1 //===-- DWARFDebugFrame.h - Parsing of .debug_frame -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/Support/Casting.h"
15 #include "llvm/Support/DataTypes.h"
16 #include "llvm/Support/Dwarf.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/Format.h"
19 #include "llvm/Support/raw_ostream.h"
20 #include <string>
21 #include <vector>
22 
23 using namespace llvm;
24 using namespace dwarf;
25 
26 
27 /// \brief Abstract frame entry defining the common interface concrete
28 /// entries implement.
29 class llvm::FrameEntry {
30 public:
31   enum FrameKind {FK_CIE, FK_FDE};
FrameEntry(FrameKind K,uint64_t Offset,uint64_t Length)32   FrameEntry(FrameKind K, uint64_t Offset, uint64_t Length)
33       : Kind(K), Offset(Offset), Length(Length) {}
34 
~FrameEntry()35   virtual ~FrameEntry() {
36   }
37 
getKind() const38   FrameKind getKind() const { return Kind; }
getOffset() const39   virtual uint64_t getOffset() const { return Offset; }
40 
41   /// \brief Parse and store a sequence of CFI instructions from Data,
42   /// starting at *Offset and ending at EndOffset. If everything
43   /// goes well, *Offset should be equal to EndOffset when this method
44   /// returns. Otherwise, an error occurred.
45   virtual void parseInstructions(DataExtractor Data, uint32_t *Offset,
46                                  uint32_t EndOffset);
47 
48   /// \brief Dump the entry header to the given output stream.
49   virtual void dumpHeader(raw_ostream &OS) const = 0;
50 
51   /// \brief Dump the entry's instructions to the given output stream.
52   virtual void dumpInstructions(raw_ostream &OS) const;
53 
54 protected:
55   const FrameKind Kind;
56 
57   /// \brief Offset of this entry in the section.
58   uint64_t Offset;
59 
60   /// \brief Entry length as specified in DWARF.
61   uint64_t Length;
62 
63   /// An entry may contain CFI instructions. An instruction consists of an
64   /// opcode and an optional sequence of operands.
65   typedef std::vector<uint64_t> Operands;
66   struct Instruction {
Instructionllvm::FrameEntry::Instruction67     Instruction(uint8_t Opcode)
68       : Opcode(Opcode)
69     {}
70 
71     uint8_t Opcode;
72     Operands Ops;
73   };
74 
75   std::vector<Instruction> Instructions;
76 
77   /// Convenience methods to add a new instruction with the given opcode and
78   /// operands to the Instructions vector.
addInstruction(uint8_t Opcode)79   void addInstruction(uint8_t Opcode) {
80     Instructions.push_back(Instruction(Opcode));
81   }
82 
addInstruction(uint8_t Opcode,uint64_t Operand1)83   void addInstruction(uint8_t Opcode, uint64_t Operand1) {
84     Instructions.push_back(Instruction(Opcode));
85     Instructions.back().Ops.push_back(Operand1);
86   }
87 
addInstruction(uint8_t Opcode,uint64_t Operand1,uint64_t Operand2)88   void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) {
89     Instructions.push_back(Instruction(Opcode));
90     Instructions.back().Ops.push_back(Operand1);
91     Instructions.back().Ops.push_back(Operand2);
92   }
93 };
94 
95 
96 // See DWARF standard v3, section 7.23
97 const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
98 const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f;
99 
parseInstructions(DataExtractor Data,uint32_t * Offset,uint32_t EndOffset)100 void FrameEntry::parseInstructions(DataExtractor Data, uint32_t *Offset,
101                                    uint32_t EndOffset) {
102   while (*Offset < EndOffset) {
103     uint8_t Opcode = Data.getU8(Offset);
104     // Some instructions have a primary opcode encoded in the top bits.
105     uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK;
106 
107     if (Primary) {
108       // If it's a primary opcode, the first operand is encoded in the bottom
109       // bits of the opcode itself.
110       uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK;
111       switch (Primary) {
112         default: llvm_unreachable("Impossible primary CFI opcode");
113         case DW_CFA_advance_loc:
114         case DW_CFA_restore:
115           addInstruction(Primary, Op1);
116           break;
117         case DW_CFA_offset:
118           addInstruction(Primary, Op1, Data.getULEB128(Offset));
119           break;
120       }
121     } else {
122       // Extended opcode - its value is Opcode itself.
