1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure").  For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/Passes.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/CallGraph.h"
22 #include "llvm/Analysis/MemoryBuiltins.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstIterator.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
32 #include <set>
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "globalsmodref-aa"
36 
37 STATISTIC(NumNonAddrTakenGlobalVars,
38           "Number of global vars without address taken");
39 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
40 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
41 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
42 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
43 
44 namespace {
45   /// FunctionRecord - One instance of this structure is stored for every
46   /// function in the program.  Later, the entries for these functions are
47   /// removed if the function is found to call an external function (in which
48   /// case we know nothing about it.
49   struct FunctionRecord {
50     /// GlobalInfo - Maintain mod/ref info for all of the globals without
51     /// addresses taken that are read or written (transitively) by this
52     /// function.
53     std::map<const GlobalValue*, unsigned> GlobalInfo;
54 
55     /// MayReadAnyGlobal - May read global variables, but it is not known which.
56     bool MayReadAnyGlobal;
57 
getInfoForGlobal__anonddc2ca4f0111::FunctionRecord58     unsigned getInfoForGlobal(const GlobalValue *GV) const {
59       unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
60       std::map<const GlobalValue*, unsigned>::const_iterator I =
61         GlobalInfo.find(GV);
62       if (I != GlobalInfo.end())
63         Effect |= I->second;
64       return Effect;
65     }
66 
67     /// FunctionEffect - Capture whether or not this function reads or writes to
68     /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
69     unsigned FunctionEffect;
70 
FunctionRecord__anonddc2ca4f0111::FunctionRecord71     FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
72   };
73 
74   /// GlobalsModRef - The actual analysis pass.
75   class GlobalsModRef : public ModulePass, public AliasAnalysis {
76     /// NonAddressTakenGlobals - The globals that do not have their addresses
77     /// taken.
78     std::set<const GlobalValue*> NonAddressTakenGlobals;
79 
80     /// IndirectGlobals - The memory pointed to by this global is known to be
81     /// 'owned' by the global.
82     std::set<const GlobalValue*> IndirectGlobals;
83 
84     /// AllocsForIndirectGlobals - If an instruction allocates memory for an
85     /// indirect global, this map indicates which one.
86     std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
87 
88     /// FunctionInfo - For each function, keep track of what globals are
89     /// modified or read.
90     std::map<const Function*, FunctionRecord> FunctionInfo;
91 
92   public:
93     static char ID;
GlobalsModRef()94     GlobalsModRef() : ModulePass(ID) {
95       initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
96     }
97 
runOnModule(Module & M)98     bool runOnModule(Module &M) override {
99       InitializeAliasAnalysis(this, &M.getDataLayout());
100 
101       // Find non-addr taken globals.
102       AnalyzeGlobals(M);
103 
104       // Propagate on CG.
105       AnalyzeCallGraph(getAnalysis<CallGraphWrapperPass>().getCallGraph(), M);
106       return false;
107     }
108 
getAnalysisUsage(AnalysisUsage & AU) const109     void getAnalysisUsage(AnalysisUsage &AU) const override {
110       AliasAnalysis::getAnalysisUsage(AU);
111       AU.addRequired<CallGraphWrapperPass>();
112       AU.setPreservesAll();                         // Does not transform code
113     }
114 
115     //------------------------------------------------
116     // Implement the AliasAnalysis API
117     //
118     AliasResult alias(const Location &LocA, const Location &LocB) override;
119     ModRefResult getModRefInfo(ImmutableCallSite CS,
120                                const Location &Loc) override;
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)121     ModRefResult getModRefInfo(ImmutableCallSite CS1,
122                                ImmutableCallSite CS2) override {
123       return AliasAnalysis::getModRefInfo(CS1, CS2);
124     }
125 
126     /// getModRefBehavior - Return the behavior of the specified function if
127     /// called from the specified call site.  The call site may be null in which
128     /// case the most generic behavior of this function should be returned.
getModRefBehavior(const Function * F)129     ModRefBehavior getModRefBehavior(const Function *F) override {
130       ModRefBehavior Min = UnknownModRefBehavior;
131 
132       if (FunctionRecord *FR = getFunctionInfo(F)) {
133         if (FR->FunctionEffect == 0)
134           Min = DoesNotAccessMemory;
135         else if ((FR->FunctionEffect & Mod) == 0)
136           Min = OnlyReadsMemory;
137       }
138 
139       return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
140     }
141 
142     /// getModRefBehavior - Return the behavior of the specified function if
143     /// called from the specified call site.  The call site may be null in which
144     /// case the most generic behavior of this function should be returned.
