 NodeValueMap.insert(std::make_pair(Pair.second, Pair.first));
998
999 const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) {
1000 auto ValIter = NodeValueMap.find(Node);
1001 assert(ValIter != NodeValueMap.end());
1002 return ValIter->second;
1003 };
1004
1005 StratifiedSetsBuilder<Value *> Builder;
1006
1007 SmallVector<GraphT::Node, 16> Worklist;
1008 for (auto &Pair : Map) {
1009 Worklist.clear();
1010
1011 auto *Value = Pair.first;
1012 Builder.add(Value);
1013 auto InitialNode = Pair.second;
1014 Worklist.push_back(InitialNode);
1015 while (!Worklist.empty()) {
1016 auto Node = Worklist.pop_back_val();
1017 auto *CurValue = findValueOrDie(Node);
1018 if (canSkipAddingToSets(CurValue))
1019 continue;
1020
1021 for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
1022 auto Weight = std::get<0>(EdgeTuple);
1023 auto Label = Weight.first;
1024 auto &OtherNode = std::get<1>(EdgeTuple);
1025 auto *OtherValue = findValueOrDie(OtherNode);
1026
1027 if (canSkipAddingToSets(OtherValue))
1028 continue;
1029
1030 bool Added;
1031 switch (directionOfEdgeType(Label)) {
1032 case Level::Above:
1033 Added = Builder.addAbove(CurValue, OtherValue);
1034 break;
1035 case Level::Below:
1036 Added = Builder.addBelow(CurValue, OtherValue);
1037 break;
1038 case Level::Same:
1039 Added = Builder.addWith(CurValue, OtherValue);
1040 break;
1041 }
1042
1043 auto Aliasing = Weight.second;
1044 if (auto MaybeCurIndex = valueToAttrIndex(CurValue))
1045 Aliasing.set(*MaybeCurIndex);
1046 if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue))
1047 Aliasing.set(*MaybeOtherIndex);
1048 Builder.noteAttributes(CurValue, Aliasing);
1049 Builder.noteAttributes(OtherValue, Aliasing);
1050
1051 if (Added)
1052 Worklist.push_back(OtherNode);
1053 }
1054 }
1055 }
1056
1057 // There are times when we end up with parameters not in our graph (i.e. if
1058 // it's only used as the condition of a branch). Other bits of code depend on
1059 // things that were present during construction being present in the graph.
1060 // So, we add all present arguments here.
1061 for (auto &Arg : Fn->args()) {
1062 if (!Builder.add(&Arg))
1063 continue;
1064
1065 auto Attrs = valueToAttrIndex(&Arg);
1066 if (Attrs.hasValue())
1067 Builder.noteAttributes(&Arg, *Attrs);
1068 }
1069
1070 return FunctionInfo(Builder.build(), std::move(ReturnedValues));
1071 }
1072
scan(Function * Fn)1073 void CFLAliasAnalysis::scan(Function *Fn) {
1074 auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>()));
1075 (void)InsertPair;
1076 assert(InsertPair.second &&
1077 "Trying to scan a function that has already been cached");
1078
1079 FunctionInfo Info(buildSetsFrom(*this, Fn));
1080 Cache[Fn] = std::move(Info);
1081 Handles.push_front(FunctionHandle(Fn, this));
1082 }
1083
1084 AliasAnalysis::AliasResult
query(const AliasAnalysis::Location & LocA,const AliasAnalysis::Location & LocB)1085 CFLAliasAnalysis::query(const AliasAnalysis::Location &LocA,
1086 const AliasAnalysis::Location &LocB) {
1087 auto *ValA = const_cast<Value *>(LocA.Ptr);
1088 auto *ValB = const_cast<Value *>(LocB.Ptr);
1089
1090 Function *Fn = nullptr;
1091 auto MaybeFnA = parentFunctionOfValue(ValA);
1092 auto MaybeFnB = parentFunctionOfValue(ValB);
1093 if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) {
1094 // The only times this is known to happen are when globals + InlineAsm
1095 // are involved
1096 DEBUG(dbgs() << "CFLAA: could not extract parent function information.\n");
1097 return AliasAnalysis::MayAlias;
1098 }
1099
1100 if (MaybeFnA.hasValue()) {
1101 Fn = *MaybeFnA;
1102 assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) &&
1103 "Interprocedural queries not supported");
1104 } else {
1105 Fn = *MaybeFnB;
1106 }
1107
1108 assert(Fn != nullptr);
1109 auto &MaybeInfo = ensureCached(Fn);
1110 assert(MaybeInfo.hasValue());
1111
1112 auto &Sets = MaybeInfo->Sets;
1113 auto MaybeA = Sets.find(ValA);
1114 if (!MaybeA.hasValue())
1115 return AliasAnalysis::MayAlias;
1116
1117 auto MaybeB = Sets.find(ValB);
1118 if (!MaybeB.hasValue())
1119 return AliasAnalysis::MayAlias;
1120
1121 auto SetA = *MaybeA;
1122 auto SetB = *MaybeB;
1123 auto AttrsA = Sets.getLink(SetA.Index).Attrs;
1124 auto AttrsB = Sets.getLink(SetB.Index).Attrs;
1125
1126 // Stratified set attributes are used as markets to signify whether a member
1127 // of a StratifiedSet (or a member of a set above the current set) has
1128 // interacted with either arguments or globals. "Interacted with" meaning
1129 // its value may be different depending on the value of an argument or
1130 // global. The thought behind this is that, because arguments and globals
1131 // may alias each other, if AttrsA and AttrsB have touched args/globals,
1132 // we must conservatively say that they alias. However, if at least one of
1133 // the sets has no values that could legally be altered by changing the value
1134 // of an argument or global, then we don't have to be as conservative.
1135 if (AttrsA.any() && AttrsB.any())
1136 return AliasAnalysis::MayAlias;
1137
1138 // We currently unify things even if the accesses to them may not be in
1139 // bounds, so we can't return partial alias here because we don't
1140 // know whether the pointer is really within the object or not.
1141 // IE Given an out of bounds GEP and an alloca'd pointer, we may
1142 // unify the two. We can't return partial alias for this case.
1143 // Since we do not currently track enough information to
1144 // differentiate
1145
1146 if (SetA.Index == SetB.Index)
1147 return AliasAnalysis::MayAlias;
1148
1149 return AliasAnalysis::NoAlias;
1150 }
1151
doInitialization(Module & M)1152 bool CFLAliasAnalysis::doInitialization(Module &M) {
1153 InitializeAliasAnalysis(this, &M.getDataLayout());
1154 return true;
1155 }
1156