1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCAsmLayout.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCELF.h"
25 #include "llvm/MC/MCELFSymbolFlags.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCFixupKindInfo.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCValue.h"
31 #include "llvm/MC/StringTableBuilder.h"
32 #include "llvm/Support/Compression.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ELF.h"
35 #include "llvm/Support/Endian.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include <vector>
38 using namespace llvm;
39
40 #undef DEBUG_TYPE
41 #define DEBUG_TYPE "reloc-info"
42
43 namespace {
44 class FragmentWriter {
45 bool IsLittleEndian;
46
47 public:
48 FragmentWriter(bool IsLittleEndian);
49 template <typename T> void write(MCDataFragment &F, T Val);
50 };
51
52 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
53
54 class SymbolTableWriter {
55 MCAssembler &Asm;
56 FragmentWriter &FWriter;
57 bool Is64Bit;
58 SectionIndexMapTy &SectionIndexMap;
59
60 // The symbol .symtab fragment we are writting to.
61 MCDataFragment *SymtabF;
62
63 // .symtab_shndx fragment we are writting to.
64 MCDataFragment *ShndxF;
65
66 // The numbel of symbols written so far.
67 unsigned NumWritten;
68
69 void createSymtabShndx();
70
71 template <typename T> void write(MCDataFragment &F, T Value);
72
73 public:
74 SymbolTableWriter(MCAssembler &Asm, FragmentWriter &FWriter, bool Is64Bit,
75 SectionIndexMapTy &SectionIndexMap,
76 MCDataFragment *SymtabF);
77
78 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
79 uint8_t other, uint32_t shndx, bool Reserved);
80 };
81
82 class ELFObjectWriter : public MCObjectWriter {
83 FragmentWriter FWriter;
84
85 protected:
86
87 static bool isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind);
88 static bool RelocNeedsGOT(MCSymbolRefExpr::VariantKind Variant);
89 static uint64_t SymbolValue(MCSymbolData &Data, const MCAsmLayout &Layout);
90 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolData &Data,
91 bool Used, bool Renamed);
92 static bool isLocal(const MCSymbolData &Data, bool isUsedInReloc);
93 static bool IsELFMetaDataSection(const MCSectionData &SD);
94 static uint64_t DataSectionSize(const MCSectionData &SD);
95 static uint64_t GetSectionAddressSize(const MCAsmLayout &Layout,
96 const MCSectionData &SD);
97
98 void writeDataSectionData(MCAssembler &Asm, const MCAsmLayout &Layout,
99 const MCSectionData &SD);
100
101 /// Helper struct for containing some precomputed information on symbols.
102 struct ELFSymbolData {
103 MCSymbolData *SymbolData;
104 uint64_t StringIndex;
105 uint32_t SectionIndex;
106 StringRef Name;
107
108 // Support lexicographic sorting.
operator <__anon4ed704dc0111::ELFObjectWriter::ELFSymbolData109 bool operator<(const ELFSymbolData &RHS) const {
110 unsigned LHSType = MCELF::GetType(*SymbolData);
111 unsigned RHSType = MCELF::GetType(*RHS.SymbolData);
112 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
113 return false;
114 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
115 return true;
116 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
117 return SectionIndex < RHS.SectionIndex;
118 return Name < RHS.Name;
119 }
120 };
121
122 /// The target specific ELF writer instance.
123 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
124
125 SmallPtrSet<const MCSymbol *, 16> UsedInReloc;
126 SmallPtrSet<const MCSymbol *, 16> WeakrefUsedInReloc;
127 DenseMap<const MCSymbol *, const MCSymbol *> Renames;
128
129 llvm::DenseMap<const MCSectionData *, std::vector<ELFRelocationEntry>>
130 Relocations;
131 StringTableBuilder ShStrTabBuilder;
132
133 /// @}
134 /// @name Symbol Table Data
135 /// @{
136
137 StringTableBuilder StrTabBuilder;
138 std::vector<uint64_t> FileSymbolData;
139 std::vector<ELFSymbolData> LocalSymbolData;
140 std::vector<ELFSymbolData> ExternalSymbolData;
141 std::vector<ELFSymbolData> UndefinedSymbolData;
142
143 /// @}
144
145 bool NeedsGOT;
146
147 // This holds the symbol table index of the last local symbol.
148 unsigned LastLocalSymbolIndex;
149 // This holds the .strtab section index.
150 unsigned StringTableIndex;
151 // This holds the .symtab section index.
152 unsigned SymbolTableIndex;
153
154 unsigned ShstrtabIndex;
155
156
157 // TargetObjectWriter wrappers.
is64Bit() const158 bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
hasRelocationAddend() const159 bool hasRelocationAddend() const {
160 return TargetObjectWriter->hasRelocationAddend();
161 }
GetRelocType(const MCValue & Target,const MCFixup & Fixup,bool IsPCRel) const162 unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
163 bool IsPCRel) const {
164 return TargetObjectWriter->GetRelocType(Target, Fixup, IsPCRel);
165 }
166
167 public:
ELFObjectWriter(MCELFObjectTargetWriter * MOTW,raw_pwrite_stream & OS,bool IsLittleEndian)168 ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
169 bool IsLittleEndian)
170 : MCObjectWriter(OS, IsLittleEndian), FWriter(IsLittleEndian),
171 TargetObjectWriter(MOTW), NeedsGOT(false) {}
172
reset()173 void reset() override {
174 UsedInReloc.clear();
175 WeakrefUsedInReloc.clear();
176 Renames.clear();
177 Relocations.clear();
178 ShStrTabBuilder.clear();
179 StrTabBuilder.clear();
180 FileSymbolData.clear();
181 LocalSymbolData.clear();
182 ExternalSymbolData.clear();
183 UndefinedSymbolData.clear();
184 MCObjectWriter::reset();
185 }
186
187 ~ELFObjectWriter() override;
188
WriteWord(uint64_t W)189 void WriteWord(uint64_t W) {
190 if (is64Bit())
191 Write64(W);
192 else
193 Write32(W);
194 }
195
write(MCDataFragment & F,T Value)196 template <typename T> void write(MCDataFragment &F, T Value) {
197 FWriter.write(F, Value);
198 }
199
200 void WriteHeader(const MCAssembler &Asm,
201 unsigned NumberOfSections);
202
203 void WriteSymbol(SymbolTableWriter &Writer, ELFSymbolData &MSD,
204 const MCAsmLayout &Layout);
205
206 void WriteSymbolTable(MCDataFragment *SymtabF, MCAssembler &Asm,
207 const MCAsmLayout &Layout,
208 SectionIndexMapTy &SectionIndexMap);
209
210 bool shouldRelocateWithSymbol(const MCAssembler &Asm,
211 const MCSymbolRefExpr *RefA,
212 const MCSymbolData *SD, uint64_t C,
213 unsigned Type) const;
214
215 void RecordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
216 const MCFragment *Fragment, const MCFixup &Fixup,
217 MCValue Target, bool &IsPCRel,
218 uint64_t &FixedValue) override;
219
220 uint64_t getSymbolIndexInSymbolTable(const MCAssembler &Asm,
221 const MCSymbol *S);
222
223 // Map from a group section to the signature symbol
224 typedef DenseMap<const MCSectionELF*, const MCSymbol*> GroupMapTy;
225 // Map from a signature symbol to the group section
226 typedef DenseMap<const MCSymbol*, const MCSectionELF*> RevGroupMapTy;
227 // Map from a section to its offset
228 typedef DenseMap<const MCSectionELF*, uint64_t> SectionOffsetMapTy;
229
230 /// Compute the symbol table data
231 ///
232 /// \param Asm - The assembler.
233 /// \param SectionIndexMap - Maps a section to its index.
234 /// \param RevGroupMap - Maps a signature symbol to the group section.
235 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
236 const SectionIndexMapTy &SectionIndexMap,
237 const RevGroupMapTy &RevGroupMap);
238
239 void computeIndexMap(MCAssembler &Asm, SectionIndexMapTy &SectionIndexMap);
240
241 MCSectionData *createRelocationSection(MCAssembler &Asm,
242 const MCSectionData &SD);
243
244 void CompressDebugSections(MCAssembler &Asm, MCAsmLayout &Layout);
245
246 void WriteRelocations(MCAssembler &Asm, MCAsmLayout &Layout);
247
248 void CreateMetadataSections(MCAssembler &Asm, MCAsmLayout &Layout,
249 SectionIndexMapTy &SectionIndexMap);
250
251 // Create the sections that show up in the symbol table. Currently
252 // those are the .note.GNU-stack section and the group sections.