getModRefBehavior(ImmutableCallSite CS)145     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
146       ModRefBehavior Min = UnknownModRefBehavior;
147 
148       if (const Function* F = CS.getCalledFunction())
149         if (FunctionRecord *FR = getFunctionInfo(F)) {
150           if (FR->FunctionEffect == 0)
151             Min = DoesNotAccessMemory;
152           else if ((FR->FunctionEffect & Mod) == 0)
153             Min = OnlyReadsMemory;
154         }
155 
156       return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
157     }
158 
159     void deleteValue(Value *V) override;
160     void copyValue(Value *From, Value *To) override;
161     void addEscapingUse(Use &U) override;
162 
163     /// getAdjustedAnalysisPointer - This method is used when a pass implements
164     /// an analysis interface through multiple inheritance.  If needed, it
165     /// should override this to adjust the this pointer as needed for the
166     /// specified pass info.
getAdjustedAnalysisPointer(AnalysisID PI)167     void *getAdjustedAnalysisPointer(AnalysisID PI) override {
168       if (PI == &AliasAnalysis::ID)
169         return (AliasAnalysis*)this;
170       return this;
171     }
172 
173   private:
174     /// getFunctionInfo - Return the function info for the function, or null if
175     /// we don't have anything useful to say about it.
getFunctionInfo(const Function * F)176     FunctionRecord *getFunctionInfo(const Function *F) {
177       std::map<const Function*, FunctionRecord>::iterator I =
178         FunctionInfo.find(F);
179       if (I != FunctionInfo.end())
180         return &I->second;
181       return nullptr;
182     }
183 
184     void AnalyzeGlobals(Module &M);
185     void AnalyzeCallGraph(CallGraph &CG, Module &M);
186     bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
187                               std::vector<Function*> &Writers,
188                               GlobalValue *OkayStoreDest = nullptr);
189     bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
190   };
191 }
192 
193 char GlobalsModRef::ID = 0;
194 INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
195                 "globalsmodref-aa", "Simple mod/ref analysis for globals",
196                 false, true, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)197 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
198 INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
199                 "globalsmodref-aa", "Simple mod/ref analysis for globals",
200                 false, true, false)
201 
202 Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
203 
204 /// AnalyzeGlobals - Scan through the users of all of the internal
205 /// GlobalValue's in the program.  If none of them have their "address taken"
206 /// (really, their address passed to something nontrivial), record this fact,
207 /// and record the functions that they are used directly in.
AnalyzeGlobals(Module & M)208 void GlobalsModRef::AnalyzeGlobals(Module &M) {
209   std::vector<Function*> Readers, Writers;
210   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
211     if (I->hasLocalLinkage()) {
212       if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
213         // Remember that we are tracking this global.
214         NonAddressTakenGlobals.insert(I);
215         ++NumNonAddrTakenFunctions;
216       }
217       Readers.clear(); Writers.clear();
218     }
219 
220   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
221        I != E; ++I)
222     if (I->hasLocalLinkage()) {
223       if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
224         // Remember that we are tracking this global, and the mod/ref fns
225         NonAddressTakenGlobals.insert(I);
226 
227         for (unsigned i = 0, e = Readers.size(); i != e; ++i)
228           FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
229 
230         if (!I->isConstant())  // No need to keep track of writers to constants
231           for (unsigned i = 0, e = Writers.size(); i != e; ++i)
232             FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
233         ++NumNonAddrTakenGlobalVars;
234 
235         // If this global holds a pointer type, see if it is an indirect global.
236         if (I->getType()->getElementType()->isPointerTy() &&
237             AnalyzeIndirectGlobalMemory(I))
238           ++NumIndirectGlobalVars;
239       }
240       Readers.clear(); Writers.clear();
241     }
242 }
243 
244 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
245 /// If this is used by anything complex (i.e., the address escapes), return
246 /// true.  Also, while we are at it, keep track of those functions that read and
247 /// write to the value.
248 ///
249 /// If OkayStoreDest is non-null, stores into this global are allowed.
