1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/IR/AutoUpgrade.h"
17 #include "llvm/IR/CallingConv.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/Dwarf.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/SaveAndRestore.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33
getTypeString(Type * T)34 static std::string getTypeString(Type *T) {
35 std::string Result;
36 raw_string_ostream Tmp(Result);
37 Tmp << *T;
38 return Tmp.str();
39 }
40
41 /// Run: module ::= toplevelentity*
Run()42 bool LLParser::Run() {
43 // Prime the lexer.
44 Lex.Lex();
45
46 return ParseTopLevelEntities() ||
47 ValidateEndOfModule();
48 }
49
50 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
51 /// module.
ValidateEndOfModule()52 bool LLParser::ValidateEndOfModule() {
53 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
54 UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
55
56 // Handle any function attribute group forward references.
57 for (std::map<Value*, std::vector<unsigned> >::iterator
58 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
59 I != E; ++I) {
60 Value *V = I->first;
61 std::vector<unsigned> &Vec = I->second;
62 AttrBuilder B;
63
64 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
65 VI != VE; ++VI)
66 B.merge(NumberedAttrBuilders[*VI]);
67
68 if (Function *Fn = dyn_cast<Function>(V)) {
69 AttributeSet AS = Fn->getAttributes();
70 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
71 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
72 AS.getFnAttributes());
73
74 FnAttrs.merge(B);
75
76 // If the alignment was parsed as an attribute, move to the alignment
77 // field.
78 if (FnAttrs.hasAlignmentAttr()) {
79 Fn->setAlignment(FnAttrs.getAlignment());
80 FnAttrs.removeAttribute(Attribute::Alignment);
81 }
82
83 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
84 AttributeSet::get(Context,
85 AttributeSet::FunctionIndex,
86 FnAttrs));
87 Fn->setAttributes(AS);
88 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
89 AttributeSet AS = CI->getAttributes();
90 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
91 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
92 AS.getFnAttributes());
93 FnAttrs.merge(B);
94 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
95 AttributeSet::get(Context,
96 AttributeSet::FunctionIndex,
97 FnAttrs));
98 CI->setAttributes(AS);
99 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
100 AttributeSet AS = II->getAttributes();
101 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
102 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
103 AS.getFnAttributes());
104 FnAttrs.merge(B);
105 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
106 AttributeSet::get(Context,
107 AttributeSet::FunctionIndex,
108 FnAttrs));
109 II->setAttributes(AS);
110 } else {
111 llvm_unreachable("invalid object with forward attribute group reference");
112 }
113 }
114
115 // If there are entries in ForwardRefBlockAddresses at this point, the
116 // function was never defined.
117 if (!ForwardRefBlockAddresses.empty())
118 return Error(ForwardRefBlockAddresses.begin()->first.Loc,
119 "expected function name in blockaddress");
120
121 for (const auto &NT : NumberedTypes)
122 if (NT.second.second.isValid())
123 return Error(NT.second.second,
124 "use of undefined type '%" + Twine(NT.first) + "'");
125
126 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
127 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
128 if (I->second.second.isValid())
129 return Error(I->second.second,
130 "use of undefined type named '" + I->getKey() + "'");
131
132 if (!ForwardRefComdats.empty())
133 return Error(ForwardRefComdats.begin()->second,
134 "use of undefined comdat '$" +
135 ForwardRefComdats.begin()->first + "'");
136
137 if (!ForwardRefVals.empty())
138 return Error(ForwardRefVals.begin()->second.second,
139 "use of undefined value '@" + ForwardRefVals.begin()->first +
140 "'");
141
142 if (!ForwardRefValIDs.empty())
143 return Error(ForwardRefValIDs.begin()->second.second,
144 "use of undefined value '@" +
145 Twine(ForwardRefValIDs.begin()->first) + "'");
146
147 if (!ForwardRefMDNodes.empty())
148 return Error(ForwardRefMDNodes.begin()->second.second,
149 "use of undefined metadata '!" +
150 Twine(ForwardRefMDNodes.begin()->first) + "'");
151
152 // Resolve metadata cycles.
153 for (auto &N : NumberedMetadata) {
154 if (N.second && !N.second->isResolved())
155 N.second->resolveCycles();
156 }
157
158 // Look for intrinsic functions and CallInst that need to be upgraded
159 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
160 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
161
162 UpgradeDebugInfo(*M);
163
164 return false;
165 }
166
167 //===----------------------------------------------------------------------===//
168 // Top-Level Entities
169 //===----------------------------------------------------------------------===//
170
ParseTopLevelEntities()171 bool LLParser::ParseTopLevelEntities() {
172 while (1) {
173 switch (Lex.getKind()) {
174 default: return TokError("expected top-level entity");
175 case lltok::Eof: return false;
176 case lltok::kw_declare: if (ParseDeclare()) return true; break;
177 case lltok::kw_define: if (ParseDefine()) return true; break;
178 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
179 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
180 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
181 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
182 case lltok::LocalVar: if (ParseNamedType()) return true; break;
183 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
184 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
185 case lltok::ComdatVar: if (parseComdat()) return true; break;
186 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
187 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
188
189 // The Global variable production with no name can have many different
190 // optional leading prefixes, the production is:
191 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
192 // OptionalThreadLocal OptionalAddrSpace OptionalUnNammedAddr
193 // ('constant'|'global') ...
194 case lltok::kw_private: // OptionalLinkage
195 case lltok::kw_internal: // OptionalLinkage
196 case lltok::kw_weak: // OptionalLinkage
197 case lltok::kw_weak_odr: // OptionalLinkage
198 case lltok::kw_linkonce: // OptionalLinkage
199 case lltok::kw_linkonce_odr: // OptionalLinkage
200 case lltok::kw_appending: // OptionalLinkage
201 case lltok::kw_common: // OptionalLinkage
202 case lltok::kw_extern_weak: // OptionalLinkage
203 case lltok::kw_external: // OptionalLinkage
204 case lltok::kw_default: // OptionalVisibility
205 case lltok::kw_hidden: // OptionalVisibility
206 case lltok::kw_protected: // OptionalVisibility
207 case lltok::kw_dllimport: // OptionalDLLStorageClass
208 case lltok::kw_dllexport: // OptionalDLLStorageClass
209 case lltok::kw_thread_local: // OptionalThreadLocal
210 case lltok::kw_addrspace: // OptionalAddrSpace
211 case lltok::kw_constant: // GlobalType
212 case lltok::kw_global: { // GlobalType
213 unsigned Linkage, Visibility, DLLStorageClass;
214 bool UnnamedAddr;
215 GlobalVariable::ThreadLocalMode TLM;
216 bool HasLinkage;
217 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
218 ParseOptionalVisibility(Visibility) ||
219 ParseOptionalDLLStorageClass(DLLStorageClass) ||
220 ParseOptionalThreadLocal(TLM) ||
221 parseOptionalUnnamedAddr(UnnamedAddr) ||
222 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility,
223 DLLStorageClass, TLM, UnnamedAddr))
224 return true;
225 break;
226 }
227
228 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
229 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
230 case lltok::kw_uselistorder_bb:
231 if (ParseUseListOrderBB()) return true; break;
232 }
233 }
234 }
235
236
237 /// toplevelentity
238 /// ::= 'module' 'asm' STRINGCONSTANT
ParseModuleAsm()239 bool LLParser::ParseModuleAsm() {
240 assert(Lex.getKind() == lltok::kw_module);
241 Lex.Lex();
242
243 std::string AsmStr;
244 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
245 ParseStringConstant(AsmStr)) return true;
246
247 M->appendModuleInlineAsm(AsmStr);
248 return false;
249 }
250
251 /// toplevelentity
252 /// ::= 'target' 'triple' '=' STRINGCONSTANT
253 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
ParseTargetDefinition()254 bool LLParser::ParseTargetDefinition() {
255 assert(Lex.getKind() == lltok::kw_target);
256 std::string Str;
257 switch (Lex.Lex()) {
258 default: return TokError("unknown target property");
259 case lltok::kw_triple:
260 Lex.Lex();
261 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
262 ParseStringConstant(Str))
263 return true;
264 M->setTargetTriple(Str);
265 return false;
266 case lltok::kw_datalayout:
267 Lex.Lex();
268 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
269 ParseStringConstant(Str))
270 return true;
271 M->setDataLayout(Str);
272 return false;
273 }
274 }
275
276 /// toplevelentity
277 /// ::= 'deplibs' '=' '[' ']'
278 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
279 /// FIXME: Remove in 4.0. Currently parse, but ignore.
ParseDepLibs()280 bool LLParser::ParseDepLibs() {
281 assert(Lex.getKind() == lltok::kw_deplibs);
282 Lex.Lex();
283 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
284 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
285 return true;
286
287 if (EatIfPresent(lltok::rsquare))
288 return false;
289
290 do {
291 std::string Str;
292 if (ParseStringConstant(Str)) return true;
293 } while (EatIfPresent(lltok::comma));
294
295 return ParseToken(lltok::rsquare, "expected ']' at end of list");
296 }
297
298 /// ParseUnnamedType:
299 /// ::= LocalVarID '=' 'type' type
ParseUnnamedType()300 bool LLParser::ParseUnnamedType() {
301 LocTy TypeLoc = Lex.getLoc();
302 unsigned TypeID = Lex.getUIntVal();
303 Lex.Lex(); // eat LocalVarID;
304
305 if (ParseToken(lltok::equal, "expected '=' after name") ||
306 ParseToken(lltok::kw_type, "expected 'type' after '='"))
307 return true;
308
309 Type *Result = nullptr;
310 if (ParseStructDefinition(TypeLoc, "",
311 NumberedTypes[TypeID], Result)) return true;
312
313 if (!isa<StructType>(Result)) {
314 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
315 if (Entry.first)
316 return Error(TypeLoc, "non-struct types may not be recursive");
317 Entry.first = Result;
318 Entry.second = SMLoc();
319 }
320
321 return false;
322 }
323
324
325 /// toplevelentity
326 /// ::= LocalVar '=' 'type' type
ParseNamedType()327 bool LLParser::ParseNamedType() {
328 std::string Name = Lex.getStrVal();
329 LocTy NameLoc = Lex.getLoc();
330 Lex.Lex(); // eat LocalVar.
331
332 if (ParseToken(lltok::equal, "expected '=' after name") ||
333 ParseToken(lltok::kw_type, "expected 'type' after name"))
334 return true;
335
336 Type *Result = nullptr;
337 if (ParseStructDefinition(NameLoc, Name,
338 NamedTypes[Name], Result)) return true;
339
340 if (!isa<StructType>(Result)) {
341 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
342 if (Entry.first)
343 return Error(NameLoc, "non-struct types may not be recursive");
344 Entry.first = Result;
345 Entry.second = SMLoc();
346 }
347
348 return false;
349 }
350
351
352 /// toplevelentity
353 /// ::= 'declare' FunctionHeader
ParseDeclare()354 bool LLParser::ParseDeclare() {
355 assert(Lex.getKind() == lltok::kw_declare);
356 Lex.Lex();
357
358 Function *F;
359 return ParseFunctionHeader(F, false);
360 }
361
362 /// toplevelentity
363 /// ::= 'define' FunctionHeader '{' ...
ParseDefine()364 bool LLParser::ParseDefine() {
365 assert(Lex.getKind() == lltok::kw_define);
366 Lex.Lex();
367
368 Function *F;
369 return ParseFunctionHeader(F, true) ||
370 ParseFunctionBody(*F);
371 }
372
373 /// ParseGlobalType
374 /// ::= 'constant'
375 /// ::= 'global'
ParseGlobalType(bool & IsConstant)376 bool LLParser::ParseGlobalType(bool &IsConstant) {
377 if (Lex.getKind() == lltok::kw_constant)
378 IsConstant = true;
379 else if (Lex.getKind() == lltok::kw_global)
380 IsConstant = false;
381 else {
382 IsConstant = false;
383 return TokError("expected 'global' or 'constant'");
384 }
385 Lex.Lex();
386 return false;
387 }
388
389 /// ParseUnnamedGlobal:
390 /// OptionalVisibility ALIAS ...
391 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass
392 /// ... -> global variable
393 /// GlobalID '=' OptionalVisibility ALIAS ...
394 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
395 /// ... -> global variable
ParseUnnamedGlobal()396 bool LLParser::ParseUnnamedGlobal() {
397 unsigned VarID = NumberedVals.size();
398 std::string Name;
399 LocTy NameLoc = Lex.getLoc();
400
401 // Handle the GlobalID form.
402 if (Lex.getKind() == lltok::GlobalID) {
403 if (Lex.getUIntVal() != VarID)
404 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
405 Twine(VarID) + "'");
406 Lex.Lex(); // eat GlobalID;
407
408 if (ParseToken(lltok::equal, "expected '=' after name"))
409 return true;
410 }
411
412 bool HasLinkage;
413 unsigned Linkage, Visibility, DLLStorageClass;
414 GlobalVariable::ThreadLocalMode TLM;
415 bool UnnamedAddr;
416 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
417 ParseOptionalVisibility(Visibility) ||
418 ParseOptionalDLLStorageClass(DLLStorageClass) ||
419 ParseOptionalThreadLocal(TLM) ||
420 parseOptionalUnnamedAddr(UnnamedAddr))
421 return true;
422
423 if (Lex.getKind() != lltok::kw_alias)
424 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
425 DLLStorageClass, TLM, UnnamedAddr);
426 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
427 UnnamedAddr);
428 }
429
430 /// ParseNamedGlobal:
431 /// GlobalVar '=' OptionalVisibility ALIAS ...
432 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
433 /// ... -> global variable
ParseNamedGlobal()434 bool LLParser::ParseNamedGlobal() {
435 assert(Lex.getKind() == lltok::GlobalVar);
436 LocTy NameLoc = Lex.getLoc();
437 std::string Name = Lex.getStrVal();
438 Lex.Lex();
439
440 bool HasLinkage;
441 unsigned Linkage, Visibility, DLLStorageClass;
442 GlobalVariable::ThreadLocalMode TLM;
443 bool UnnamedAddr;
444 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
445 ParseOptionalLinkage(Linkage, HasLinkage) ||
446 ParseOptionalVisibility(Visibility) ||
447 ParseOptionalDLLStorageClass(DLLStorageClass) ||
448 ParseOptionalThreadLocal(TLM) ||
449 parseOptionalUnnamedAddr(UnnamedAddr))
450 return true;
451
452 if (Lex.getKind() != lltok::kw_alias)
453 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
454 DLLStorageClass, TLM, UnnamedAddr);
455
456 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
457 UnnamedAddr);
458 }
459
parseComdat()460 bool LLParser::parseComdat() {
461 assert(Lex.getKind() == lltok::ComdatVar);
462 std::string Name = Lex.getStrVal();
463 LocTy NameLoc = Lex.getLoc();
464 Lex.Lex();
465
466 if (ParseToken(lltok::equal, "expected '=' here"))
467 return true;
468
469 if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
470 return TokError("expected comdat type");
471
472 Comdat::SelectionKind SK;
473 switch (Lex.getKind()) {
474 default:
475 return TokError("unknown selection kind");
476 case lltok::kw_any:
477 SK = Comdat::Any;
478 break;
479 case lltok::kw_exactmatch:
480 SK = Comdat::ExactMatch;
481 break;
482 case lltok::kw_largest:
483 SK = Comdat::Largest;
484 break;
485 case lltok::kw_noduplicates:
486 SK = Comdat::NoDuplicates;
487 break;
488 case lltok::kw_samesize:
489 SK = Comdat::SameSize;
490 break;
491 }
492 Lex.Lex();
493
494 // See if the comdat was forward referenced, if so, use the comdat.
495 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
496 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
497 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
498 return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
499
500 Comdat *C;
501 if (I != ComdatSymTab.end())
502 C = &I->second;
503 else
504 C = M->getOrInsertComdat(Name);
505 C->setSelectionKind(SK);
506
507 return false;
508 }
509
510 // MDString:
511 // ::= '!' STRINGCONSTANT
ParseMDString(MDString * & Result)512 bool LLParser::ParseMDString(MDString *&Result) {
513 std::string Str;
514 if (ParseStringConstant(Str)) return true;
515 llvm::UpgradeMDStringConstant(Str);
516 Result = MDString::get(Context, Str);
517 return false;
518 }
519
520 // MDNode:
521 // ::= '!' MDNodeNumber
ParseMDNodeID(MDNode * & Result)522 bool LLParser::ParseMDNodeID(MDNode *&Result) {
523 // !{ ..., !42, ... }
524 unsigned MID = 0;
525 if (ParseUInt32(MID))
526 return true;
527
528 // If not a forward reference, just return it now.
529 if (NumberedMetadata.count(MID)) {
530 Result = NumberedMetadata[MID];
531 return false;
532 }
533
534 // Otherwise, create MDNode forward reference.
535 auto &FwdRef = ForwardRefMDNodes[MID];
536 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc());
537
538 Result = FwdRef.first.get();
539 NumberedMetadata[MID].reset(Result);
540 return false;
541 }
542
543 /// ParseNamedMetadata:
544 /// !foo = !{ !1, !2 }
ParseNamedMetadata()545 bool LLParser::ParseNamedMetadata() {
546 assert(Lex.getKind() == lltok::MetadataVar);
547 std::string Name = Lex.getStrVal();
548 Lex.Lex();
549
550 if (ParseToken(lltok::equal, "expected '=' here") ||
551 ParseToken(lltok::exclaim, "Expected '!' here") ||
552 ParseToken(lltok::lbrace, "Expected '{' here"))
553 return true;
554
555 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
556 if (Lex.getKind() != lltok::rbrace)
557 do {
558 if (ParseToken(lltok::exclaim, "Expected '!' here"))
559 return true;
560
561 MDNode *N = nullptr;
562 if (ParseMDNodeID(N)) return true;
563 NMD->addOperand(N);
564 } while (EatIfPresent(lltok::comma));
565
566 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
567 return true;
568
569 return false;
570 }
571
572 /// ParseStandaloneMetadata:
573 /// !42 = !{...}
ParseStandaloneMetadata()574 bool LLParser::ParseStandaloneMetadata() {
575 assert(Lex.getKind() == lltok::exclaim);
576 Lex.Lex();
577 unsigned MetadataID = 0;
578
579 MDNode *Init;
580 if (ParseUInt32(MetadataID) ||
581 ParseToken(lltok::equal, "expected '=' here"))
582 return true;
583
584 // Detect common error, from old metadata syntax.
585 if (Lex.getKind() == lltok::Type)
586 return TokError("unexpected type in metadata definition");
587
588 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
589 if (Lex.getKind() == lltok::MetadataVar) {
590 if (ParseSpecializedMDNode(Init, IsDistinct))
591 return true;
592 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
593 ParseMDTuple(Init, IsDistinct))
594 return true;
595
596 // See if this was forward referenced, if so, handle it.
597 auto FI = ForwardRefMDNodes.find(MetadataID);
598 if (FI != ForwardRefMDNodes.end()) {
599 FI->second.first->replaceAllUsesWith(Init);
600 ForwardRefMDNodes.erase(FI);
601
602 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
603 } else {
604 if (NumberedMetadata.count(MetadataID))
605 return TokError("Metadata id is already used");
606 NumberedMetadata[MetadataID].reset(Init);
607 }
608
609 return false;
610 }
611
isValidVisibilityForLinkage(unsigned V,unsigned L)612 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
613 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
614 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
615 }
616
617 /// ParseAlias:
618 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility
619 /// OptionalDLLStorageClass OptionalThreadLocal
620 /// OptionalUnNammedAddr 'alias' Aliasee
621 ///
622 /// Aliasee
623 /// ::= TypeAndValue
624 ///
625 /// Everything through OptionalUnNammedAddr has already been parsed.
626 ///
ParseAlias(const std::string & Name,LocTy NameLoc,unsigned L,unsigned Visibility,unsigned DLLStorageClass,GlobalVariable::ThreadLocalMode TLM,bool UnnamedAddr)627 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L,
628 unsigned Visibility, unsigned DLLStorageClass,
629 GlobalVariable::ThreadLocalMode TLM,
630 bool UnnamedAddr) {
631 assert(Lex.getKind() == lltok::kw_alias);
632 Lex.Lex();
633
634 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
635
636 if(!GlobalAlias::isValidLinkage(Linkage))
637 return Error(NameLoc, "invalid linkage type for alias");
638
639 if (!isValidVisibilityForLinkage(Visibility, L))
640 return Error(NameLoc,
641 "symbol with local linkage must have default visibility");
642
643 Constant *Aliasee;
644 LocTy AliaseeLoc = Lex.getLoc();
645 if (Lex.getKind() != lltok::kw_bitcast &&
646 Lex.getKind() != lltok::kw_getelementptr &&
647 Lex.getKind() != lltok::kw_addrspacecast &&
648 Lex.getKind() != lltok::kw_inttoptr) {
649 if (ParseGlobalTypeAndValue(Aliasee))
650 return true;
651 } else {
652 // The bitcast dest type is not present, it is implied by the dest type.
653 ValID ID;
654 if (ParseValID(ID))
655 return true;
656 if (ID.Kind != ValID::t_Constant)
657 return Error(AliaseeLoc, "invalid aliasee");
658 Aliasee = ID.ConstantVal;
659 }
660
661 Type *AliaseeType = Aliasee->getType();
662 auto *PTy = dyn_cast<PointerType>(AliaseeType);
663 if (!PTy)
664 return Error(AliaseeLoc, "An alias must have pointer type");
665 Type *Ty = PTy->getElementType();
666 unsigned AddrSpace = PTy->getAddressSpace();
667
668 // Okay, create the alias but do not insert it into the module yet.
669 std::unique_ptr<GlobalAlias> GA(
670 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage,
671 Name, Aliasee, /*Parent*/ nullptr));
672 GA->setThreadLocalMode(TLM);
673 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
674 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
675 GA->setUnnamedAddr(UnnamedAddr);
676
677 // See if this value already exists in the symbol table. If so, it is either
678 // a redefinition or a definition of a forward reference.
679 if (GlobalValue *Val = M->getNamedValue(Name)) {
680 // See if this was a redefinition. If so, there is no entry in
681 // ForwardRefVals.
682 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
683 I = ForwardRefVals.find(Name);
684 if (I == ForwardRefVals.end())
685 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
686
687 // Otherwise, this was a definition of forward ref. Verify that types
688 // agree.
689 if (Val->getType() != GA->getType())
690 return Error(NameLoc,
691 "forward reference and definition of alias have different types");
692
693 // If they agree, just RAUW the old value with the alias and remove the
694 // forward ref info.
695 Val->replaceAllUsesWith(GA.get());
696 Val->eraseFromParent();
697 ForwardRefVals.erase(I);
698 }
699
700 // Insert into the module, we know its name won't collide now.
701 M->getAliasList().push_back(GA.get());
702 assert(GA->getName() == Name && "Should not be a name conflict!");
703
704 // The module owns this now
705 GA.release();
706
707 return false;
708 }
709
710 /// ParseGlobal
711 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
712 /// OptionalThreadLocal OptionalUnNammedAddr OptionalAddrSpace
713 /// OptionalExternallyInitialized GlobalType Type Const
714 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
715 /// OptionalThreadLocal OptionalUnNammedAddr OptionalAddrSpace
716 /// OptionalExternallyInitialized GlobalType Type Const
717 ///
718 /// Everything up to and including OptionalUnNammedAddr has been parsed
719 /// already.
720 ///
ParseGlobal(const std::string & Name,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility,unsigned DLLStorageClass,GlobalVariable::ThreadLocalMode TLM,bool UnnamedAddr)721 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
722 unsigned Linkage, bool HasLinkage,
723 unsigned Visibility, unsigned DLLStorageClass,
724 GlobalVariable::ThreadLocalMode TLM,
725 bool UnnamedAddr) {
726 if (!isValidVisibilityForLinkage(Visibility, Linkage))
727 return Error(NameLoc,
728 "symbol with local linkage must have default visibility");
729
730 unsigned AddrSpace;
731 bool IsConstant, IsExternallyInitialized;
732 LocTy IsExternallyInitializedLoc;
733 LocTy TyLoc;
734
735 Type *Ty = nullptr;
736 if (ParseOptionalAddrSpace(AddrSpace) ||
737 ParseOptionalToken(lltok::kw_externally_initialized,
738 IsExternallyInitialized,
739 &IsExternallyInitializedLoc) ||
740 ParseGlobalType(IsConstant) ||
741 ParseType(Ty, TyLoc))
742 return true;
743
744 // If the linkage is specified and is external, then no initializer is
745 // present.
746 Constant *Init = nullptr;
747 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage &&
748 Linkage != GlobalValue::ExternalLinkage)) {
749 if (ParseGlobalValue(Ty, Init))
750 return true;
751 }
752
753 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
754 return Error(TyLoc, "invalid type for global variable");
755
756 GlobalValue *GVal = nullptr;
757
758 // See if the global was forward referenced, if so, use the global.
