1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The implementation for the loop memory dependence that was originally
11 // developed for the loop vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/LoopAccessAnalysis.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/VectorUtils.h"
26 using namespace llvm;
27
28 #define DEBUG_TYPE "loop-accesses"
29
30 static cl::opt<unsigned, true>
31 VectorizationFactor("force-vector-width", cl::Hidden,
32 cl::desc("Sets the SIMD width. Zero is autoselect."),
33 cl::location(VectorizerParams::VectorizationFactor));
34 unsigned VectorizerParams::VectorizationFactor;
35
36 static cl::opt<unsigned, true>
37 VectorizationInterleave("force-vector-interleave", cl::Hidden,
38 cl::desc("Sets the vectorization interleave count. "
39 "Zero is autoselect."),
40 cl::location(
41 VectorizerParams::VectorizationInterleave));
42 unsigned VectorizerParams::VectorizationInterleave;
43
44 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45 "runtime-memory-check-threshold", cl::Hidden,
46 cl::desc("When performing memory disambiguation checks at runtime do not "
47 "generate more than this number of comparisons (default = 8)."),
48 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50
51 /// Maximum SIMD width.
52 const unsigned VectorizerParams::MaxVectorWidth = 64;
53
54 /// \brief We collect interesting dependences up to this threshold.
55 static cl::opt<unsigned> MaxInterestingDependence(
56 "max-interesting-dependences", cl::Hidden,
57 cl::desc("Maximum number of interesting dependences collected by "
58 "loop-access analysis (default = 100)"),
59 cl::init(100));
60
isInterleaveForced()61 bool VectorizerParams::isInterleaveForced() {
62 return ::VectorizationInterleave.getNumOccurrences() > 0;
63 }
64
emitAnalysis(const LoopAccessReport & Message,const Function * TheFunction,const Loop * TheLoop,const char * PassName)65 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
66 const Function *TheFunction,
67 const Loop *TheLoop,
68 const char *PassName) {
69 DebugLoc DL = TheLoop->getStartLoc();
70 if (const Instruction *I = Message.getInstr())
71 DL = I->getDebugLoc();
72 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
73 *TheFunction, DL, Message.str());
74 }
75
stripIntegerCast(Value * V)76 Value *llvm::stripIntegerCast(Value *V) {
77 if (CastInst *CI = dyn_cast<CastInst>(V))
78 if (CI->getOperand(0)->getType()->isIntegerTy())
79 return CI->getOperand(0);
80 return V;
81 }
82
replaceSymbolicStrideSCEV(ScalarEvolution * SE,const ValueToValueMap & PtrToStride,Value * Ptr,Value * OrigPtr)83 const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
84 const ValueToValueMap &PtrToStride,
85 Value *Ptr, Value *OrigPtr) {
86
87 const SCEV *OrigSCEV = SE->getSCEV(Ptr);
88
89 // If there is an entry in the map return the SCEV of the pointer with the
90 // symbolic stride replaced by one.
91 ValueToValueMap::const_iterator SI =
92 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
93 if (SI != PtrToStride.end()) {
94 Value *StrideVal = SI->second;
95
96 // Strip casts.
97 StrideVal = stripIntegerCast(StrideVal);
98
99 // Replace symbolic stride by one.
100 Value *One = ConstantInt::get(StrideVal->getType(), 1);
101 ValueToValueMap RewriteMap;
102 RewriteMap[StrideVal] = One;
103
104 const SCEV *ByOne =
105 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
106 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
107 << "\n");
108 return ByOne;
109 }
110
111 // Otherwise, just return the SCEV of the original pointer.
112 return SE->getSCEV(Ptr);
113 }
114
insert(ScalarEvolution * SE,Loop * Lp,Value * Ptr,bool WritePtr,unsigned DepSetId,unsigned ASId,const ValueToValueMap & Strides)115 void LoopAccessInfo::RuntimePointerCheck::insert(
116 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
117 unsigned ASId, const ValueToValueMap &Strides) {
118 // Get the stride replaced scev.
119 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
120 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
121 assert(AR && "Invalid addrec expression");
122 const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
123 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
124 Pointers.push_back(Ptr);
125 Starts.push_back(AR->getStart());
126 Ends.push_back(ScEnd);
127 IsWritePtr.push_back(WritePtr);
128 DependencySetId.push_back(DepSetId);
129 AliasSetId.push_back(ASId);
130 }
131
needsChecking(unsigned I,unsigned J,const SmallVectorImpl<int> * PtrPartition) const132 bool LoopAccessInfo::RuntimePointerCheck::needsChecking(
133 unsigned I, unsigned J, const SmallVectorImpl<int> *PtrPartition) const {
134 // No need to check if two readonly pointers intersect.