AnalyzeUsesOfPointer(Value * V,std::vector<Function * > & Readers,std::vector<Function * > & Writers,GlobalValue * OkayStoreDest)250 bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
251                                          std::vector<Function*> &Readers,
252                                          std::vector<Function*> &Writers,
253                                          GlobalValue *OkayStoreDest) {
254   if (!V->getType()->isPointerTy()) return true;
255 
256   for (Use &U : V->uses()) {
257     User *I = U.getUser();
258     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
259       Readers.push_back(LI->getParent()->getParent());
260     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
261       if (V == SI->getOperand(1)) {
262         Writers.push_back(SI->getParent()->getParent());
263       } else if (SI->getOperand(1) != OkayStoreDest) {
264         return true;  // Storing the pointer
265       }
266     } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
267       if (AnalyzeUsesOfPointer(I, Readers, Writers))
268         return true;
269     } else if (Operator::getOpcode(I) == Instruction::BitCast) {
270       if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
271         return true;
272     } else if (auto CS = CallSite(I)) {
273       // Make sure that this is just the function being called, not that it is
274       // passing into the function.
275       if (!CS.isCallee(&U)) {
276         // Detect calls to free.
277         if (isFreeCall(I, TLI))
278           Writers.push_back(CS->getParent()->getParent());
279         else
280           return true; // Argument of an unknown call.
281       }
282     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
283       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
284         return true;  // Allow comparison against null.
285     } else {
286       return true;
287     }
288   }
289 
290   return false;
291 }
292 
293 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
294 /// which holds a pointer type.  See if the global always points to non-aliased
295 /// heap memory: that is, all initializers of the globals are allocations, and
296 /// those allocations have no use other than initialization of the global.
297 /// Further, all loads out of GV must directly use the memory, not store the
298 /// pointer somewhere.  If this is true, we consider the memory pointed to by
299 /// GV to be owned by GV and can disambiguate other pointers from it.
AnalyzeIndirectGlobalMemory(GlobalValue * GV)300 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
301   // Keep track of values related to the allocation of the memory, f.e. the
302   // value produced by the malloc call and any casts.
303   std::vector<Value*> AllocRelatedValues;
304 
305   // Walk the user list of the global.  If we find anything other than a direct
306   // load or store, bail out.
307   for (User *U : GV->users()) {
308     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
309       // The pointer loaded from the global can only be used in simple ways:
310       // we allow addressing of it and loading storing to it.  We do *not* allow
311       // storing the loaded pointer somewhere else or passing to a function.
312       std::vector<Function*> ReadersWriters;
313       if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
314         return false;  // Loaded pointer escapes.
315       // TODO: Could try some IP mod/ref of the loaded pointer.
316     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
317       // Storing the global itself.
318       if (SI->getOperand(0) == GV) return false;
319 
320       // If storing the null pointer, ignore it.
321       if (isa<ConstantPointerNull>(SI->getOperand(0)))
322         continue;
323 
324       // Check the value being stored.
325       Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
326                                        GV->getParent()->getDataLayout());
327 
328       if (!isAllocLikeFn(Ptr, TLI))
329         return false;  // Too hard to analyze.
330 
331       // Analyze all uses of the allocation.  If any of them are used in a
332       // non-simple way (e.g. stored to another global) bail out.
333       std::vector<Function*> ReadersWriters;
334       if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
335         return false;  // Loaded pointer escapes.
336 
337       // Remember that this allocation is related to the indirect global.
338       AllocRelatedValues.push_back(Ptr);
339     } else {
340       // Something complex, bail out.
341       return false;
342     }
343   }
344 
345   // Okay, this is an indirect global.  Remember all of the allocations for
346   // this global in AllocsForIndirectGlobals.
347   while (!AllocRelatedValues.empty()) {
348     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
349     AllocRelatedValues.pop_back();
350   }
351   IndirectGlobals.insert(GV);
352   return true;
353 }
354 
355 /// AnalyzeCallGraph - At this point, we know the functions where globals are
356 /// immediately stored to and read from.  Propagate this information up the call
357 /// graph to all callers and compute the mod/ref info for all memory for each
358 /// function.
AnalyzeCallGraph(CallGraph & CG,Module & M)359 void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
360   // We do a bottom-up SCC traversal of the call graph.  In other words, we
361   // visit all callees before callers (leaf-first).
362   for (scc_iterator<CallGraph*> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
363     const std::vector<CallGraphNode *> &SCC = *I;
364     assert(!SCC.empty() && "SCC with no functions?");
365 
366     if (!SCC[0]->getFunction()) {
367       // Calls externally - can't say anything useful.  Remove any existing
368       // function records (may have been created when scanning globals).