759 if (!Name.empty()) {
760 GVal = M->getNamedValue(Name);
761 if (GVal) {
762 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
763 return Error(NameLoc, "redefinition of global '@" + Name + "'");
764 }
765 } else {
766 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
767 I = ForwardRefValIDs.find(NumberedVals.size());
768 if (I != ForwardRefValIDs.end()) {
769 GVal = I->second.first;
770 ForwardRefValIDs.erase(I);
771 }
772 }
773
774 GlobalVariable *GV;
775 if (!GVal) {
776 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
777 Name, nullptr, GlobalVariable::NotThreadLocal,
778 AddrSpace);
779 } else {
780 if (GVal->getType()->getElementType() != Ty)
781 return Error(TyLoc,
782 "forward reference and definition of global have different types");
783
784 GV = cast<GlobalVariable>(GVal);
785
786 // Move the forward-reference to the correct spot in the module.
787 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
788 }
789
790 if (Name.empty())
791 NumberedVals.push_back(GV);
792
793 // Set the parsed properties on the global.
794 if (Init)
795 GV->setInitializer(Init);
796 GV->setConstant(IsConstant);
797 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
798 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
799 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
800 GV->setExternallyInitialized(IsExternallyInitialized);
801 GV->setThreadLocalMode(TLM);
802 GV->setUnnamedAddr(UnnamedAddr);
803
804 // Parse attributes on the global.
805 while (Lex.getKind() == lltok::comma) {
806 Lex.Lex();
807
808 if (Lex.getKind() == lltok::kw_section) {
809 Lex.Lex();
810 GV->setSection(Lex.getStrVal());
811 if (ParseToken(lltok::StringConstant, "expected global section string"))
812 return true;
813 } else if (Lex.getKind() == lltok::kw_align) {
814 unsigned Alignment;
815 if (ParseOptionalAlignment(Alignment)) return true;
816 GV->setAlignment(Alignment);
817 } else {
818 Comdat *C;
819 if (parseOptionalComdat(Name, C))
820 return true;
821 if (C)
822 GV->setComdat(C);
823 else
824 return TokError("unknown global variable property!");
825 }
826 }
827
828 return false;
829 }
830
831 /// ParseUnnamedAttrGrp
832 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
ParseUnnamedAttrGrp()833 bool LLParser::ParseUnnamedAttrGrp() {
834 assert(Lex.getKind() == lltok::kw_attributes);
835 LocTy AttrGrpLoc = Lex.getLoc();
836 Lex.Lex();
837
838 if (Lex.getKind() != lltok::AttrGrpID)
839 return TokError("expected attribute group id");
840
841 unsigned VarID = Lex.getUIntVal();
842 std::vector<unsigned> unused;
843 LocTy BuiltinLoc;
844 Lex.Lex();
845
846 if (ParseToken(lltok::equal, "expected '=' here") ||
847 ParseToken(lltok::lbrace, "expected '{' here") ||
848 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
849 BuiltinLoc) ||
850 ParseToken(lltok::rbrace, "expected end of attribute group"))
851 return true;
852
853 if (!NumberedAttrBuilders[VarID].hasAttributes())
854 return Error(AttrGrpLoc, "attribute group has no attributes");
855
856 return false;
857 }
858
859 /// ParseFnAttributeValuePairs
860 /// ::= <attr> | <attr> '=' <value>
ParseFnAttributeValuePairs(AttrBuilder & B,std::vector<unsigned> & FwdRefAttrGrps,bool inAttrGrp,LocTy & BuiltinLoc)861 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
862 std::vector<unsigned> &FwdRefAttrGrps,
863 bool inAttrGrp, LocTy &BuiltinLoc) {
864 bool HaveError = false;
865
866 B.clear();
867
868 while (true) {
869 lltok::Kind Token = Lex.getKind();
870 if (Token == lltok::kw_builtin)
871 BuiltinLoc = Lex.getLoc();
872 switch (Token) {
873 default:
874 if (!inAttrGrp) return HaveError;
875 return Error(Lex.getLoc(), "unterminated attribute group");
876 case lltok::rbrace:
877 // Finished.
878 return false;
879
880 case lltok::AttrGrpID: {
881 // Allow a function to reference an attribute group:
882 //
883 // define void @foo() #1 { ... }
884 if (inAttrGrp)
885 HaveError |=
886 Error(Lex.getLoc(),
887 "cannot have an attribute group reference in an attribute group");
888
889 unsigned AttrGrpNum = Lex.getUIntVal();
890 if (inAttrGrp) break;
891
892 // Save the reference to the attribute group. We'll fill it in later.
893 FwdRefAttrGrps.push_back(AttrGrpNum);
894 break;
895 }
896 // Target-dependent attributes:
897 case lltok::StringConstant: {
898 std::string Attr = Lex.getStrVal();
899 Lex.Lex();
900 std::string Val;
901 if (EatIfPresent(lltok::equal) &&
902 ParseStringConstant(Val))
903 return true;
904
905 B.addAttribute(Attr, Val);
906 continue;
907 }
908
909 // Target-independent attributes:
910 case lltok::kw_align: {
911 // As a hack, we allow function alignment to be initially parsed as an
912 // attribute on a function declaration/definition or added to an attribute
913 // group and later moved to the alignment field.
914 unsigned Alignment;
915 if (inAttrGrp) {
916 Lex.Lex();
917 if (ParseToken(lltok::equal, "expected '=' here") ||
918 ParseUInt32(Alignment))
919 return true;
920 } else {
921 if (ParseOptionalAlignment(Alignment))
922 return true;
923 }
924 B.addAlignmentAttr(Alignment);
925 continue;
926 }
927 case lltok::kw_alignstack: {
928 unsigned Alignment;
929 if (inAttrGrp) {
930 Lex.Lex();
931 if (ParseToken(lltok::equal, "expected '=' here") ||
932 ParseUInt32(Alignment))
933 return true;
934 } else {
935 if (ParseOptionalStackAlignment(Alignment))
936 return true;
937 }
938 B.addStackAlignmentAttr(Alignment);
939 continue;
940 }
941 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
942 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
943 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
944 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
945 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
946 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
947 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
948 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
949 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
950 case lltok::kw_noimplicitfloat: B.addAttribute(Attribute::NoImplicitFloat); break;
951 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
952 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
953 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
954 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
955 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
956 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
957 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
958 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
959 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
960 case lltok::kw_returns_twice: B.addAttribute(Attribute::ReturnsTwice); break;
961 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
962 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
963 case lltok::kw_sspstrong: B.addAttribute(Attribute::StackProtectStrong); break;
964 case lltok::kw_sanitize_address: B.addAttribute(Attribute::SanitizeAddress); break;
965 case lltok::kw_sanitize_thread: B.addAttribute(Attribute::SanitizeThread); break;
966 case lltok::kw_sanitize_memory: B.addAttribute(Attribute::SanitizeMemory); break;
967 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
968
969 // Error handling.
970 case lltok::kw_inreg:
971 case lltok::kw_signext:
972 case lltok::kw_zeroext:
973 HaveError |=
974 Error(Lex.getLoc(),
975 "invalid use of attribute on a function");
976 break;
977 case lltok::kw_byval:
978 case lltok::kw_dereferenceable:
979 case lltok::kw_dereferenceable_or_null:
980 case lltok::kw_inalloca:
981 case lltok::kw_nest:
982 case lltok::kw_noalias:
983 case lltok::kw_nocapture:
984 case lltok::kw_nonnull:
985 case lltok::kw_returned:
986 case lltok::kw_sret:
987 HaveError |=
988 Error(Lex.getLoc(),
989 "invalid use of parameter-only attribute on a function");
990 break;
991 }
992
993 Lex.Lex();
994 }
995 }
996
997 //===----------------------------------------------------------------------===//
998 // GlobalValue Reference/Resolution Routines.
999 //===----------------------------------------------------------------------===//
1000
1001 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1002 /// forward reference record if needed. This can return null if the value
1003 /// exists but does not have the right type.
GetGlobalVal(const std::string & Name,Type * Ty,LocTy Loc)1004 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1005 LocTy Loc) {
1006 PointerType *PTy = dyn_cast<PointerType>(Ty);
1007 if (!PTy) {
1008 Error(Loc, "global variable reference must have pointer type");
1009 return nullptr;
1010 }
1011
1012 // Look this name up in the normal function symbol table.
1013 GlobalValue *Val =
1014 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1015
1016 // If this is a forward reference for the value, see if we already created a
1017 // forward ref record.
1018 if (!Val) {
1019 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
1020 I = ForwardRefVals.find(Name);
1021 if (I != ForwardRefVals.end())
1022 Val = I->second.first;
1023 }
1024
1025 // If we have the value in the symbol table or fwd-ref table, return it.
1026 if (Val) {
1027 if (Val->getType() == Ty) return Val;
1028 Error(Loc, "'@" + Name + "' defined with type '" +
1029 getTypeString(Val->getType()) + "'");
1030 return nullptr;
1031 }
1032
1033 // Otherwise, create a new forward reference for this value and remember it.
1034 GlobalValue *FwdVal;
1035 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1036 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1037 else
1038 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1039 GlobalValue::ExternalWeakLinkage, nullptr, Name,
1040 nullptr, GlobalVariable::NotThreadLocal,
1041 PTy->getAddressSpace());
1042
1043 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1044 return FwdVal;
1045 }
1046
GetGlobalVal(unsigned ID,Type * Ty,LocTy Loc)1047 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1048 PointerType *PTy = dyn_cast<PointerType>(Ty);
1049 if (!PTy) {
1050 Error(Loc, "global variable reference must have pointer type");
1051 return nullptr;
1052 }
1053
1054 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1055
1056 // If this is a forward reference for the value, see if we already created a
1057 // forward ref record.
1058 if (!Val) {
1059 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1060 I = ForwardRefValIDs.find(ID);
1061 if (I != ForwardRefValIDs.end())
1062 Val = I->second.first;
1063 }
1064
1065 // If we have the value in the symbol table or fwd-ref table, return it.
1066 if (Val) {
1067 if (Val->getType() == Ty) return Val;
1068 Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1069 getTypeString(Val->getType()) + "'");
1070 return nullptr;
1071 }
1072
1073 // Otherwise, create a new forward reference for this value and remember it.
1074 GlobalValue *FwdVal;
1075 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1076 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1077 else
1078 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1079 GlobalValue::ExternalWeakLinkage, nullptr, "");
1080
1081 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1082 return FwdVal;
1083 }
1084
1085
1086 //===----------------------------------------------------------------------===//
1087 // Comdat Reference/Resolution Routines.
1088 //===----------------------------------------------------------------------===//
1089
getComdat(const std::string & Name,LocTy Loc)1090 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1091 // Look this name up in the comdat symbol table.
1092 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1093 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1094 if (I != ComdatSymTab.end())
1095 return &I->second;
1096
1097 // Otherwise, create a new forward reference for this value and remember it.
1098 Comdat *C = M->getOrInsertComdat(Name);
1099 ForwardRefComdats[Name] = Loc;
1100 return C;
1101 }
1102
1103
1104 //===----------------------------------------------------------------------===//
1105 // Helper Routines.
1106 //===----------------------------------------------------------------------===//
1107
1108 /// ParseToken - If the current token has the specified kind, eat it and return
1109 /// success. Otherwise, emit the specified error and return failure.
ParseToken(lltok::Kind T,const char * ErrMsg)1110 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1111 if (Lex.getKind() != T)
1112 return TokError(ErrMsg);
1113 Lex.Lex();
1114 return false;
1115 }
1116
1117 /// ParseStringConstant
1118 /// ::= StringConstant
ParseStringConstant(std::string & Result)1119 bool LLParser::ParseStringConstant(std::string &Result) {
1120 if (Lex.getKind() != lltok::StringConstant)
1121 return TokError("expected string constant");
1122 Result = Lex.getStrVal();
1123 Lex.Lex();
1124 return false;
1125 }
1126
1127 /// ParseUInt32
1128 /// ::= uint32
ParseUInt32(unsigned & Val)1129 bool LLParser::ParseUInt32(unsigned &Val) {
1130 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1131 return TokError("expected integer");
1132 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1133 if (Val64 != unsigned(Val64))
1134 return TokError("expected 32-bit integer (too large)");
1135 Val = Val64;
1136 Lex.Lex();
1137 return false;
1138 }
1139
1140 /// ParseUInt64
1141 /// ::= uint64
ParseUInt64(uint64_t & Val)1142 bool LLParser::ParseUInt64(uint64_t &Val) {
1143 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1144 return TokError("expected integer");
1145 Val = Lex.getAPSIntVal().getLimitedValue();
1146 Lex.Lex();
1147 return false;
1148 }
1149
1150 /// ParseTLSModel
1151 /// := 'localdynamic'
1152 /// := 'initialexec'
1153 /// := 'localexec'
ParseTLSModel(GlobalVariable::ThreadLocalMode & TLM)1154 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1155 switch (Lex.getKind()) {
1156 default:
1157 return TokError("expected localdynamic, initialexec or localexec");
1158 case lltok::kw_localdynamic:
1159 TLM = GlobalVariable::LocalDynamicTLSModel;
1160 break;
1161 case lltok::kw_initialexec:
1162 TLM = GlobalVariable::InitialExecTLSModel;
1163 break;
1164 case lltok::kw_localexec:
1165 TLM = GlobalVariable::LocalExecTLSModel;
1166 break;
1167 }
1168
1169 Lex.Lex();
1170 return false;
1171 }
1172
1173 /// ParseOptionalThreadLocal
1174 /// := /*empty*/
1175 /// := 'thread_local'
1176 /// := 'thread_local' '(' tlsmodel ')'
ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)1177 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1178 TLM = GlobalVariable::NotThreadLocal;
1179 if (!EatIfPresent(lltok::kw_thread_local))
1180 return false;
1181
1182 TLM = GlobalVariable::GeneralDynamicTLSModel;
1183 if (Lex.getKind() == lltok::lparen) {
1184 Lex.Lex();
1185 return ParseTLSModel(TLM) ||
1186 ParseToken(lltok::rparen, "expected ')' after thread local model");
1187 }
1188 return false;
1189 }
1190
1191 /// ParseOptionalAddrSpace
1192 /// := /*empty*/
1193 /// := 'addrspace' '(' uint32 ')'
ParseOptionalAddrSpace(unsigned & AddrSpace)1194 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1195 AddrSpace = 0;
1196 if (!EatIfPresent(lltok::kw_addrspace))
1197 return false;
1198 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1199 ParseUInt32(AddrSpace) ||
1200 ParseToken(lltok::rparen, "expected ')' in address space");
1201 }
1202
1203 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
ParseOptionalParamAttrs(AttrBuilder & B)1204 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1205 bool HaveError = false;
1206
1207 B.clear();
1208
1209 while (1) {
1210 lltok::Kind Token = Lex.getKind();
1211 switch (Token) {
1212 default: // End of attributes.
1213 return HaveError;
1214 case lltok::kw_align: {
1215 unsigned Alignment;
1216 if (ParseOptionalAlignment(Alignment))
1217 return true;
1218 B.addAlignmentAttr(Alignment);
1219 continue;
1220 }
1221 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1222 case lltok::kw_dereferenceable: {
1223 uint64_t Bytes;
1224 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1225 return true;
1226 B.addDereferenceableAttr(Bytes);
1227 continue;
1228 }
1229 case lltok::kw_dereferenceable_or_null: {
1230 uint64_t Bytes;
1231 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1232 return true;
1233 B.addDereferenceableOrNullAttr(Bytes);
1234 continue;
1235 }
1236 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1237 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1238 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1239 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1240 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1241 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1242 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1243 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1244 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1245 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1246 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1247 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1248
1249 case lltok::kw_alignstack:
1250 case lltok::kw_alwaysinline:
1251 case lltok::kw_builtin:
1252 case lltok::kw_inlinehint:
1253 case lltok::kw_jumptable:
1254 case lltok::kw_minsize:
1255 case lltok::kw_naked:
1256 case lltok::kw_nobuiltin:
1257 case lltok::kw_noduplicate:
1258 case lltok::kw_noimplicitfloat:
1259 case lltok::kw_noinline:
1260 case lltok::kw_nonlazybind:
1261 case lltok::kw_noredzone:
1262 case lltok::kw_noreturn:
1263 case lltok::kw_nounwind:
1264 case lltok::kw_optnone:
1265 case lltok::kw_optsize:
1266 case lltok::kw_returns_twice:
1267 case lltok::kw_sanitize_address:
1268 case lltok::kw_sanitize_memory:
1269 case lltok::kw_sanitize_thread:
1270 case lltok::kw_ssp:
1271 case lltok::kw_sspreq:
1272 case lltok::kw_sspstrong:
1273 case lltok::kw_uwtable:
1274 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1275 break;
1276 }
1277
1278 Lex.Lex();
1279 }
1280 }
1281
1282 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
ParseOptionalReturnAttrs(AttrBuilder & B)1283 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1284 bool HaveError = false;
1285
1286 B.clear();
1287
1288 while (1) {
1289 lltok::Kind Token = Lex.getKind();
1290 switch (Token) {
1291 default: // End of attributes.
1292 return HaveError;
1293 case lltok::kw_dereferenceable: {
1294 uint64_t Bytes;
1295 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1296 return true;
1297 B.addDereferenceableAttr(Bytes);
1298 continue;
1299 }
1300 case lltok::kw_dereferenceable_or_null: {
1301 uint64_t Bytes;
1302 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1303 return true;
1304 B.addDereferenceableOrNullAttr(Bytes);
1305 continue;
1306 }
1307 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1308 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1309 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1310 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1311 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1312
1313 // Error handling.
1314 case lltok::kw_align:
1315 case lltok::kw_byval:
1316 case lltok::kw_inalloca:
1317 case lltok::kw_nest:
1318 case lltok::kw_nocapture:
1319 case lltok::kw_returned:
1320 case lltok::kw_sret:
1321 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1322 break;
1323
1324 case lltok::kw_alignstack:
1325 case lltok::kw_alwaysinline:
1326 case lltok::kw_builtin:
1327 case lltok::kw_cold:
1328 case lltok::kw_inlinehint:
1329 case lltok::kw_jumptable:
1330 case lltok::kw_minsize:
1331 case lltok::kw_naked:
1332 case lltok::kw_nobuiltin:
1333 case lltok::kw_noduplicate:
1334 case lltok::kw_noimplicitfloat:
1335 case lltok::kw_noinline:
1336 case lltok::kw_nonlazybind:
1337 case lltok::kw_noredzone:
1338 case lltok::kw_noreturn:
1339 case lltok::kw_nounwind:
1340 case lltok::kw_optnone:
1341 case lltok::kw_optsize:
1342 case lltok::kw_returns_twice:
1343 case lltok::kw_sanitize_address:
1344 case lltok::kw_sanitize_memory:
1345 case lltok::kw_sanitize_thread:
1346 case lltok::kw_ssp:
1347 case lltok::kw_sspreq:
1348 case lltok::kw_sspstrong:
1349 case lltok::kw_uwtable:
1350 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1351 break;
1352
1353 case lltok::kw_readnone:
1354 case lltok::kw_readonly:
1355 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1356 }
1357
1358 Lex.Lex();
1359 }
1360 }
1361
1362 /// ParseOptionalLinkage
1363 /// ::= /*empty*/
1364 /// ::= 'private'
1365 /// ::= 'internal'
1366 /// ::= 'weak'
1367 /// ::= 'weak_odr'
1368 /// ::= 'linkonce'
1369 /// ::= 'linkonce_odr'
1370 /// ::= 'available_externally'
1371 /// ::= 'appending'
1372 /// ::= 'common'
1373 /// ::= 'extern_weak'
1374 /// ::= 'external'
ParseOptionalLinkage(unsigned & Res,bool & HasLinkage)1375 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1376 HasLinkage = false;
1377 switch (Lex.getKind()) {
1378 default: Res=GlobalValue::ExternalLinkage; return false;
1379 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
1380 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
1381 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
1382 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
1383 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
1384 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
1385 case lltok::kw_available_externally:
1386 Res = GlobalValue::AvailableExternallyLinkage;
1387 break;
1388 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
1389 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
1390 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
1391 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
1392 }
1393 Lex.Lex();
1394 HasLinkage = true;
1395 return false;
1396 }
1397
1398 /// ParseOptionalVisibility
1399 /// ::= /*empty*/
1400 /// ::= 'default'
1401 /// ::= 'hidden'
1402 /// ::= 'protected'
1403 ///
ParseOptionalVisibility(unsigned & Res)1404 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1405 switch (Lex.getKind()) {
1406 default: Res = GlobalValue::DefaultVisibility; return false;
1407 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
1408 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
1409 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1410 }
1411 Lex.Lex();
1412 return false;
1413 }
1414
1415 /// ParseOptionalDLLStorageClass
1416 /// ::= /*empty*/
1417 /// ::= 'dllimport'
1418 /// ::= 'dllexport'
1419 ///
ParseOptionalDLLStorageClass(unsigned & Res)1420 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1421 switch (Lex.getKind()) {
1422 default: Res = GlobalValue::DefaultStorageClass; return false;
1423 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break;
1424 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break;
1425 }
1426 Lex.Lex();
1427 return false;
1428 }
1429
1430 /// ParseOptionalCallingConv
1431 /// ::= /*empty*/
1432 /// ::= 'ccc'
1433 /// ::= 'fastcc'
1434 /// ::= 'intel_ocl_bicc'
1435 /// ::= 'coldcc'
1436 /// ::= 'x86_stdcallcc'
1437 /// ::= 'x86_fastcallcc'
1438 /// ::= 'x86_thiscallcc'
1439 /// ::= 'x86_vectorcallcc'
1440 /// ::= 'arm_apcscc'
1441 /// ::= 'arm_aapcscc'
1442 /// ::= 'arm_aapcs_vfpcc'
1443 /// ::= 'msp430_intrcc'
1444 /// ::= 'ptx_kernel'
1445 /// ::= 'ptx_device'
1446 /// ::= 'spir_func'
1447 /// ::= 'spir_kernel'
1448 /// ::= 'x86_64_sysvcc'
1449 /// ::= 'x86_64_win64cc'
1450 /// ::= 'webkit_jscc'
1451 /// ::= 'anyregcc'
1452 /// ::= 'preserve_mostcc'
1453 /// ::= 'preserve_allcc'
1454 /// ::= 'ghccc'
1455 /// ::= 'cc' UINT
1456 ///
ParseOptionalCallingConv(unsigned & CC)1457 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1458 switch (Lex.getKind()) {
1459 default: CC = CallingConv::C; return false;
1460 case lltok::kw_ccc: CC = CallingConv::C; break;
1461 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1462 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1463 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1464 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1465 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1466 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1467 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1468 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1469 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1470 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1471 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1472 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1473 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1474 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1475 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1476 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1477 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1478 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
1479 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1480 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1481 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1482 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1483 case lltok::kw_cc: {
1484 Lex.Lex();
1485 return ParseUInt32(CC);
1486 }
1487 }
1488
1489 Lex.Lex();
1490 return false;
1491 }
1492
1493 /// ParseInstructionMetadata
1494 /// ::= !dbg !42 (',' !dbg !57)*
ParseInstructionMetadata(Instruction * Inst,PerFunctionState * PFS)1495 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1496 PerFunctionState *PFS) {
1497 do {
1498 if (Lex.getKind() != lltok::MetadataVar)
1499 return TokError("expected metadata after comma");
1500
1501 std::string Name = Lex.getStrVal();
1502 unsigned MDK = M->getMDKindID(Name);
1503 Lex.Lex();
1504
1505 MDNode *N;
1506 if (ParseMDNode(N))
1507 return true;
1508
1509 Inst->setMetadata(MDK, N);
1510 if (MDK == LLVMContext::MD_tbaa)
1511 InstsWithTBAATag.push_back(Inst);
1512
1513 // If this is the end of the list, we're done.
1514 } while (EatIfPresent(lltok::comma));
1515 return false;
1516 }
1517
1518 /// ParseOptionalAlignment
1519 /// ::= /* empty */
1520 /// ::= 'align' 4
ParseOptionalAlignment(unsigned & Alignment)1521 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1522 Alignment = 0;
1523 if (!EatIfPresent(lltok::kw_align))
1524 return false;
1525 LocTy AlignLoc = Lex.getLoc();
1526 if (ParseUInt32(Alignment)) return true;
1527 if (!isPowerOf2_32(Alignment))
1528 return Error(AlignLoc, "alignment is not a power of two");
1529 if (Alignment > Value::MaximumAlignment)
1530 return Error(AlignLoc, "huge alignments are not supported yet");
1531 return false;
1532 }
1533
1534 /// ParseOptionalDerefAttrBytes
1535 /// ::= /* empty */
1536 /// ::= AttrKind '(' 4 ')'
1537 ///
1538 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,uint64_t & Bytes)1539 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1540 uint64_t &Bytes) {
1541 assert((AttrKind == lltok::kw_dereferenceable ||
1542 AttrKind == lltok::kw_dereferenceable_or_null) &&
1543 "contract!");
1544
1545 Bytes = 0;
1546 if (!EatIfPresent(AttrKind))
1547 return false;
1548 LocTy ParenLoc = Lex.getLoc();
1549 if (!EatIfPresent(lltok::lparen))
1550 return Error(ParenLoc, "expected '('");
1551 LocTy DerefLoc = Lex.getLoc();
1552 if (ParseUInt64(Bytes)) return true;
1553 ParenLoc = Lex.getLoc();
1554 if (!EatIfPresent(lltok::rparen))
1555 return Error(ParenLoc, "expected ')'");
1556 if (!Bytes)
1557 return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1558 return false;
1559 }
1560
1561 /// ParseOptionalCommaAlign
1562 /// ::=
1563 /// ::= ',' align 4
1564 ///
1565 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1566 /// end.