135 if (!IsWritePtr[I] && !IsWritePtr[J])
136 return false;
137
138 // Only need to check pointers between two different dependency sets.
139 if (DependencySetId[I] == DependencySetId[J])
140 return false;
141
142 // Only need to check pointers in the same alias set.
143 if (AliasSetId[I] != AliasSetId[J])
144 return false;
145
146 // If PtrPartition is set omit checks between pointers of the same partition.
147 // Partition number -1 means that the pointer is used in multiple partitions.
148 // In this case we can't omit the check.
149 if (PtrPartition && (*PtrPartition)[I] != -1 &&
150 (*PtrPartition)[I] == (*PtrPartition)[J])
151 return false;
152
153 return true;
154 }
155
print(raw_ostream & OS,unsigned Depth,const SmallVectorImpl<int> * PtrPartition) const156 void LoopAccessInfo::RuntimePointerCheck::print(
157 raw_ostream &OS, unsigned Depth,
158 const SmallVectorImpl<int> *PtrPartition) const {
159 unsigned NumPointers = Pointers.size();
160 if (NumPointers == 0)
161 return;
162
163 OS.indent(Depth) << "Run-time memory checks:\n";
164 unsigned N = 0;
165 for (unsigned I = 0; I < NumPointers; ++I)
166 for (unsigned J = I + 1; J < NumPointers; ++J)
167 if (needsChecking(I, J, PtrPartition)) {
168 OS.indent(Depth) << N++ << ":\n";
169 OS.indent(Depth + 2) << *Pointers[I];
170 if (PtrPartition)
171 OS << " (Partition: " << (*PtrPartition)[I] << ")";
172 OS << "\n";
173 OS.indent(Depth + 2) << *Pointers[J];
174 if (PtrPartition)
175 OS << " (Partition: " << (*PtrPartition)[J] << ")";
176 OS << "\n";
177 }
178 }
179
needsAnyChecking(const SmallVectorImpl<int> * PtrPartition) const180 bool LoopAccessInfo::RuntimePointerCheck::needsAnyChecking(
181 const SmallVectorImpl<int> *PtrPartition) const {
182 unsigned NumPointers = Pointers.size();
183
184 for (unsigned I = 0; I < NumPointers; ++I)
185 for (unsigned J = I + 1; J < NumPointers; ++J)
186 if (needsChecking(I, J, PtrPartition))
187 return true;
188 return false;
189 }
190
191 namespace {
192 /// \brief Analyses memory accesses in a loop.
193 ///
194 /// Checks whether run time pointer checks are needed and builds sets for data
195 /// dependence checking.
196 class AccessAnalysis {
197 public:
198 /// \brief Read or write access location.
199 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
200 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
201
AccessAnalysis(const DataLayout & Dl,AliasAnalysis * AA,MemoryDepChecker::DepCandidates & DA)202 AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA,
203 MemoryDepChecker::DepCandidates &DA)
204 : DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {}
205
206 /// \brief Register a load and whether it is only read from.
addLoad(AliasAnalysis::Location & Loc,bool IsReadOnly)207 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) {
208 Value *Ptr = const_cast<Value*>(Loc.Ptr);
209 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
210 Accesses.insert(MemAccessInfo(Ptr, false));
211 if (IsReadOnly)
212 ReadOnlyPtr.insert(Ptr);
213 }
214
215 /// \brief Register a store.
addStore(AliasAnalysis::Location & Loc)216 void addStore(AliasAnalysis::Location &Loc) {
217 Value *Ptr = const_cast<Value*>(Loc.Ptr);
218 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
219 Accesses.insert(MemAccessInfo(Ptr, true));
220 }
221
222 /// \brief Check whether we can check the pointers at runtime for
223 /// non-intersection.
224 bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck,
225 unsigned &NumComparisons, ScalarEvolution *SE,
226 Loop *TheLoop, const ValueToValueMap &Strides,
227 bool ShouldCheckStride = false);
228
229 /// \brief Goes over all memory accesses, checks whether a RT check is needed
230 /// and builds sets of dependent accesses.
buildDependenceSets()231 void buildDependenceSets() {
232 processMemAccesses();
233 }
234
isRTCheckNeeded()235 bool isRTCheckNeeded() { return IsRTCheckNeeded; }
236
isDependencyCheckNeeded()237 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
resetDepChecks()238 void resetDepChecks() { CheckDeps.clear(); }
239
getDependenciesToCheck()240 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
241
242 private:
243 typedef SetVector<MemAccessInfo> PtrAccessSet;
244
245 /// \brief Go over all memory access and check whether runtime pointer checks
246 /// are needed /// and build sets of dependency check candidates.