253 void createIndexedSections(MCAssembler &Asm, MCAsmLayout &Layout,
254 GroupMapTy &GroupMap, RevGroupMapTy &RevGroupMap,
255 SectionIndexMapTy &SectionIndexMap);
256
257 void ExecutePostLayoutBinding(MCAssembler &Asm,
258 const MCAsmLayout &Layout) override;
259
260 void writeSectionHeader(ArrayRef<const MCSectionELF *> Sections,
261 MCAssembler &Asm, const GroupMapTy &GroupMap,
262 const MCAsmLayout &Layout,
263 const SectionIndexMapTy &SectionIndexMap,
264 const SectionOffsetMapTy &SectionOffsetMap);
265
266 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
267 uint64_t Address, uint64_t Offset,
268 uint64_t Size, uint32_t Link, uint32_t Info,
269 uint64_t Alignment, uint64_t EntrySize);
270
271 void WriteRelocationsFragment(const MCAssembler &Asm,
272 MCDataFragment *F,
273 const MCSectionData *SD);
274
275 bool
276 IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
277 const MCSymbolData &DataA,
278 const MCSymbolData *DataB,
279 const MCFragment &FB,
280 bool InSet,
281 bool IsPCRel) const override;
282
283 bool isWeak(const MCSymbolData &SD) const override;
284
285 void WriteObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
286 void writeSection(MCAssembler &Asm,
287 const SectionIndexMapTy &SectionIndexMap,
288 uint32_t GroupSymbolIndex,
289 uint64_t Offset, uint64_t Size, uint64_t Alignment,
290 const MCSectionELF &Section);
291 };
292 }
293
FragmentWriter(bool IsLittleEndian)294 FragmentWriter::FragmentWriter(bool IsLittleEndian)
295 : IsLittleEndian(IsLittleEndian) {}
296
write(MCDataFragment & F,T Val)297 template <typename T> void FragmentWriter::write(MCDataFragment &F, T Val) {
298 if (IsLittleEndian)
299 Val = support::endian::byte_swap<T, support::little>(Val);
300 else
301 Val = support::endian::byte_swap<T, support::big>(Val);
302 const char *Start = (const char *)&Val;
303 F.getContents().append(Start, Start + sizeof(T));
304 }
305
createSymtabShndx()306 void SymbolTableWriter::createSymtabShndx() {
307 if (ShndxF)
308 return;
309
310 MCContext &Ctx = Asm.getContext();
311 const MCSectionELF *SymtabShndxSection =
312 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
313 MCSectionData *SymtabShndxSD =
314 &Asm.getOrCreateSectionData(*SymtabShndxSection);
315 SymtabShndxSD->setAlignment(4);
316 ShndxF = new MCDataFragment(SymtabShndxSD);
317 unsigned Index = SectionIndexMap.size() + 1;
318 SectionIndexMap[SymtabShndxSection] = Index;
319
320 for (unsigned I = 0; I < NumWritten; ++I)
321 write(*ShndxF, uint32_t(0));
322 }
323
324 template <typename T>
write(MCDataFragment & F,T Value)325 void SymbolTableWriter::write(MCDataFragment &F, T Value) {
326 FWriter.write(F, Value);
327 }
328
SymbolTableWriter(MCAssembler & Asm,FragmentWriter & FWriter,bool Is64Bit,SectionIndexMapTy & SectionIndexMap,MCDataFragment * SymtabF)329 SymbolTableWriter::SymbolTableWriter(MCAssembler &Asm, FragmentWriter &FWriter,
330 bool Is64Bit,
331 SectionIndexMapTy &SectionIndexMap,
332 MCDataFragment *SymtabF)
333 : Asm(Asm), FWriter(FWriter), Is64Bit(Is64Bit),
334 SectionIndexMap(SectionIndexMap), SymtabF(SymtabF), ShndxF(nullptr),
335 NumWritten(0) {}
336
writeSymbol(uint32_t name,uint8_t info,uint64_t value,uint64_t size,uint8_t other,uint32_t shndx,bool Reserved)337 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
338 uint64_t size, uint8_t other,
339 uint32_t shndx, bool Reserved) {
340 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
341
342 if (LargeIndex)
343 createSymtabShndx();
344
345 if (ShndxF) {
346 if (LargeIndex)
347 write(*ShndxF, shndx);
348 else
349 write(*ShndxF, uint32_t(0));
350 }
351
352 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
353
354 if (Is64Bit) {
355 write(*SymtabF, name); // st_name
356 write(*SymtabF, info); // st_info
357 write(*SymtabF, other); // st_other
358 write(*SymtabF, Index); // st_shndx
359 write(*SymtabF, value); // st_value
360 write(*SymtabF, size); // st_size
361 } else {
362 write(*SymtabF, name); // st_name
363 write(*SymtabF, uint32_t(value)); // st_value
364 write(*SymtabF, uint32_t(size)); // st_size
365 write(*SymtabF, info); // st_info
366 write(*SymtabF, other); // st_other
367 write(*SymtabF, Index); // st_shndx
368 }
369
370 ++NumWritten;
371 }
372
isFixupKindPCRel(const MCAssembler & Asm,unsigned Kind)373 bool ELFObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) {
374 const MCFixupKindInfo &FKI =
375 Asm.getBackend().getFixupKindInfo((MCFixupKind) Kind);
376
377 return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel;
378 }
379
RelocNeedsGOT(MCSymbolRefExpr::VariantKind Variant)380 bool ELFObjectWriter::RelocNeedsGOT(MCSymbolRefExpr::VariantKind Variant) {
381 switch (Variant) {
382 default:
383 return false;
384 case MCSymbolRefExpr::VK_GOT:
385 case MCSymbolRefExpr::VK_PLT:
386 case MCSymbolRefExpr::VK_GOTPCREL:
387 case MCSymbolRefExpr::VK_GOTOFF:
388 case MCSymbolRefExpr::VK_TPOFF:
389 case MCSymbolRefExpr::VK_TLSGD:
390 case MCSymbolRefExpr::VK_GOTTPOFF:
391 case MCSymbolRefExpr::VK_INDNTPOFF:
392 case MCSymbolRefExpr::VK_NTPOFF:
393 case MCSymbolRefExpr::VK_GOTNTPOFF:
394 case MCSymbolRefExpr::VK_TLSLDM:
395 case MCSymbolRefExpr::VK_DTPOFF:
396 case MCSymbolRefExpr::VK_TLSLD:
397 return true;
398 }
399 }
400
~ELFObjectWriter()401 ELFObjectWriter::~ELFObjectWriter()
402 {}
403
404 // Emit the ELF header.
WriteHeader(const MCAssembler & Asm,unsigned NumberOfSections)405 void ELFObjectWriter::WriteHeader(const MCAssembler &Asm,
406 unsigned NumberOfSections) {
407 // ELF Header
408 // ----------
409 //
410 // Note
411 // ----
412 // emitWord method behaves differently for ELF32 and ELF64, writing
413 // 4 bytes in the former and 8 in the latter.
414
415 Write8(0x7f); // e_ident[EI_MAG0]
416 Write8('E'); // e_ident[EI_MAG1]
417 Write8('L'); // e_ident[EI_MAG2]
418 Write8('F'); // e_ident[EI_MAG3]
419
420 Write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
421
422 // e_ident[EI_DATA]
423 Write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
424
425 Write8(ELF::EV_CURRENT); // e_ident[EI_VERSION]
426 // e_ident[EI_OSABI]
427 Write8(TargetObjectWriter->getOSABI());
428 Write8(0); // e_ident[EI_ABIVERSION]
429
430 WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
431
432 Write16(ELF::ET_REL); // e_type
433
434 Write16(TargetObjectWriter->getEMachine()); // e_machine = target
435
436 Write32(ELF::EV_CURRENT); // e_version
437 WriteWord(0); // e_entry, no entry point in .o file
438 WriteWord(0); // e_phoff, no program header for .o
439 WriteWord(0); // e_shoff = sec hdr table off in bytes
440
441 // e_flags = whatever the target wants
442 Write32(Asm.getELFHeaderEFlags());
443
444 // e_ehsize = ELF header size
445 Write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
446
447 Write16(0); // e_phentsize = prog header entry size
448 Write16(0); // e_phnum = # prog header entries = 0
449
450 // e_shentsize = Section header entry size
451 Write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
452
453 // e_shnum = # of section header ents
454 if (NumberOfSections >= ELF::SHN_LORESERVE)
455 Write16(ELF::SHN_UNDEF);
456 else
457 Write16(NumberOfSections);
458
459 // e_shstrndx = Section # of '.shstrtab'
460 if (ShstrtabIndex >= ELF::SHN_LORESERVE)
461 Write16(ELF::SHN_XINDEX);
462 else
463 Write16(ShstrtabIndex);
464 }
465
SymbolValue(MCSymbolData & Data,const MCAsmLayout & Layout)466 uint64_t ELFObjectWriter::SymbolValue(MCSymbolData &Data,
467 const MCAsmLayout &Layout) {
468 if (Data.isCommon() && Data.isExternal())
469 return Data.getCommonAlignment();
470
471 uint64_t Res;
472 if (!Layout.getSymbolOffset(&Data, Res))
473 return 0;
474
475 if (Layout.getAssembler().isThumbFunc(&Data.getSymbol()))
476 Res |= 1;
477
478 return Res;
479 }
480
ExecutePostLayoutBinding(MCAssembler & Asm,const MCAsmLayout & Layout)481 void ELFObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm,
482 const MCAsmLayout &Layout) {
483 // The presence of symbol versions causes undefined symbols and
484 // versions declared with @@@ to be renamed.