369       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
370         FunctionInfo.erase(SCC[i]->getFunction());
371       continue;
372     }
373 
374     FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
375 
376     bool KnowNothing = false;
377     unsigned FunctionEffect = 0;
378 
379     // Collect the mod/ref properties due to called functions.  We only compute
380     // one mod-ref set.
381     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
382       Function *F = SCC[i]->getFunction();
383       if (!F) {
384         KnowNothing = true;
385         break;
386       }
387 
388       if (F->isDeclaration()) {
389         // Try to get mod/ref behaviour from function attributes.
390         if (F->doesNotAccessMemory()) {
391           // Can't do better than that!
392         } else if (F->onlyReadsMemory()) {
393           FunctionEffect |= Ref;
394           if (!F->isIntrinsic())
395             // This function might call back into the module and read a global -
396             // consider every global as possibly being read by this function.
397             FR.MayReadAnyGlobal = true;
398         } else {
399           FunctionEffect |= ModRef;
400           // Can't say anything useful unless it's an intrinsic - they don't
401           // read or write global variables of the kind considered here.
402           KnowNothing = !F->isIntrinsic();
403         }
404         continue;
405       }
406 
407       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
408            CI != E && !KnowNothing; ++CI)
409         if (Function *Callee = CI->second->getFunction()) {
410           if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
411             // Propagate function effect up.
412             FunctionEffect |= CalleeFR->FunctionEffect;
413 
414             // Incorporate callee's effects on globals into our info.
415             for (const auto &G : CalleeFR->GlobalInfo)
416               FR.GlobalInfo[G.first] |= G.second;
417             FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
418           } else {
419             // Can't say anything about it.  However, if it is inside our SCC,
420             // then nothing needs to be done.
421             CallGraphNode *CalleeNode = CG[Callee];
422             if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
423               KnowNothing = true;
424           }
425         } else {
426           KnowNothing = true;
427         }
428     }
429 
430     // If we can't say anything useful about this SCC, remove all SCC functions
431     // from the FunctionInfo map.
432     if (KnowNothing) {
433       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
434         FunctionInfo.erase(SCC[i]->getFunction());
435       continue;
436     }
437 
438     // Scan the function bodies for explicit loads or stores.
439     for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
440       for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
441              E = inst_end(SCC[i]->getFunction());
442            II != E && FunctionEffect != ModRef; ++II)
443         if (LoadInst *LI = dyn_cast<LoadInst>(&*II)) {
444           FunctionEffect |= Ref;
445           if (LI->isVolatile())
446             // Volatile loads may have side-effects, so mark them as writing
447             // memory (for example, a flag inside the processor).
448             FunctionEffect |= Mod;
449         } else if (StoreInst *SI = dyn_cast<StoreInst>(&*II)) {
450           FunctionEffect |= Mod;
451           if (SI->isVolatile())
452             // Treat volatile stores as reading memory somewhere.
453             FunctionEffect |= Ref;
454         } else if (isAllocationFn(&*II, TLI) || isFreeCall(&*II, TLI)) {
455           FunctionEffect |= ModRef;
456         } else if (IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(&*II)) {
457           // The callgraph doesn't include intrinsic calls.
458           Function *Callee = Intrinsic->getCalledFunction();
459           ModRefBehavior Behaviour = AliasAnalysis::getModRefBehavior(Callee);
460           FunctionEffect |= (Behaviour & ModRef);
461         }
462 
463     if ((FunctionEffect & Mod) == 0)
464       ++NumReadMemFunctions;
465     if (FunctionEffect == 0)
466       ++NumNoMemFunctions;
467     FR.FunctionEffect = FunctionEffect;
468 
469     // Finally, now that we know the full effect on this SCC, clone the
470     // information to each function in the SCC.
471     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
472       FunctionInfo[SCC[i]->getFunction()] = FR;
473   }
474 }
475 
476 
477 
478 /// alias - If one of the pointers is to a global that we are tracking, and the
479 /// other is some random pointer, we know there cannot be an alias, because the
480 /// address of the global isn't taken.
481 AliasAnalysis::AliasResult
alias(const Location & LocA,const Location & LocB)482 GlobalsModRef::alias(const Location &LocA,
483                      const Location &LocB) {
484   // Get the base object these pointers point to.