ParseOptionalCommaAlign(unsigned & Alignment,bool & AteExtraComma)1567 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1568 bool &AteExtraComma) {
1569 AteExtraComma = false;
1570 while (EatIfPresent(lltok::comma)) {
1571 // Metadata at the end is an early exit.
1572 if (Lex.getKind() == lltok::MetadataVar) {
1573 AteExtraComma = true;
1574 return false;
1575 }
1576
1577 if (Lex.getKind() != lltok::kw_align)
1578 return Error(Lex.getLoc(), "expected metadata or 'align'");
1579
1580 if (ParseOptionalAlignment(Alignment)) return true;
1581 }
1582
1583 return false;
1584 }
1585
1586 /// ParseScopeAndOrdering
1587 /// if isAtomic: ::= 'singlethread'? AtomicOrdering
1588 /// else: ::=
1589 ///
1590 /// This sets Scope and Ordering to the parsed values.
ParseScopeAndOrdering(bool isAtomic,SynchronizationScope & Scope,AtomicOrdering & Ordering)1591 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1592 AtomicOrdering &Ordering) {
1593 if (!isAtomic)
1594 return false;
1595
1596 Scope = CrossThread;
1597 if (EatIfPresent(lltok::kw_singlethread))
1598 Scope = SingleThread;
1599
1600 return ParseOrdering(Ordering);
1601 }
1602
1603 /// ParseOrdering
1604 /// ::= AtomicOrdering
1605 ///
1606 /// This sets Ordering to the parsed value.
ParseOrdering(AtomicOrdering & Ordering)1607 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1608 switch (Lex.getKind()) {
1609 default: return TokError("Expected ordering on atomic instruction");
1610 case lltok::kw_unordered: Ordering = Unordered; break;
1611 case lltok::kw_monotonic: Ordering = Monotonic; break;
1612 case lltok::kw_acquire: Ordering = Acquire; break;
1613 case lltok::kw_release: Ordering = Release; break;
1614 case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1615 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1616 }
1617 Lex.Lex();
1618 return false;
1619 }
1620
1621 /// ParseOptionalStackAlignment
1622 /// ::= /* empty */
1623 /// ::= 'alignstack' '(' 4 ')'
ParseOptionalStackAlignment(unsigned & Alignment)1624 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1625 Alignment = 0;
1626 if (!EatIfPresent(lltok::kw_alignstack))
1627 return false;
1628 LocTy ParenLoc = Lex.getLoc();
1629 if (!EatIfPresent(lltok::lparen))
1630 return Error(ParenLoc, "expected '('");
1631 LocTy AlignLoc = Lex.getLoc();
1632 if (ParseUInt32(Alignment)) return true;
1633 ParenLoc = Lex.getLoc();
1634 if (!EatIfPresent(lltok::rparen))
1635 return Error(ParenLoc, "expected ')'");
1636 if (!isPowerOf2_32(Alignment))
1637 return Error(AlignLoc, "stack alignment is not a power of two");
1638 return false;
1639 }
1640
1641 /// ParseIndexList - This parses the index list for an insert/extractvalue
1642 /// instruction. This sets AteExtraComma in the case where we eat an extra
1643 /// comma at the end of the line and find that it is followed by metadata.
1644 /// Clients that don't allow metadata can call the version of this function that
1645 /// only takes one argument.
1646 ///
1647 /// ParseIndexList
1648 /// ::= (',' uint32)+
1649 ///
ParseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)1650 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1651 bool &AteExtraComma) {
1652 AteExtraComma = false;
1653
1654 if (Lex.getKind() != lltok::comma)
1655 return TokError("expected ',' as start of index list");
1656
1657 while (EatIfPresent(lltok::comma)) {
1658 if (Lex.getKind() == lltok::MetadataVar) {
1659 if (Indices.empty()) return TokError("expected index");
1660 AteExtraComma = true;
1661 return false;
1662 }
1663 unsigned Idx = 0;
1664 if (ParseUInt32(Idx)) return true;
1665 Indices.push_back(Idx);
1666 }
1667
1668 return false;
1669 }
1670
1671 //===----------------------------------------------------------------------===//
1672 // Type Parsing.
1673 //===----------------------------------------------------------------------===//
1674
1675 /// ParseType - Parse a type.
ParseType(Type * & Result,const Twine & Msg,bool AllowVoid)1676 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1677 SMLoc TypeLoc = Lex.getLoc();
1678 switch (Lex.getKind()) {
1679 default:
1680 return TokError(Msg);
1681 case lltok::Type:
1682 // Type ::= 'float' | 'void' (etc)
1683 Result = Lex.getTyVal();
1684 Lex.Lex();
1685 break;
1686 case lltok::lbrace:
1687 // Type ::= StructType
1688 if (ParseAnonStructType(Result, false))
1689 return true;
1690 break;
1691 case lltok::lsquare:
1692 // Type ::= '[' ... ']'
1693 Lex.Lex(); // eat the lsquare.
1694 if (ParseArrayVectorType(Result, false))
1695 return true;
1696 break;
1697 case lltok::less: // Either vector or packed struct.
1698 // Type ::= '<' ... '>'
1699 Lex.Lex();
1700 if (Lex.getKind() == lltok::lbrace) {
1701 if (ParseAnonStructType(Result, true) ||
1702 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1703 return true;
1704 } else if (ParseArrayVectorType(Result, true))
1705 return true;
1706 break;
1707 case lltok::LocalVar: {
1708 // Type ::= %foo
1709 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1710
1711 // If the type hasn't been defined yet, create a forward definition and
1712 // remember where that forward def'n was seen (in case it never is defined).
1713 if (!Entry.first) {
1714 Entry.first = StructType::create(Context, Lex.getStrVal());
1715 Entry.second = Lex.getLoc();
1716 }
1717 Result = Entry.first;
1718 Lex.Lex();
1719 break;
1720 }
1721
1722 case lltok::LocalVarID: {
1723 // Type ::= %4
1724 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1725
1726 // If the type hasn't been defined yet, create a forward definition and
1727 // remember where that forward def'n was seen (in case it never is defined).
1728 if (!Entry.first) {
1729 Entry.first = StructType::create(Context);
1730 Entry.second = Lex.getLoc();
1731 }
1732 Result = Entry.first;
1733 Lex.Lex();
1734 break;
1735 }
1736 }
1737
1738 // Parse the type suffixes.
1739 while (1) {
1740 switch (Lex.getKind()) {
1741 // End of type.
1742 default:
1743 if (!AllowVoid && Result->isVoidTy())
1744 return Error(TypeLoc, "void type only allowed for function results");
1745 return false;
1746
1747 // Type ::= Type '*'
1748 case lltok::star:
1749 if (Result->isLabelTy())
1750 return TokError("basic block pointers are invalid");
1751 if (Result->isVoidTy())
1752 return TokError("pointers to void are invalid - use i8* instead");
1753 if (!PointerType::isValidElementType(Result))
1754 return TokError("pointer to this type is invalid");
1755 Result = PointerType::getUnqual(Result);
1756 Lex.Lex();
1757 break;
1758
1759 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1760 case lltok::kw_addrspace: {
1761 if (Result->isLabelTy())
1762 return TokError("basic block pointers are invalid");
1763 if (Result->isVoidTy())
1764 return TokError("pointers to void are invalid; use i8* instead");
1765 if (!PointerType::isValidElementType(Result))
1766 return TokError("pointer to this type is invalid");
1767 unsigned AddrSpace;
1768 if (ParseOptionalAddrSpace(AddrSpace) ||
1769 ParseToken(lltok::star, "expected '*' in address space"))
1770 return true;
1771
1772 Result = PointerType::get(Result, AddrSpace);
1773 break;
1774 }
1775
1776 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1777 case lltok::lparen:
1778 if (ParseFunctionType(Result))
1779 return true;
1780 break;
1781 }
1782 }
1783 }
1784
1785 /// ParseParameterList
1786 /// ::= '(' ')'
1787 /// ::= '(' Arg (',' Arg)* ')'
1788 /// Arg
1789 /// ::= Type OptionalAttributes Value OptionalAttributes
ParseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS,bool IsMustTailCall,bool InVarArgsFunc)1790 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1791 PerFunctionState &PFS, bool IsMustTailCall,
1792 bool InVarArgsFunc) {
1793 if (ParseToken(lltok::lparen, "expected '(' in call"))
1794 return true;
1795
1796 unsigned AttrIndex = 1;
1797 while (Lex.getKind() != lltok::rparen) {
1798 // If this isn't the first argument, we need a comma.
1799 if (!ArgList.empty() &&
1800 ParseToken(lltok::comma, "expected ',' in argument list"))
1801 return true;
1802
1803 // Parse an ellipsis if this is a musttail call in a variadic function.
1804 if (Lex.getKind() == lltok::dotdotdot) {
1805 const char *Msg = "unexpected ellipsis in argument list for ";
1806 if (!IsMustTailCall)
1807 return TokError(Twine(Msg) + "non-musttail call");
1808 if (!InVarArgsFunc)
1809 return TokError(Twine(Msg) + "musttail call in non-varargs function");
1810 Lex.Lex(); // Lex the '...', it is purely for readability.
1811 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1812 }
1813
1814 // Parse the argument.
1815 LocTy ArgLoc;
1816 Type *ArgTy = nullptr;
1817 AttrBuilder ArgAttrs;
1818 Value *V;
1819 if (ParseType(ArgTy, ArgLoc))
1820 return true;
1821
1822 if (ArgTy->isMetadataTy()) {
1823 if (ParseMetadataAsValue(V, PFS))
1824 return true;
1825 } else {
1826 // Otherwise, handle normal operands.
1827 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1828 return true;
1829 }
1830 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1831 AttrIndex++,
1832 ArgAttrs)));
1833 }
1834
1835 if (IsMustTailCall && InVarArgsFunc)
1836 return TokError("expected '...' at end of argument list for musttail call "
1837 "in varargs function");
1838
1839 Lex.Lex(); // Lex the ')'.
1840 return false;
1841 }
1842
1843
1844
1845 /// ParseArgumentList - Parse the argument list for a function type or function
1846 /// prototype.
1847 /// ::= '(' ArgTypeListI ')'
1848 /// ArgTypeListI
1849 /// ::= /*empty*/
1850 /// ::= '...'
1851 /// ::= ArgTypeList ',' '...'
1852 /// ::= ArgType (',' ArgType)*
1853 ///
ParseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,bool & isVarArg)1854 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1855 bool &isVarArg){
1856 isVarArg = false;
1857 assert(Lex.getKind() == lltok::lparen);
1858 Lex.Lex(); // eat the (.
1859
1860 if (Lex.getKind() == lltok::rparen) {
1861 // empty
1862 } else if (Lex.getKind() == lltok::dotdotdot) {
1863 isVarArg = true;
1864 Lex.Lex();
1865 } else {
1866 LocTy TypeLoc = Lex.getLoc();
1867 Type *ArgTy = nullptr;
1868 AttrBuilder Attrs;
1869 std::string Name;
1870
1871 if (ParseType(ArgTy) ||
1872 ParseOptionalParamAttrs(Attrs)) return true;
1873
1874 if (ArgTy->isVoidTy())
1875 return Error(TypeLoc, "argument can not have void type");
1876
1877 if (Lex.getKind() == lltok::LocalVar) {
1878 Name = Lex.getStrVal();
1879 Lex.Lex();
1880 }
1881
1882 if (!FunctionType::isValidArgumentType(ArgTy))
1883 return Error(TypeLoc, "invalid type for function argument");
1884
1885 unsigned AttrIndex = 1;
1886 ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1887 AttributeSet::get(ArgTy->getContext(),
1888 AttrIndex++, Attrs), Name));
1889
1890 while (EatIfPresent(lltok::comma)) {
1891 // Handle ... at end of arg list.
1892 if (EatIfPresent(lltok::dotdotdot)) {
1893 isVarArg = true;
1894 break;
1895 }
1896
1897 // Otherwise must be an argument type.
1898 TypeLoc = Lex.getLoc();
1899 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1900
1901 if (ArgTy->isVoidTy())
1902 return Error(TypeLoc, "argument can not have void type");
1903
1904 if (Lex.getKind() == lltok::LocalVar) {
1905 Name = Lex.getStrVal();
1906 Lex.Lex();
1907 } else {
1908 Name = "";
1909 }
1910
1911 if (!ArgTy->isFirstClassType())
1912 return Error(TypeLoc, "invalid type for function argument");
1913
1914 ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1915 AttributeSet::get(ArgTy->getContext(),
1916 AttrIndex++, Attrs),
1917 Name));
1918 }
1919 }
1920
1921 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1922 }
1923
1924 /// ParseFunctionType
1925 /// ::= Type ArgumentList OptionalAttrs
ParseFunctionType(Type * & Result)1926 bool LLParser::ParseFunctionType(Type *&Result) {
1927 assert(Lex.getKind() == lltok::lparen);
1928
1929 if (!FunctionType::isValidReturnType(Result))
1930 return TokError("invalid function return type");
1931
1932 SmallVector<ArgInfo, 8> ArgList;
1933 bool isVarArg;
1934 if (ParseArgumentList(ArgList, isVarArg))
1935 return true;
1936
1937 // Reject names on the arguments lists.
1938 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1939 if (!ArgList[i].Name.empty())
1940 return Error(ArgList[i].Loc, "argument name invalid in function type");
1941 if (ArgList[i].Attrs.hasAttributes(i + 1))
1942 return Error(ArgList[i].Loc,
1943 "argument attributes invalid in function type");
1944 }
1945
1946 SmallVector<Type*, 16> ArgListTy;
1947 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1948 ArgListTy.push_back(ArgList[i].Ty);
1949
1950 Result = FunctionType::get(Result, ArgListTy, isVarArg);
1951 return false;
1952 }
1953
1954 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1955 /// other structs.
ParseAnonStructType(Type * & Result,bool Packed)1956 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1957 SmallVector<Type*, 8> Elts;
1958 if (ParseStructBody(Elts)) return true;
1959
1960 Result = StructType::get(Context, Elts, Packed);
1961 return false;
1962 }
1963
1964 /// ParseStructDefinition - Parse a struct in a 'type' definition.
ParseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)1965 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1966 std::pair<Type*, LocTy> &Entry,
1967 Type *&ResultTy) {
1968 // If the type was already defined, diagnose the redefinition.
1969 if (Entry.first && !Entry.second.isValid())
1970 return Error(TypeLoc, "redefinition of type");
1971
1972 // If we have opaque, just return without filling in the definition for the
1973 // struct. This counts as a definition as far as the .ll file goes.
1974 if (EatIfPresent(lltok::kw_opaque)) {
1975 // This type is being defined, so clear the location to indicate this.
1976 Entry.second = SMLoc();
1977
1978 // If this type number has never been uttered, create it.
1979 if (!Entry.first)
1980 Entry.first = StructType::create(Context, Name);
1981 ResultTy = Entry.first;
1982 return false;
1983 }
1984
1985 // If the type starts with '<', then it is either a packed struct or a vector.
1986 bool isPacked = EatIfPresent(lltok::less);
1987
1988 // If we don't have a struct, then we have a random type alias, which we
1989 // accept for compatibility with old files. These types are not allowed to be
1990 // forward referenced and not allowed to be recursive.
1991 if (Lex.getKind() != lltok::lbrace) {
1992 if (Entry.first)
1993 return Error(TypeLoc, "forward references to non-struct type");
1994
1995 ResultTy = nullptr;
1996 if (isPacked)
1997 return ParseArrayVectorType(ResultTy, true);
1998 return ParseType(ResultTy);
1999 }
2000
2001 // This type is being defined, so clear the location to indicate this.
2002 Entry.second = SMLoc();
2003
2004 // If this type number has never been uttered, create it.
2005 if (!Entry.first)
2006 Entry.first = StructType::create(Context, Name);
2007
2008 StructType *STy = cast<StructType>(Entry.first);
2009
2010 SmallVector<Type*, 8> Body;
2011 if (ParseStructBody(Body) ||
2012 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2013 return true;
2014
2015 STy->setBody(Body, isPacked);
2016 ResultTy = STy;
2017 return false;
2018 }
2019
2020
2021 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2022 /// StructType
2023 /// ::= '{' '}'
2024 /// ::= '{' Type (',' Type)* '}'
2025 /// ::= '<' '{' '}' '>'
2026 /// ::= '<' '{' Type (',' Type)* '}' '>'
ParseStructBody(SmallVectorImpl<Type * > & Body)2027 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2028 assert(Lex.getKind() == lltok::lbrace);
2029 Lex.Lex(); // Consume the '{'
2030
2031 // Handle the empty struct.
2032 if (EatIfPresent(lltok::rbrace))
2033 return false;
2034
2035 LocTy EltTyLoc = Lex.getLoc();
2036 Type *Ty = nullptr;
2037 if (ParseType(Ty)) return true;
2038 Body.push_back(Ty);
2039
2040 if (!StructType::isValidElementType(Ty))
2041 return Error(EltTyLoc, "invalid element type for struct");
2042
2043 while (EatIfPresent(lltok::comma)) {
2044 EltTyLoc = Lex.getLoc();
2045 if (ParseType(Ty)) return true;
2046
2047 if (!StructType::isValidElementType(Ty))
2048 return Error(EltTyLoc, "invalid element type for struct");
2049
2050 Body.push_back(Ty);
2051 }
2052
2053 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2054 }
2055
2056 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2057 /// token has already been consumed.
2058 /// Type
2059 /// ::= '[' APSINTVAL 'x' Types ']'
2060 /// ::= '<' APSINTVAL 'x' Types '>'
ParseArrayVectorType(Type * & Result,bool isVector)2061 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2062 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2063 Lex.getAPSIntVal().getBitWidth() > 64)
2064 return TokError("expected number in address space");
2065
2066 LocTy SizeLoc = Lex.getLoc();
2067 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2068 Lex.Lex();
2069
2070 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2071 return true;
2072
2073 LocTy TypeLoc = Lex.getLoc();
2074 Type *EltTy = nullptr;
2075 if (ParseType(EltTy)) return true;
2076
2077 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2078 "expected end of sequential type"))
2079 return true;
2080
2081 if (isVector) {
2082 if (Size == 0)
2083 return Error(SizeLoc, "zero element vector is illegal");
2084 if ((unsigned)Size != Size)
2085 return Error(SizeLoc, "size too large for vector");
2086 if (!VectorType::isValidElementType(EltTy))
2087 return Error(TypeLoc, "invalid vector element type");
2088 Result = VectorType::get(EltTy, unsigned(Size));
2089 } else {
2090 if (!ArrayType::isValidElementType(EltTy))
2091 return Error(TypeLoc, "invalid array element type");
2092 Result = ArrayType::get(EltTy, Size);
2093 }
2094 return false;
2095 }
2096
2097 //===----------------------------------------------------------------------===//
2098 // Function Semantic Analysis.
2099 //===----------------------------------------------------------------------===//
2100
PerFunctionState(LLParser & p,Function & f,int functionNumber)2101 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2102 int functionNumber)
2103 : P(p), F(f), FunctionNumber(functionNumber) {
2104
2105 // Insert unnamed arguments into the NumberedVals list.
2106 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
2107 AI != E; ++AI)
2108 if (!AI->hasName())
2109 NumberedVals.push_back(AI);
2110 }
2111
~PerFunctionState()2112 LLParser::PerFunctionState::~PerFunctionState() {
2113 // If there were any forward referenced non-basicblock values, delete them.
2114 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
2115 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
2116 if (!isa<BasicBlock>(I->second.first)) {
2117 I->second.first->replaceAllUsesWith(
2118 UndefValue::get(I->second.first->getType()));
2119 delete I->second.first;
2120 I->second.first = nullptr;
2121 }
2122
2123 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2124 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
2125 if (!isa<BasicBlock>(I->second.first)) {
2126 I->second.first->replaceAllUsesWith(
2127 UndefValue::get(I->second.first->getType()));
2128 delete I->second.first;
2129 I->second.first = nullptr;
2130 }
2131 }
2132
FinishFunction()2133 bool LLParser::PerFunctionState::FinishFunction() {
2134 if (!ForwardRefVals.empty())
2135 return P.Error(ForwardRefVals.begin()->second.second,
2136 "use of undefined value '%" + ForwardRefVals.begin()->first +
2137 "'");
2138 if (!ForwardRefValIDs.empty())
2139 return P.Error(ForwardRefValIDs.begin()->second.second,
2140 "use of undefined value '%" +
2141 Twine(ForwardRefValIDs.begin()->first) + "'");
2142 return false;
2143 }
2144
2145
2146 /// GetVal - Get a value with the specified name or ID, creating a
2147 /// forward reference record if needed. This can return null if the value
2148 /// exists but does not have the right type.
GetVal(const std::string & Name,Type * Ty,LocTy Loc)2149 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
2150 Type *Ty, LocTy Loc) {
2151 // Look this name up in the normal function symbol table.
2152 Value *Val = F.getValueSymbolTable().lookup(Name);
2153
2154 // If this is a forward reference for the value, see if we already created a
2155 // forward ref record.
2156 if (!Val) {
2157 std::map<std::string, std::pair<Value*, LocTy> >::iterator
2158 I = ForwardRefVals.find(Name);
2159 if (I != ForwardRefVals.end())
2160 Val = I->second.first;
2161 }
2162
2163 // If we have the value in the symbol table or fwd-ref table, return it.
2164 if (Val) {
2165 if (Val->getType() == Ty) return Val;
2166 if (Ty->isLabelTy())
2167 P.Error(Loc, "'%" + Name + "' is not a basic block");
2168 else
2169 P.Error(Loc, "'%" + Name + "' defined with type '" +
2170 getTypeString(Val->getType()) + "'");
2171 return nullptr;
2172 }
2173
2174 // Don't make placeholders with invalid type.
2175 if (!Ty->isFirstClassType()) {
2176 P.Error(Loc, "invalid use of a non-first-class type");
2177 return nullptr;
2178 }
2179
2180 // Otherwise, create a new forward reference for this value and remember it.
2181 Value *FwdVal;
2182 if (Ty->isLabelTy())
2183 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2184 else
2185 FwdVal = new Argument(Ty, Name);
2186
2187 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2188 return FwdVal;
2189 }
2190
GetVal(unsigned ID,Type * Ty,LocTy Loc)2191 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2192 LocTy Loc) {
2193 // Look this name up in the normal function symbol table.
2194 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2195
2196 // If this is a forward reference for the value, see if we already created a
2197 // forward ref record.
2198 if (!Val) {
2199 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2200 I = ForwardRefValIDs.find(ID);
2201 if (I != ForwardRefValIDs.end())
2202 Val = I->second.first;
2203 }
2204
2205 // If we have the value in the symbol table or fwd-ref table, return it.
2206 if (Val) {
2207 if (Val->getType() == Ty) return Val;
2208 if (Ty->isLabelTy())
2209 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2210 else
2211 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2212 getTypeString(Val->getType()) + "'");
2213 return nullptr;
2214 }
2215
2216 if (!Ty->isFirstClassType()) {
2217 P.Error(Loc, "invalid use of a non-first-class type");
2218 return nullptr;
2219 }
2220
2221 // Otherwise, create a new forward reference for this value and remember it.
2222 Value *FwdVal;
2223 if (Ty->isLabelTy())
2224 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2225 else
2226 FwdVal = new Argument(Ty);
2227
2228 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2229 return FwdVal;
2230 }
2231
2232 /// SetInstName - After an instruction is parsed and inserted into its
2233 /// basic block, this installs its name.
SetInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)2234 bool LLParser::PerFunctionState::SetInstName(int NameID,
2235 const std::string &NameStr,
2236 LocTy NameLoc, Instruction *Inst) {
2237 // If this instruction has void type, it cannot have a name or ID specified.
2238 if (Inst->getType()->isVoidTy()) {
2239 if (NameID != -1 || !NameStr.empty())
2240 return P.Error(NameLoc, "instructions returning void cannot have a name");
2241 return false;
2242 }
2243
2244 // If this was a numbered instruction, verify that the instruction is the
2245 // expected value and resolve any forward references.
2246 if (NameStr.empty()) {
2247 // If neither a name nor an ID was specified, just use the next ID.
2248 if (NameID == -1)
2249 NameID = NumberedVals.size();
2250
2251 if (unsigned(NameID) != NumberedVals.size())
2252 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2253 Twine(NumberedVals.size()) + "'");
2254
2255 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2256 ForwardRefValIDs.find(NameID);
2257 if (FI != ForwardRefValIDs.end()) {
2258 if (FI->second.first->getType() != Inst->getType())
2259 return P.Error(NameLoc, "instruction forward referenced with type '" +
2260 getTypeString(FI->second.first->getType()) + "'");
2261 FI->second.first->replaceAllUsesWith(Inst);
2262 delete FI->second.first;
2263 ForwardRefValIDs.erase(FI);
2264 }
2265
2266 NumberedVals.push_back(Inst);
2267 return false;
2268 }
2269
2270 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2271 std::map<std::string, std::pair<Value*, LocTy> >::iterator
2272 FI = ForwardRefVals.find(NameStr);
2273 if (FI != ForwardRefVals.end()) {
2274 if (FI->second.first->getType() != Inst->getType())
2275 return P.Error(NameLoc, "instruction forward referenced with type '" +
2276 getTypeString(FI->second.first->getType()) + "'");
2277 FI->second.first->replaceAllUsesWith(Inst);
2278 delete FI->second.first;
2279 ForwardRefVals.erase(FI);
2280 }
2281
2282 // Set the name on the instruction.