485
486 for (MCSymbolData &OriginalData : Asm.symbols()) {
487 const MCSymbol &Alias = OriginalData.getSymbol();
488
489 // Not an alias.
490 if (!Alias.isVariable())
491 continue;
492 auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
493 if (!Ref)
494 continue;
495 const MCSymbol &Symbol = Ref->getSymbol();
496 MCSymbolData &SD = Asm.getSymbolData(Symbol);
497
498 StringRef AliasName = Alias.getName();
499 size_t Pos = AliasName.find('@');
500 if (Pos == StringRef::npos)
501 continue;
502
503 // Aliases defined with .symvar copy the binding from the symbol they alias.
504 // This is the first place we are able to copy this information.
505 OriginalData.setExternal(SD.isExternal());
506 MCELF::SetBinding(OriginalData, MCELF::GetBinding(SD));
507
508 StringRef Rest = AliasName.substr(Pos);
509 if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
510 continue;
511
512 // FIXME: produce a better error message.
513 if (Symbol.isUndefined() && Rest.startswith("@@") &&
514 !Rest.startswith("@@@"))
515 report_fatal_error("A @@ version cannot be undefined");
516
517 Renames.insert(std::make_pair(&Symbol, &Alias));
518 }
519 }
520
mergeTypeForSet(uint8_t origType,uint8_t newType)521 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
522 uint8_t Type = newType;
523
524 // Propagation rules:
525 // IFUNC > FUNC > OBJECT > NOTYPE
526 // TLS_OBJECT > OBJECT > NOTYPE
527 //
528 // dont let the new type degrade the old type
529 switch (origType) {
530 default:
531 break;
532 case ELF::STT_GNU_IFUNC:
533 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
534 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
535 Type = ELF::STT_GNU_IFUNC;
536 break;
537 case ELF::STT_FUNC:
538 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
539 Type == ELF::STT_TLS)
540 Type = ELF::STT_FUNC;
541 break;
542 case ELF::STT_OBJECT:
543 if (Type == ELF::STT_NOTYPE)
544 Type = ELF::STT_OBJECT;
545 break;
546 case ELF::STT_TLS:
547 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
548 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
549 Type = ELF::STT_TLS;
550 break;
551 }
552
553 return Type;
554 }
555
WriteSymbol(SymbolTableWriter & Writer,ELFSymbolData & MSD,const MCAsmLayout & Layout)556 void ELFObjectWriter::WriteSymbol(SymbolTableWriter &Writer, ELFSymbolData &MSD,
557 const MCAsmLayout &Layout) {
558 MCSymbolData &OrigData = *MSD.SymbolData;
559 assert((!OrigData.getFragment() ||
560 (&OrigData.getFragment()->getParent()->getSection() ==
561 &OrigData.getSymbol().getSection())) &&
562 "The symbol's section doesn't match the fragment's symbol");
563 const MCSymbol *Base = Layout.getBaseSymbol(OrigData.getSymbol());
564
565 // This has to be in sync with when computeSymbolTable uses SHN_ABS or
566 // SHN_COMMON.
567 bool IsReserved = !Base || OrigData.isCommon();
568
569 // Binding and Type share the same byte as upper and lower nibbles
570 uint8_t Binding = MCELF::GetBinding(OrigData);
571 uint8_t Type = MCELF::GetType(OrigData);
572 MCSymbolData *BaseSD = nullptr;
573 if (Base) {
574 BaseSD = &Layout.getAssembler().getSymbolData(*Base);
575 Type = mergeTypeForSet(Type, MCELF::GetType(*BaseSD));
576 }
577 uint8_t Info = (Binding << ELF_STB_Shift) | (Type << ELF_STT_Shift);
578
579 // Other and Visibility share the same byte with Visibility using the lower
580 // 2 bits
581 uint8_t Visibility = MCELF::GetVisibility(OrigData);
582 uint8_t Other = MCELF::getOther(OrigData) << (ELF_STO_Shift - ELF_STV_Shift);
583 Other |= Visibility;
584
585 uint64_t Value = SymbolValue(OrigData, Layout);
586 uint64_t Size = 0;
587
588 const MCExpr *ESize = OrigData.getSize();
589 if (!ESize && Base)
590 ESize = BaseSD->getSize();
591
592 if (ESize) {
593 int64_t Res;
594 if (!ESize->evaluateKnownAbsolute(Res, Layout))
595 report_fatal_error("Size expression must be absolute.");
596 Size = Res;
597 }
598
599 // Write out the symbol table entry
600 Writer.writeSymbol(MSD.StringIndex, Info, Value, Size, Other,
601 MSD.SectionIndex, IsReserved);
602 }
603
WriteSymbolTable(MCDataFragment * SymtabF,MCAssembler & Asm,const MCAsmLayout & Layout,SectionIndexMapTy & SectionIndexMap)604 void ELFObjectWriter::WriteSymbolTable(MCDataFragment *SymtabF,
605 MCAssembler &Asm,
606 const MCAsmLayout &Layout,
607 SectionIndexMapTy &SectionIndexMap) {
608 // The string table must be emitted first because we need the index
609 // into the string table for all the symbol names.
610
611 // FIXME: Make sure the start of the symbol table is aligned.
612
613 SymbolTableWriter Writer(Asm, FWriter, is64Bit(), SectionIndexMap, SymtabF);
614
615 // The first entry is the undefined symbol entry.
616 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
617
618 for (unsigned i = 0, e = FileSymbolData.size(); i != e; ++i) {
619 Writer.writeSymbol(FileSymbolData[i], ELF::STT_FILE | ELF::STB_LOCAL, 0, 0,
620 ELF::STV_DEFAULT, ELF::SHN_ABS, true);
621 }
622
623 // Write the symbol table entries.
624 LastLocalSymbolIndex = FileSymbolData.size() + LocalSymbolData.size() + 1;
625
626 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) {
627 ELFSymbolData &MSD = LocalSymbolData[i];
628 WriteSymbol(Writer, MSD, Layout);
629 }
630
631 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) {
632 ELFSymbolData &MSD = ExternalSymbolData[i];
633 MCSymbolData &Data = *MSD.SymbolData;
634 assert(((Data.getFlags() & ELF_STB_Global) ||
635 (Data.getFlags() & ELF_STB_Weak)) &&
636 "External symbol requires STB_GLOBAL or STB_WEAK flag");
637 WriteSymbol(Writer, MSD, Layout);
638 if (MCELF::GetBinding(Data) == ELF::STB_LOCAL)
639 LastLocalSymbolIndex++;
640 }
641
642 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) {
643 ELFSymbolData &MSD = UndefinedSymbolData[i];
644 MCSymbolData &Data = *MSD.SymbolData;
645 WriteSymbol(Writer, MSD, Layout);
646 if (MCELF::GetBinding(Data) == ELF::STB_LOCAL)
647 LastLocalSymbolIndex++;
648 }
649 }
650
651 // It is always valid to create a relocation with a symbol. It is preferable
652 // to use a relocation with a section if that is possible. Using the section
653 // allows us to omit some local symbols from the symbol table.
shouldRelocateWithSymbol(const MCAssembler & Asm,const MCSymbolRefExpr * RefA,const MCSymbolData * SD,uint64_t C,unsigned Type) const654 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
655 const MCSymbolRefExpr *RefA,
656 const MCSymbolData *SD,
657 uint64_t C,
658 unsigned Type) const {
659 // A PCRel relocation to an absolute value has no symbol (or section). We
660 // represent that with a relocation to a null section.
661 if (!RefA)
662 return false;
663
664 MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
665 switch (Kind) {
666 default:
667 break;
668 // The .odp creation emits a relocation against the symbol ".TOC." which
669 // create a R_PPC64_TOC relocation. However the relocation symbol name
670 // in final object creation should be NULL, since the symbol does not
671 // really exist, it is just the reference to TOC base for the current
672 // object file. Since the symbol is undefined, returning false results
673 // in a relocation with a null section which is the desired result.
674 case MCSymbolRefExpr::VK_PPC_TOCBASE:
675 return false;
676
677 // These VariantKind cause the relocation to refer to something other than
678 // the symbol itself, like a linker generated table. Since the address of
679 // symbol is not relevant, we cannot replace the symbol with the
680 // section and patch the difference in the addend.
