1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LiveRangeEdit class represents changes done to a virtual register when it
11 // is spilled or split.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/LiveRangeEdit.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/CalcSpillWeights.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23
24 using namespace llvm;
25
26 #define DEBUG_TYPE "regalloc"
27
28 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE");
29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
30 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
31
anchor()32 void LiveRangeEdit::Delegate::anchor() { }
33
createEmptyIntervalFrom(unsigned OldReg)34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) {
35 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
36 if (VRM) {
37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
38 }
39 LiveInterval &LI = LIS.createEmptyInterval(VReg);
40 return LI;
41 }
42
createFrom(unsigned OldReg)43 unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
44 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
45 if (VRM) {
46 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
47 }
48 return VReg;
49 }
50
checkRematerializable(VNInfo * VNI,const MachineInstr * DefMI,AliasAnalysis * aa)51 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
52 const MachineInstr *DefMI,
53 AliasAnalysis *aa) {
54 assert(DefMI && "Missing instruction");
55 ScannedRemattable = true;
56 if (!TII.isTriviallyReMaterializable(DefMI, aa))
57 return false;
58 Remattable.insert(VNI);
59 return true;
60 }
61
scanRemattable(AliasAnalysis * aa)62 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
63 for (VNInfo *VNI : getParent().valnos) {
64 if (VNI->isUnused())
65 continue;
66 MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
67 if (!DefMI)
68 continue;
69 checkRematerializable(VNI, DefMI, aa);
70 }
71 ScannedRemattable = true;
72 }
73
anyRematerializable(AliasAnalysis * aa)74 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
75 if (!ScannedRemattable)
76 scanRemattable(aa);
77 return !Remattable.empty();
78 }
79
80 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
81 /// OrigIdx are also available with the same value at UseIdx.
allUsesAvailableAt(const MachineInstr * OrigMI,SlotIndex OrigIdx,SlotIndex UseIdx) const82 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
83 SlotIndex OrigIdx,
84 SlotIndex UseIdx) const {
85 OrigIdx = OrigIdx.getRegSlot(true);
86 UseIdx = UseIdx.getRegSlot(true);
87 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
88 const MachineOperand &MO = OrigMI->getOperand(i);
89 if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
90 continue;
91
92 // We can't remat physreg uses, unless it is a constant.
93 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
94 if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
95 continue;
96 return false;
97 }
98
99 LiveInterval &li = LIS.getInterval(MO.getReg());
100 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
101 if (!OVNI)
102 continue;
103
104 // Don't allow rematerialization immediately after the original def.
105 // It would be incorrect if OrigMI redefines the register.
106 // See PR14098.
107 if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
108 return false;
109
110 if (OVNI != li.getVNInfoAt(UseIdx))
111 return false;
112 }
113 return true;
114 }
115
canRematerializeAt(Remat & RM,SlotIndex UseIdx,bool cheapAsAMove)116 bool LiveRangeEdit::canRematerializeAt(Remat &RM,
117 SlotIndex UseIdx,
118 bool cheapAsAMove) {
119 assert(ScannedRemattable && "Call anyRematerializable first");
120
121 // Use scanRemattable info.
122 if (!Remattable.count(RM.ParentVNI))
123 return false;
124
125 // No defining instruction provided.
126 SlotIndex DefIdx;
127 if (RM.OrigMI)
128 DefIdx = LIS.getInstructionIndex(RM.OrigMI);
129 else {
130 DefIdx = RM.ParentVNI->def;
131 RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
132 assert(RM.OrigMI && "No defining instruction for remattable value");
133 }
134
135 // If only cheap remats were requested, bail out early.
136 if (cheapAsAMove && !TII.isAsCheapAsAMove(RM.OrigMI))
137 return false;
138
139 // Verify that all used registers are available with the same values.
140 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
141 return false;
142
143 return true;
144 }
145
rematerializeAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,const Remat & RM,const TargetRegisterInfo & tri,bool Late)146 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
147 MachineBasicBlock::iterator MI,
148 unsigned DestReg,
149 const Remat &RM,
150 const TargetRegisterInfo &tri,
151 bool Late) {
152 assert(RM.OrigMI && "Invalid remat");
153 TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
154 Rematted.insert(RM.ParentVNI);
155 return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
156 .getRegSlot();
157 }
158
eraseVirtReg(unsigned Reg)159 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
160 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
161 LIS.removeInterval(Reg);
162 }
163
foldAsLoad(LiveInterval * LI,SmallVectorImpl<MachineInstr * > & Dead)164 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
165 SmallVectorImpl<MachineInstr*> &Dead) {
166 MachineInstr *DefMI = nullptr, *UseMI = nullptr;
167
168 // Check that there is a single def and a single use.