2283 Inst->setName(NameStr);
2284
2285 if (Inst->getName() != NameStr)
2286 return P.Error(NameLoc, "multiple definition of local value named '" +
2287 NameStr + "'");
2288 return false;
2289 }
2290
2291 /// GetBB - Get a basic block with the specified name or ID, creating a
2292 /// forward reference record if needed.
GetBB(const std::string & Name,LocTy Loc)2293 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2294 LocTy Loc) {
2295 return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2296 Type::getLabelTy(F.getContext()), Loc));
2297 }
2298
GetBB(unsigned ID,LocTy Loc)2299 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2300 return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2301 Type::getLabelTy(F.getContext()), Loc));
2302 }
2303
2304 /// DefineBB - Define the specified basic block, which is either named or
2305 /// unnamed. If there is an error, this returns null otherwise it returns
2306 /// the block being defined.
DefineBB(const std::string & Name,LocTy Loc)2307 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2308 LocTy Loc) {
2309 BasicBlock *BB;
2310 if (Name.empty())
2311 BB = GetBB(NumberedVals.size(), Loc);
2312 else
2313 BB = GetBB(Name, Loc);
2314 if (!BB) return nullptr; // Already diagnosed error.
2315
2316 // Move the block to the end of the function. Forward ref'd blocks are
2317 // inserted wherever they happen to be referenced.
2318 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2319
2320 // Remove the block from forward ref sets.
2321 if (Name.empty()) {
2322 ForwardRefValIDs.erase(NumberedVals.size());
2323 NumberedVals.push_back(BB);
2324 } else {
2325 // BB forward references are already in the function symbol table.
2326 ForwardRefVals.erase(Name);
2327 }
2328
2329 return BB;
2330 }
2331
2332 //===----------------------------------------------------------------------===//
2333 // Constants.
2334 //===----------------------------------------------------------------------===//
2335
2336 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2337 /// type implied. For example, if we parse "4" we don't know what integer type
2338 /// it has. The value will later be combined with its type and checked for
2339 /// sanity. PFS is used to convert function-local operands of metadata (since
2340 /// metadata operands are not just parsed here but also converted to values).
2341 /// PFS can be null when we are not parsing metadata values inside a function.
ParseValID(ValID & ID,PerFunctionState * PFS)2342 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2343 ID.Loc = Lex.getLoc();
2344 switch (Lex.getKind()) {
2345 default: return TokError("expected value token");
2346 case lltok::GlobalID: // @42
2347 ID.UIntVal = Lex.getUIntVal();
2348 ID.Kind = ValID::t_GlobalID;
2349 break;
2350 case lltok::GlobalVar: // @foo
2351 ID.StrVal = Lex.getStrVal();
2352 ID.Kind = ValID::t_GlobalName;
2353 break;
2354 case lltok::LocalVarID: // %42
2355 ID.UIntVal = Lex.getUIntVal();
2356 ID.Kind = ValID::t_LocalID;
2357 break;
2358 case lltok::LocalVar: // %foo
2359 ID.StrVal = Lex.getStrVal();
2360 ID.Kind = ValID::t_LocalName;
2361 break;
2362 case lltok::APSInt:
2363 ID.APSIntVal = Lex.getAPSIntVal();
2364 ID.Kind = ValID::t_APSInt;
2365 break;
2366 case lltok::APFloat:
2367 ID.APFloatVal = Lex.getAPFloatVal();
2368 ID.Kind = ValID::t_APFloat;
2369 break;
2370 case lltok::kw_true:
2371 ID.ConstantVal = ConstantInt::getTrue(Context);
2372 ID.Kind = ValID::t_Constant;
2373 break;
2374 case lltok::kw_false:
2375 ID.ConstantVal = ConstantInt::getFalse(Context);
2376 ID.Kind = ValID::t_Constant;
2377 break;
2378 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2379 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2380 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2381
2382 case lltok::lbrace: {
2383 // ValID ::= '{' ConstVector '}'
2384 Lex.Lex();
2385 SmallVector<Constant*, 16> Elts;
2386 if (ParseGlobalValueVector(Elts) ||
2387 ParseToken(lltok::rbrace, "expected end of struct constant"))
2388 return true;
2389
2390 ID.ConstantStructElts = new Constant*[Elts.size()];
2391 ID.UIntVal = Elts.size();
2392 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2393 ID.Kind = ValID::t_ConstantStruct;
2394 return false;
2395 }
2396 case lltok::less: {
2397 // ValID ::= '<' ConstVector '>' --> Vector.
2398 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2399 Lex.Lex();
2400 bool isPackedStruct = EatIfPresent(lltok::lbrace);
2401
2402 SmallVector<Constant*, 16> Elts;
2403 LocTy FirstEltLoc = Lex.getLoc();
2404 if (ParseGlobalValueVector(Elts) ||
2405 (isPackedStruct &&
2406 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2407 ParseToken(lltok::greater, "expected end of constant"))
2408 return true;
2409
2410 if (isPackedStruct) {
2411 ID.ConstantStructElts = new Constant*[Elts.size()];
2412 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2413 ID.UIntVal = Elts.size();
2414 ID.Kind = ValID::t_PackedConstantStruct;
2415 return false;
2416 }
2417
2418 if (Elts.empty())
2419 return Error(ID.Loc, "constant vector must not be empty");
2420
2421 if (!Elts[0]->getType()->isIntegerTy() &&
2422 !Elts[0]->getType()->isFloatingPointTy() &&
2423 !Elts[0]->getType()->isPointerTy())
2424 return Error(FirstEltLoc,
2425 "vector elements must have integer, pointer or floating point type");
2426
2427 // Verify that all the vector elements have the same type.
2428 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2429 if (Elts[i]->getType() != Elts[0]->getType())
2430 return Error(FirstEltLoc,
2431 "vector element #" + Twine(i) +
2432 " is not of type '" + getTypeString(Elts[0]->getType()));
2433
2434 ID.ConstantVal = ConstantVector::get(Elts);
2435 ID.Kind = ValID::t_Constant;
2436 return false;
2437 }
2438 case lltok::lsquare: { // Array Constant
2439 Lex.Lex();
2440 SmallVector<Constant*, 16> Elts;
2441 LocTy FirstEltLoc = Lex.getLoc();
2442 if (ParseGlobalValueVector(Elts) ||
2443 ParseToken(lltok::rsquare, "expected end of array constant"))
2444 return true;
2445
2446 // Handle empty element.
2447 if (Elts.empty()) {
2448 // Use undef instead of an array because it's inconvenient to determine
2449 // the element type at this point, there being no elements to examine.
2450 ID.Kind = ValID::t_EmptyArray;
2451 return false;
2452 }
2453
2454 if (!Elts[0]->getType()->isFirstClassType())
2455 return Error(FirstEltLoc, "invalid array element type: " +
2456 getTypeString(Elts[0]->getType()));
2457
2458 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2459
2460 // Verify all elements are correct type!
2461 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2462 if (Elts[i]->getType() != Elts[0]->getType())
2463 return Error(FirstEltLoc,
2464 "array element #" + Twine(i) +
2465 " is not of type '" + getTypeString(Elts[0]->getType()));
2466 }
2467
2468 ID.ConstantVal = ConstantArray::get(ATy, Elts);
2469 ID.Kind = ValID::t_Constant;
2470 return false;
2471 }
2472 case lltok::kw_c: // c "foo"
2473 Lex.Lex();
2474 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2475 false);
2476 if (ParseToken(lltok::StringConstant, "expected string")) return true;
2477 ID.Kind = ValID::t_Constant;
2478 return false;
2479
2480 case lltok::kw_asm: {
2481 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2482 // STRINGCONSTANT
2483 bool HasSideEffect, AlignStack, AsmDialect;
2484 Lex.Lex();
2485 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2486 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2487 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2488 ParseStringConstant(ID.StrVal) ||
2489 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2490 ParseToken(lltok::StringConstant, "expected constraint string"))
2491 return true;
2492 ID.StrVal2 = Lex.getStrVal();
2493 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2494 (unsigned(AsmDialect)<<2);
2495 ID.Kind = ValID::t_InlineAsm;
2496 return false;
2497 }
2498
2499 case lltok::kw_blockaddress: {
2500 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2501 Lex.Lex();
2502
2503 ValID Fn, Label;
2504
2505 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2506 ParseValID(Fn) ||
2507 ParseToken(lltok::comma, "expected comma in block address expression")||
2508 ParseValID(Label) ||
2509 ParseToken(lltok::rparen, "expected ')' in block address expression"))
2510 return true;
2511
2512 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2513 return Error(Fn.Loc, "expected function name in blockaddress");
2514 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2515 return Error(Label.Loc, "expected basic block name in blockaddress");
2516
2517 // Try to find the function (but skip it if it's forward-referenced).
2518 GlobalValue *GV = nullptr;
2519 if (Fn.Kind == ValID::t_GlobalID) {
2520 if (Fn.UIntVal < NumberedVals.size())
2521 GV = NumberedVals[Fn.UIntVal];
2522 } else if (!ForwardRefVals.count(Fn.StrVal)) {
2523 GV = M->getNamedValue(Fn.StrVal);
2524 }
2525 Function *F = nullptr;
2526 if (GV) {
2527 // Confirm that it's actually a function with a definition.
2528 if (!isa<Function>(GV))
2529 return Error(Fn.Loc, "expected function name in blockaddress");
2530 F = cast<Function>(GV);
2531 if (F->isDeclaration())
2532 return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2533 }
2534
2535 if (!F) {
2536 // Make a global variable as a placeholder for this reference.
2537 GlobalValue *&FwdRef =
2538 ForwardRefBlockAddresses.insert(std::make_pair(
2539 std::move(Fn),
2540 std::map<ValID, GlobalValue *>()))
2541 .first->second.insert(std::make_pair(std::move(Label), nullptr))
2542 .first->second;
2543 if (!FwdRef)
2544 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2545 GlobalValue::InternalLinkage, nullptr, "");
2546 ID.ConstantVal = FwdRef;
2547 ID.Kind = ValID::t_Constant;
2548 return false;
2549 }
2550
2551 // We found the function; now find the basic block. Don't use PFS, since we
2552 // might be inside a constant expression.
2553 BasicBlock *BB;
2554 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2555 if (Label.Kind == ValID::t_LocalID)
2556 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2557 else
2558 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2559 if (!BB)
2560 return Error(Label.Loc, "referenced value is not a basic block");
2561 } else {
2562 if (Label.Kind == ValID::t_LocalID)
2563 return Error(Label.Loc, "cannot take address of numeric label after "
2564 "the function is defined");
2565 BB = dyn_cast_or_null<BasicBlock>(
2566 F->getValueSymbolTable().lookup(Label.StrVal));
2567 if (!BB)
2568 return Error(Label.Loc, "referenced value is not a basic block");
2569 }
2570
2571 ID.ConstantVal = BlockAddress::get(F, BB);
2572 ID.Kind = ValID::t_Constant;
2573 return false;
2574 }
2575
2576 case lltok::kw_trunc:
2577 case lltok::kw_zext:
2578 case lltok::kw_sext:
2579 case lltok::kw_fptrunc:
2580 case lltok::kw_fpext:
2581 case lltok::kw_bitcast:
2582 case lltok::kw_addrspacecast:
2583 case lltok::kw_uitofp:
2584 case lltok::kw_sitofp:
2585 case lltok::kw_fptoui:
2586 case lltok::kw_fptosi:
2587 case lltok::kw_inttoptr:
2588 case lltok::kw_ptrtoint: {
2589 unsigned Opc = Lex.getUIntVal();
2590 Type *DestTy = nullptr;
2591 Constant *SrcVal;
2592 Lex.Lex();
2593 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2594 ParseGlobalTypeAndValue(SrcVal) ||
2595 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2596 ParseType(DestTy) ||
2597 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2598 return true;
2599 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2600 return Error(ID.Loc, "invalid cast opcode for cast from '" +
2601 getTypeString(SrcVal->getType()) + "' to '" +
2602 getTypeString(DestTy) + "'");
2603 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2604 SrcVal, DestTy);
2605 ID.Kind = ValID::t_Constant;
2606 return false;
2607 }
2608 case lltok::kw_extractvalue: {
2609 Lex.Lex();
2610 Constant *Val;
2611 SmallVector<unsigned, 4> Indices;
2612 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2613 ParseGlobalTypeAndValue(Val) ||
2614 ParseIndexList(Indices) ||
2615 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2616 return true;
2617
2618 if (!Val->getType()->isAggregateType())
2619 return Error(ID.Loc, "extractvalue operand must be aggregate type");
2620 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2621 return Error(ID.Loc, "invalid indices for extractvalue");
2622 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2623 ID.Kind = ValID::t_Constant;
2624 return false;
2625 }
2626 case lltok::kw_insertvalue: {
2627 Lex.Lex();
2628 Constant *Val0, *Val1;
2629 SmallVector<unsigned, 4> Indices;
2630 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2631 ParseGlobalTypeAndValue(Val0) ||
2632 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2633 ParseGlobalTypeAndValue(Val1) ||
2634 ParseIndexList(Indices) ||
2635 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2636 return true;
2637 if (!Val0->getType()->isAggregateType())
2638 return Error(ID.Loc, "insertvalue operand must be aggregate type");
2639 Type *IndexedType =
2640 ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2641 if (!IndexedType)
2642 return Error(ID.Loc, "invalid indices for insertvalue");
2643 if (IndexedType != Val1->getType())
2644 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2645 getTypeString(Val1->getType()) +
2646 "' instead of '" + getTypeString(IndexedType) +
2647 "'");
2648 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2649 ID.Kind = ValID::t_Constant;
2650 return false;
2651 }
2652 case lltok::kw_icmp:
2653 case lltok::kw_fcmp: {
2654 unsigned PredVal, Opc = Lex.getUIntVal();
2655 Constant *Val0, *Val1;
2656 Lex.Lex();
2657 if (ParseCmpPredicate(PredVal, Opc) ||
2658 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2659 ParseGlobalTypeAndValue(Val0) ||
2660 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2661 ParseGlobalTypeAndValue(Val1) ||
2662 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2663 return true;
2664
2665 if (Val0->getType() != Val1->getType())
2666 return Error(ID.Loc, "compare operands must have the same type");
2667
2668 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2669
2670 if (Opc == Instruction::FCmp) {
2671 if (!Val0->getType()->isFPOrFPVectorTy())
2672 return Error(ID.Loc, "fcmp requires floating point operands");
2673 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2674 } else {
2675 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2676 if (!Val0->getType()->isIntOrIntVectorTy() &&
2677 !Val0->getType()->getScalarType()->isPointerTy())
2678 return Error(ID.Loc, "icmp requires pointer or integer operands");
2679 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2680 }
2681 ID.Kind = ValID::t_Constant;
2682 return false;
2683 }
2684
2685 // Binary Operators.
2686 case lltok::kw_add:
2687 case lltok::kw_fadd:
2688 case lltok::kw_sub:
2689 case lltok::kw_fsub:
2690 case lltok::kw_mul:
2691 case lltok::kw_fmul:
2692 case lltok::kw_udiv:
2693 case lltok::kw_sdiv:
2694 case lltok::kw_fdiv:
2695 case lltok::kw_urem:
2696 case lltok::kw_srem:
2697 case lltok::kw_frem:
2698 case lltok::kw_shl:
2699 case lltok::kw_lshr:
2700 case lltok::kw_ashr: {
2701 bool NUW = false;
2702 bool NSW = false;
2703 bool Exact = false;
2704 unsigned Opc = Lex.getUIntVal();
2705 Constant *Val0, *Val1;
2706 Lex.Lex();
2707 LocTy ModifierLoc = Lex.getLoc();
2708 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2709 Opc == Instruction::Mul || Opc == Instruction::Shl) {
2710 if (EatIfPresent(lltok::kw_nuw))
2711 NUW = true;
2712 if (EatIfPresent(lltok::kw_nsw)) {
2713 NSW = true;
2714 if (EatIfPresent(lltok::kw_nuw))
2715 NUW = true;
2716 }
2717 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2718 Opc == Instruction::LShr || Opc == Instruction::AShr) {
2719 if (EatIfPresent(lltok::kw_exact))
2720 Exact = true;
2721 }
2722 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2723 ParseGlobalTypeAndValue(Val0) ||
2724 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2725 ParseGlobalTypeAndValue(Val1) ||
2726 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2727 return true;
2728 if (Val0->getType() != Val1->getType())
2729 return Error(ID.Loc, "operands of constexpr must have same type");
2730 if (!Val0->getType()->isIntOrIntVectorTy()) {
2731 if (NUW)
2732 return Error(ModifierLoc, "nuw only applies to integer operations");
2733 if (NSW)
2734 return Error(ModifierLoc, "nsw only applies to integer operations");
2735 }
2736 // Check that the type is valid for the operator.
2737 switch (Opc) {
2738 case Instruction::Add:
2739 case Instruction::Sub:
2740 case Instruction::Mul:
2741 case Instruction::UDiv:
2742 case Instruction::SDiv:
2743 case Instruction::URem:
2744 case Instruction::SRem:
2745 case Instruction::Shl:
2746 case Instruction::AShr:
2747 case Instruction::LShr:
2748 if (!Val0->getType()->isIntOrIntVectorTy())
2749 return Error(ID.Loc, "constexpr requires integer operands");
2750 break;
2751 case Instruction::FAdd:
2752 case Instruction::FSub:
2753 case Instruction::FMul:
2754 case Instruction::FDiv:
2755 case Instruction::FRem:
2756 if (!Val0->getType()->isFPOrFPVectorTy())
2757 return Error(ID.Loc, "constexpr requires fp operands");
2758 break;
2759 default: llvm_unreachable("Unknown binary operator!");
2760 }
2761 unsigned Flags = 0;
2762 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2763 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
2764 if (Exact) Flags |= PossiblyExactOperator::IsExact;
2765 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2766 ID.ConstantVal = C;
2767 ID.Kind = ValID::t_Constant;
2768 return false;
2769 }
2770
2771 // Logical Operations
2772 case lltok::kw_and:
2773 case lltok::kw_or:
2774 case lltok::kw_xor: {
2775 unsigned Opc = Lex.getUIntVal();
2776 Constant *Val0, *Val1;
2777 Lex.Lex();
2778 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2779 ParseGlobalTypeAndValue(Val0) ||
2780 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2781 ParseGlobalTypeAndValue(Val1) ||
2782 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2783 return true;
2784 if (Val0->getType() != Val1->getType())
2785 return Error(ID.Loc, "operands of constexpr must have same type");
2786 if (!Val0->getType()->isIntOrIntVectorTy())
2787 return Error(ID.Loc,
2788 "constexpr requires integer or integer vector operands");
2789 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2790 ID.Kind = ValID::t_Constant;
2791 return false;
2792 }
2793
2794 case lltok::kw_getelementptr:
2795 case lltok::kw_shufflevector:
2796 case lltok::kw_insertelement:
2797 case lltok::kw_extractelement:
2798 case lltok::kw_select: {
2799 unsigned Opc = Lex.getUIntVal();
2800 SmallVector<Constant*, 16> Elts;
2801 bool InBounds = false;
2802 Type *Ty;
2803 Lex.Lex();
2804
2805 if (Opc == Instruction::GetElementPtr)
2806 InBounds = EatIfPresent(lltok::kw_inbounds);
2807
2808 if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
2809 return true;
2810
2811 LocTy ExplicitTypeLoc = Lex.getLoc();
2812 if (Opc == Instruction::GetElementPtr) {
2813 if (ParseType(Ty) ||
2814 ParseToken(lltok::comma, "expected comma after getelementptr's type"))
2815 return true;
2816 }
2817
2818 if (ParseGlobalValueVector(Elts) ||
2819 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2820 return true;
2821
2822 if (Opc == Instruction::GetElementPtr) {
2823 if (Elts.size() == 0 ||
2824 !Elts[0]->getType()->getScalarType()->isPointerTy())
2825 return Error(ID.Loc, "base of getelementptr must be a pointer");
2826
2827 Type *BaseType = Elts[0]->getType();
2828 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
2829 if (Ty != BasePointerType->getElementType())
2830 return Error(
2831 ExplicitTypeLoc,
2832 "explicit pointee type doesn't match operand's pointee type");
2833
2834 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2835 for (Constant *Val : Indices) {
2836 Type *ValTy = Val->getType();
2837 if (!ValTy->getScalarType()->isIntegerTy())
2838 return Error(ID.Loc, "getelementptr index must be an integer");
2839 if (ValTy->isVectorTy() != BaseType->isVectorTy())
2840 return Error(ID.Loc, "getelementptr index type missmatch");
2841 if (ValTy->isVectorTy()) {
2842 unsigned ValNumEl = cast<VectorType>(ValTy)->getNumElements();
2843 unsigned PtrNumEl = cast<VectorType>(BaseType)->getNumElements();
2844 if (ValNumEl != PtrNumEl)
2845 return Error(
2846 ID.Loc,
2847 "getelementptr vector index has a wrong number of elements");
2848 }
2849 }
2850
2851 SmallPtrSet<const Type*, 4> Visited;
2852 if (!Indices.empty() &&
2853 !BasePointerType->getElementType()->isSized(&Visited))
2854 return Error(ID.Loc, "base element of getelementptr must be sized");
2855
2856 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
2857 return Error(ID.Loc, "invalid getelementptr indices");
2858 ID.ConstantVal =
2859 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
2860 } else if (Opc == Instruction::Select) {
2861 if (Elts.size() != 3)
2862 return Error(ID.Loc, "expected three operands to select");
2863 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2864 Elts[2]))
2865 return Error(ID.Loc, Reason);
2866 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2867 } else if (Opc == Instruction::ShuffleVector) {
2868 if (Elts.size() != 3)
2869 return Error(ID.Loc, "expected three operands to shufflevector");
2870 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2871 return Error(ID.Loc, "invalid operands to shufflevector");
2872 ID.ConstantVal =
2873 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2874 } else if (Opc == Instruction::ExtractElement) {
2875 if (Elts.size() != 2)
2876 return Error(ID.Loc, "expected two operands to extractelement");
2877 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2878 return Error(ID.Loc, "invalid extractelement operands");
2879 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2880 } else {
2881 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2882 if (Elts.size() != 3)
2883 return Error(ID.Loc, "expected three operands to insertelement");
2884 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2885 return Error(ID.Loc, "invalid insertelement operands");
2886 ID.ConstantVal =
2887 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2888 }
2889
2890 ID.Kind = ValID::t_Constant;
2891 return false;
2892 }
2893 }
2894
2895 Lex.Lex();
2896 return false;
2897 }
2898
2899 /// ParseGlobalValue - Parse a global value with the specified type.
ParseGlobalValue(Type * Ty,Constant * & C)2900 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2901 C = nullptr;
2902 ValID ID;
2903 Value *V = nullptr;
2904 bool Parsed = ParseValID(ID) ||
2905 ConvertValIDToValue(Ty, ID, V, nullptr);
2906 if (V && !(C = dyn_cast<Constant>(V)))
2907 return Error(ID.Loc, "global values must be constants");
2908 return Parsed;
2909 }
2910
ParseGlobalTypeAndValue(Constant * & V)2911 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2912 Type *Ty = nullptr;
2913 return ParseType(Ty) ||
2914 ParseGlobalValue(Ty, V);
2915 }
2916
parseOptionalComdat(StringRef GlobalName,Comdat * & C)2917 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
2918 C = nullptr;
2919
2920 LocTy KwLoc = Lex.getLoc();
2921 if (!EatIfPresent(lltok::kw_comdat))
2922 return false;
2923
2924 if (EatIfPresent(lltok::lparen)) {
2925 if (Lex.getKind() != lltok::ComdatVar)
2926 return TokError("expected comdat variable");
2927 C = getComdat(Lex.getStrVal(), Lex.getLoc());
2928 Lex.Lex();
2929 if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
2930 return true;
2931 } else {
2932 if (GlobalName.empty())
2933 return TokError("comdat cannot be unnamed");
2934 C = getComdat(GlobalName, KwLoc);
2935 }
2936
2937 return false;
2938 }
2939
2940 /// ParseGlobalValueVector
2941 /// ::= /*empty*/
2942 /// ::= TypeAndValue (',' TypeAndValue)*
ParseGlobalValueVector(SmallVectorImpl<Constant * > & Elts)2943 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
2944 // Empty list.
2945 if (Lex.getKind() == lltok::rbrace ||
2946 Lex.getKind() == lltok::rsquare ||
2947 Lex.getKind() == lltok::greater ||
2948 Lex.getKind() == lltok::rparen)
2949 return false;
2950
2951 Constant *C;
2952 if (ParseGlobalTypeAndValue(C)) return true;
2953 Elts.push_back(C);
2954
2955 while (EatIfPresent(lltok::comma)) {
2956 if (ParseGlobalTypeAndValue(C)) return true;
2957 Elts.push_back(C);
2958 }
2959
2960 return false;
2961 }
2962
ParseMDTuple(MDNode * & MD,bool IsDistinct)2963 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
2964 SmallVector<Metadata *, 16> Elts;
2965 if (ParseMDNodeVector(Elts))
2966 return true;
2967
2968 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
2969 return false;
2970 }
2971
2972 /// MDNode:
2973 /// ::= !{ ... }
2974 /// ::= !7
2975 /// ::= !MDLocation(...)