681 case MCSymbolRefExpr::VK_GOT:
682 case MCSymbolRefExpr::VK_PLT:
683 case MCSymbolRefExpr::VK_GOTPCREL:
684 case MCSymbolRefExpr::VK_Mips_GOT:
685 case MCSymbolRefExpr::VK_PPC_GOT_LO:
686 case MCSymbolRefExpr::VK_PPC_GOT_HI:
687 case MCSymbolRefExpr::VK_PPC_GOT_HA:
688 return true;
689 }
690
691 // An undefined symbol is not in any section, so the relocation has to point
692 // to the symbol itself.
693 const MCSymbol &Sym = SD->getSymbol();
694 if (Sym.isUndefined())
695 return true;
696
697 unsigned Binding = MCELF::GetBinding(*SD);
698 switch(Binding) {
699 default:
700 llvm_unreachable("Invalid Binding");
701 case ELF::STB_LOCAL:
702 break;
703 case ELF::STB_WEAK:
704 // If the symbol is weak, it might be overridden by a symbol in another
705 // file. The relocation has to point to the symbol so that the linker
706 // can update it.
707 return true;
708 case ELF::STB_GLOBAL:
709 // Global ELF symbols can be preempted by the dynamic linker. The relocation
710 // has to point to the symbol for a reason analogous to the STB_WEAK case.
711 return true;
712 }
713
714 // If a relocation points to a mergeable section, we have to be careful.
715 // If the offset is zero, a relocation with the section will encode the
716 // same information. With a non-zero offset, the situation is different.
717 // For example, a relocation can point 42 bytes past the end of a string.
718 // If we change such a relocation to use the section, the linker would think
719 // that it pointed to another string and subtracting 42 at runtime will
720 // produce the wrong value.
721 auto &Sec = cast<MCSectionELF>(Sym.getSection());
722 unsigned Flags = Sec.getFlags();
723 if (Flags & ELF::SHF_MERGE) {
724 if (C != 0)
725 return true;
726
727 // It looks like gold has a bug (http://sourceware.org/PR16794) and can
728 // only handle section relocations to mergeable sections if using RELA.
729 if (!hasRelocationAddend())
730 return true;
731 }
732
733 // Most TLS relocations use a got, so they need the symbol. Even those that
734 // are just an offset (@tpoff), require a symbol in gold versions before
735 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
736 // http://sourceware.org/PR16773.
737 if (Flags & ELF::SHF_TLS)
738 return true;
739
740 // If the symbol is a thumb function the final relocation must set the lowest
741 // bit. With a symbol that is done by just having the symbol have that bit
742 // set, so we would lose the bit if we relocated with the section.
743 // FIXME: We could use the section but add the bit to the relocation value.
744 if (Asm.isThumbFunc(&Sym))
745 return true;
746
747 if (TargetObjectWriter->needsRelocateWithSymbol(*SD, Type))
748 return true;
749 return false;
750 }
751
getWeakRef(const MCSymbolRefExpr & Ref)752 static const MCSymbol *getWeakRef(const MCSymbolRefExpr &Ref) {
753 const MCSymbol &Sym = Ref.getSymbol();
754
755 if (Ref.getKind() == MCSymbolRefExpr::VK_WEAKREF)
756 return &Sym;
757
758 if (!Sym.isVariable())
759 return nullptr;
760
761 const MCExpr *Expr = Sym.getVariableValue();
762 const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr);
763 if (!Inner)
764 return nullptr;
765
766 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
767 return &Inner->getSymbol();
768 return nullptr;
769 }
770
isWeak(const MCSymbolData & D)771 static bool isWeak(const MCSymbolData &D) {
772 return D.getFlags() & ELF_STB_Weak || MCELF::GetType(D) == ELF::STT_GNU_IFUNC;
773 }
774
RecordRelocation(MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment * Fragment,const MCFixup & Fixup,MCValue Target,bool & IsPCRel,uint64_t & FixedValue)775 void ELFObjectWriter::RecordRelocation(MCAssembler &Asm,
776 const MCAsmLayout &Layout,
777 const MCFragment *Fragment,
778 const MCFixup &Fixup, MCValue Target,
779 bool &IsPCRel, uint64_t &FixedValue) {
780 const MCSectionData *FixupSection = Fragment->getParent();
781 uint64_t C = Target.getConstant();
782 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
783
784 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
785 assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
786 "Should not have constructed this");
787
788 // Let A, B and C being the components of Target and R be the location of
789 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
790 // If it is pcrel, we want to compute (A - B + C - R).
791
792 // In general, ELF has no relocations for -B. It can only represent (A + C)
793 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
794 // replace B to implement it: (A - R - K + C)
795 if (IsPCRel)
796 Asm.getContext().FatalError(
797 Fixup.getLoc(),
798 "No relocation available to represent this relative expression");
799
800 const MCSymbol &SymB = RefB->getSymbol();
801
802 if (SymB.isUndefined())
803 Asm.getContext().FatalError(
804 Fixup.getLoc(),
805 Twine("symbol '") + SymB.getName() +
806 "' can not be undefined in a subtraction expression");
807
808 assert(!SymB.isAbsolute() && "Should have been folded");
809 const MCSection &SecB = SymB.getSection();
810 if (&SecB != &FixupSection->getSection())
811 Asm.getContext().FatalError(
812 Fixup.getLoc(), "Cannot represent a difference across sections");
813
814 const MCSymbolData &SymBD = Asm.getSymbolData(SymB);
815 if (::isWeak(SymBD))
816 Asm.getContext().FatalError(
817 Fixup.getLoc(), "Cannot represent a subtraction with a weak symbol");
818
819 uint64_t SymBOffset = Layout.getSymbolOffset(&SymBD);
820 uint64_t K = SymBOffset - FixupOffset;
821 IsPCRel = true;
822 C -= K;
823 }
824
825 // We either rejected the fixup or folded B into C at this point.
826 const MCSymbolRefExpr *RefA = Target.getSymA();
827 const MCSymbol *SymA = RefA ? &RefA->getSymbol() : nullptr;
828 const MCSymbolData *SymAD = SymA ? &Asm.getSymbolData(*SymA) : nullptr;
829
830 unsigned Type = GetRelocType(Target, Fixup, IsPCRel);
831 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymAD, C, Type);
832 if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
833 C += Layout.getSymbolOffset(SymAD);
834
835 uint64_t Addend = 0;
836 if (hasRelocationAddend()) {
837 Addend = C;
838 C = 0;
839 }
840
841 FixedValue = C;
842
843 // FIXME: What is this!?!?
844 MCSymbolRefExpr::VariantKind Modifier =
845 RefA ? RefA->getKind() : MCSymbolRefExpr::VK_None;
846 if (RelocNeedsGOT(Modifier))
847 NeedsGOT = true;
848
849 if (!RelocateWithSymbol) {
850 const MCSection *SecA =
851 (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
852 auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
853 MCSymbol *SectionSymbol =
854 ELFSec ? Asm.getContext().getOrCreateSectionSymbol(*ELFSec)
855 : nullptr;
856 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend);
857 Relocations[FixupSection].push_back(Rec);
858 return;
859 }
860
861 if (SymA) {
862 if (const MCSymbol *R = Renames.lookup(SymA))
863 SymA = R;
864
865 if (const MCSymbol *WeakRef = getWeakRef(*RefA))
866 WeakrefUsedInReloc.insert(WeakRef);
867 else
868 UsedInReloc.insert(SymA);
869 }
870 ELFRelocationEntry Rec(FixupOffset, SymA, Type, Addend);
871 Relocations[FixupSection].push_back(Rec);
872 return;
873 }
874
875
876 uint64_t
getSymbolIndexInSymbolTable(const MCAssembler & Asm,const MCSymbol * S)877 ELFObjectWriter::getSymbolIndexInSymbolTable(const MCAssembler &Asm,
878 const MCSymbol *S) {
879 const MCSymbolData &SD = Asm.getSymbolData(*S);
880 return SD.getIndex();
881 }
882
isInSymtab(const MCAsmLayout & Layout,const MCSymbolData & Data,bool Used,bool Renamed)883 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
884 const MCSymbolData &Data, bool Used,
885 bool Renamed) {
886 const MCSymbol &Symbol = Data.getSymbol();
887 if (Symbol.isVariable()) {
888 const MCExpr *Expr = Symbol.getVariableValue();
889 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
890 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
891 return false;
892 }
893 }
894
895 if (Used)
896 return true;
897
898 if (Renamed)
899 return false;
900
901 if (Symbol.getName() == "_GLOBAL_OFFSET_TABLE_")
902 return true;
903
904 if (Symbol.isVariable()) {
905 const MCSymbol *Base = Layout.getBaseSymbol(Symbol);
906 if (Base && Base->isUndefined())
907 return false;
908 }
909
910 bool IsGlobal = MCELF::GetBinding(Data) == ELF::STB_GLOBAL;
911 if (!Symbol.isVariable() && Symbol.isUndefined() && !IsGlobal)
912 return false;
913
914 if (Symbol.isTemporary())
915 return false;
916
917 return true;
918 }
919
isLocal(const MCSymbolData & Data,bool isUsedInReloc)920 bool ELFObjectWriter::isLocal(const MCSymbolData &Data, bool isUsedInReloc) {
921 if (Data.isExternal())
922 return false;
923
924 const MCSymbol &Symbol = Data.getSymbol();
925 if (Symbol.isDefined())
926 return true;
927
928 if (isUsedInReloc)
929 return false;
930
931 return true;
932 }
933
computeIndexMap(MCAssembler & Asm,SectionIndexMapTy & SectionIndexMap)934 void ELFObjectWriter::computeIndexMap(MCAssembler &Asm,
935 SectionIndexMapTy &SectionIndexMap) {
936 unsigned Index = 1;
937 for (MCAssembler::iterator it = Asm.begin(),
938 ie = Asm.end(); it != ie; ++it) {
939 const MCSectionELF &Section =
940 static_cast<const MCSectionELF &>(it->getSection());
941 if (Section.getType() != ELF::SHT_GROUP)
942 continue;
943 SectionIndexMap[&Section] = Index++;
944 }
945
946 for (MCAssembler::iterator it = Asm.begin(),
947 ie = Asm.end(); it != ie; ++it) {
948 const MCSectionData &SD = *it;
949 const MCSectionELF &Section =
950 static_cast<const MCSectionELF &>(SD.getSection());
951 if (Section.getType() == ELF::SHT_GROUP ||
952 Section.getType() == ELF::SHT_REL ||
953 Section.getType() == ELF::SHT_RELA)
954 continue;
955 SectionIndexMap[&Section] = Index++;
956 if (MCSectionData *RelSD = createRelocationSection(Asm, SD)) {
957 const MCSectionELF *RelSection =
958 static_cast<const MCSectionELF *>(&RelSD->getSection());
959 SectionIndexMap[RelSection] = Index++;
960 }
961 }
962 }
963
computeSymbolTable(MCAssembler & Asm,const MCAsmLayout & Layout,const SectionIndexMapTy & SectionIndexMap,const RevGroupMapTy & RevGroupMap)964 void ELFObjectWriter::computeSymbolTable(
965 MCAssembler &Asm, const MCAsmLayout &Layout,
966 const SectionIndexMapTy &SectionIndexMap,
967 const RevGroupMapTy &RevGroupMap) {
968 // FIXME: Is this the correct place to do this?