123       switch (Opcode) {
124         default: llvm_unreachable("Invalid extended CFI opcode");
125         case DW_CFA_nop:
126         case DW_CFA_remember_state:
127         case DW_CFA_restore_state:
128         case DW_CFA_GNU_window_save:
129           // No operands
130           addInstruction(Opcode);
131           break;
132         case DW_CFA_set_loc:
133           // Operands: Address
134           addInstruction(Opcode, Data.getAddress(Offset));
135           break;
136         case DW_CFA_advance_loc1:
137           // Operands: 1-byte delta
138           addInstruction(Opcode, Data.getU8(Offset));
139           break;
140         case DW_CFA_advance_loc2:
141           // Operands: 2-byte delta
142           addInstruction(Opcode, Data.getU16(Offset));
143           break;
144         case DW_CFA_advance_loc4:
145           // Operands: 4-byte delta
146           addInstruction(Opcode, Data.getU32(Offset));
147           break;
148         case DW_CFA_restore_extended:
149         case DW_CFA_undefined:
150         case DW_CFA_same_value:
151         case DW_CFA_def_cfa_register:
152         case DW_CFA_def_cfa_offset:
153           // Operands: ULEB128
154           addInstruction(Opcode, Data.getULEB128(Offset));
155           break;
156         case DW_CFA_def_cfa_offset_sf:
157           // Operands: SLEB128
158           addInstruction(Opcode, Data.getSLEB128(Offset));
159           break;
160         case DW_CFA_offset_extended:
161         case DW_CFA_register:
162         case DW_CFA_def_cfa:
163         case DW_CFA_val_offset:
164           // Operands: ULEB128, ULEB128
165           addInstruction(Opcode, Data.getULEB128(Offset),
166                                  Data.getULEB128(Offset));
167           break;
168         case DW_CFA_offset_extended_sf:
169         case DW_CFA_def_cfa_sf:
170         case DW_CFA_val_offset_sf:
171           // Operands: ULEB128, SLEB128
172           addInstruction(Opcode, Data.getULEB128(Offset),
173                                  Data.getSLEB128(Offset));
174           break;
175         case DW_CFA_def_cfa_expression:
176         case DW_CFA_expression:
177         case DW_CFA_val_expression:
178           // TODO: implement this
179           report_fatal_error("Values with expressions not implemented yet!");
180       }
181     }
182   }
183 }
184 
185 namespace {
186 /// \brief DWARF Common Information Entry (CIE)
187 class CIE : public FrameEntry {
188 public:
189   // CIEs (and FDEs) are simply container classes, so the only sensible way to
190   // create them is by providing the full parsed contents in the constructor.
CIE(uint64_t Offset,uint64_t Length,uint8_t Version,SmallString<8> Augmentation,uint64_t CodeAlignmentFactor,int64_t DataAlignmentFactor,uint64_t ReturnAddressRegister)191   CIE(uint64_t Offset, uint64_t Length, uint8_t Version,
192       SmallString<8> Augmentation, uint64_t CodeAlignmentFactor,
193       int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister)
194       : FrameEntry(FK_CIE, Offset, Length), Version(Version),
195         Augmentation(std::move(Augmentation)),
196         CodeAlignmentFactor(CodeAlignmentFactor),
197         DataAlignmentFactor(DataAlignmentFactor),
198         ReturnAddressRegister(ReturnAddressRegister) {}
199 
~CIE()200   ~CIE() override {}
201 
getCodeAlignmentFactor() const202   uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; }
getDataAlignmentFactor() const203   int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; }
204 
dumpHeader(raw_ostream & OS) const205   void dumpHeader(raw_ostream &OS) const override {
206     OS << format("%08x %08x %08x CIE",
207                  (uint32_t)Offset, (uint32_t)Length, DW_CIE_ID)
208        << "\n";
209     OS << format("  Version:               %d\n", Version);
210     OS << "  Augmentation:          \"" << Augmentation << "\"\n";
211     OS << format("  Code alignment factor: %u\n",
212                  (uint32_t)CodeAlignmentFactor);
213     OS << format("  Data alignment factor: %d\n",
214                  (int32_t)DataAlignmentFactor);
215     OS << format("  Return address column: %d\n",
216                  (int32_t)ReturnAddressRegister);
217     OS << "\n";
218   }
219 
classof(const FrameEntry * FE)220   static bool classof(const FrameEntry *FE) {
221     return FE->getKind() == FK_CIE;
222   }
223 
224 private:
225   /// The following fields are defined in section 6.4.1 of the DWARF standard v3
226   uint8_t Version;
227   SmallString<8> Augmentation;
228   uint64_t CodeAlignmentFactor;
229   int64_t DataAlignmentFactor;
230   uint64_t ReturnAddressRegister;
231 };
232 
233 
234 /// \brief DWARF Frame Description Entry (FDE)
235 class FDE : public FrameEntry {
236 public:
237   // Each FDE has a CIE it's "linked to". Our FDE contains is constructed with
238   // an offset to the CIE (provided by parsing the FDE header). The CIE itself
239   // is obtained lazily once it's actually required.