ParseMDNode(MDNode * & N)2976 bool LLParser::ParseMDNode(MDNode *&N) {
2977 if (Lex.getKind() == lltok::MetadataVar)
2978 return ParseSpecializedMDNode(N);
2979
2980 return ParseToken(lltok::exclaim, "expected '!' here") ||
2981 ParseMDNodeTail(N);
2982 }
2983
ParseMDNodeTail(MDNode * & N)2984 bool LLParser::ParseMDNodeTail(MDNode *&N) {
2985 // !{ ... }
2986 if (Lex.getKind() == lltok::lbrace)
2987 return ParseMDTuple(N);
2988
2989 // !42
2990 return ParseMDNodeID(N);
2991 }
2992
2993 namespace {
2994
2995 /// Structure to represent an optional metadata field.
2996 template <class FieldTy> struct MDFieldImpl {
2997 typedef MDFieldImpl ImplTy;
2998 FieldTy Val;
2999 bool Seen;
3000
assign__anon9b0a3bb40111::MDFieldImpl3001 void assign(FieldTy Val) {
3002 Seen = true;
3003 this->Val = std::move(Val);
3004 }
3005
MDFieldImpl__anon9b0a3bb40111::MDFieldImpl3006 explicit MDFieldImpl(FieldTy Default)
3007 : Val(std::move(Default)), Seen(false) {}
3008 };
3009
3010 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3011 uint64_t Max;
3012
MDUnsignedField__anon9b0a3bb40111::MDUnsignedField3013 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3014 : ImplTy(Default), Max(Max) {}
3015 };
3016 struct LineField : public MDUnsignedField {
LineField__anon9b0a3bb40111::LineField3017 LineField() : MDUnsignedField(0, UINT32_MAX) {}
3018 };
3019 struct ColumnField : public MDUnsignedField {
ColumnField__anon9b0a3bb40111::ColumnField3020 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3021 };
3022 struct DwarfTagField : public MDUnsignedField {
DwarfTagField__anon9b0a3bb40111::DwarfTagField3023 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
DwarfTagField__anon9b0a3bb40111::DwarfTagField3024 DwarfTagField(dwarf::Tag DefaultTag)
3025 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3026 };
3027 struct DwarfAttEncodingField : public MDUnsignedField {
DwarfAttEncodingField__anon9b0a3bb40111::DwarfAttEncodingField3028 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3029 };
3030 struct DwarfVirtualityField : public MDUnsignedField {
DwarfVirtualityField__anon9b0a3bb40111::DwarfVirtualityField3031 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3032 };
3033 struct DwarfLangField : public MDUnsignedField {
DwarfLangField__anon9b0a3bb40111::DwarfLangField3034 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3035 };
3036
3037 struct DIFlagField : public MDUnsignedField {
DIFlagField__anon9b0a3bb40111::DIFlagField3038 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
3039 };
3040
3041 struct MDSignedField : public MDFieldImpl<int64_t> {
3042 int64_t Min;
3043 int64_t Max;
3044
MDSignedField__anon9b0a3bb40111::MDSignedField3045 MDSignedField(int64_t Default = 0)
3046 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
MDSignedField__anon9b0a3bb40111::MDSignedField3047 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3048 : ImplTy(Default), Min(Min), Max(Max) {}
3049 };
3050
3051 struct MDBoolField : public MDFieldImpl<bool> {
MDBoolField__anon9b0a3bb40111::MDBoolField3052 MDBoolField(bool Default = false) : ImplTy(Default) {}
3053 };
3054 struct MDField : public MDFieldImpl<Metadata *> {
3055 bool AllowNull;
3056
MDField__anon9b0a3bb40111::MDField3057 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3058 };
3059 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
MDConstant__anon9b0a3bb40111::MDConstant3060 MDConstant() : ImplTy(nullptr) {}
3061 };
3062 struct MDStringField : public MDFieldImpl<MDString *> {
3063 bool AllowEmpty;
MDStringField__anon9b0a3bb40111::MDStringField3064 MDStringField(bool AllowEmpty = true)
3065 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3066 };
3067 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
MDFieldList__anon9b0a3bb40111::MDFieldList3068 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3069 };
3070
3071 } // end namespace
3072
3073 namespace llvm {
3074
3075 template <>
ParseMDField(LocTy Loc,StringRef Name,MDUnsignedField & Result)3076 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3077 MDUnsignedField &Result) {
3078 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3079 return TokError("expected unsigned integer");
3080
3081 auto &U = Lex.getAPSIntVal();
3082 if (U.ugt(Result.Max))
3083 return TokError("value for '" + Name + "' too large, limit is " +
3084 Twine(Result.Max));
3085 Result.assign(U.getZExtValue());
3086 assert(Result.Val <= Result.Max && "Expected value in range");
3087 Lex.Lex();
3088 return false;
3089 }
3090
3091 template <>
ParseMDField(LocTy Loc,StringRef Name,LineField & Result)3092 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3093 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3094 }
3095 template <>
ParseMDField(LocTy Loc,StringRef Name,ColumnField & Result)3096 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3097 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3098 }
3099
3100 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfTagField & Result)3101 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3102 if (Lex.getKind() == lltok::APSInt)
3103 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3104
3105 if (Lex.getKind() != lltok::DwarfTag)
3106 return TokError("expected DWARF tag");
3107
3108 unsigned Tag = dwarf::getTag(Lex.getStrVal());
3109 if (Tag == dwarf::DW_TAG_invalid)
3110 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3111 assert(Tag <= Result.Max && "Expected valid DWARF tag");
3112
3113 Result.assign(Tag);
3114 Lex.Lex();
3115 return false;
3116 }
3117
3118 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfVirtualityField & Result)3119 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3120 DwarfVirtualityField &Result) {
3121 if (Lex.getKind() == lltok::APSInt)
3122 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3123
3124 if (Lex.getKind() != lltok::DwarfVirtuality)
3125 return TokError("expected DWARF virtuality code");
3126
3127 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3128 if (!Virtuality)
3129 return TokError("invalid DWARF virtuality code" + Twine(" '") +
3130 Lex.getStrVal() + "'");
3131 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3132 Result.assign(Virtuality);
3133 Lex.Lex();
3134 return false;
3135 }
3136
3137 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfLangField & Result)3138 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3139 if (Lex.getKind() == lltok::APSInt)
3140 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3141
3142 if (Lex.getKind() != lltok::DwarfLang)
3143 return TokError("expected DWARF language");
3144
3145 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3146 if (!Lang)
3147 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3148 "'");
3149 assert(Lang <= Result.Max && "Expected valid DWARF language");
3150 Result.assign(Lang);
3151 Lex.Lex();
3152 return false;
3153 }
3154
3155 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfAttEncodingField & Result)3156 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3157 DwarfAttEncodingField &Result) {
3158 if (Lex.getKind() == lltok::APSInt)
3159 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3160
3161 if (Lex.getKind() != lltok::DwarfAttEncoding)
3162 return TokError("expected DWARF type attribute encoding");
3163
3164 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3165 if (!Encoding)
3166 return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3167 Lex.getStrVal() + "'");
3168 assert(Encoding <= Result.Max && "Expected valid DWARF language");
3169 Result.assign(Encoding);
3170 Lex.Lex();
3171 return false;
3172 }
3173
3174 /// DIFlagField
3175 /// ::= uint32
3176 /// ::= DIFlagVector
3177 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3178 template <>
ParseMDField(LocTy Loc,StringRef Name,DIFlagField & Result)3179 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3180 assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
3181
3182 // Parser for a single flag.
3183 auto parseFlag = [&](unsigned &Val) {
3184 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
3185 return ParseUInt32(Val);
3186
3187 if (Lex.getKind() != lltok::DIFlag)
3188 return TokError("expected debug info flag");
3189
3190 Val = DebugNode::getFlag(Lex.getStrVal());
3191 if (!Val)
3192 return TokError(Twine("invalid debug info flag flag '") +
3193 Lex.getStrVal() + "'");
3194 Lex.Lex();
3195 return false;
3196 };
3197
3198 // Parse the flags and combine them together.
3199 unsigned Combined = 0;
3200 do {
3201 unsigned Val;
3202 if (parseFlag(Val))
3203 return true;
3204 Combined |= Val;
3205 } while (EatIfPresent(lltok::bar));
3206
3207 Result.assign(Combined);
3208 return false;
3209 }
3210
3211 template <>
ParseMDField(LocTy Loc,StringRef Name,MDSignedField & Result)3212 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3213 MDSignedField &Result) {
3214 if (Lex.getKind() != lltok::APSInt)
3215 return TokError("expected signed integer");
3216
3217 auto &S = Lex.getAPSIntVal();
3218 if (S < Result.Min)
3219 return TokError("value for '" + Name + "' too small, limit is " +
3220 Twine(Result.Min));
3221 if (S > Result.Max)
3222 return TokError("value for '" + Name + "' too large, limit is " +
3223 Twine(Result.Max));
3224 Result.assign(S.getExtValue());
3225 assert(Result.Val >= Result.Min && "Expected value in range");
3226 assert(Result.Val <= Result.Max && "Expected value in range");
3227 Lex.Lex();
3228 return false;
3229 }
3230
3231 template <>
ParseMDField(LocTy Loc,StringRef Name,MDBoolField & Result)3232 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3233 switch (Lex.getKind()) {
3234 default:
3235 return TokError("expected 'true' or 'false'");
3236 case lltok::kw_true:
3237 Result.assign(true);
3238 break;
3239 case lltok::kw_false:
3240 Result.assign(false);
3241 break;
3242 }
3243 Lex.Lex();
3244 return false;
3245 }
3246
3247 template <>
ParseMDField(LocTy Loc,StringRef Name,MDField & Result)3248 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3249 if (Lex.getKind() == lltok::kw_null) {
3250 if (!Result.AllowNull)
3251 return TokError("'" + Name + "' cannot be null");
3252 Lex.Lex();
3253 Result.assign(nullptr);
3254 return false;
3255 }
3256
3257 Metadata *MD;
3258 if (ParseMetadata(MD, nullptr))
3259 return true;
3260
3261 Result.assign(MD);
3262 return false;
3263 }
3264
3265 template <>
ParseMDField(LocTy Loc,StringRef Name,MDConstant & Result)3266 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3267 Metadata *MD;
3268 if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3269 return true;
3270
3271 Result.assign(cast<ConstantAsMetadata>(MD));
3272 return false;
3273 }
3274
3275 template <>
ParseMDField(LocTy Loc,StringRef Name,MDStringField & Result)3276 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3277 LocTy ValueLoc = Lex.getLoc();
3278 std::string S;
3279 if (ParseStringConstant(S))
3280 return true;
3281
3282 if (!Result.AllowEmpty && S.empty())
3283 return Error(ValueLoc, "'" + Name + "' cannot be empty");
3284
3285 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3286 return false;
3287 }
3288
3289 template <>
ParseMDField(LocTy Loc,StringRef Name,MDFieldList & Result)3290 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3291 SmallVector<Metadata *, 4> MDs;
3292 if (ParseMDNodeVector(MDs))
3293 return true;
3294
3295 Result.assign(std::move(MDs));
3296 return false;
3297 }
3298
3299 } // end namespace llvm
3300
3301 template <class ParserTy>
ParseMDFieldsImplBody(ParserTy parseField)3302 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3303 do {
3304 if (Lex.getKind() != lltok::LabelStr)
3305 return TokError("expected field label here");
3306
3307 if (parseField())
3308 return true;
3309 } while (EatIfPresent(lltok::comma));
3310
3311 return false;
3312 }
3313
3314 template <class ParserTy>
ParseMDFieldsImpl(ParserTy parseField,LocTy & ClosingLoc)3315 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3316 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3317 Lex.Lex();
3318
3319 if (ParseToken(lltok::lparen, "expected '(' here"))
3320 return true;
3321 if (Lex.getKind() != lltok::rparen)
3322 if (ParseMDFieldsImplBody(parseField))
3323 return true;
3324
3325 ClosingLoc = Lex.getLoc();
3326 return ParseToken(lltok::rparen, "expected ')' here");
3327 }
3328
3329 template <class FieldTy>
ParseMDField(StringRef Name,FieldTy & Result)3330 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3331 if (Result.Seen)
3332 return TokError("field '" + Name + "' cannot be specified more than once");
3333
3334 LocTy Loc = Lex.getLoc();
3335 Lex.Lex();
3336 return ParseMDField(Loc, Name, Result);
3337 }
3338
ParseSpecializedMDNode(MDNode * & N,bool IsDistinct)3339 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3340 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3341
3342 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
3343 if (Lex.getStrVal() == #CLASS) \
3344 return Parse##CLASS(N, IsDistinct);
3345 #include "llvm/IR/Metadata.def"
3346
3347 return TokError("expected metadata type");
3348 }
3349
3350 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3351 #define NOP_FIELD(NAME, TYPE, INIT)
3352 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
3353 if (!NAME.Seen) \
3354 return Error(ClosingLoc, "missing required field '" #NAME "'");
3355 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
3356 if (Lex.getStrVal() == #NAME) \
3357 return ParseMDField(#NAME, NAME);
3358 #define PARSE_MD_FIELDS() \
3359 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
3360 do { \
3361 LocTy ClosingLoc; \
3362 if (ParseMDFieldsImpl([&]() -> bool { \
3363 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
3364 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
3365 }, ClosingLoc)) \
3366 return true; \
3367 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
3368 } while (false)
3369 #define GET_OR_DISTINCT(CLASS, ARGS) \
3370 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3371
3372 /// ParseMDLocationFields:
3373 /// ::= !MDLocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
ParseMDLocation(MDNode * & Result,bool IsDistinct)3374 bool LLParser::ParseMDLocation(MDNode *&Result, bool IsDistinct) {
3375 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3376 OPTIONAL(line, LineField, ); \
3377 OPTIONAL(column, ColumnField, ); \
3378 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
3379 OPTIONAL(inlinedAt, MDField, );
3380 PARSE_MD_FIELDS();
3381 #undef VISIT_MD_FIELDS
3382
3383 Result = GET_OR_DISTINCT(
3384 MDLocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3385 return false;
3386 }
3387
3388 /// ParseGenericDebugNode:
3389 /// ::= !GenericDebugNode(tag: 15, header: "...", operands: {...})
ParseGenericDebugNode(MDNode * & Result,bool IsDistinct)3390 bool LLParser::ParseGenericDebugNode(MDNode *&Result, bool IsDistinct) {
3391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3392 REQUIRED(tag, DwarfTagField, ); \
3393 OPTIONAL(header, MDStringField, ); \
3394 OPTIONAL(operands, MDFieldList, );
3395 PARSE_MD_FIELDS();
3396 #undef VISIT_MD_FIELDS
3397
3398 Result = GET_OR_DISTINCT(GenericDebugNode,
3399 (Context, tag.Val, header.Val, operands.Val));
3400 return false;
3401 }
3402
3403 /// ParseMDSubrange:
3404 /// ::= !MDSubrange(count: 30, lowerBound: 2)
ParseMDSubrange(MDNode * & Result,bool IsDistinct)3405 bool LLParser::ParseMDSubrange(MDNode *&Result, bool IsDistinct) {
3406 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3407 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \
3408 OPTIONAL(lowerBound, MDSignedField, );
3409 PARSE_MD_FIELDS();
3410 #undef VISIT_MD_FIELDS
3411
3412 Result = GET_OR_DISTINCT(MDSubrange, (Context, count.Val, lowerBound.Val));
3413 return false;
3414 }
3415
3416 /// ParseMDEnumerator:
3417 /// ::= !MDEnumerator(value: 30, name: "SomeKind")
ParseMDEnumerator(MDNode * & Result,bool IsDistinct)3418 bool LLParser::ParseMDEnumerator(MDNode *&Result, bool IsDistinct) {
3419 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3420 REQUIRED(name, MDStringField, ); \
3421 REQUIRED(value, MDSignedField, );
3422 PARSE_MD_FIELDS();
3423 #undef VISIT_MD_FIELDS
3424
3425 Result = GET_OR_DISTINCT(MDEnumerator, (Context, value.Val, name.Val));
3426 return false;
3427 }
3428
3429 /// ParseMDBasicType:
3430 /// ::= !MDBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
ParseMDBasicType(MDNode * & Result,bool IsDistinct)3431 bool LLParser::ParseMDBasicType(MDNode *&Result, bool IsDistinct) {
3432 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3433 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
3434 OPTIONAL(name, MDStringField, ); \
3435 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
3436 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \
3437 OPTIONAL(encoding, DwarfAttEncodingField, );
3438 PARSE_MD_FIELDS();
3439 #undef VISIT_MD_FIELDS
3440
3441 Result = GET_OR_DISTINCT(MDBasicType, (Context, tag.Val, name.Val, size.Val,
3442 align.Val, encoding.Val));
3443 return false;
3444 }
3445
3446 /// ParseMDDerivedType:
3447 /// ::= !MDDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3448 /// line: 7, scope: !1, baseType: !2, size: 32,
3449 /// align: 32, offset: 0, flags: 0, extraData: !3)
ParseMDDerivedType(MDNode * & Result,bool IsDistinct)3450 bool LLParser::ParseMDDerivedType(MDNode *&Result, bool IsDistinct) {
3451 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3452 REQUIRED(tag, DwarfTagField, ); \
3453 OPTIONAL(name, MDStringField, ); \
3454 OPTIONAL(file, MDField, ); \
3455 OPTIONAL(line, LineField, ); \
3456 OPTIONAL(scope, MDField, ); \
3457 REQUIRED(baseType, MDField, ); \
3458 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
3459 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \
3460 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
3461 OPTIONAL(flags, DIFlagField, ); \
3462 OPTIONAL(extraData, MDField, );
3463 PARSE_MD_FIELDS();
3464 #undef VISIT_MD_FIELDS
3465
3466 Result = GET_OR_DISTINCT(MDDerivedType,
3467 (Context, tag.Val, name.Val, file.Val, line.Val,
3468 scope.Val, baseType.Val, size.Val, align.Val,
3469 offset.Val, flags.Val, extraData.Val));
3470 return false;
3471 }
3472
ParseMDCompositeType(MDNode * & Result,bool IsDistinct)3473 bool LLParser::ParseMDCompositeType(MDNode *&Result, bool IsDistinct) {
3474 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3475 REQUIRED(tag, DwarfTagField, ); \
3476 OPTIONAL(name, MDStringField, ); \
3477 OPTIONAL(file, MDField, ); \
3478 OPTIONAL(line, LineField, ); \
3479 OPTIONAL(scope, MDField, ); \
3480 OPTIONAL(baseType, MDField, ); \
3481 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
3482 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \
3483 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
3484 OPTIONAL(flags, DIFlagField, ); \
3485 OPTIONAL(elements, MDField, ); \
3486 OPTIONAL(runtimeLang, DwarfLangField, ); \
3487 OPTIONAL(vtableHolder, MDField, ); \
3488 OPTIONAL(templateParams, MDField, ); \
3489 OPTIONAL(identifier, MDStringField, );
3490 PARSE_MD_FIELDS();
3491 #undef VISIT_MD_FIELDS
3492
3493 Result = GET_OR_DISTINCT(
3494 MDCompositeType,
3495 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3496 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3497 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3498 return false;
3499 }
3500
ParseMDSubroutineType(MDNode * & Result,bool IsDistinct)3501 bool LLParser::ParseMDSubroutineType(MDNode *&Result, bool IsDistinct) {
3502 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3503 OPTIONAL(flags, DIFlagField, ); \
3504 REQUIRED(types, MDField, );
3505 PARSE_MD_FIELDS();
3506 #undef VISIT_MD_FIELDS
3507
3508 Result = GET_OR_DISTINCT(MDSubroutineType, (Context, flags.Val, types.Val));
3509 return false;
3510 }
3511
3512 /// ParseMDFileType:
3513 /// ::= !MDFileType(filename: "path/to/file", directory: "/path/to/dir")
ParseMDFile(MDNode * & Result,bool IsDistinct)3514 bool LLParser::ParseMDFile(MDNode *&Result, bool IsDistinct) {
3515 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3516 REQUIRED(filename, MDStringField, ); \
3517 REQUIRED(directory, MDStringField, );
3518 PARSE_MD_FIELDS();
3519 #undef VISIT_MD_FIELDS
3520
3521 Result = GET_OR_DISTINCT(MDFile, (Context, filename.Val, directory.Val));
3522 return false;
3523 }
3524
3525 /// ParseMDCompileUnit:
3526 /// ::= !MDCompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3527 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
3528 /// splitDebugFilename: "abc.debug", emissionKind: 1,
3529 /// enums: !1, retainedTypes: !2, subprograms: !3,
3530 /// globals: !4, imports: !5)
ParseMDCompileUnit(MDNode * & Result,bool IsDistinct)3531 bool LLParser::ParseMDCompileUnit(MDNode *&Result, bool IsDistinct) {
3532 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3533 REQUIRED(language, DwarfLangField, ); \
3534 REQUIRED(file, MDField, (/* AllowNull */ false)); \
3535 OPTIONAL(producer, MDStringField, ); \
3536 OPTIONAL(isOptimized, MDBoolField, ); \
3537 OPTIONAL(flags, MDStringField, ); \
3538 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
3539 OPTIONAL(splitDebugFilename, MDStringField, ); \
3540 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \
3541 OPTIONAL(enums, MDField, ); \
3542 OPTIONAL(retainedTypes, MDField, ); \
3543 OPTIONAL(subprograms, MDField, ); \
3544 OPTIONAL(globals, MDField, ); \
3545 OPTIONAL(imports, MDField, );
3546 PARSE_MD_FIELDS();
3547 #undef VISIT_MD_FIELDS
3548
3549 Result = GET_OR_DISTINCT(MDCompileUnit,
3550 (Context, language.Val, file.Val, producer.Val,
3551 isOptimized.Val, flags.Val, runtimeVersion.Val,
3552 splitDebugFilename.Val, emissionKind.Val, enums.Val,
3553 retainedTypes.Val, subprograms.Val, globals.Val,
3554 imports.Val));
3555 return false;
3556 }
3557
3558 /// ParseMDSubprogram:
3559 /// ::= !MDSubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3560 /// file: !1, line: 7, type: !2, isLocal: false,
3561 /// isDefinition: true, scopeLine: 8, containingType: !3,
3562 /// virtuality: DW_VIRTUALTIY_pure_virtual,
3563 /// virtualIndex: 10, flags: 11,
3564 /// isOptimized: false, function: void ()* @_Z3foov,
3565 /// templateParams: !4, declaration: !5, variables: !6)
ParseMDSubprogram(MDNode * & Result,bool IsDistinct)3566 bool LLParser::ParseMDSubprogram(MDNode *&Result, bool IsDistinct) {
3567 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3568 OPTIONAL(scope, MDField, ); \
3569 OPTIONAL(name, MDStringField, ); \
3570 OPTIONAL(linkageName, MDStringField, ); \
3571 OPTIONAL(file, MDField, ); \
3572 OPTIONAL(line, LineField, ); \
3573 OPTIONAL(type, MDField, ); \
3574 OPTIONAL(isLocal, MDBoolField, ); \
3575 OPTIONAL(isDefinition, MDBoolField, (true)); \
3576 OPTIONAL(scopeLine, LineField, ); \
3577 OPTIONAL(containingType, MDField, ); \
3578 OPTIONAL(virtuality, DwarfVirtualityField, ); \
3579 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
3580 OPTIONAL(flags, DIFlagField, ); \
3581 OPTIONAL(isOptimized, MDBoolField, ); \
3582 OPTIONAL(function, MDConstant, ); \
3583 OPTIONAL(templateParams, MDField, ); \
3584 OPTIONAL(declaration, MDField, ); \
3585 OPTIONAL(variables, MDField, );
3586 PARSE_MD_FIELDS();
3587 #undef VISIT_MD_FIELDS
3588
3589 Result = GET_OR_DISTINCT(
3590 MDSubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
3591 line.Val, type.Val, isLocal.Val, isDefinition.Val,
3592 scopeLine.Val, containingType.Val, virtuality.Val,
3593 virtualIndex.Val, flags.Val, isOptimized.Val, function.Val,
3594 templateParams.Val, declaration.Val, variables.Val));
3595 return false;
3596 }
3597
3598 /// ParseMDLexicalBlock:
3599 /// ::= !MDLexicalBlock(scope: !0, file: !2, line: 7, column: 9)
ParseMDLexicalBlock(MDNode * & Result,bool IsDistinct)3600 bool LLParser::ParseMDLexicalBlock(MDNode *&Result, bool IsDistinct) {