969 // FIXME: Why is an undefined reference to _GLOBAL_OFFSET_TABLE_ needed?
970 if (NeedsGOT) {
971 StringRef Name = "_GLOBAL_OFFSET_TABLE_";
972 MCSymbol *Sym = Asm.getContext().GetOrCreateSymbol(Name);
973 MCSymbolData &Data = Asm.getOrCreateSymbolData(*Sym);
974 Data.setExternal(true);
975 MCELF::SetBinding(Data, ELF::STB_GLOBAL);
976 }
977
978 // Add the data for the symbols.
979 for (MCSymbolData &SD : Asm.symbols()) {
980 const MCSymbol &Symbol = SD.getSymbol();
981
982 bool Used = UsedInReloc.count(&Symbol);
983 bool WeakrefUsed = WeakrefUsedInReloc.count(&Symbol);
984 bool isSignature = RevGroupMap.count(&Symbol);
985
986 if (!isInSymtab(Layout, SD,
987 Used || WeakrefUsed || isSignature,
988 Renames.count(&Symbol)))
989 continue;
990
991 ELFSymbolData MSD;
992 MSD.SymbolData = &SD;
993 const MCSymbol *BaseSymbol = Layout.getBaseSymbol(Symbol);
994
995 // Undefined symbols are global, but this is the first place we
996 // are able to set it.
997 bool Local = isLocal(SD, Used);
998 if (!Local && MCELF::GetBinding(SD) == ELF::STB_LOCAL) {
999 assert(BaseSymbol);
1000 MCSymbolData &BaseData = Asm.getSymbolData(*BaseSymbol);
1001 MCELF::SetBinding(SD, ELF::STB_GLOBAL);
1002 MCELF::SetBinding(BaseData, ELF::STB_GLOBAL);
1003 }
1004
1005 if (!BaseSymbol) {
1006 MSD.SectionIndex = ELF::SHN_ABS;
1007 } else if (SD.isCommon()) {
1008 assert(!Local);
1009 MSD.SectionIndex = ELF::SHN_COMMON;
1010 } else if (BaseSymbol->isUndefined()) {
1011 if (isSignature && !Used)
1012 MSD.SectionIndex = SectionIndexMap.lookup(RevGroupMap.lookup(&Symbol));
1013 else
1014 MSD.SectionIndex = ELF::SHN_UNDEF;
1015 if (!Used && WeakrefUsed)
1016 MCELF::SetBinding(SD, ELF::STB_WEAK);
1017 } else {
1018 const MCSectionELF &Section =
1019 static_cast<const MCSectionELF&>(BaseSymbol->getSection());
1020 MSD.SectionIndex = SectionIndexMap.lookup(&Section);
1021 assert(MSD.SectionIndex && "Invalid section index!");
1022 }
1023
1024 // The @@@ in symbol version is replaced with @ in undefined symbols and @@
1025 // in defined ones.
1026 //
1027 // FIXME: All name handling should be done before we get to the writer,
1028 // including dealing with GNU-style version suffixes. Fixing this isn't
1029 // trivial.
1030 //
1031 // We thus have to be careful to not perform the symbol version replacement
1032 // blindly:
1033 //
1034 // The ELF format is used on Windows by the MCJIT engine. Thus, on
1035 // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
1036 // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
1037 // C++ name mangling can legally have "@@@" as a sub-string. In that case,
1038 // the EFLObjectWriter should not interpret the "@@@" sub-string as
1039 // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
1040 // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
1041 // "__imp_?" or "__imp_@?".
1042 //
1043 // It would have been interesting to perform the MS mangling prefix check
1044 // only when the target triple is of the form *-pc-windows-elf. But, it
1045 // seems that this information is not easily accessible from the
1046 // ELFObjectWriter.
1047 StringRef Name = Symbol.getName();
1048 if (!Name.startswith("?") && !Name.startswith("@?") &&
1049 !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
1050 // This symbol isn't following the MSVC C++ name mangling convention. We
1051 // can thus safely interpret the @@@ in symbol names as specifying symbol
1052 // versioning.
1053 SmallString<32> Buf;
1054 size_t Pos = Name.find("@@@");
1055 if (Pos != StringRef::npos) {
1056 Buf += Name.substr(0, Pos);
1057 unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
1058 Buf += Name.substr(Pos + Skip);
1059 Name = Buf;
1060 }
1061 }
1062
1063 // Sections have their own string table
1064 if (MCELF::GetType(SD) != ELF::STT_SECTION)
1065 MSD.Name = StrTabBuilder.add(Name);
1066
1067 if (MSD.SectionIndex == ELF::SHN_UNDEF)
1068 UndefinedSymbolData.push_back(MSD);
1069 else if (Local)
1070 LocalSymbolData.push_back(MSD);
1071 else
1072 ExternalSymbolData.push_back(MSD);
1073 }
1074
1075 for (auto i = Asm.file_names_begin(), e = Asm.file_names_end(); i != e; ++i)
1076 StrTabBuilder.add(*i);
1077
1078 StrTabBuilder.finalize(StringTableBuilder::ELF);
1079
1080 for (auto i = Asm.file_names_begin(), e = Asm.file_names_end(); i != e; ++i)
1081 FileSymbolData.push_back(StrTabBuilder.getOffset(*i));
1082
1083 for (ELFSymbolData &MSD : LocalSymbolData)
1084 MSD.StringIndex = MCELF::GetType(*MSD.SymbolData) == ELF::STT_SECTION
1085 ? 0
1086 : StrTabBuilder.getOffset(MSD.Name);
1087 for (ELFSymbolData &MSD : ExternalSymbolData)
1088 MSD.StringIndex = StrTabBuilder.getOffset(MSD.Name);
1089 for (ELFSymbolData& MSD : UndefinedSymbolData)
1090 MSD.StringIndex = StrTabBuilder.getOffset(MSD.Name);
1091
1092 // Symbols are required to be in lexicographic order.
1093 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
1094 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
1095 array_pod_sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end());
1096
1097 // Set the symbol indices. Local symbols must come before all other
1098 // symbols with non-local bindings.