FDE(uint64_t Offset,uint64_t Length,int64_t LinkedCIEOffset,uint64_t InitialLocation,uint64_t AddressRange,CIE * Cie)240   FDE(uint64_t Offset, uint64_t Length, int64_t LinkedCIEOffset,
241       uint64_t InitialLocation, uint64_t AddressRange,
242       CIE *Cie)
243       : FrameEntry(FK_FDE, Offset, Length), LinkedCIEOffset(LinkedCIEOffset),
244         InitialLocation(InitialLocation), AddressRange(AddressRange),
245         LinkedCIE(Cie) {}
246 
~FDE()247   ~FDE() override {}
248 
getLinkedCIE() const249   CIE *getLinkedCIE() const { return LinkedCIE; }
250 
dumpHeader(raw_ostream & OS) const251   void dumpHeader(raw_ostream &OS) const override {
252     OS << format("%08x %08x %08x FDE ",
253                  (uint32_t)Offset, (uint32_t)Length, (int32_t)LinkedCIEOffset);
254     OS << format("cie=%08x pc=%08x...%08x\n",
255                  (int32_t)LinkedCIEOffset,
256                  (uint32_t)InitialLocation,
257                  (uint32_t)InitialLocation + (uint32_t)AddressRange);
258   }
259 
classof(const FrameEntry * FE)260   static bool classof(const FrameEntry *FE) {
261     return FE->getKind() == FK_FDE;
262   }
263 
264 private:
265   /// The following fields are defined in section 6.4.1 of the DWARF standard v3
266   uint64_t LinkedCIEOffset;
267   uint64_t InitialLocation;
268   uint64_t AddressRange;
269   CIE *LinkedCIE;
270 };
271 
272 /// \brief Types of operands to CF instructions.
273 enum OperandType {
274   OT_Unset,
275   OT_None,
276   OT_Address,
277   OT_Offset,
278   OT_FactoredCodeOffset,
279   OT_SignedFactDataOffset,
280   OT_UnsignedFactDataOffset,
281   OT_Register,
282   OT_Expression
283 };
284 
285 } // end anonymous namespace
286 
287 /// \brief Initialize the array describing the types of operands.