3601 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3602 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
3603 OPTIONAL(file, MDField, ); \
3604 OPTIONAL(line, LineField, ); \
3605 OPTIONAL(column, ColumnField, );
3606 PARSE_MD_FIELDS();
3607 #undef VISIT_MD_FIELDS
3608
3609 Result = GET_OR_DISTINCT(
3610 MDLexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
3611 return false;
3612 }
3613
3614 /// ParseMDLexicalBlockFile:
3615 /// ::= !MDLexicalBlockFile(scope: !0, file: !2, discriminator: 9)
ParseMDLexicalBlockFile(MDNode * & Result,bool IsDistinct)3616 bool LLParser::ParseMDLexicalBlockFile(MDNode *&Result, bool IsDistinct) {
3617 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3618 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
3619 OPTIONAL(file, MDField, ); \
3620 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
3621 PARSE_MD_FIELDS();
3622 #undef VISIT_MD_FIELDS
3623
3624 Result = GET_OR_DISTINCT(MDLexicalBlockFile,
3625 (Context, scope.Val, file.Val, discriminator.Val));
3626 return false;
3627 }
3628
3629 /// ParseMDNamespace:
3630 /// ::= !MDNamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
ParseMDNamespace(MDNode * & Result,bool IsDistinct)3631 bool LLParser::ParseMDNamespace(MDNode *&Result, bool IsDistinct) {
3632 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3633 REQUIRED(scope, MDField, ); \
3634 OPTIONAL(file, MDField, ); \
3635 OPTIONAL(name, MDStringField, ); \
3636 OPTIONAL(line, LineField, );
3637 PARSE_MD_FIELDS();
3638 #undef VISIT_MD_FIELDS
3639
3640 Result = GET_OR_DISTINCT(MDNamespace,
3641 (Context, scope.Val, file.Val, name.Val, line.Val));
3642 return false;
3643 }
3644
3645 /// ParseMDTemplateTypeParameter:
3646 /// ::= !MDTemplateTypeParameter(name: "Ty", type: !1)
ParseMDTemplateTypeParameter(MDNode * & Result,bool IsDistinct)3647 bool LLParser::ParseMDTemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
3648 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3649 OPTIONAL(name, MDStringField, ); \
3650 REQUIRED(type, MDField, );
3651 PARSE_MD_FIELDS();
3652 #undef VISIT_MD_FIELDS
3653
3654 Result =
3655 GET_OR_DISTINCT(MDTemplateTypeParameter, (Context, name.Val, type.Val));
3656 return false;
3657 }
3658
3659 /// ParseMDTemplateValueParameter:
3660 /// ::= !MDTemplateValueParameter(tag: DW_TAG_template_value_parameter,
3661 /// name: "V", type: !1, value: i32 7)
ParseMDTemplateValueParameter(MDNode * & Result,bool IsDistinct)3662 bool LLParser::ParseMDTemplateValueParameter(MDNode *&Result, bool IsDistinct) {
3663 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3664 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
3665 OPTIONAL(name, MDStringField, ); \
3666 OPTIONAL(type, MDField, ); \
3667 REQUIRED(value, MDField, );
3668 PARSE_MD_FIELDS();
3669 #undef VISIT_MD_FIELDS
3670
3671 Result = GET_OR_DISTINCT(MDTemplateValueParameter,
3672 (Context, tag.Val, name.Val, type.Val, value.Val));
3673 return false;
3674 }
3675
3676 /// ParseMDGlobalVariable:
3677 /// ::= !MDGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
3678 /// file: !1, line: 7, type: !2, isLocal: false,
3679 /// isDefinition: true, variable: i32* @foo,
3680 /// declaration: !3)
ParseMDGlobalVariable(MDNode * & Result,bool IsDistinct)3681 bool LLParser::ParseMDGlobalVariable(MDNode *&Result, bool IsDistinct) {
3682 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3683 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
3684 OPTIONAL(scope, MDField, ); \
3685 OPTIONAL(linkageName, MDStringField, ); \
3686 OPTIONAL(file, MDField, ); \
3687 OPTIONAL(line, LineField, ); \
3688 OPTIONAL(type, MDField, ); \
3689 OPTIONAL(isLocal, MDBoolField, ); \
3690 OPTIONAL(isDefinition, MDBoolField, (true)); \
3691 OPTIONAL(variable, MDConstant, ); \
3692 OPTIONAL(declaration, MDField, );
3693 PARSE_MD_FIELDS();
3694 #undef VISIT_MD_FIELDS
3695
3696 Result = GET_OR_DISTINCT(MDGlobalVariable,
3697 (Context, scope.Val, name.Val, linkageName.Val,
3698 file.Val, line.Val, type.Val, isLocal.Val,
3699 isDefinition.Val, variable.Val, declaration.Val));
3700 return false;
3701 }
3702
3703 /// ParseMDLocalVariable:
3704 /// ::= !MDLocalVariable(tag: DW_TAG_arg_variable, scope: !0, name: "foo",
3705 /// file: !1, line: 7, type: !2, arg: 2, flags: 7)
ParseMDLocalVariable(MDNode * & Result,bool IsDistinct)3706 bool LLParser::ParseMDLocalVariable(MDNode *&Result, bool IsDistinct) {
3707 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3708 REQUIRED(tag, DwarfTagField, ); \
3709 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
3710 OPTIONAL(name, MDStringField, ); \
3711 OPTIONAL(file, MDField, ); \
3712 OPTIONAL(line, LineField, ); \
3713 OPTIONAL(type, MDField, ); \
3714 OPTIONAL(arg, MDUnsignedField, (0, UINT8_MAX)); \
3715 OPTIONAL(flags, DIFlagField, );
3716 PARSE_MD_FIELDS();
3717 #undef VISIT_MD_FIELDS
3718
3719 Result = GET_OR_DISTINCT(MDLocalVariable,
3720 (Context, tag.Val, scope.Val, name.Val, file.Val,
3721 line.Val, type.Val, arg.Val, flags.Val));
3722 return false;
3723 }
3724
3725 /// ParseMDExpression:
3726 /// ::= !MDExpression(0, 7, -1)
ParseMDExpression(MDNode * & Result,bool IsDistinct)3727 bool LLParser::ParseMDExpression(MDNode *&Result, bool IsDistinct) {
3728 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3729 Lex.Lex();
3730
3731 if (ParseToken(lltok::lparen, "expected '(' here"))
3732 return true;
3733
3734 SmallVector<uint64_t, 8> Elements;
3735 if (Lex.getKind() != lltok::rparen)
3736 do {
3737 if (Lex.getKind() == lltok::DwarfOp) {
3738 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
3739 Lex.Lex();
3740 Elements.push_back(Op);
3741 continue;
3742 }
3743 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
3744 }
3745
3746 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3747 return TokError("expected unsigned integer");
3748
3749 auto &U = Lex.getAPSIntVal();
3750 if (U.ugt(UINT64_MAX))
3751 return TokError("element too large, limit is " + Twine(UINT64_MAX));
3752 Elements.push_back(U.getZExtValue());
3753 Lex.Lex();
3754 } while (EatIfPresent(lltok::comma));
3755
3756 if (ParseToken(lltok::rparen, "expected ')' here"))
3757 return true;
3758
3759 Result = GET_OR_DISTINCT(MDExpression, (Context, Elements));
3760 return false;
3761 }
3762
3763 /// ParseMDObjCProperty:
3764 /// ::= !MDObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
3765 /// getter: "getFoo", attributes: 7, type: !2)
ParseMDObjCProperty(MDNode * & Result,bool IsDistinct)3766 bool LLParser::ParseMDObjCProperty(MDNode *&Result, bool IsDistinct) {
3767 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3768 OPTIONAL(name, MDStringField, ); \
3769 OPTIONAL(file, MDField, ); \
3770 OPTIONAL(line, LineField, ); \
3771 OPTIONAL(setter, MDStringField, ); \
3772 OPTIONAL(getter, MDStringField, ); \
3773 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
3774 OPTIONAL(type, MDField, );
3775 PARSE_MD_FIELDS();
3776 #undef VISIT_MD_FIELDS
3777
3778 Result = GET_OR_DISTINCT(MDObjCProperty,
3779 (Context, name.Val, file.Val, line.Val, setter.Val,
3780 getter.Val, attributes.Val, type.Val));
3781 return false;
3782 }
3783
3784 /// ParseMDImportedEntity:
3785 /// ::= !MDImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
3786 /// line: 7, name: "foo")
ParseMDImportedEntity(MDNode * & Result,bool IsDistinct)3787 bool LLParser::ParseMDImportedEntity(MDNode *&Result, bool IsDistinct) {
3788 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3789 REQUIRED(tag, DwarfTagField, ); \
3790 REQUIRED(scope, MDField, ); \
3791 OPTIONAL(entity, MDField, ); \
3792 OPTIONAL(line, LineField, ); \
3793 OPTIONAL(name, MDStringField, );
3794 PARSE_MD_FIELDS();
3795 #undef VISIT_MD_FIELDS
3796
3797 Result = GET_OR_DISTINCT(MDImportedEntity, (Context, tag.Val, scope.Val,
3798 entity.Val, line.Val, name.Val));
3799 return false;
3800 }
3801
3802 #undef PARSE_MD_FIELD
3803 #undef NOP_FIELD
3804 #undef REQUIRE_FIELD
3805 #undef DECLARE_FIELD
3806
3807 /// ParseMetadataAsValue
3808 /// ::= metadata i32 %local
3809 /// ::= metadata i32 @global
3810 /// ::= metadata i32 7
3811 /// ::= metadata !0
3812 /// ::= metadata !{...}
3813 /// ::= metadata !"string"
ParseMetadataAsValue(Value * & V,PerFunctionState & PFS)3814 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
3815 // Note: the type 'metadata' has already been parsed.
3816 Metadata *MD;
3817 if (ParseMetadata(MD, &PFS))
3818 return true;
3819
3820 V = MetadataAsValue::get(Context, MD);
3821 return false;
3822 }
3823
3824 /// ParseValueAsMetadata
3825 /// ::= i32 %local
3826 /// ::= i32 @global
3827 /// ::= i32 7
ParseValueAsMetadata(Metadata * & MD,const Twine & TypeMsg,PerFunctionState * PFS)3828 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
3829 PerFunctionState *PFS) {
3830 Type *Ty;
3831 LocTy Loc;
3832 if (ParseType(Ty, TypeMsg, Loc))
3833 return true;
3834 if (Ty->isMetadataTy())
3835 return Error(Loc, "invalid metadata-value-metadata roundtrip");
3836
3837 Value *V;
3838 if (ParseValue(Ty, V, PFS))
3839 return true;
3840
3841 MD = ValueAsMetadata::get(V);
3842 return false;
3843 }
3844
3845 /// ParseMetadata
3846 /// ::= i32 %local
3847 /// ::= i32 @global
3848 /// ::= i32 7
3849 /// ::= !42
3850 /// ::= !{...}
3851 /// ::= !"string"
3852 /// ::= !MDLocation(...)
ParseMetadata(Metadata * & MD,PerFunctionState * PFS)3853 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
3854 if (Lex.getKind() == lltok::MetadataVar) {
3855 MDNode *N;
3856 if (ParseSpecializedMDNode(N))
3857 return true;
3858 MD = N;
3859 return false;
3860 }
3861
3862 // ValueAsMetadata:
3863 // <type> <value>
3864 if (Lex.getKind() != lltok::exclaim)
3865 return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
3866
3867 // '!'.
3868 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
3869 Lex.Lex();
3870
3871 // MDString:
3872 // ::= '!' STRINGCONSTANT
3873 if (Lex.getKind() == lltok::StringConstant) {
3874 MDString *S;
3875 if (ParseMDString(S))
3876 return true;
3877 MD = S;
3878 return false;
3879 }
3880
3881 // MDNode:
3882 // !{ ... }
3883 // !7
3884 MDNode *N;
3885 if (ParseMDNodeTail(N))
3886 return true;
3887 MD = N;
3888 return false;
3889 }
3890
3891
3892 //===----------------------------------------------------------------------===//
3893 // Function Parsing.
3894 //===----------------------------------------------------------------------===//
3895
ConvertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS)3896 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
3897 PerFunctionState *PFS) {
3898 if (Ty->isFunctionTy())
3899 return Error(ID.Loc, "functions are not values, refer to them as pointers");
3900
3901 switch (ID.Kind) {
3902 case ValID::t_LocalID:
3903 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
3904 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
3905 return V == nullptr;
3906 case ValID::t_LocalName:
3907 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
3908 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
3909 return V == nullptr;
3910 case ValID::t_InlineAsm: {
3911 PointerType *PTy = dyn_cast<PointerType>(Ty);
3912 FunctionType *FTy =
3913 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : nullptr;
3914 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
3915 return Error(ID.Loc, "invalid type for inline asm constraint string");
3916 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
3917 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
3918 return false;
3919 }
3920 case ValID::t_GlobalName:
3921 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
3922 return V == nullptr;
3923 case ValID::t_GlobalID:
3924 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
3925 return V == nullptr;
3926 case ValID::t_APSInt:
3927 if (!Ty->isIntegerTy())
3928 return Error(ID.Loc, "integer constant must have integer type");
3929 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
3930 V = ConstantInt::get(Context, ID.APSIntVal);
3931 return false;
3932 case ValID::t_APFloat:
3933 if (!Ty->isFloatingPointTy() ||
3934 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
3935 return Error(ID.Loc, "floating point constant invalid for type");
3936
3937 // The lexer has no type info, so builds all half, float, and double FP
3938 // constants as double. Fix this here. Long double does not need this.
3939 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
3940 bool Ignored;
3941 if (Ty->isHalfTy())
3942 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
3943 &Ignored);
3944 else if (Ty->isFloatTy())
3945 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
3946 &Ignored);
3947 }
3948 V = ConstantFP::get(Context, ID.APFloatVal);
3949
3950 if (V->getType() != Ty)
3951 return Error(ID.Loc, "floating point constant does not have type '" +
3952 getTypeString(Ty) + "'");
3953
3954 return false;
3955 case ValID::t_Null:
3956 if (!Ty->isPointerTy())
3957 return Error(ID.Loc, "null must be a pointer type");
3958 V = ConstantPointerNull::get(cast<PointerType>(Ty));
3959 return false;
3960 case ValID::t_Undef:
3961 // FIXME: LabelTy should not be a first-class type.
3962 if (!Ty->isFirstClassType() || Ty->isLabelTy())
3963 return Error(ID.Loc, "invalid type for undef constant");
3964 V = UndefValue::get(Ty);
3965 return false;
3966 case ValID::t_EmptyArray:
3967 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
3968 return Error(ID.Loc, "invalid empty array initializer");
3969 V = UndefValue::get(Ty);
3970 return false;
3971 case ValID::t_Zero:
3972 // FIXME: LabelTy should not be a first-class type.
3973 if (!Ty->isFirstClassType() || Ty->isLabelTy())
3974 return Error(ID.Loc, "invalid type for null constant");
3975 V = Constant::getNullValue(Ty);
3976 return false;
3977 case ValID::t_Constant:
3978 if (ID.ConstantVal->getType() != Ty)
3979 return Error(ID.Loc, "constant expression type mismatch");
3980
3981 V = ID.ConstantVal;
3982 return false;
3983 case ValID::t_ConstantStruct:
3984 case ValID::t_PackedConstantStruct:
3985 if (StructType *ST = dyn_cast<StructType>(Ty)) {
3986 if (ST->getNumElements() != ID.UIntVal)
3987 return Error(ID.Loc,
3988 "initializer with struct type has wrong # elements");
3989 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
3990 return Error(ID.Loc, "packed'ness of initializer and type don't match");
3991
3992 // Verify that the elements are compatible with the structtype.
3993 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
3994 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
3995 return Error(ID.Loc, "element " + Twine(i) +
3996 " of struct initializer doesn't match struct element type");
3997
3998 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
3999 ID.UIntVal));
4000 } else
4001 return Error(ID.Loc, "constant expression type mismatch");
4002 return false;
4003 }
4004 llvm_unreachable("Invalid ValID");
4005 }
4006
ParseValue(Type * Ty,Value * & V,PerFunctionState * PFS)4007 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4008 V = nullptr;
4009 ValID ID;
4010 return ParseValID(ID, PFS) ||
4011 ConvertValIDToValue(Ty, ID, V, PFS);
4012 }
4013
ParseTypeAndValue(Value * & V,PerFunctionState * PFS)4014 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4015 Type *Ty = nullptr;
4016 return ParseType(Ty) ||
4017 ParseValue(Ty, V, PFS);
4018 }
4019
ParseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)4020 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4021 PerFunctionState &PFS) {
4022 Value *V;
4023 Loc = Lex.getLoc();
4024 if (ParseTypeAndValue(V, PFS)) return true;
4025 if (!isa<BasicBlock>(V))
4026 return Error(Loc, "expected a basic block");
4027 BB = cast<BasicBlock>(V);
4028 return false;
4029 }
4030
4031
4032 /// FunctionHeader
4033 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4034 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4035 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue
ParseFunctionHeader(Function * & Fn,bool isDefine)4036 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4037 // Parse the linkage.
4038 LocTy LinkageLoc = Lex.getLoc();
4039 unsigned Linkage;
4040
4041 unsigned Visibility;
4042 unsigned DLLStorageClass;
4043 AttrBuilder RetAttrs;
4044 unsigned CC;
4045 Type *RetType = nullptr;
4046 LocTy RetTypeLoc = Lex.getLoc();
4047 if (ParseOptionalLinkage(Linkage) ||
4048 ParseOptionalVisibility(Visibility) ||
4049 ParseOptionalDLLStorageClass(DLLStorageClass) ||
4050 ParseOptionalCallingConv(CC) ||
4051 ParseOptionalReturnAttrs(RetAttrs) ||
4052 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4053 return true;
4054
4055 // Verify that the linkage is ok.
4056 switch ((GlobalValue::LinkageTypes)Linkage) {
4057 case GlobalValue::ExternalLinkage:
4058 break; // always ok.
4059 case GlobalValue::ExternalWeakLinkage:
4060 if (isDefine)
4061 return Error(LinkageLoc, "invalid linkage for function definition");
4062 break;
4063 case GlobalValue::PrivateLinkage:
4064 case GlobalValue::InternalLinkage:
4065 case GlobalValue::AvailableExternallyLinkage:
4066 case GlobalValue::LinkOnceAnyLinkage:
4067 case GlobalValue::LinkOnceODRLinkage:
4068 case GlobalValue::WeakAnyLinkage:
4069 case GlobalValue::WeakODRLinkage:
4070 if (!isDefine)
4071 return Error(LinkageLoc, "invalid linkage for function declaration");
4072 break;
4073 case GlobalValue::AppendingLinkage:
4074 case GlobalValue::CommonLinkage:
4075 return Error(LinkageLoc, "invalid function linkage type");
4076 }
4077
4078 if (!isValidVisibilityForLinkage(Visibility, Linkage))
4079 return Error(LinkageLoc,
4080 "symbol with local linkage must have default visibility");
4081
4082 if (!FunctionType::isValidReturnType(RetType))
4083 return Error(RetTypeLoc, "invalid function return type");
4084
4085 LocTy NameLoc = Lex.getLoc();
4086
4087 std::string FunctionName;
4088 if (Lex.getKind() == lltok::GlobalVar) {
4089 FunctionName = Lex.getStrVal();
4090 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
4091 unsigned NameID = Lex.getUIntVal();
4092
4093 if (NameID != NumberedVals.size())
4094 return TokError("function expected to be numbered '%" +
4095 Twine(NumberedVals.size()) + "'");
4096 } else {
4097 return TokError("expected function name");
4098 }
4099
4100 Lex.Lex();
4101
4102 if (Lex.getKind() != lltok::lparen)
4103 return TokError("expected '(' in function argument list");
4104
4105 SmallVector<ArgInfo, 8> ArgList;
4106 bool isVarArg;
4107 AttrBuilder FuncAttrs;
4108 std::vector<unsigned> FwdRefAttrGrps;
4109 LocTy BuiltinLoc;
4110 std::string Section;
4111 unsigned Alignment;
4112 std::string GC;
4113 bool UnnamedAddr;
4114 LocTy UnnamedAddrLoc;
4115 Constant *Prefix = nullptr;
4116 Constant *Prologue = nullptr;
4117 Comdat *C;
4118
4119 if (ParseArgumentList(ArgList, isVarArg) ||
4120 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
4121 &UnnamedAddrLoc) ||
4122 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4123 BuiltinLoc) ||
4124 (EatIfPresent(lltok::kw_section) &&
4125 ParseStringConstant(Section)) ||
4126 parseOptionalComdat(FunctionName, C) ||
4127 ParseOptionalAlignment(Alignment) ||
4128 (EatIfPresent(lltok::kw_gc) &&
4129 ParseStringConstant(GC)) ||
4130 (EatIfPresent(lltok::kw_prefix) &&
4131 ParseGlobalTypeAndValue(Prefix)) ||
4132 (EatIfPresent(lltok::kw_prologue) &&
4133 ParseGlobalTypeAndValue(Prologue)))
4134 return true;
4135
4136 if (FuncAttrs.contains(Attribute::Builtin))
4137 return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4138
4139 // If the alignment was parsed as an attribute, move to the alignment field.
4140 if (FuncAttrs.hasAlignmentAttr()) {
4141 Alignment = FuncAttrs.getAlignment();
4142 FuncAttrs.removeAttribute(Attribute::Alignment);
4143 }
4144
4145 // Okay, if we got here, the function is syntactically valid. Convert types
4146 // and do semantic checks.
4147 std::vector<Type*> ParamTypeList;
4148 SmallVector<AttributeSet, 8> Attrs;
4149
4150 if (RetAttrs.hasAttributes())
4151 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4152 AttributeSet::ReturnIndex,
4153 RetAttrs));
4154
4155 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4156 ParamTypeList.push_back(ArgList[i].Ty);
4157 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4158 AttrBuilder B(ArgList[i].Attrs, i + 1);
4159 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4160 }
4161 }
4162
4163 if (FuncAttrs.hasAttributes())
4164 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4165 AttributeSet::FunctionIndex,
4166 FuncAttrs));
4167
4168 AttributeSet PAL = AttributeSet::get(Context, Attrs);
4169
4170 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4171 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4172
4173 FunctionType *FT =
4174 FunctionType::get(RetType, ParamTypeList, isVarArg);
4175 PointerType *PFT = PointerType::getUnqual(FT);
4176
4177 Fn = nullptr;
4178 if (!FunctionName.empty()) {
4179 // If this was a definition of a forward reference, remove the definition
4180 // from the forward reference table and fill in the forward ref.
4181 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
4182 ForwardRefVals.find(FunctionName);
4183 if (FRVI != ForwardRefVals.end()) {
4184 Fn = M->getFunction(FunctionName);
4185 if (!Fn)
4186 return Error(FRVI->second.second, "invalid forward reference to "
4187 "function as global value!");
4188 if (Fn->getType() != PFT)
4189 return Error(FRVI->second.second, "invalid forward reference to "
4190 "function '" + FunctionName + "' with wrong type!");
4191
4192 ForwardRefVals.erase(FRVI);
4193 } else if ((Fn = M->getFunction(FunctionName))) {
4194 // Reject redefinitions.
4195 return Error(NameLoc, "invalid redefinition of function '" +
4196 FunctionName + "'");
4197 } else if (M->getNamedValue(FunctionName)) {
4198 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4199 }
4200
4201 } else {
4202 // If this is a definition of a forward referenced function, make sure the
4203 // types agree.
4204 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
4205 = ForwardRefValIDs.find(NumberedVals.size());
4206 if (I != ForwardRefValIDs.end()) {
4207 Fn = cast<Function>(I->second.first);
4208 if (Fn->getType() != PFT)
4209 return Error(NameLoc, "type of definition and forward reference of '@" +
4210 Twine(NumberedVals.size()) + "' disagree");
4211 ForwardRefValIDs.erase(I);
4212 }
4213 }
4214
4215 if (!Fn)
4216 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4217 else // Move the forward-reference to the correct spot in the module.
4218 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4219
4220 if (FunctionName.empty())
4221 NumberedVals.push_back(Fn);
4222
4223 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4224 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4225 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4226 Fn->setCallingConv(CC);
4227 Fn->setAttributes(PAL);
4228 Fn->setUnnamedAddr(UnnamedAddr);
4229 Fn->setAlignment(Alignment);
4230 Fn->setSection(Section);
4231 Fn->setComdat(C);
4232 if (!GC.empty()) Fn->setGC(GC.c_str());
4233 Fn->setPrefixData(Prefix);
4234 Fn->setPrologueData(Prologue);
4235 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4236
4237 // Add all of the arguments we parsed to the function.
4238 Function::arg_iterator ArgIt = Fn->arg_begin();
4239 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4240 // If the argument has a name, insert it into the argument symbol table.
4241 if (ArgList[i].Name.empty()) continue;
4242
4243 // Set the name, if it conflicted, it will be auto-renamed.
4244 ArgIt->setName(ArgList[i].Name);
4245
4246 if (ArgIt->getName() != ArgList[i].Name)
4247 return Error(ArgList[i].Loc, "redefinition of argument '%" +
4248 ArgList[i].Name + "'");
4249 }
4250
4251 if (isDefine)
4252 return false;
4253
4254 // Check the declaration has no block address forward references.