1099 unsigned Index = FileSymbolData.size() + 1;
1100 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
1101 LocalSymbolData[i].SymbolData->setIndex(Index++);
1102
1103 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
1104 ExternalSymbolData[i].SymbolData->setIndex(Index++);
1105 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
1106 UndefinedSymbolData[i].SymbolData->setIndex(Index++);
1107 }
1108
1109 MCSectionData *
createRelocationSection(MCAssembler & Asm,const MCSectionData & SD)1110 ELFObjectWriter::createRelocationSection(MCAssembler &Asm,
1111 const MCSectionData &SD) {
1112 if (Relocations[&SD].empty())
1113 return nullptr;
1114
1115 MCContext &Ctx = Asm.getContext();
1116 const MCSectionELF &Section =
1117 static_cast<const MCSectionELF &>(SD.getSection());
1118
1119 const StringRef SectionName = Section.getSectionName();
1120 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
1121 RelaSectionName += SectionName;
1122
1123 unsigned EntrySize;
1124 if (hasRelocationAddend())
1125 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
1126 else
1127 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
1128
1129 unsigned Flags = 0;
1130 if (Section.getFlags() & ELF::SHF_GROUP)
1131 Flags = ELF::SHF_GROUP;
1132
1133 const MCSectionELF *RelaSection = Ctx.createELFRelSection(
1134 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
1135 Flags, EntrySize, Section.getGroup(), &Section);
1136 return &Asm.getOrCreateSectionData(*RelaSection);
1137 }
1138
1139 static SmallVector<char, 128>
getUncompressedData(MCAsmLayout & Layout,MCSectionData::FragmentListType & Fragments)1140 getUncompressedData(MCAsmLayout &Layout,
1141 MCSectionData::FragmentListType &Fragments) {
1142 SmallVector<char, 128> UncompressedData;
1143 for (const MCFragment &F : Fragments) {
1144 const SmallVectorImpl<char> *Contents;
1145 switch (F.getKind()) {
1146 case MCFragment::FT_Data:
1147 Contents = &cast<MCDataFragment>(F).getContents();
1148 break;
1149 case MCFragment::FT_Dwarf:
1150 Contents = &cast<MCDwarfLineAddrFragment>(F).getContents();
1151 break;
1152 case MCFragment::FT_DwarfFrame:
1153 Contents = &cast<MCDwarfCallFrameFragment>(F).getContents();
1154 break;
1155 default:
1156 llvm_unreachable(
1157 "Not expecting any other fragment types in a debug_* section");
1158 }
1159 UncompressedData.append(Contents->begin(), Contents->end());
1160 }
1161 return UncompressedData;
1162 }
1163
1164 // Include the debug info compression header:
1165 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
1166 // useful for consumers to preallocate a buffer to decompress into.
1167 static bool
prependCompressionHeader(uint64_t Size,SmallVectorImpl<char> & CompressedContents)1168 prependCompressionHeader(uint64_t Size,
1169 SmallVectorImpl<char> &CompressedContents) {
1170 const StringRef Magic = "ZLIB";
1171 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
1172 return false;
1173 if (sys::IsLittleEndianHost)
1174 sys::swapByteOrder(Size);
1175 CompressedContents.insert(CompressedContents.begin(),
1176 Magic.size() + sizeof(Size), 0);
1177 std::copy(Magic.begin(), Magic.end(), CompressedContents.begin());
1178 std::copy(reinterpret_cast<char *>(&Size),
1179 reinterpret_cast<char *>(&Size + 1),
1180 CompressedContents.begin() + Magic.size());
1181 return true;
1182 }
1183
1184 // Return a single fragment containing the compressed contents of the whole
1185 // section. Null if the section was not compressed for any reason.
1186 static std::unique_ptr<MCDataFragment>
getCompressedFragment(MCAsmLayout & Layout,MCSectionData::FragmentListType & Fragments)1187 getCompressedFragment(MCAsmLayout &Layout,
1188 MCSectionData::FragmentListType &Fragments) {
1189 std::unique_ptr<MCDataFragment> CompressedFragment(new MCDataFragment());
1190
1191 // Gather the uncompressed data from all the fragments, recording the
1192 // alignment fragment, if seen, and any fixups.
1193 SmallVector<char, 128> UncompressedData =
1194 getUncompressedData(Layout, Fragments);
1195
1196 SmallVectorImpl<char> &CompressedContents = CompressedFragment->getContents();
1197
1198 zlib::Status Success = zlib::compress(
1199 StringRef(UncompressedData.data(), UncompressedData.size()),
1200 CompressedContents);
1201 if (Success != zlib::StatusOK)
1202 return nullptr;
1203
1204 if (!prependCompressionHeader(UncompressedData.size(), CompressedContents))
1205 return nullptr;
1206
1207 return CompressedFragment;
1208 }
1209
1210 typedef DenseMap<const MCSectionData *, std::vector<MCSymbolData *>>
1211 DefiningSymbolMap;
1212
UpdateSymbols(const MCAsmLayout & Layout,const std::vector<MCSymbolData * > & Symbols,MCFragment & NewFragment)1213 static void UpdateSymbols(const MCAsmLayout &Layout,
1214 const std::vector<MCSymbolData *> &Symbols,
1215 MCFragment &NewFragment) {
1216 for (MCSymbolData *Sym : Symbols) {
1217 Sym->setOffset(Sym->getOffset() +
1218 Layout.getFragmentOffset(Sym->getFragment()));
1219 Sym->setFragment(&NewFragment);
1220 }
1221 }
1222
CompressDebugSection(MCAssembler & Asm,MCAsmLayout & Layout,const DefiningSymbolMap & DefiningSymbols,const MCSectionELF & Section,MCSectionData & SD)1223 static void CompressDebugSection(MCAssembler &Asm, MCAsmLayout &Layout,
1224 const DefiningSymbolMap &DefiningSymbols,
1225 const MCSectionELF &Section,
1226 MCSectionData &SD) {
1227 StringRef SectionName = Section.getSectionName();
1228 MCSectionData::FragmentListType &Fragments = SD.getFragmentList();
1229
1230 std::unique_ptr<MCDataFragment> CompressedFragment =
1231 getCompressedFragment(Layout, Fragments);
1232
1233 // Leave the section as-is if the fragments could not be compressed.
1234 if (!CompressedFragment)
1235 return;
1236
1237 // Update the fragment+offsets of any symbols referring to fragments in this
1238 // section to refer to the new fragment.
1239 auto I = DefiningSymbols.find(&SD);
1240 if (I != DefiningSymbols.end())
1241 UpdateSymbols(Layout, I->second, *CompressedFragment);
1242
1243 // Invalidate the layout for the whole section since it will have new and
1244 // different fragments now.
1245 Layout.invalidateFragmentsFrom(&Fragments.front());
1246 Fragments.clear();
1247
1248 // Complete the initialization of the new fragment
1249 CompressedFragment->setParent(&SD);
1250 CompressedFragment->setLayoutOrder(0);
1251 Fragments.push_back(CompressedFragment.release());
1252
1253 // Rename from .debug_* to .zdebug_*
1254 Asm.getContext().renameELFSection(&Section,
1255 (".z" + SectionName.drop_front(1)).str());
1256 }
1257
CompressDebugSections(MCAssembler & Asm,MCAsmLayout & Layout)1258 void ELFObjectWriter::CompressDebugSections(MCAssembler &Asm,
1259 MCAsmLayout &Layout) {
1260 if (!Asm.getContext().getAsmInfo()->compressDebugSections())
1261 return;
1262
1263 DefiningSymbolMap DefiningSymbols;
1264
1265 for (MCSymbolData &SD : Asm.symbols())
1266 if (MCFragment *F = SD.getFragment())
1267 DefiningSymbols[F->getParent()].push_back(&SD);
1268
1269 for (MCSectionData &SD : Asm) {
1270 const MCSectionELF &Section =
1271 static_cast<const MCSectionELF &>(SD.getSection());
1272 StringRef SectionName = Section.getSectionName();
1273
1274 // Compressing debug_frame requires handling alignment fragments which is
1275 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
1276 // for writing to arbitrary buffers) for little benefit.
1277 if (!SectionName.startswith(".debug_") || SectionName == ".debug_frame")
1278 continue;
1279
1280 CompressDebugSection(Asm, Layout, DefiningSymbols, Section, SD);
1281 }
1282 }
1283
WriteRelocations(MCAssembler & Asm,MCAsmLayout & Layout)1284 void ELFObjectWriter::WriteRelocations(MCAssembler &Asm, MCAsmLayout &Layout) {
1285 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) {
1286 MCSectionData &RelSD = *it;
1287 const MCSectionELF &RelSection =
1288 static_cast<const MCSectionELF &>(RelSD.getSection());
1289
1290 unsigned Type = RelSection.getType();
1291 if (Type != ELF::SHT_REL && Type != ELF::SHT_RELA)
1292 continue;
1293
1294 const MCSectionELF *Section = RelSection.getAssociatedSection();
1295 MCSectionData &SD = Asm.getOrCreateSectionData(*Section);
1296 RelSD.setAlignment(is64Bit() ? 8 : 4);
1297
1298 MCDataFragment *F = new MCDataFragment(&RelSD);
1299 WriteRelocationsFragment(Asm, F, &SD);
1300 }
1301 }
1302
WriteSecHdrEntry(uint32_t Name,uint32_t Type,uint64_t Flags,uint64_t Address,uint64_t Offset,uint64_t Size,uint32_t Link,uint32_t Info,uint64_t Alignment,uint64_t EntrySize)1303 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1304 uint64_t Flags, uint64_t Address,
1305 uint64_t Offset, uint64_t Size,
1306 uint32_t Link, uint32_t Info,
1307 uint64_t Alignment,
1308 uint64_t EntrySize) {
1309 Write32(Name); // sh_name: index into string table
1310 Write32(Type); // sh_type
1311 WriteWord(Flags); // sh_flags
1312 WriteWord(Address); // sh_addr
1313 WriteWord(Offset); // sh_offset
1314 WriteWord(Size); // sh_size
1315 Write32(Link); // sh_link
1316 Write32(Info); // sh_info
1317 WriteWord(Alignment); // sh_addralign
1318 WriteWord(EntrySize); // sh_entsize
1319 }
1320
WriteRelocationsFragment(const MCAssembler & Asm,MCDataFragment * F,const MCSectionData * SD)1321 void ELFObjectWriter::WriteRelocationsFragment(const MCAssembler &Asm,
1322 MCDataFragment *F,
1323 const MCSectionData *SD) {
1324 std::vector<ELFRelocationEntry> &Relocs = Relocations[SD];
1325
1326 // Sort the relocation entries. Most targets just sort by Offset, but some
1327 // (e.g., MIPS) have additional constraints.