169 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
170 MachineInstr *MI = MO.getParent();
171 if (MO.isDef()) {
172 if (DefMI && DefMI != MI)
173 return false;
174 if (!MI->canFoldAsLoad())
175 return false;
176 DefMI = MI;
177 } else if (!MO.isUndef()) {
178 if (UseMI && UseMI != MI)
179 return false;
180 // FIXME: Targets don't know how to fold subreg uses.
181 if (MO.getSubReg())
182 return false;
183 UseMI = MI;
184 }
185 }
186 if (!DefMI || !UseMI)
187 return false;
188
189 // Since we're moving the DefMI load, make sure we're not extending any live
190 // ranges.
191 if (!allUsesAvailableAt(DefMI,
192 LIS.getInstructionIndex(DefMI),
193 LIS.getInstructionIndex(UseMI)))
194 return false;
195
196 // We also need to make sure it is safe to move the load.
197 // Assume there are stores between DefMI and UseMI.
198 bool SawStore = true;
199 if (!DefMI->isSafeToMove(&TII, nullptr, SawStore))
200 return false;
201
202 DEBUG(dbgs() << "Try to fold single def: " << *DefMI
203 << " into single use: " << *UseMI);
204
205 SmallVector<unsigned, 8> Ops;
206 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
207 return false;
208
209 MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
210 if (!FoldMI)
211 return false;
212 DEBUG(dbgs() << " folded: " << *FoldMI);
213 LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
214 UseMI->eraseFromParent();
215 DefMI->addRegisterDead(LI->reg, nullptr);
216 Dead.push_back(DefMI);
217 ++NumDCEFoldedLoads;
218 return true;
219 }
220
221 /// Find all live intervals that need to shrink, then remove the instruction.
eliminateDeadDef(MachineInstr * MI,ToShrinkSet & ToShrink)222 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
223 assert(MI->allDefsAreDead() && "Def isn't really dead");
224 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
225
226 // Never delete a bundled instruction.
227 if (MI->isBundled()) {
228 return;
229 }
230 // Never delete inline asm.
231 if (MI->isInlineAsm()) {
232 DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
233 return;
234 }
235
236 // Use the same criteria as DeadMachineInstructionElim.
237 bool SawStore = false;
238 if (!MI->isSafeToMove(&TII, nullptr, SawStore)) {
239 DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
240 return;
241 }
242
243 DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
244
245 // Collect virtual registers to be erased after MI is gone.
246 SmallVector<unsigned, 8> RegsToErase;
247 bool ReadsPhysRegs = false;
248
249 // Check for live intervals that may shrink
250 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
251 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
252 if (!MOI->isReg())
253 continue;
254 unsigned Reg = MOI->getReg();
255 if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
256 // Check if MI reads any unreserved physregs.
257 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
258 ReadsPhysRegs = true;
259 else if (MOI->isDef())
260 LIS.removePhysRegDefAt(Reg, Idx);
261 continue;
262 }
263 LiveInterval &LI = LIS.getInterval(Reg);
264
265 // Shrink read registers, unless it is likely to be expensive and
266 // unlikely to change anything. We typically don't want to shrink the
267 // PIC base register that has lots of uses everywhere.
268 // Always shrink COPY uses that probably come from live range splitting.
269 if (MI->readsVirtualRegister(Reg) &&
270 (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
271 LI.Query(Idx).isKill()))
272 ToShrink.insert(&LI);
273
274 // Remove defined value.
275 if (MOI->isDef()) {
276 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
277 TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
278 LIS.removeVRegDefAt(LI, Idx);
279 if (LI.empty())
280 RegsToErase.push_back(Reg);
281 }
282 }
283
284 // Currently, we don't support DCE of physreg live ranges. If MI reads
285 // any unreserved physregs, don't erase the instruction, but turn it into
286 // a KILL instead. This way, the physreg live ranges don't end up
287 // dangling.
288 // FIXME: It would be better to have something like shrinkToUses() for
289 // physregs. That could potentially enable more DCE and it would free up
290 // the physreg. It would not happen often, though.