4255 ValID ID;
4256 if (FunctionName.empty()) {
4257 ID.Kind = ValID::t_GlobalID;
4258 ID.UIntVal = NumberedVals.size() - 1;
4259 } else {
4260 ID.Kind = ValID::t_GlobalName;
4261 ID.StrVal = FunctionName;
4262 }
4263 auto Blocks = ForwardRefBlockAddresses.find(ID);
4264 if (Blocks != ForwardRefBlockAddresses.end())
4265 return Error(Blocks->first.Loc,
4266 "cannot take blockaddress inside a declaration");
4267 return false;
4268 }
4269
resolveForwardRefBlockAddresses()4270 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4271 ValID ID;
4272 if (FunctionNumber == -1) {
4273 ID.Kind = ValID::t_GlobalName;
4274 ID.StrVal = F.getName();
4275 } else {
4276 ID.Kind = ValID::t_GlobalID;
4277 ID.UIntVal = FunctionNumber;
4278 }
4279
4280 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4281 if (Blocks == P.ForwardRefBlockAddresses.end())
4282 return false;
4283
4284 for (const auto &I : Blocks->second) {
4285 const ValID &BBID = I.first;
4286 GlobalValue *GV = I.second;
4287
4288 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4289 "Expected local id or name");
4290 BasicBlock *BB;
4291 if (BBID.Kind == ValID::t_LocalName)
4292 BB = GetBB(BBID.StrVal, BBID.Loc);
4293 else
4294 BB = GetBB(BBID.UIntVal, BBID.Loc);
4295 if (!BB)
4296 return P.Error(BBID.Loc, "referenced value is not a basic block");
4297
4298 GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4299 GV->eraseFromParent();
4300 }
4301
4302 P.ForwardRefBlockAddresses.erase(Blocks);
4303 return false;
4304 }
4305
4306 /// ParseFunctionBody
4307 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
ParseFunctionBody(Function & Fn)4308 bool LLParser::ParseFunctionBody(Function &Fn) {
4309 if (Lex.getKind() != lltok::lbrace)
4310 return TokError("expected '{' in function body");
4311 Lex.Lex(); // eat the {.
4312
4313 int FunctionNumber = -1;
4314 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4315
4316 PerFunctionState PFS(*this, Fn, FunctionNumber);
4317
4318 // Resolve block addresses and allow basic blocks to be forward-declared
4319 // within this function.
4320 if (PFS.resolveForwardRefBlockAddresses())
4321 return true;
4322 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4323
4324 // We need at least one basic block.
4325 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4326 return TokError("function body requires at least one basic block");
4327
4328 while (Lex.getKind() != lltok::rbrace &&
4329 Lex.getKind() != lltok::kw_uselistorder)
4330 if (ParseBasicBlock(PFS)) return true;
4331
4332 while (Lex.getKind() != lltok::rbrace)
4333 if (ParseUseListOrder(&PFS))
4334 return true;
4335
4336 // Eat the }.
4337 Lex.Lex();
4338
4339 // Verify function is ok.
4340 return PFS.FinishFunction();
4341 }
4342
4343 /// ParseBasicBlock
4344 /// ::= LabelStr? Instruction*
ParseBasicBlock(PerFunctionState & PFS)4345 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4346 // If this basic block starts out with a name, remember it.
4347 std::string Name;
4348 LocTy NameLoc = Lex.getLoc();
4349 if (Lex.getKind() == lltok::LabelStr) {
4350 Name = Lex.getStrVal();
4351 Lex.Lex();
4352 }
4353
4354 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4355 if (!BB)
4356 return Error(NameLoc,
4357 "unable to create block named '" + Name + "'");
4358
4359 std::string NameStr;
4360
4361 // Parse the instructions in this block until we get a terminator.
4362 Instruction *Inst;
4363 do {
4364 // This instruction may have three possibilities for a name: a) none
4365 // specified, b) name specified "%foo =", c) number specified: "%4 =".
4366 LocTy NameLoc = Lex.getLoc();
4367 int NameID = -1;
4368 NameStr = "";
4369
4370 if (Lex.getKind() == lltok::LocalVarID) {
4371 NameID = Lex.getUIntVal();
4372 Lex.Lex();
4373 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4374 return true;
4375 } else if (Lex.getKind() == lltok::LocalVar) {
4376 NameStr = Lex.getStrVal();
4377 Lex.Lex();
4378 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4379 return true;
4380 }
4381
4382 switch (ParseInstruction(Inst, BB, PFS)) {
4383 default: llvm_unreachable("Unknown ParseInstruction result!");
4384 case InstError: return true;
4385 case InstNormal:
4386 BB->getInstList().push_back(Inst);
4387
4388 // With a normal result, we check to see if the instruction is followed by
4389 // a comma and metadata.
4390 if (EatIfPresent(lltok::comma))
4391 if (ParseInstructionMetadata(Inst, &PFS))
4392 return true;
4393 break;
4394 case InstExtraComma:
4395 BB->getInstList().push_back(Inst);
4396
4397 // If the instruction parser ate an extra comma at the end of it, it
4398 // *must* be followed by metadata.
4399 if (ParseInstructionMetadata(Inst, &PFS))
4400 return true;
4401 break;
4402 }
4403
4404 // Set the name on the instruction.
4405 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4406 } while (!isa<TerminatorInst>(Inst));
4407
4408 return false;
4409 }
4410
4411 //===----------------------------------------------------------------------===//
4412 // Instruction Parsing.
4413 //===----------------------------------------------------------------------===//
4414
4415 /// ParseInstruction - Parse one of the many different instructions.
4416 ///
ParseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)4417 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4418 PerFunctionState &PFS) {
4419 lltok::Kind Token = Lex.getKind();
4420 if (Token == lltok::Eof)
4421 return TokError("found end of file when expecting more instructions");
4422 LocTy Loc = Lex.getLoc();
4423 unsigned KeywordVal = Lex.getUIntVal();
4424 Lex.Lex(); // Eat the keyword.
4425
4426 switch (Token) {
4427 default: return Error(Loc, "expected instruction opcode");
4428 // Terminator Instructions.
4429 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4430 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
4431 case lltok::kw_br: return ParseBr(Inst, PFS);
4432 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
4433 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
4434 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
4435 case lltok::kw_resume: return ParseResume(Inst, PFS);
4436 // Binary Operators.
4437 case lltok::kw_add:
4438 case lltok::kw_sub:
4439 case lltok::kw_mul:
4440 case lltok::kw_shl: {
4441 bool NUW = EatIfPresent(lltok::kw_nuw);
4442 bool NSW = EatIfPresent(lltok::kw_nsw);
4443 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4444
4445 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4446
4447 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4448 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4449 return false;
4450 }
4451 case lltok::kw_fadd:
4452 case lltok::kw_fsub:
4453 case lltok::kw_fmul:
4454 case lltok::kw_fdiv:
4455 case lltok::kw_frem: {
4456 FastMathFlags FMF = EatFastMathFlagsIfPresent();
4457 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4458 if (Res != 0)
4459 return Res;
4460 if (FMF.any())
4461 Inst->setFastMathFlags(FMF);
4462 return 0;
4463 }
4464
4465 case lltok::kw_sdiv:
4466 case lltok::kw_udiv:
4467 case lltok::kw_lshr:
4468 case lltok::kw_ashr: {
4469 bool Exact = EatIfPresent(lltok::kw_exact);
4470
4471 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4472 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4473 return false;
4474 }
4475
4476 case lltok::kw_urem:
4477 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4478 case lltok::kw_and:
4479 case lltok::kw_or:
4480 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
4481 case lltok::kw_icmp:
4482 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
4483 // Casts.
4484 case lltok::kw_trunc:
4485 case lltok::kw_zext:
4486 case lltok::kw_sext:
4487 case lltok::kw_fptrunc:
4488 case lltok::kw_fpext:
4489 case lltok::kw_bitcast:
4490 case lltok::kw_addrspacecast:
4491 case lltok::kw_uitofp:
4492 case lltok::kw_sitofp:
4493 case lltok::kw_fptoui:
4494 case lltok::kw_fptosi:
4495 case lltok::kw_inttoptr:
4496 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
4497 // Other.
4498 case lltok::kw_select: return ParseSelect(Inst, PFS);
4499 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
4500 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
4501 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
4502 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
4503 case lltok::kw_phi: return ParsePHI(Inst, PFS);
4504 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
4505 // Call.
4506 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
4507 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
4508 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
4509 // Memory.
4510 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
4511 case lltok::kw_load: return ParseLoad(Inst, PFS);
4512 case lltok::kw_store: return ParseStore(Inst, PFS);
4513 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
4514 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
4515 case lltok::kw_fence: return ParseFence(Inst, PFS);
4516 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
4517 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
4518 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
4519 }
4520 }
4521
4522 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
ParseCmpPredicate(unsigned & P,unsigned Opc)4523 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
4524 if (Opc == Instruction::FCmp) {
4525 switch (Lex.getKind()) {
4526 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
4527 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
4528 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
4529 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
4530 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
4531 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
4532 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
4533 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
4534 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
4535 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
4536 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
4537 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
4538 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
4539 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
4540 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
4541 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
4542 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
4543 }
4544 } else {
4545 switch (Lex.getKind()) {
4546 default: return TokError("expected icmp predicate (e.g. 'eq')");
4547 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
4548 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
4549 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
4550 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
4551 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
4552 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
4553 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
4554 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
4555 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
4556 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
4557 }
4558 }
4559 Lex.Lex();
4560 return false;
4561 }
4562
4563 //===----------------------------------------------------------------------===//
4564 // Terminator Instructions.
4565 //===----------------------------------------------------------------------===//
4566
4567 /// ParseRet - Parse a return instruction.
4568 /// ::= 'ret' void (',' !dbg, !1)*
4569 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
ParseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)4570 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
4571 PerFunctionState &PFS) {
4572 SMLoc TypeLoc = Lex.getLoc();
4573 Type *Ty = nullptr;
4574 if (ParseType(Ty, true /*void allowed*/)) return true;
4575
4576 Type *ResType = PFS.getFunction().getReturnType();
4577
4578 if (Ty->isVoidTy()) {
4579 if (!ResType->isVoidTy())
4580 return Error(TypeLoc, "value doesn't match function result type '" +
4581 getTypeString(ResType) + "'");
4582
4583 Inst = ReturnInst::Create(Context);
4584 return false;
4585 }
4586
4587 Value *RV;
4588 if (ParseValue(Ty, RV, PFS)) return true;
4589
4590 if (ResType != RV->getType())
4591 return Error(TypeLoc, "value doesn't match function result type '" +
4592 getTypeString(ResType) + "'");
4593
4594 Inst = ReturnInst::Create(Context, RV);
4595 return false;
4596 }
4597
4598
4599 /// ParseBr
4600 /// ::= 'br' TypeAndValue
4601 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseBr(Instruction * & Inst,PerFunctionState & PFS)4602 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
4603 LocTy Loc, Loc2;
4604 Value *Op0;
4605 BasicBlock *Op1, *Op2;
4606 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
4607
4608 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
4609 Inst = BranchInst::Create(BB);
4610 return false;
4611 }
4612
4613 if (Op0->getType() != Type::getInt1Ty(Context))
4614 return Error(Loc, "branch condition must have 'i1' type");
4615
4616 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
4617 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
4618 ParseToken(lltok::comma, "expected ',' after true destination") ||
4619 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
4620 return true;
4621
4622 Inst = BranchInst::Create(Op1, Op2, Op0);
4623 return false;
4624 }
4625
4626 /// ParseSwitch
4627 /// Instruction
4628 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
4629 /// JumpTable
4630 /// ::= (TypeAndValue ',' TypeAndValue)*
ParseSwitch(Instruction * & Inst,PerFunctionState & PFS)4631 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
4632 LocTy CondLoc, BBLoc;
4633 Value *Cond;
4634 BasicBlock *DefaultBB;
4635 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
4636 ParseToken(lltok::comma, "expected ',' after switch condition") ||
4637 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
4638 ParseToken(lltok::lsquare, "expected '[' with switch table"))
4639 return true;
4640
4641 if (!Cond->getType()->isIntegerTy())
4642 return Error(CondLoc, "switch condition must have integer type");
4643
4644 // Parse the jump table pairs.
4645 SmallPtrSet<Value*, 32> SeenCases;
4646 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
4647 while (Lex.getKind() != lltok::rsquare) {
4648 Value *Constant;
4649 BasicBlock *DestBB;
4650
4651 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
4652 ParseToken(lltok::comma, "expected ',' after case value") ||
4653 ParseTypeAndBasicBlock(DestBB, PFS))
4654 return true;
4655
4656 if (!SeenCases.insert(Constant).second)
4657 return Error(CondLoc, "duplicate case value in switch");
4658 if (!isa<ConstantInt>(Constant))
4659 return Error(CondLoc, "case value is not a constant integer");
4660
4661 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
4662 }
4663
4664 Lex.Lex(); // Eat the ']'.
4665
4666 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
4667 for (unsigned i = 0, e = Table.size(); i != e; ++i)
4668 SI->addCase(Table[i].first, Table[i].second);
4669 Inst = SI;
4670 return false;
4671 }
4672
4673 /// ParseIndirectBr
4674 /// Instruction
4675 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
ParseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)4676 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
4677 LocTy AddrLoc;
4678 Value *Address;
4679 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
4680 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
4681 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
4682 return true;
4683
4684 if (!Address->getType()->isPointerTy())
4685 return Error(AddrLoc, "indirectbr address must have pointer type");
4686
4687 // Parse the destination list.
4688 SmallVector<BasicBlock*, 16> DestList;
4689
4690 if (Lex.getKind() != lltok::rsquare) {
4691 BasicBlock *DestBB;
4692 if (ParseTypeAndBasicBlock(DestBB, PFS))
4693 return true;
4694 DestList.push_back(DestBB);
4695
4696 while (EatIfPresent(lltok::comma)) {
4697 if (ParseTypeAndBasicBlock(DestBB, PFS))
4698 return true;
4699 DestList.push_back(DestBB);
4700 }
4701 }
4702
4703 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
4704 return true;
4705
4706 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
4707 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
4708 IBI->addDestination(DestList[i]);
4709 Inst = IBI;
4710 return false;
4711 }
4712
4713
4714 /// ParseInvoke
4715 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
4716 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
ParseInvoke(Instruction * & Inst,PerFunctionState & PFS)4717 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
4718 LocTy CallLoc = Lex.getLoc();
4719 AttrBuilder RetAttrs, FnAttrs;
4720 std::vector<unsigned> FwdRefAttrGrps;
4721 LocTy NoBuiltinLoc;
4722 unsigned CC;
4723 Type *RetType = nullptr;
4724 LocTy RetTypeLoc;
4725 ValID CalleeID;
4726 SmallVector<ParamInfo, 16> ArgList;
4727
4728 BasicBlock *NormalBB, *UnwindBB;
4729 if (ParseOptionalCallingConv(CC) ||
4730 ParseOptionalReturnAttrs(RetAttrs) ||
4731 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
4732 ParseValID(CalleeID) ||
4733 ParseParameterList(ArgList, PFS) ||
4734 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
4735 NoBuiltinLoc) ||
4736 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
4737 ParseTypeAndBasicBlock(NormalBB, PFS) ||
4738 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
4739 ParseTypeAndBasicBlock(UnwindBB, PFS))
4740 return true;
4741
4742 // If RetType is a non-function pointer type, then this is the short syntax
4743 // for the call, which means that RetType is just the return type. Infer the
4744 // rest of the function argument types from the arguments that are present.
4745 PointerType *PFTy = nullptr;
4746 FunctionType *Ty = nullptr;
4747 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
4748 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
4749 // Pull out the types of all of the arguments...
4750 std::vector<Type*> ParamTypes;
4751 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
4752 ParamTypes.push_back(ArgList[i].V->getType());
4753
4754 if (!FunctionType::isValidReturnType(RetType))
4755 return Error(RetTypeLoc, "Invalid result type for LLVM function");
4756
4757 Ty = FunctionType::get(RetType, ParamTypes, false);
4758 PFTy = PointerType::getUnqual(Ty);
4759 }
4760
4761 // Look up the callee.
4762 Value *Callee;
4763 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
4764
4765 // Set up the Attribute for the function.
4766 SmallVector<AttributeSet, 8> Attrs;
4767 if (RetAttrs.hasAttributes())
4768 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4769 AttributeSet::ReturnIndex,
4770 RetAttrs));
4771
4772 SmallVector<Value*, 8> Args;
4773
4774 // Loop through FunctionType's arguments and ensure they are specified
4775 // correctly. Also, gather any parameter attributes.
4776 FunctionType::param_iterator I = Ty->param_begin();
4777 FunctionType::param_iterator E = Ty->param_end();
4778 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4779 Type *ExpectedTy = nullptr;
4780 if (I != E) {
4781 ExpectedTy = *I++;
4782 } else if (!Ty->isVarArg()) {
4783 return Error(ArgList[i].Loc, "too many arguments specified");
4784 }
4785
4786 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
4787 return Error(ArgList[i].Loc, "argument is not of expected type '" +
4788 getTypeString(ExpectedTy) + "'");
4789 Args.push_back(ArgList[i].V);
4790 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4791 AttrBuilder B(ArgList[i].Attrs, i + 1);
4792 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4793 }
4794 }
4795
4796 if (I != E)
4797 return Error(CallLoc, "not enough parameters specified for call");
4798
4799 if (FnAttrs.hasAttributes()) {
4800 if (FnAttrs.hasAlignmentAttr())
4801 return Error(CallLoc, "invoke instructions may not have an alignment");
4802
4803 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4804 AttributeSet::FunctionIndex,
4805 FnAttrs));
4806 }
4807
4808 // Finish off the Attribute and check them
4809 AttributeSet PAL = AttributeSet::get(Context, Attrs);
4810
4811 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
4812 II->setCallingConv(CC);
4813 II->setAttributes(PAL);
4814 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
4815 Inst = II;
4816 return false;
4817 }
4818
4819 /// ParseResume
4820 /// ::= 'resume' TypeAndValue
ParseResume(Instruction * & Inst,PerFunctionState & PFS)4821 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
4822 Value *Exn; LocTy ExnLoc;
4823 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
4824 return true;
4825
4826 ResumeInst *RI = ResumeInst::Create(Exn);
4827 Inst = RI;
4828 return false;
4829 }
4830
4831 //===----------------------------------------------------------------------===//
4832 // Binary Operators.
4833 //===----------------------------------------------------------------------===//
4834
4835 /// ParseArithmetic
4836 /// ::= ArithmeticOps TypeAndValue ',' Value
4837 ///
4838 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
4839 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
ParseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,unsigned OperandType)4840 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
4841 unsigned Opc, unsigned OperandType) {
4842 LocTy Loc; Value *LHS, *RHS;
4843 if (ParseTypeAndValue(LHS, Loc, PFS) ||
4844 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
4845 ParseValue(LHS->getType(), RHS, PFS))
4846 return true;
4847
4848 bool Valid;
4849 switch (OperandType) {
4850 default: llvm_unreachable("Unknown operand type!");
4851 case 0: // int or FP.
4852 Valid = LHS->getType()->isIntOrIntVectorTy() ||
4853 LHS->getType()->isFPOrFPVectorTy();
4854 break;
4855 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
4856 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
4857 }
4858
4859 if (!Valid)
4860 return Error(Loc, "invalid operand type for instruction");
4861
4862 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4863 return false;
4864 }
4865
4866 /// ParseLogical
4867 /// ::= ArithmeticOps TypeAndValue ',' Value {
ParseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)4868 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
4869 unsigned Opc) {
4870 LocTy Loc; Value *LHS, *RHS;
4871 if (ParseTypeAndValue(LHS, Loc, PFS) ||
4872 ParseToken(lltok::comma, "expected ',' in logical operation") ||
4873 ParseValue(LHS->getType(), RHS, PFS))
4874 return true;
4875
4876 if (!LHS->getType()->isIntOrIntVectorTy())
4877 return Error(Loc,"instruction requires integer or integer vector operands");
4878
4879 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4880 return false;
4881 }
4882
4883
4884 /// ParseCompare
4885 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
4886 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
ParseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)4887 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
4888 unsigned Opc) {
4889 // Parse the integer/fp comparison predicate.
4890 LocTy Loc;
4891 unsigned Pred;
4892 Value *LHS, *RHS;
4893 if (ParseCmpPredicate(Pred, Opc) ||
4894 ParseTypeAndValue(LHS, Loc, PFS) ||
4895 ParseToken(lltok::comma, "expected ',' after compare value") ||
4896 ParseValue(LHS->getType(), RHS, PFS))
4897 return true;
4898
4899 if (Opc == Instruction::FCmp) {
4900 if (!LHS->getType()->isFPOrFPVectorTy())
4901 return Error(Loc, "fcmp requires floating point operands");
4902 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
4903 } else {
4904 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
4905 if (!LHS->getType()->isIntOrIntVectorTy() &&
4906 !LHS->getType()->getScalarType()->isPointerTy())
4907 return Error(Loc, "icmp requires integer operands");
4908 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
4909 }
4910 return false;
4911 }
4912
4913 //===----------------------------------------------------------------------===//
4914 // Other Instructions.
4915 //===----------------------------------------------------------------------===//
4916
4917
4918 /// ParseCast
4919 /// ::= CastOpc TypeAndValue 'to' Type
ParseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)4920 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
4921 unsigned Opc) {
4922 LocTy Loc;
4923 Value *Op;
4924 Type *DestTy = nullptr;
4925 if (ParseTypeAndValue(Op, Loc, PFS) ||
4926 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
4927 ParseType(DestTy))
4928 return true;
4929
4930 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
4931 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
4932 return Error(Loc, "invalid cast opcode for cast from '" +
4933 getTypeString(Op->getType()) + "' to '" +
4934 getTypeString(DestTy) + "'");
4935 }
4936 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
4937 return false;
4938 }
4939
4940 /// ParseSelect
4941 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseSelect(Instruction * & Inst,PerFunctionState & PFS)4942 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
4943 LocTy Loc;
4944 Value *Op0, *Op1, *Op2;
4945 if (ParseTypeAndValue(Op0, Loc, PFS) ||
4946 ParseToken(lltok::comma, "expected ',' after select condition") ||
4947 ParseTypeAndValue(Op1, PFS) ||
4948 ParseToken(lltok::comma, "expected ',' after select value") ||
4949 ParseTypeAndValue(Op2, PFS))
4950 return true;
4951
4952 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
4953 return Error(Loc, Reason);
4954
4955 Inst = SelectInst::Create(Op0, Op1, Op2);
4956 return false;
4957 }
4958
4959 /// ParseVA_Arg
4960 /// ::= 'va_arg' TypeAndValue ',' Type
ParseVA_Arg(Instruction * & Inst,PerFunctionState & PFS)4961 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
4962 Value *Op;
4963 Type *EltTy = nullptr;
4964 LocTy TypeLoc;
4965 if (ParseTypeAndValue(Op, PFS) ||
4966 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
4967 ParseType(EltTy, TypeLoc))
4968 return true;
4969
4970 if (!EltTy->isFirstClassType())
4971 return Error(TypeLoc, "va_arg requires operand with first class type");
4972
4973 Inst = new VAArgInst(Op, EltTy);
4974 return false;
4975 }
4976
4977 /// ParseExtractElement
4978 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
ParseExtractElement(Instruction * & Inst,PerFunctionState & PFS)4979 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
4980 LocTy Loc;
4981 Value *Op0, *Op1;
4982 if (ParseTypeAndValue(Op0, Loc, PFS) ||
4983 ParseToken(lltok::comma, "expected ',' after extract value") ||
4984 ParseTypeAndValue(Op1, PFS))
4985 return true;
4986
4987 if (!ExtractElementInst::isValidOperands(Op0, Op1))
4988 return Error(Loc, "invalid extractelement operands");
4989
4990 Inst = ExtractElementInst::Create(Op0, Op1);
4991 return false;
4992 }
4993
4994 /// ParseInsertElement
4995 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseInsertElement(Instruction * & Inst,PerFunctionState & PFS)4996 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
4997 LocTy Loc;
4998 Value *Op0, *Op1, *Op2;
4999 if (ParseTypeAndValue(Op0, Loc, PFS) ||
5000 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5001 ParseTypeAndValue(Op1, PFS) ||
5002 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5003 ParseTypeAndValue(Op2, PFS))
5004 return true;
5005
5006 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5007 return Error(Loc, "invalid insertelement operands");
5008
5009 Inst = InsertElementInst::Create(Op0, Op1, Op2);
5010 return false;
5011 }
5012
5013 /// ParseShuffleVector
5014 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)5015 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5016 LocTy Loc;
5017 Value *Op0, *Op1, *Op2;
5018 if (ParseTypeAndValue(Op0, Loc, PFS) ||
5019 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5020 ParseTypeAndValue(Op1, PFS) ||
5021 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5022 ParseTypeAndValue(Op2, PFS))
5023 return true;
5024
5025 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5026 return Error(Loc, "invalid shufflevector operands");
5027
5028 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5029 return false;
5030 }
5031
5032 /// ParsePHI
5033 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
ParsePHI(Instruction * & Inst,PerFunctionState & PFS)5034 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5035 Type *Ty = nullptr; LocTy TypeLoc;
5036 Value *Op0, *Op1;
5037
5038 if (ParseType(Ty, TypeLoc) ||
5039 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5040 ParseValue(Ty, Op0, PFS) ||
5041 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5042 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5043 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5044 return true;
5045
5046 bool AteExtraComma = false;
5047 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5048 while (1) {
5049 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5050
5051 if (!EatIfPresent(lltok::comma))
5052 break;
5053
5054 if (Lex.getKind() == lltok::MetadataVar) {
5055 AteExtraComma = true;
5056 break;
5057 }
5058
5059 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5060 ParseValue(Ty, Op0, PFS) ||
5061 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5062 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5063 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5064 return true;
5065 }
5066
5067 if (!Ty->isFirstClassType())
5068 return Error(TypeLoc, "phi node must have first class type");
5069
5070 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5071 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5072 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5073 Inst = PN;
5074 return AteExtraComma ? InstExtraComma : InstNormal;
5075 }
5076
5077 /// ParseLandingPad
5078 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5079 /// Clause
5080 /// ::= 'catch' TypeAndValue
5081 /// ::= 'filter'
5082 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
ParseLandingPad(Instruction * & Inst,PerFunctionState & PFS)5083 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5084 Type *Ty = nullptr; LocTy TyLoc;
5085 Value *PersFn; LocTy PersFnLoc;
5086
5087 if (ParseType(Ty, TyLoc) ||
5088 ParseToken(lltok::kw_personality, "expected 'personality'") ||
5089 ParseTypeAndValue(PersFn, PersFnLoc, PFS))
5090 return true;
5091
5092 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, PersFn, 0));
5093 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5094
5095 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5096 LandingPadInst::ClauseType CT;
5097 if (EatIfPresent(lltok::kw_catch))
5098 CT = LandingPadInst::Catch;
5099 else if (EatIfPresent(lltok::kw_filter))
5100 CT = LandingPadInst::Filter;
5101 else
5102 return TokError("expected 'catch' or 'filter' clause type");
5103
5104 Value *V;
5105 LocTy VLoc;
5106 if (ParseTypeAndValue(V, VLoc, PFS))
5107 return true;
5108
5109 // A 'catch' type expects a non-array constant. A filter clause expects an
5110 // array constant.