1328 TargetObjectWriter->sortRelocs(Asm, Relocs);
1329
1330 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1331 const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1332 unsigned Index =
1333 Entry.Symbol ? getSymbolIndexInSymbolTable(Asm, Entry.Symbol) : 0;
1334
1335 if (is64Bit()) {
1336 write(*F, Entry.Offset);
1337 if (TargetObjectWriter->isN64()) {
1338 write(*F, uint32_t(Index));
1339
1340 write(*F, TargetObjectWriter->getRSsym(Entry.Type));
1341 write(*F, TargetObjectWriter->getRType3(Entry.Type));
1342 write(*F, TargetObjectWriter->getRType2(Entry.Type));
1343 write(*F, TargetObjectWriter->getRType(Entry.Type));
1344 } else {
1345 struct ELF::Elf64_Rela ERE64;
1346 ERE64.setSymbolAndType(Index, Entry.Type);
1347 write(*F, ERE64.r_info);
1348 }
1349 if (hasRelocationAddend())
1350 write(*F, Entry.Addend);
1351 } else {
1352 write(*F, uint32_t(Entry.Offset));
1353
1354 struct ELF::Elf32_Rela ERE32;
1355 ERE32.setSymbolAndType(Index, Entry.Type);
1356 write(*F, ERE32.r_info);
1357
1358 if (hasRelocationAddend())
1359 write(*F, uint32_t(Entry.Addend));
1360 }
1361 }
1362 }
1363
CreateMetadataSections(MCAssembler & Asm,MCAsmLayout & Layout,SectionIndexMapTy & SectionIndexMap)1364 void ELFObjectWriter::CreateMetadataSections(
1365 MCAssembler &Asm, MCAsmLayout &Layout, SectionIndexMapTy &SectionIndexMap) {
1366 MCContext &Ctx = Asm.getContext();
1367 MCDataFragment *F;
1368
1369 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
1370
1371 // We construct .shstrtab, .symtab and .strtab in this order to match gnu as.
1372 const MCSectionELF *ShstrtabSection =
1373 Ctx.getELFSection(".shstrtab", ELF::SHT_STRTAB, 0);
1374 MCSectionData &ShstrtabSD = Asm.getOrCreateSectionData(*ShstrtabSection);
1375 ShstrtabSD.setAlignment(1);
1376 ShstrtabIndex = SectionIndexMap.size() + 1;
1377 SectionIndexMap[ShstrtabSection] = ShstrtabIndex;
1378
1379 const MCSectionELF *SymtabSection =
1380 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0,
1381 EntrySize, "");
1382 MCSectionData &SymtabSD = Asm.getOrCreateSectionData(*SymtabSection);
1383 SymtabSD.setAlignment(is64Bit() ? 8 : 4);
1384 SymbolTableIndex = SectionIndexMap.size() + 1;
1385 SectionIndexMap[SymtabSection] = SymbolTableIndex;
1386
1387 const MCSectionELF *StrtabSection;
1388 StrtabSection = Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1389 MCSectionData &StrtabSD = Asm.getOrCreateSectionData(*StrtabSection);
1390 StrtabSD.setAlignment(1);
1391 StringTableIndex = SectionIndexMap.size() + 1;
1392 SectionIndexMap[StrtabSection] = StringTableIndex;
1393
1394 // Symbol table
1395 F = new MCDataFragment(&SymtabSD);
1396 WriteSymbolTable(F, Asm, Layout, SectionIndexMap);
1397
1398 F = new MCDataFragment(&StrtabSD);
1399 F->getContents().append(StrTabBuilder.data().begin(),
1400 StrTabBuilder.data().end());
1401
1402 F = new MCDataFragment(&ShstrtabSD);
1403
1404 // Section header string table.
1405 for (auto it = Asm.begin(), ie = Asm.end(); it != ie; ++it) {
1406 const MCSectionELF &Section =
1407 static_cast<const MCSectionELF&>(it->getSection());
1408 ShStrTabBuilder.add(Section.getSectionName());
1409 }
1410 ShStrTabBuilder.finalize(StringTableBuilder::ELF);
1411 F->getContents().append(ShStrTabBuilder.data().begin(),
1412 ShStrTabBuilder.data().end());
1413 }
1414
createIndexedSections(MCAssembler & Asm,MCAsmLayout & Layout,GroupMapTy & GroupMap,RevGroupMapTy & RevGroupMap,SectionIndexMapTy & SectionIndexMap)1415 void ELFObjectWriter::createIndexedSections(
1416 MCAssembler &Asm, MCAsmLayout &Layout, GroupMapTy &GroupMap,
1417 RevGroupMapTy &RevGroupMap, SectionIndexMapTy &SectionIndexMap) {
1418 MCContext &Ctx = Asm.getContext();
1419
1420 // Build the groups
1421 for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end();
1422 it != ie; ++it) {
1423 const MCSectionELF &Section =
1424 static_cast<const MCSectionELF&>(it->getSection());
1425 if (!(Section.getFlags() & ELF::SHF_GROUP))
1426 continue;
1427
1428 const MCSymbol *SignatureSymbol = Section.getGroup();
1429 Asm.getOrCreateSymbolData(*SignatureSymbol);
1430 const MCSectionELF *&Group = RevGroupMap[SignatureSymbol];
1431 if (!Group) {
1432 Group = Ctx.CreateELFGroupSection();
1433 MCSectionData &Data = Asm.getOrCreateSectionData(*Group);
1434 Data.setAlignment(4);
1435 MCDataFragment *F = new MCDataFragment(&Data);
1436 write(*F, uint32_t(ELF::GRP_COMDAT));
1437 }
1438 GroupMap[Group] = SignatureSymbol;
1439 }
1440
1441 computeIndexMap(Asm, SectionIndexMap);
1442
1443 // Add sections to the groups
1444 for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end();
1445 it != ie; ++it) {
1446 const MCSectionELF &Section =
1447 static_cast<const MCSectionELF&>(it->getSection());
1448 if (!(Section.getFlags() & ELF::SHF_GROUP))
1449 continue;
1450 const MCSectionELF *Group = RevGroupMap[Section.getGroup()];
1451 MCSectionData &Data = Asm.getOrCreateSectionData(*Group);
1452 // FIXME: we could use the previous fragment
1453 MCDataFragment *F = new MCDataFragment(&Data);
1454 uint32_t Index = SectionIndexMap.lookup(&Section);
1455 write(*F, Index);
1456 }
1457 }
1458
writeSection(MCAssembler & Asm,const SectionIndexMapTy & SectionIndexMap,uint32_t GroupSymbolIndex,uint64_t Offset,uint64_t Size,uint64_t Alignment,const MCSectionELF & Section)1459 void ELFObjectWriter::writeSection(MCAssembler &Asm,
1460 const SectionIndexMapTy &SectionIndexMap,
1461 uint32_t GroupSymbolIndex,
1462 uint64_t Offset, uint64_t Size,
1463 uint64_t Alignment,
1464 const MCSectionELF &Section) {
1465 uint64_t sh_link = 0;
1466 uint64_t sh_info = 0;
1467
1468 switch(Section.getType()) {
1469 default:
1470 // Nothing to do.