291 if (ReadsPhysRegs) {
292 MI->setDesc(TII.get(TargetOpcode::KILL));
293 // Remove all operands that aren't physregs.
294 for (unsigned i = MI->getNumOperands(); i; --i) {
295 const MachineOperand &MO = MI->getOperand(i-1);
296 if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
297 continue;
298 MI->RemoveOperand(i-1);
299 }
300 DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
301 } else {
302 if (TheDelegate)
303 TheDelegate->LRE_WillEraseInstruction(MI);
304 LIS.RemoveMachineInstrFromMaps(MI);
305 MI->eraseFromParent();
306 ++NumDCEDeleted;
307 }
308
309 // Erase any virtregs that are now empty and unused. There may be <undef>
310 // uses around. Keep the empty live range in that case.
311 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
312 unsigned Reg = RegsToErase[i];
313 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
314 ToShrink.remove(&LIS.getInterval(Reg));
315 eraseVirtReg(Reg);
316 }
317 }
318 }
319
eliminateDeadDefs(SmallVectorImpl<MachineInstr * > & Dead,ArrayRef<unsigned> RegsBeingSpilled)320 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
321 ArrayRef<unsigned> RegsBeingSpilled) {
322 ToShrinkSet ToShrink;
323
324 for (;;) {
325 // Erase all dead defs.
326 while (!Dead.empty())
327 eliminateDeadDef(Dead.pop_back_val(), ToShrink);
328
329 if (ToShrink.empty())
330 break;
331
332 // Shrink just one live interval. Then delete new dead defs.
333 LiveInterval *LI = ToShrink.back();
334 ToShrink.pop_back();
335 if (foldAsLoad(LI, Dead))
336 continue;
337 if (TheDelegate)
338 TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
339 if (!LIS.shrinkToUses(LI, &Dead))
340 continue;
341
342 // Don't create new intervals for a register being spilled.
343 // The new intervals would have to be spilled anyway so its not worth it.
344 // Also they currently aren't spilled so creating them and not spilling
345 // them results in incorrect code.
346 bool BeingSpilled = false;
347 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
348 if (LI->reg == RegsBeingSpilled[i]) {
349 BeingSpilled = true;
350 break;
351 }
352 }
353
354 if (BeingSpilled) continue;
355
356 // LI may have been separated, create new intervals.
357 LI->RenumberValues();
358 ConnectedVNInfoEqClasses ConEQ(LIS);
359 unsigned NumComp = ConEQ.Classify(LI);
360 if (NumComp <= 1)
361 continue;
362 ++NumFracRanges;
363 bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
364 DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
365 SmallVector<LiveInterval*, 8> Dups(1, LI);
366 for (unsigned i = 1; i != NumComp; ++i) {
367 Dups.push_back(&createEmptyIntervalFrom(LI->reg));
368 // If LI is an original interval that hasn't been split yet, make the new
369 // intervals their own originals instead of referring to LI. The original
370 // interval must contain all the split products, and LI doesn't.
371 if (IsOriginal)
372 VRM->setIsSplitFromReg(Dups.back()->reg, 0);
373 if (TheDelegate)
374 TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
375 }
376 ConEQ.Distribute(&Dups[0], MRI);
377 DEBUG({
378 for (unsigned i = 0; i != NumComp; ++i)
379 dbgs() << '\t' << *Dups[i] << '\n';
380 });
381 }
382 }
383
384 // Keep track of new virtual registers created via
385 // MachineRegisterInfo::createVirtualRegister.
386 void
MRI_NoteNewVirtualRegister(unsigned VReg)387 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
388 {
389 if (VRM)
390 VRM->grow();
391
392 NewRegs.push_back(VReg);
393 }
394
395 void
calculateRegClassAndHint(MachineFunction & MF,const MachineLoopInfo & Loops,const MachineBlockFrequencyInfo & MBFI)396 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
397 const MachineLoopInfo &Loops,
398 const MachineBlockFrequencyInfo &MBFI) {
399 VirtRegAuxInfo VRAI(MF, LIS, Loops, MBFI);
400 for (unsigned I = 0, Size = size(); I < Size; ++I) {
401 LiveInterval &LI = LIS.getInterval(get(I));
402 if (MRI.recomputeRegClass(LI.reg))
403 DEBUG({
404 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
405 dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
406 << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
407 });
408 VRAI.calculateSpillWeightAndHint(LI);
409 }
410 }
411