5111 if (CT == LandingPadInst::Catch) {
5112 if (isa<ArrayType>(V->getType()))
5113 Error(VLoc, "'catch' clause has an invalid type");
5114 } else {
5115 if (!isa<ArrayType>(V->getType()))
5116 Error(VLoc, "'filter' clause has an invalid type");
5117 }
5118
5119 Constant *CV = dyn_cast<Constant>(V);
5120 if (!CV)
5121 return Error(VLoc, "clause argument must be a constant");
5122 LP->addClause(CV);
5123 }
5124
5125 Inst = LP.release();
5126 return false;
5127 }
5128
5129 /// ParseCall
5130 /// ::= 'call' OptionalCallingConv OptionalAttrs Type Value
5131 /// ParameterList OptionalAttrs
5132 /// ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value
5133 /// ParameterList OptionalAttrs
5134 /// ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value
5135 /// ParameterList OptionalAttrs
ParseCall(Instruction * & Inst,PerFunctionState & PFS,CallInst::TailCallKind TCK)5136 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5137 CallInst::TailCallKind TCK) {
5138 AttrBuilder RetAttrs, FnAttrs;
5139 std::vector<unsigned> FwdRefAttrGrps;
5140 LocTy BuiltinLoc;
5141 unsigned CC;
5142 Type *RetType = nullptr;
5143 LocTy RetTypeLoc;
5144 ValID CalleeID;
5145 SmallVector<ParamInfo, 16> ArgList;
5146 LocTy CallLoc = Lex.getLoc();
5147
5148 if ((TCK != CallInst::TCK_None &&
5149 ParseToken(lltok::kw_call, "expected 'tail call'")) ||
5150 ParseOptionalCallingConv(CC) ||
5151 ParseOptionalReturnAttrs(RetAttrs) ||
5152 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5153 ParseValID(CalleeID) ||
5154 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5155 PFS.getFunction().isVarArg()) ||
5156 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5157 BuiltinLoc))
5158 return true;
5159
5160 // If RetType is a non-function pointer type, then this is the short syntax
5161 // for the call, which means that RetType is just the return type. Infer the
5162 // rest of the function argument types from the arguments that are present.
5163 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5164 if (!Ty) {
5165 // Pull out the types of all of the arguments...
5166 std::vector<Type*> ParamTypes;
5167 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5168 ParamTypes.push_back(ArgList[i].V->getType());
5169
5170 if (!FunctionType::isValidReturnType(RetType))
5171 return Error(RetTypeLoc, "Invalid result type for LLVM function");
5172
5173 Ty = FunctionType::get(RetType, ParamTypes, false);
5174 }
5175
5176 // Look up the callee.
5177 Value *Callee;
5178 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5179 return true;
5180
5181 // Set up the Attribute for the function.
5182 SmallVector<AttributeSet, 8> Attrs;
5183 if (RetAttrs.hasAttributes())
5184 Attrs.push_back(AttributeSet::get(RetType->getContext(),
5185 AttributeSet::ReturnIndex,
5186 RetAttrs));
5187
5188 SmallVector<Value*, 8> Args;
5189
5190 // Loop through FunctionType's arguments and ensure they are specified
5191 // correctly. Also, gather any parameter attributes.
5192 FunctionType::param_iterator I = Ty->param_begin();
5193 FunctionType::param_iterator E = Ty->param_end();
5194 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5195 Type *ExpectedTy = nullptr;
5196 if (I != E) {
5197 ExpectedTy = *I++;
5198 } else if (!Ty->isVarArg()) {
5199 return Error(ArgList[i].Loc, "too many arguments specified");
5200 }
5201
5202 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5203 return Error(ArgList[i].Loc, "argument is not of expected type '" +
5204 getTypeString(ExpectedTy) + "'");
5205 Args.push_back(ArgList[i].V);
5206 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5207 AttrBuilder B(ArgList[i].Attrs, i + 1);
5208 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5209 }
5210 }
5211
5212 if (I != E)
5213 return Error(CallLoc, "not enough parameters specified for call");
5214
5215 if (FnAttrs.hasAttributes()) {
5216 if (FnAttrs.hasAlignmentAttr())
5217 return Error(CallLoc, "call instructions may not have an alignment");
5218
5219 Attrs.push_back(AttributeSet::get(RetType->getContext(),
5220 AttributeSet::FunctionIndex,
5221 FnAttrs));
5222 }
5223
5224 // Finish off the Attribute and check them
5225 AttributeSet PAL = AttributeSet::get(Context, Attrs);
5226
5227 CallInst *CI = CallInst::Create(Callee, Args);
5228 CI->setTailCallKind(TCK);
5229 CI->setCallingConv(CC);
5230 CI->setAttributes(PAL);
5231 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5232 Inst = CI;
5233 return false;
5234 }
5235
5236 //===----------------------------------------------------------------------===//
5237 // Memory Instructions.
5238 //===----------------------------------------------------------------------===//
5239
5240 /// ParseAlloc
5241 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)?
ParseAlloc(Instruction * & Inst,PerFunctionState & PFS)5242 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5243 Value *Size = nullptr;
5244 LocTy SizeLoc, TyLoc;
5245 unsigned Alignment = 0;
5246 Type *Ty = nullptr;
5247
5248 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5249
5250 if (ParseType(Ty, TyLoc)) return true;
5251
5252 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5253 return Error(TyLoc, "invalid type for alloca");
5254
5255 bool AteExtraComma = false;
5256 if (EatIfPresent(lltok::comma)) {
5257 if (Lex.getKind() == lltok::kw_align) {
5258 if (ParseOptionalAlignment(Alignment)) return true;
5259 } else if (Lex.getKind() == lltok::MetadataVar) {
5260 AteExtraComma = true;
5261 } else {
5262 if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5263 ParseOptionalCommaAlign(Alignment, AteExtraComma))
5264 return true;
5265 }
5266 }
5267
5268 if (Size && !Size->getType()->isIntegerTy())
5269 return Error(SizeLoc, "element count must have integer type");
5270
5271 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5272 AI->setUsedWithInAlloca(IsInAlloca);
5273 Inst = AI;
5274 return AteExtraComma ? InstExtraComma : InstNormal;
5275 }
5276
5277 /// ParseLoad
5278 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5279 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
5280 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseLoad(Instruction * & Inst,PerFunctionState & PFS)5281 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
5282 Value *Val; LocTy Loc;
5283 unsigned Alignment = 0;
5284 bool AteExtraComma = false;
5285 bool isAtomic = false;
5286 AtomicOrdering Ordering = NotAtomic;
5287 SynchronizationScope Scope = CrossThread;
5288
5289 if (Lex.getKind() == lltok::kw_atomic) {
5290 isAtomic = true;
5291 Lex.Lex();
5292 }
5293
5294 bool isVolatile = false;
5295 if (Lex.getKind() == lltok::kw_volatile) {
5296 isVolatile = true;
5297 Lex.Lex();
5298 }
5299
5300 Type *Ty;
5301 LocTy ExplicitTypeLoc = Lex.getLoc();
5302 if (ParseType(Ty) ||
5303 ParseToken(lltok::comma, "expected comma after load's type") ||
5304 ParseTypeAndValue(Val, Loc, PFS) ||
5305 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5306 ParseOptionalCommaAlign(Alignment, AteExtraComma))
5307 return true;
5308
5309 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
5310 return Error(Loc, "load operand must be a pointer to a first class type");
5311 if (isAtomic && !Alignment)
5312 return Error(Loc, "atomic load must have explicit non-zero alignment");
5313 if (Ordering == Release || Ordering == AcquireRelease)
5314 return Error(Loc, "atomic load cannot use Release ordering");
5315
5316 if (Ty != cast<PointerType>(Val->getType())->getElementType())
5317 return Error(ExplicitTypeLoc,
5318 "explicit pointee type doesn't match operand's pointee type");
5319
5320 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
5321 return AteExtraComma ? InstExtraComma : InstNormal;
5322 }
5323
5324 /// ParseStore
5325
5326 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
5327 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
5328 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseStore(Instruction * & Inst,PerFunctionState & PFS)5329 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
5330 Value *Val, *Ptr; LocTy Loc, PtrLoc;
5331 unsigned Alignment = 0;
5332 bool AteExtraComma = false;
5333 bool isAtomic = false;
5334 AtomicOrdering Ordering = NotAtomic;
5335 SynchronizationScope Scope = CrossThread;
5336
5337 if (Lex.getKind() == lltok::kw_atomic) {
5338 isAtomic = true;
5339 Lex.Lex();
5340 }
5341
5342 bool isVolatile = false;
5343 if (Lex.getKind() == lltok::kw_volatile) {
5344 isVolatile = true;
5345 Lex.Lex();
5346 }
5347
5348 if (ParseTypeAndValue(Val, Loc, PFS) ||
5349 ParseToken(lltok::comma, "expected ',' after store operand") ||
5350 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5351 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5352 ParseOptionalCommaAlign(Alignment, AteExtraComma))
5353 return true;
5354
5355 if (!Ptr->getType()->isPointerTy())
5356 return Error(PtrLoc, "store operand must be a pointer");
5357 if (!Val->getType()->isFirstClassType())
5358 return Error(Loc, "store operand must be a first class value");
5359 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5360 return Error(Loc, "stored value and pointer type do not match");
5361 if (isAtomic && !Alignment)
5362 return Error(Loc, "atomic store must have explicit non-zero alignment");
5363 if (Ordering == Acquire || Ordering == AcquireRelease)
5364 return Error(Loc, "atomic store cannot use Acquire ordering");
5365
5366 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
5367 return AteExtraComma ? InstExtraComma : InstNormal;
5368 }
5369
5370 /// ParseCmpXchg
5371 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
5372 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
ParseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)5373 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
5374 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
5375 bool AteExtraComma = false;
5376 AtomicOrdering SuccessOrdering = NotAtomic;
5377 AtomicOrdering FailureOrdering = NotAtomic;
5378 SynchronizationScope Scope = CrossThread;
5379 bool isVolatile = false;
5380 bool isWeak = false;
5381
5382 if (EatIfPresent(lltok::kw_weak))
5383 isWeak = true;
5384
5385 if (EatIfPresent(lltok::kw_volatile))
5386 isVolatile = true;
5387
5388 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5389 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
5390 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
5391 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
5392 ParseTypeAndValue(New, NewLoc, PFS) ||
5393 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
5394 ParseOrdering(FailureOrdering))
5395 return true;
5396
5397 if (SuccessOrdering == Unordered || FailureOrdering == Unordered)
5398 return TokError("cmpxchg cannot be unordered");
5399 if (SuccessOrdering < FailureOrdering)
5400 return TokError("cmpxchg must be at least as ordered on success as failure");
5401 if (FailureOrdering == Release || FailureOrdering == AcquireRelease)
5402 return TokError("cmpxchg failure ordering cannot include release semantics");
5403 if (!Ptr->getType()->isPointerTy())
5404 return Error(PtrLoc, "cmpxchg operand must be a pointer");
5405 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
5406 return Error(CmpLoc, "compare value and pointer type do not match");
5407 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
5408 return Error(NewLoc, "new value and pointer type do not match");
5409 if (!New->getType()->isIntegerTy())
5410 return Error(NewLoc, "cmpxchg operand must be an integer");
5411 unsigned Size = New->getType()->getPrimitiveSizeInBits();
5412 if (Size < 8 || (Size & (Size - 1)))
5413 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
5414 " integer");
5415
5416 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
5417 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
5418 CXI->setVolatile(isVolatile);
5419 CXI->setWeak(isWeak);
5420 Inst = CXI;
5421 return AteExtraComma ? InstExtraComma : InstNormal;
5422 }
5423
5424 /// ParseAtomicRMW
5425 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
5426 /// 'singlethread'? AtomicOrdering
ParseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)5427 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
5428 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
5429 bool AteExtraComma = false;
5430 AtomicOrdering Ordering = NotAtomic;
5431 SynchronizationScope Scope = CrossThread;
5432 bool isVolatile = false;
5433 AtomicRMWInst::BinOp Operation;
5434
5435 if (EatIfPresent(lltok::kw_volatile))
5436 isVolatile = true;
5437
5438 switch (Lex.getKind()) {
5439 default: return TokError("expected binary operation in atomicrmw");
5440 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
5441 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
5442 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
5443 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
5444 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
5445 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
5446 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
5447 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
5448 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
5449 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
5450 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
5451 }
5452 Lex.Lex(); // Eat the operation.
5453
5454 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5455 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
5456 ParseTypeAndValue(Val, ValLoc, PFS) ||
5457 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5458 return true;
5459
5460 if (Ordering == Unordered)
5461 return TokError("atomicrmw cannot be unordered");
5462 if (!Ptr->getType()->isPointerTy())
5463 return Error(PtrLoc, "atomicrmw operand must be a pointer");
5464 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5465 return Error(ValLoc, "atomicrmw value and pointer type do not match");
5466 if (!Val->getType()->isIntegerTy())
5467 return Error(ValLoc, "atomicrmw operand must be an integer");
5468 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
5469 if (Size < 8 || (Size & (Size - 1)))
5470 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
5471 " integer");
5472
5473 AtomicRMWInst *RMWI =
5474 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
5475 RMWI->setVolatile(isVolatile);
5476 Inst = RMWI;
5477 return AteExtraComma ? InstExtraComma : InstNormal;
5478 }
5479
5480 /// ParseFence
5481 /// ::= 'fence' 'singlethread'? AtomicOrdering
ParseFence(Instruction * & Inst,PerFunctionState & PFS)5482 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
5483 AtomicOrdering Ordering = NotAtomic;
5484 SynchronizationScope Scope = CrossThread;
5485 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5486 return true;
5487
5488 if (Ordering == Unordered)
5489 return TokError("fence cannot be unordered");
5490 if (Ordering == Monotonic)
5491 return TokError("fence cannot be monotonic");
5492
5493 Inst = new FenceInst(Context, Ordering, Scope);
5494 return InstNormal;
5495 }
5496
5497 /// ParseGetElementPtr
5498 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
ParseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)5499 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
5500 Value *Ptr = nullptr;
5501 Value *Val = nullptr;
5502 LocTy Loc, EltLoc;
5503
5504 bool InBounds = EatIfPresent(lltok::kw_inbounds);
5505
5506 Type *Ty = nullptr;
5507 LocTy ExplicitTypeLoc = Lex.getLoc();
5508 if (ParseType(Ty) ||
5509 ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
5510 ParseTypeAndValue(Ptr, Loc, PFS))
5511 return true;
5512
5513 Type *BaseType = Ptr->getType();
5514 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
5515 if (!BasePointerType)
5516 return Error(Loc, "base of getelementptr must be a pointer");
5517
5518 if (Ty != BasePointerType->getElementType())
5519 return Error(ExplicitTypeLoc,
5520 "explicit pointee type doesn't match operand's pointee type");
5521
5522 SmallVector<Value*, 16> Indices;
5523 bool AteExtraComma = false;
5524 while (EatIfPresent(lltok::comma)) {
5525 if (Lex.getKind() == lltok::MetadataVar) {
5526 AteExtraComma = true;
5527 break;
5528 }
5529 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
5530 if (!Val->getType()->getScalarType()->isIntegerTy())
5531 return Error(EltLoc, "getelementptr index must be an integer");
5532 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
5533 return Error(EltLoc, "getelementptr index type missmatch");
5534 if (Val->getType()->isVectorTy()) {
5535 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
5536 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
5537 if (ValNumEl != PtrNumEl)
5538 return Error(EltLoc,
5539 "getelementptr vector index has a wrong number of elements");
5540 }
5541 Indices.push_back(Val);
5542 }
5543
5544 SmallPtrSet<const Type*, 4> Visited;
5545 if (!Indices.empty() &&
5546 !BasePointerType->getElementType()->isSized(&Visited))
5547 return Error(Loc, "base element of getelementptr must be sized");
5548
5549 if (!GetElementPtrInst::getIndexedType(
5550 cast<PointerType>(BaseType->getScalarType())->getElementType(),
5551 Indices))
5552 return Error(Loc, "invalid getelementptr indices");
5553 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
5554 if (InBounds)
5555 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
5556 return AteExtraComma ? InstExtraComma : InstNormal;
5557 }
5558
5559 /// ParseExtractValue
5560 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
ParseExtractValue(Instruction * & Inst,PerFunctionState & PFS)5561 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
5562 Value *Val; LocTy Loc;
5563 SmallVector<unsigned, 4> Indices;
5564 bool AteExtraComma;
5565 if (ParseTypeAndValue(Val, Loc, PFS) ||
5566 ParseIndexList(Indices, AteExtraComma))
5567 return true;
5568
5569 if (!Val->getType()->isAggregateType())
5570 return Error(Loc, "extractvalue operand must be aggregate type");
5571
5572 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
5573 return Error(Loc, "invalid indices for extractvalue");
5574 Inst = ExtractValueInst::Create(Val, Indices);
5575 return AteExtraComma ? InstExtraComma : InstNormal;
5576 }
5577
5578 /// ParseInsertValue
5579 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
ParseInsertValue(Instruction * & Inst,PerFunctionState & PFS)5580 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
5581 Value *Val0, *Val1; LocTy Loc0, Loc1;
5582 SmallVector<unsigned, 4> Indices;
5583 bool AteExtraComma;
5584 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
5585 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
5586 ParseTypeAndValue(Val1, Loc1, PFS) ||
5587 ParseIndexList(Indices, AteExtraComma))
5588 return true;
5589
5590 if (!Val0->getType()->isAggregateType())
5591 return Error(Loc0, "insertvalue operand must be aggregate type");
5592
5593 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
5594 if (!IndexedType)
5595 return Error(Loc0, "invalid indices for insertvalue");
5596 if (IndexedType != Val1->getType())
5597 return Error(Loc1, "insertvalue operand and field disagree in type: '" +
5598 getTypeString(Val1->getType()) + "' instead of '" +
5599 getTypeString(IndexedType) + "'");
5600 Inst = InsertValueInst::Create(Val0, Val1, Indices);
5601 return AteExtraComma ? InstExtraComma : InstNormal;
5602 }
5603
5604 //===----------------------------------------------------------------------===//
5605 // Embedded metadata.
5606 //===----------------------------------------------------------------------===//
5607
5608 /// ParseMDNodeVector
5609 /// ::= { Element (',' Element)* }
5610 /// Element
5611 /// ::= 'null' | TypeAndValue
ParseMDNodeVector(SmallVectorImpl<Metadata * > & Elts)5612 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
5613 if (ParseToken(lltok::lbrace, "expected '{' here"))
5614 return true;
5615
5616 // Check for an empty list.
5617 if (EatIfPresent(lltok::rbrace))
5618 return false;
5619
5620 do {
5621 // Null is a special case since it is typeless.
5622 if (EatIfPresent(lltok::kw_null)) {
5623 Elts.push_back(nullptr);
5624 continue;
5625 }
5626
5627 Metadata *MD;
5628 if (ParseMetadata(MD, nullptr))
5629 return true;
5630 Elts.push_back(MD);
5631 } while (EatIfPresent(lltok::comma));
5632
5633 return ParseToken(lltok::rbrace, "expected end of metadata node");
5634 }
5635
5636 //===----------------------------------------------------------------------===//
5637 // Use-list order directives.
5638 //===----------------------------------------------------------------------===//
sortUseListOrder(Value * V,ArrayRef<unsigned> Indexes,SMLoc Loc)5639 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
5640 SMLoc Loc) {
5641 if (V->use_empty())
5642 return Error(Loc, "value has no uses");
5643
5644 unsigned NumUses = 0;
5645 SmallDenseMap<const Use *, unsigned, 16> Order;
5646 for (const Use &U : V->uses()) {
5647 if (++NumUses > Indexes.size())
5648 break;
5649 Order[&U] = Indexes[NumUses - 1];
5650 }
5651 if (NumUses < 2)
5652 return Error(Loc, "value only has one use");
5653 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
5654 return Error(Loc, "wrong number of indexes, expected " +
5655 Twine(std::distance(V->use_begin(), V->use_end())));
5656
5657 V->sortUseList([&](const Use &L, const Use &R) {
5658 return Order.lookup(&L) < Order.lookup(&R);
5659 });
5660 return false;
5661 }
5662
5663 /// ParseUseListOrderIndexes
5664 /// ::= '{' uint32 (',' uint32)+ '}'
ParseUseListOrderIndexes(SmallVectorImpl<unsigned> & Indexes)5665 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
5666 SMLoc Loc = Lex.getLoc();
5667 if (ParseToken(lltok::lbrace, "expected '{' here"))
5668 return true;
5669 if (Lex.getKind() == lltok::rbrace)
5670 return Lex.Error("expected non-empty list of uselistorder indexes");
5671
5672 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
5673 // indexes should be distinct numbers in the range [0, size-1], and should
5674 // not be in order.
5675 unsigned Offset = 0;
5676 unsigned Max = 0;
5677 bool IsOrdered = true;
5678 assert(Indexes.empty() && "Expected empty order vector");
5679 do {
5680 unsigned Index;
5681 if (ParseUInt32(Index))
5682 return true;
5683
5684 // Update consistency checks.
5685 Offset += Index - Indexes.size();
5686 Max = std::max(Max, Index);
5687 IsOrdered &= Index == Indexes.size();
5688
5689 Indexes.push_back(Index);
5690 } while (EatIfPresent(lltok::comma));
5691
5692 if (ParseToken(lltok::rbrace, "expected '}' here"))
5693 return true;
5694
5695 if (Indexes.size() < 2)
5696 return Error(Loc, "expected >= 2 uselistorder indexes");
5697 if (Offset != 0 || Max >= Indexes.size())
5698 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
5699 if (IsOrdered)
5700 return Error(Loc, "expected uselistorder indexes to change the order");
5701
5702 return false;
5703 }
5704
5705 /// ParseUseListOrder
5706 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
ParseUseListOrder(PerFunctionState * PFS)5707 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
5708 SMLoc Loc = Lex.getLoc();
5709 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
5710 return true;
5711
5712 Value *V;
5713 SmallVector<unsigned, 16> Indexes;
5714 if (ParseTypeAndValue(V, PFS) ||
5715 ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
5716 ParseUseListOrderIndexes(Indexes))
5717 return true;
5718
5719 return sortUseListOrder(V, Indexes, Loc);
5720 }
5721
5722 /// ParseUseListOrderBB
5723 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
ParseUseListOrderBB()5724 bool LLParser::ParseUseListOrderBB() {
5725 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
5726 SMLoc Loc = Lex.getLoc();
5727 Lex.Lex();
5728
5729 ValID Fn, Label;
5730 SmallVector<unsigned, 16> Indexes;
5731 if (ParseValID(Fn) ||
5732 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
5733 ParseValID(Label) ||
5734 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
5735 ParseUseListOrderIndexes(Indexes))
5736 return true;
5737
5738 // Check the function.
5739 GlobalValue *GV;
5740 if (Fn.Kind == ValID::t_GlobalName)
5741 GV = M->getNamedValue(Fn.StrVal);
5742 else if (Fn.Kind == ValID::t_GlobalID)
5743 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
5744 else
5745 return Error(Fn.Loc, "expected function name in uselistorder_bb");
5746 if (!GV)
5747 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
5748 auto *F = dyn_cast<Function>(GV);
5749 if (!F)
5750 return Error(Fn.Loc, "expected function name in uselistorder_bb");
5751 if (F->isDeclaration())
5752 return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
5753
5754 // Check the basic block.
5755 if (Label.Kind == ValID::t_LocalID)
5756 return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
5757 if (Label.Kind != ValID::t_LocalName)
5758 return Error(Label.Loc, "expected basic block name in uselistorder_bb");
5759 Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
5760 if (!V)
5761 return Error(Label.Loc, "invalid basic block in uselistorder_bb");
5762 if (!isa<BasicBlock>(V))
5763 return Error(Label.Loc, "expected basic block in uselistorder_bb");
5764
5765 return sortUseListOrder(V, Indexes, Loc);
5766 }
5767