getOperandTypes()288 static ArrayRef<OperandType[2]> getOperandTypes() {
289   static OperandType OpTypes[DW_CFA_restore+1][2];
290 
291 #define DECLARE_OP2(OP, OPTYPE0, OPTYPE1)       \
292   do {                                          \
293     OpTypes[OP][0] = OPTYPE0;                   \
294     OpTypes[OP][1] = OPTYPE1;                   \
295   } while (0)
296 #define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None)
297 #define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None)
298 
299   DECLARE_OP1(DW_CFA_set_loc, OT_Address);
300   DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset);
301   DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset);
302   DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset);
303   DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset);
304   DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset);
305   DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset);
306   DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset);
307   DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register);
308   DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset);
309   DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset);
310   DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression);
311   DECLARE_OP1(DW_CFA_undefined, OT_Register);
312   DECLARE_OP1(DW_CFA_same_value, OT_Register);
313   DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset);
314   DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset);
315   DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset);
316   DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset);
317   DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset);
318   DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register);
319   DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression);
320   DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression);
321   DECLARE_OP1(DW_CFA_restore, OT_Register);
322   DECLARE_OP1(DW_CFA_restore_extended, OT_Register);
323   DECLARE_OP0(DW_CFA_remember_state);
324   DECLARE_OP0(DW_CFA_restore_state);
325   DECLARE_OP0(DW_CFA_GNU_window_save);
326   DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset);
327   DECLARE_OP0(DW_CFA_nop);
328 
329 #undef DECLARE_OP0
330 #undef DECLARE_OP1
331 #undef DECLARE_OP2
332   return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
333 }
334 
335 static ArrayRef<OperandType[2]> OpTypes = getOperandTypes();
336 
337 /// \brief Print \p Opcode's operand number \p OperandIdx which has
338 /// value \p Operand.
printOperand(raw_ostream & OS,uint8_t Opcode,unsigned OperandIdx,uint64_t Operand,uint64_t CodeAlignmentFactor,int64_t DataAlignmentFactor)339 static void printOperand(raw_ostream &OS, uint8_t Opcode, unsigned OperandIdx,
340                          uint64_t Operand, uint64_t CodeAlignmentFactor,
341                          int64_t DataAlignmentFactor) {
342   assert(OperandIdx < 2);
343   OperandType Type = OpTypes[Opcode][OperandIdx];
344 
345   switch (Type) {
346   case OT_Unset:
347     OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to";
348     if (const char *OpcodeName = CallFrameString(Opcode))
349       OS << " " << OpcodeName;
350     else
351       OS << format(" Opcode %x",  Opcode);
352     break;
353   case OT_None:
354     break;
355   case OT_Address:
356     OS << format(" %" PRIx64, Operand);
357     break;
358   case OT_Offset:
359     // The offsets are all encoded in a unsigned form, but in practice
360     // consumers use them signed. It's most certainly legacy due to
361     // the lack of signed variants in the first Dwarf standards.
362     OS << format(" %+" PRId64, int64_t(Operand));
363     break;
364   case OT_FactoredCodeOffset: // Always Unsigned
365     if (CodeAlignmentFactor)
366       OS << format(" %" PRId64, Operand * CodeAlignmentFactor);
367     else
368       OS << format(" %" PRId64 "*code_alignment_factor" , Operand);
369     break;
370   case OT_SignedFactDataOffset:
371     if (DataAlignmentFactor)
372       OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor);
373     else
374       OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand));
375     break;
376   case OT_UnsignedFactDataOffset:
377     if (DataAlignmentFactor)
378       OS << format(" %" PRId64, Operand * DataAlignmentFactor);
379     else
380       OS << format(" %" PRId64 "*data_alignment_factor" , Operand);
381     break;
382   case OT_Register:
383     OS << format(" reg%" PRId64, Operand);
384     break;
385   case OT_Expression:
386     OS << " expression";
387     break;
388   }
389 }
390 