247 void processMemAccesses();
248
249 /// Set of all accesses.
250 PtrAccessSet Accesses;
251
252 const DataLayout &DL;
253
254 /// Set of accesses that need a further dependence check.
255 MemAccessInfoSet CheckDeps;
256
257 /// Set of pointers that are read only.
258 SmallPtrSet<Value*, 16> ReadOnlyPtr;
259
260 /// An alias set tracker to partition the access set by underlying object and
261 //intrinsic property (such as TBAA metadata).
262 AliasSetTracker AST;
263
264 /// Sets of potentially dependent accesses - members of one set share an
265 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
266 /// dependence check.
267 MemoryDepChecker::DepCandidates &DepCands;
268
269 bool IsRTCheckNeeded;
270 };
271
272 } // end anonymous namespace
273
274 /// \brief Check whether a pointer can participate in a runtime bounds check.
hasComputableBounds(ScalarEvolution * SE,const ValueToValueMap & Strides,Value * Ptr)275 static bool hasComputableBounds(ScalarEvolution *SE,
276 const ValueToValueMap &Strides, Value *Ptr) {
277 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
278 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
279 if (!AR)
280 return false;
281
282 return AR->isAffine();
283 }
284
285 /// \brief Check the stride of the pointer and ensure that it does not wrap in
286 /// the address space.
287 static int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
288 const ValueToValueMap &StridesMap);
289
canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck & RtCheck,unsigned & NumComparisons,ScalarEvolution * SE,Loop * TheLoop,const ValueToValueMap & StridesMap,bool ShouldCheckStride)290 bool AccessAnalysis::canCheckPtrAtRT(
291 LoopAccessInfo::RuntimePointerCheck &RtCheck, unsigned &NumComparisons,
292 ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap,
293 bool ShouldCheckStride) {
294 // Find pointers with computable bounds. We are going to use this information
295 // to place a runtime bound check.
296 bool CanDoRT = true;
297
298 bool IsDepCheckNeeded = isDependencyCheckNeeded();
299 NumComparisons = 0;
300
301 // We assign a consecutive id to access from different alias sets.
302 // Accesses between different groups doesn't need to be checked.
303 unsigned ASId = 1;
304 for (auto &AS : AST) {
305 unsigned NumReadPtrChecks = 0;
306 unsigned NumWritePtrChecks = 0;
307
308 // We assign consecutive id to access from different dependence sets.
309 // Accesses within the same set don't need a runtime check.
310 unsigned RunningDepId = 1;
311 DenseMap<Value *, unsigned> DepSetId;
312
313 for (auto A : AS) {
314 Value *Ptr = A.getValue();
315 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
316 MemAccessInfo Access(Ptr, IsWrite);
317
318 if (IsWrite)
319 ++NumWritePtrChecks;
320 else
321 ++NumReadPtrChecks;
322
323 if (hasComputableBounds(SE, StridesMap, Ptr) &&
324 // When we run after a failing dependency check we have to make sure
325 // we don't have wrapping pointers.
326 (!ShouldCheckStride ||
327 isStridedPtr(SE, Ptr, TheLoop, StridesMap) == 1)) {
328 // The id of the dependence set.
329 unsigned DepId;
330
331 if (IsDepCheckNeeded) {
332 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
333 unsigned &LeaderId = DepSetId[Leader];
334 if (!LeaderId)
335 LeaderId = RunningDepId++;
336 DepId = LeaderId;
337 } else
338 // Each access has its own dependence set.
339 DepId = RunningDepId++;
340
341 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
342
343 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
344 } else {
345 CanDoRT = false;
346 }
347 }
348
349 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
350 NumComparisons += 0; // Only one dependence set.
351 else {
352 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks +
353 NumWritePtrChecks - 1));
354 }
355
356 ++ASId;
357 }
358
359 // If the pointers that we would use for the bounds comparison have different
360 // address spaces, assume the values aren't directly comparable, so we can't
361 // use them for the runtime check. We also have to assume they could
362 // overlap. In the future there should be metadata for whether address spaces
363 // are disjoint.