1471 break;
1472
1473 case ELF::SHT_DYNAMIC:
1474 sh_link = ShStrTabBuilder.getOffset(Section.getSectionName());
1475 break;
1476
1477 case ELF::SHT_REL:
1478 case ELF::SHT_RELA: {
1479 sh_link = SymbolTableIndex;
1480 assert(sh_link && ".symtab not found");
1481 const MCSectionELF *InfoSection = Section.getAssociatedSection();
1482 sh_info = SectionIndexMap.lookup(InfoSection);
1483 break;
1484 }
1485
1486 case ELF::SHT_SYMTAB:
1487 case ELF::SHT_DYNSYM:
1488 sh_link = StringTableIndex;
1489 sh_info = LastLocalSymbolIndex;
1490 break;
1491
1492 case ELF::SHT_SYMTAB_SHNDX:
1493 sh_link = SymbolTableIndex;
1494 break;
1495
1496 case ELF::SHT_GROUP:
1497 sh_link = SymbolTableIndex;
1498 sh_info = GroupSymbolIndex;
1499 break;
1500 }
1501
1502 if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
1503 Section.getType() == ELF::SHT_ARM_EXIDX)
1504 sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
1505
1506 WriteSecHdrEntry(ShStrTabBuilder.getOffset(Section.getSectionName()),
1507 Section.getType(),
1508 Section.getFlags(), 0, Offset, Size, sh_link, sh_info,
1509 Alignment, Section.getEntrySize());
1510 }
1511
IsELFMetaDataSection(const MCSectionData & SD)1512 bool ELFObjectWriter::IsELFMetaDataSection(const MCSectionData &SD) {
1513 return SD.getOrdinal() == ~UINT32_C(0) &&
1514 !SD.getSection().isVirtualSection();
1515 }
1516
DataSectionSize(const MCSectionData & SD)1517 uint64_t ELFObjectWriter::DataSectionSize(const MCSectionData &SD) {
1518 uint64_t Ret = 0;
1519 for (MCSectionData::const_iterator i = SD.begin(), e = SD.end(); i != e;
1520 ++i) {
1521 const MCFragment &F = *i;
1522 assert(F.getKind() == MCFragment::FT_Data);
1523 Ret += cast<MCDataFragment>(F).getContents().size();
1524 }
1525 return Ret;
1526 }
1527
GetSectionAddressSize(const MCAsmLayout & Layout,const MCSectionData & SD)1528 uint64_t ELFObjectWriter::GetSectionAddressSize(const MCAsmLayout &Layout,
1529 const MCSectionData &SD) {
1530 if (IsELFMetaDataSection(SD))
1531 return DataSectionSize(SD);
1532 return Layout.getSectionAddressSize(&SD);
1533 }
1534
writeDataSectionData(MCAssembler & Asm,const MCAsmLayout & Layout,const MCSectionData & SD)1535 void ELFObjectWriter::writeDataSectionData(MCAssembler &Asm,
1536 const MCAsmLayout &Layout,
1537 const MCSectionData &SD) {
1538 if (IsELFMetaDataSection(SD)) {
1539 for (MCSectionData::const_iterator i = SD.begin(), e = SD.end(); i != e;
1540 ++i) {
1541 const MCFragment &F = *i;
1542 assert(F.getKind() == MCFragment::FT_Data);
1543 WriteBytes(cast<MCDataFragment>(F).getContents());
1544 }
1545 } else {
1546 Asm.writeSectionData(&SD, Layout);
1547 }
1548 }
1549
writeSectionHeader(ArrayRef<const MCSectionELF * > Sections,MCAssembler & Asm,const GroupMapTy & GroupMap,const MCAsmLayout & Layout,const SectionIndexMapTy & SectionIndexMap,const SectionOffsetMapTy & SectionOffsetMap)1550 void ELFObjectWriter::writeSectionHeader(
1551 ArrayRef<const MCSectionELF *> Sections, MCAssembler &Asm,
1552 const GroupMapTy &GroupMap, const MCAsmLayout &Layout,
1553 const SectionIndexMapTy &SectionIndexMap,
1554 const SectionOffsetMapTy &SectionOffsetMap) {
1555 const unsigned NumSections = Asm.size();
1556
1557 // Null section first.
1558 uint64_t FirstSectionSize =
1559 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1560 uint32_t FirstSectionLink =
1561 ShstrtabIndex >= ELF::SHN_LORESERVE ? ShstrtabIndex : 0;
1562 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, FirstSectionLink, 0, 0, 0);
1563
1564 for (unsigned i = 0; i < NumSections; ++i) {
1565 const MCSectionELF &Section = *Sections[i];
1566 const MCSectionData &SD = Asm.getOrCreateSectionData(Section);
1567 uint32_t GroupSymbolIndex;
1568 if (Section.getType() != ELF::SHT_GROUP)
1569 GroupSymbolIndex = 0;
1570 else
1571 GroupSymbolIndex = getSymbolIndexInSymbolTable(Asm,
1572 GroupMap.lookup(&Section));
1573
1574 uint64_t Size = GetSectionAddressSize(Layout, SD);
1575
1576 writeSection(Asm, SectionIndexMap, GroupSymbolIndex,
1577 SectionOffsetMap.lookup(&Section), Size, SD.getAlignment(),
1578 Section);
1579 }
1580 }
1581
WriteObject(MCAssembler & Asm,const MCAsmLayout & Layout)1582 void ELFObjectWriter::WriteObject(MCAssembler &Asm,
1583 const MCAsmLayout &Layout) {
1584 GroupMapTy GroupMap;
1585 RevGroupMapTy RevGroupMap;
1586 SectionIndexMapTy SectionIndexMap;
1587
1588 CompressDebugSections(Asm, const_cast<MCAsmLayout &>(Layout));
1589 createIndexedSections(Asm, const_cast<MCAsmLayout &>(Layout), GroupMap,
1590 RevGroupMap, SectionIndexMap);
1591
1592 // Compute symbol table information.
1593 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap);
1594
1595 WriteRelocations(Asm, const_cast<MCAsmLayout &>(Layout));
1596
1597 CreateMetadataSections(const_cast<MCAssembler&>(Asm),
1598 const_cast<MCAsmLayout&>(Layout),
1599 SectionIndexMap);
1600
1601 unsigned NumSections = Asm.size();
1602 std::vector<const MCSectionELF*> Sections;
1603 Sections.resize(NumSections);
1604
1605 for (auto &Pair : SectionIndexMap)
1606 Sections[Pair.second - 1] = Pair.first;
1607
1608 SectionOffsetMapTy SectionOffsetMap;
1609
1610 // Write out the ELF header ...
1611 WriteHeader(Asm, NumSections + 1);
1612
1613 // ... then the sections ...
1614 for (unsigned i = 0; i < NumSections; ++i) {
1615 const MCSectionELF &Section = *Sections[i];
1616 const MCSectionData &SD = Asm.getOrCreateSectionData(Section);
1617 uint64_t Padding = OffsetToAlignment(OS.tell(), SD.getAlignment());
1618 WriteZeros(Padding);
1619
1620 // Remember the offset into the file for this section.
1621 SectionOffsetMap[&Section] = OS.tell();
1622
1623 writeDataSectionData(Asm, Layout, SD);
1624 }
1625
1626 uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1627 uint64_t Padding = OffsetToAlignment(OS.tell(), NaturalAlignment);
1628 WriteZeros(Padding);
1629
1630 const unsigned SectionHeaderOffset = OS.tell();
1631
1632 // ... then the section header table ...
1633 writeSectionHeader(Sections, Asm, GroupMap, Layout, SectionIndexMap,
1634 SectionOffsetMap);
1635
1636 if (is64Bit()) {
1637 uint64_t Val = SectionHeaderOffset;
1638 if (sys::IsLittleEndianHost != IsLittleEndian)
1639 sys::swapByteOrder(Val);
1640 OS.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1641 offsetof(ELF::Elf64_Ehdr, e_shoff));
1642 } else {
1643 uint32_t Val = SectionHeaderOffset;
1644 if (sys::IsLittleEndianHost != IsLittleEndian)
1645 sys::swapByteOrder(Val);
1646 OS.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1647 offsetof(ELF::Elf32_Ehdr, e_shoff));
1648 }
1649 }
1650
IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler & Asm,const MCSymbolData & DataA,const MCSymbolData * DataB,const MCFragment & FB,bool InSet,bool IsPCRel) const1651 bool ELFObjectWriter::IsSymbolRefDifferenceFullyResolvedImpl(
1652 const MCAssembler &Asm, const MCSymbolData &DataA,
1653 const MCSymbolData *DataB, const MCFragment &FB, bool InSet,
1654 bool IsPCRel) const {
1655 if (!InSet && (::isWeak(DataA) || (DataB && ::isWeak(*DataB))))
1656 return false;
1657 return MCObjectWriter::IsSymbolRefDifferenceFullyResolvedImpl(
1658 Asm, DataA, DataB, FB, InSet, IsPCRel);
1659 }
1660
isWeak(const MCSymbolData & SD) const1661 bool ELFObjectWriter::isWeak(const MCSymbolData &SD) const {
1662 return ::isWeak(SD);
1663 }
1664
createELFObjectWriter(MCELFObjectTargetWriter * MOTW,raw_pwrite_stream & OS,bool IsLittleEndian)1665 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1666 raw_pwrite_stream &OS,
1667 bool IsLittleEndian) {
1668 return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1669 }
1670