dumpInstructions(raw_ostream & OS) const391 void FrameEntry::dumpInstructions(raw_ostream &OS) const {
392   uint64_t CodeAlignmentFactor = 0;
393   int64_t DataAlignmentFactor = 0;
394   const CIE *Cie = dyn_cast<CIE>(this);
395 
396   if (!Cie)
397     Cie = cast<FDE>(this)->getLinkedCIE();
398   if (Cie) {
399     CodeAlignmentFactor = Cie->getCodeAlignmentFactor();
400     DataAlignmentFactor = Cie->getDataAlignmentFactor();
401   }
402 
403   for (const auto &Instr : Instructions) {
404     uint8_t Opcode = Instr.Opcode;
405     if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK)
406       Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK;
407     OS << "  " << CallFrameString(Opcode) << ":";
408     for (unsigned i = 0; i < Instr.Ops.size(); ++i)
409       printOperand(OS, Opcode, i, Instr.Ops[i], CodeAlignmentFactor,
410                    DataAlignmentFactor);
411     OS << '\n';
412   }
413 }
414 
DWARFDebugFrame()415 DWARFDebugFrame::DWARFDebugFrame() {
416 }
417 
~DWARFDebugFrame()418 DWARFDebugFrame::~DWARFDebugFrame() {
419 }
420 
dumpDataAux(DataExtractor Data,uint32_t Offset,int Length)421 static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data,
422                                               uint32_t Offset, int Length) {
423   errs() << "DUMP: ";
424   for (int i = 0; i < Length; ++i) {
425     uint8_t c = Data.getU8(&Offset);
426     errs().write_hex(c); errs() << " ";
427   }
428   errs() << "\n";
429 }
430 
431 
parse(DataExtractor Data)432 void DWARFDebugFrame::parse(DataExtractor Data) {
433   uint32_t Offset = 0;
434   DenseMap<uint32_t, CIE *> CIEs;
435 
436   while (Data.isValidOffset(Offset)) {
437     uint32_t StartOffset = Offset;
438 
439     bool IsDWARF64 = false;
440     uint64_t Length = Data.getU32(&Offset);
441     uint64_t Id;
442 
443     if (Length == UINT32_MAX) {
444       // DWARF-64 is distinguished by the first 32 bits of the initial length
445       // field being 0xffffffff. Then, the next 64 bits are the actual entry
446       // length.
447       IsDWARF64 = true;
448       Length = Data.getU64(&Offset);
449     }
450 
451     // At this point, Offset points to the next field after Length.
452     // Length is the structure size excluding itself. Compute an offset one
453     // past the end of the structure (needed to know how many instructions to
454     // read).
455     // TODO: For honest DWARF64 support, DataExtractor will have to treat
456     //       offset_ptr as uint64_t*
457     uint32_t EndStructureOffset = Offset + static_cast<uint32_t>(Length);
458 
459     // The Id field's size depends on the DWARF format
460     Id = Data.getUnsigned(&Offset, IsDWARF64 ? 8 : 4);
461     bool IsCIE = ((IsDWARF64 && Id == DW64_CIE_ID) || Id == DW_CIE_ID);
462 
463     if (IsCIE) {
464       // Note: this is specifically DWARFv3 CIE header structure. It was
465       // changed in DWARFv4. We currently don't support reading DWARFv4
466       // here because LLVM itself does not emit it (and LLDB doesn't
467       // support it either).
468       uint8_t Version = Data.getU8(&Offset);
469       const char *Augmentation = Data.getCStr(&Offset);
470       uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset);
471       int64_t DataAlignmentFactor = Data.getSLEB128(&Offset);
472       uint64_t ReturnAddressRegister = Data.getULEB128(&Offset);
473 
474       auto Cie = make_unique<CIE>(StartOffset, Length, Version,
475                                   StringRef(Augmentation), CodeAlignmentFactor,
476                                   DataAlignmentFactor, ReturnAddressRegister);
477       CIEs[StartOffset] = Cie.get();
478       Entries.emplace_back(std::move(Cie));
479     } else {
480       // FDE
481       uint64_t CIEPointer = Id;
482       uint64_t InitialLocation = Data.getAddress(&Offset);
483       uint64_t AddressRange = Data.getAddress(&Offset);
484 
485       Entries.emplace_back(new FDE(StartOffset, Length, CIEPointer,
486                                    InitialLocation, AddressRange,
487                                    CIEs[CIEPointer]));
488     }
489 
490     Entries.back()->parseInstructions(Data, &Offset, EndStructureOffset);
491 
492     if (Offset != EndStructureOffset) {
493       std::string Str;
494       raw_string_ostream OS(Str);
495       OS << format("Parsing entry instructions at %lx failed", StartOffset);
496       report_fatal_error(Str);
497     }
498   }
499 }
500 
501 
dump(raw_ostream & OS) const502 void DWARFDebugFrame::dump(raw_ostream &OS) const {
503   OS << "\n";
504   for (const auto &Entry : Entries) {
505     Entry->dumpHeader(OS);
506     Entry->dumpInstructions(OS);
507     OS << "\n";
508   }
509 }
510 
511