485   const Value *UV1 = GetUnderlyingObject(LocA.Ptr, *DL);
486   const Value *UV2 = GetUnderlyingObject(LocB.Ptr, *DL);
487 
488   // If either of the underlying values is a global, they may be non-addr-taken
489   // globals, which we can answer queries about.
490   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
491   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
492   if (GV1 || GV2) {
493     // If the global's address is taken, pretend we don't know it's a pointer to
494     // the global.
495     if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = nullptr;
496     if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = nullptr;
497 
498     // If the two pointers are derived from two different non-addr-taken
499     // globals, or if one is and the other isn't, we know these can't alias.
500     if ((GV1 || GV2) && GV1 != GV2)
501       return NoAlias;
502 
503     // Otherwise if they are both derived from the same addr-taken global, we
504     // can't know the two accesses don't overlap.
505   }
506 
507   // These pointers may be based on the memory owned by an indirect global.  If
508   // so, we may be able to handle this.  First check to see if the base pointer
509   // is a direct load from an indirect global.
510   GV1 = GV2 = nullptr;
511   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
512     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
513       if (IndirectGlobals.count(GV))
514         GV1 = GV;
515   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
516     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
517       if (IndirectGlobals.count(GV))
518         GV2 = GV;
519 
520   // These pointers may also be from an allocation for the indirect global.  If
521   // so, also handle them.
522   if (AllocsForIndirectGlobals.count(UV1))
523     GV1 = AllocsForIndirectGlobals[UV1];
524   if (AllocsForIndirectGlobals.count(UV2))
525     GV2 = AllocsForIndirectGlobals[UV2];
526 
527   // Now that we know whether the two pointers are related to indirect globals,
528   // use this to disambiguate the pointers.  If either pointer is based on an
529   // indirect global and if they are not both based on the same indirect global,
530   // they cannot alias.
531   if ((GV1 || GV2) && GV1 != GV2)
532     return NoAlias;
533 
534   return AliasAnalysis::alias(LocA, LocB);
535 }
536 
537 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS,const Location & Loc)538 GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
539                              const Location &Loc) {
540   unsigned Known = ModRef;
541 
542   // If we are asking for mod/ref info of a direct call with a pointer to a
543   // global we are tracking, return information if we have it.
544   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
545   if (const GlobalValue *GV =
546           dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
547     if (GV->hasLocalLinkage())
548       if (const Function *F = CS.getCalledFunction())
549         if (NonAddressTakenGlobals.count(GV))
550           if (const FunctionRecord *FR = getFunctionInfo(F))
551             Known = FR->getInfoForGlobal(GV);
552 
553   if (Known == NoModRef)
554     return NoModRef; // No need to query other mod/ref analyses
555   return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
556 }
557 
558 
559 //===----------------------------------------------------------------------===//
560 // Methods to update the analysis as a result of the client transformation.
561 //
deleteValue(Value * V)562 void GlobalsModRef::deleteValue(Value *V) {
563   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
564     if (NonAddressTakenGlobals.erase(GV)) {
565       // This global might be an indirect global.  If so, remove it and remove
566       // any AllocRelatedValues for it.
567       if (IndirectGlobals.erase(GV)) {
568         // Remove any entries in AllocsForIndirectGlobals for this global.
569         for (std::map<const Value*, const GlobalValue*>::iterator
570              I = AllocsForIndirectGlobals.begin(),
571              E = AllocsForIndirectGlobals.end(); I != E; ) {
572           if (I->second == GV) {
573             AllocsForIndirectGlobals.erase(I++);
574           } else {
575             ++I;
576           }
577         }
578       }
579     }
580   }
581 
582   // Otherwise, if this is an allocation related to an indirect global, remove
583   // it.
584   AllocsForIndirectGlobals.erase(V);
585 
586   AliasAnalysis::deleteValue(V);
587 }
588 
copyValue(Value * From,Value * To)589 void GlobalsModRef::copyValue(Value *From, Value *To) {
590   AliasAnalysis::copyValue(From, To);
591 }
592 
addEscapingUse(Use & U)593 void GlobalsModRef::addEscapingUse(Use &U) {
594   // For the purposes of this analysis, it is conservatively correct to treat
595   // a newly escaping value equivalently to a deleted one.  We could perhaps
596   // be more precise by processing the new use and attempting to update our
597   // saved analysis results to accommodate it.
598   deleteValue(U);
599 
600   AliasAnalysis::addEscapingUse(U);
601 }
602