364 unsigned NumPointers = RtCheck.Pointers.size();
365 for (unsigned i = 0; i < NumPointers; ++i) {
366 for (unsigned j = i + 1; j < NumPointers; ++j) {
367 // Only need to check pointers between two different dependency sets.
368 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
369 continue;
370 // Only need to check pointers in the same alias set.
371 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
372 continue;
373
374 Value *PtrI = RtCheck.Pointers[i];
375 Value *PtrJ = RtCheck.Pointers[j];
376
377 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
378 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
379 if (ASi != ASj) {
380 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
381 " different address spaces\n");
382 return false;
383 }
384 }
385 }
386
387 return CanDoRT;
388 }
389
processMemAccesses()390 void AccessAnalysis::processMemAccesses() {
391 // We process the set twice: first we process read-write pointers, last we
392 // process read-only pointers. This allows us to skip dependence tests for
393 // read-only pointers.
394
395 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
396 DEBUG(dbgs() << " AST: "; AST.dump());
397 DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
398 DEBUG({
399 for (auto A : Accesses)
400 dbgs() << "\t" << *A.getPointer() << " (" <<
401 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
402 "read-only" : "read")) << ")\n";
403 });
404
405 // The AliasSetTracker has nicely partitioned our pointers by metadata
406 // compatibility and potential for underlying-object overlap. As a result, we
407 // only need to check for potential pointer dependencies within each alias
408 // set.
409 for (auto &AS : AST) {
410 // Note that both the alias-set tracker and the alias sets themselves used
411 // linked lists internally and so the iteration order here is deterministic
412 // (matching the original instruction order within each set).
413
414 bool SetHasWrite = false;
415
416 // Map of pointers to last access encountered.
417 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
418 UnderlyingObjToAccessMap ObjToLastAccess;
419
420 // Set of access to check after all writes have been processed.
421 PtrAccessSet DeferredAccesses;
422
423 // Iterate over each alias set twice, once to process read/write pointers,
424 // and then to process read-only pointers.
425 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
426 bool UseDeferred = SetIteration > 0;
427 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
428
429 for (auto AV : AS) {
430 Value *Ptr = AV.getValue();
431
432 // For a single memory access in AliasSetTracker, Accesses may contain
433 // both read and write, and they both need to be handled for CheckDeps.
434 for (auto AC : S) {
435 if (AC.getPointer() != Ptr)
436 continue;
437
438 bool IsWrite = AC.getInt();
439
440 // If we're using the deferred access set, then it contains only
441 // reads.
442 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
443 if (UseDeferred && !IsReadOnlyPtr)
444 continue;
445 // Otherwise, the pointer must be in the PtrAccessSet, either as a
446 // read or a write.
447 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
448 S.count(MemAccessInfo(Ptr, false))) &&
449 "Alias-set pointer not in the access set?");
450
451 MemAccessInfo Access(Ptr, IsWrite);
452 DepCands.insert(Access);
453
454 // Memorize read-only pointers for later processing and skip them in
455 // the first round (they need to be checked after we have seen all
456 // write pointers). Note: we also mark pointer that are not
457 // consecutive as "read-only" pointers (so that we check
458 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
459 if (!UseDeferred && IsReadOnlyPtr) {
460 DeferredAccesses.insert(Access);
461 continue;
462 }
463
464 // If this is a write - check other reads and writes for conflicts. If
465 // this is a read only check other writes for conflicts (but only if
466 // there is no other write to the ptr - this is an optimization to
467 // catch "a[i] = a[i] + " without having to do a dependence check).
468 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
469 CheckDeps.insert(Access);
470 IsRTCheckNeeded = true;
471 }
472
473 if (IsWrite)
474 SetHasWrite = true;
475
476 // Create sets of pointers connected by a shared alias set and
477 // underlying object.
478 typedef SmallVector<Value *, 16> ValueVector;
479 ValueVector TempObjects;
480 GetUnderlyingObjects(Ptr, TempObjects, DL);
481 for (Value *UnderlyingObj : TempObjects) {
482 UnderlyingObjToAccessMap::iterator Prev =
483 ObjToLastAccess.find(UnderlyingObj);
484 if (Prev != ObjToLastAccess.end())
485 DepCands.unionSets(Access, Prev->second);
486
487 ObjToLastAccess[UnderlyingObj] = Access;
488 }
489 }
490 }
491 }
492 }
493 }
494
isInBoundsGep(Value * Ptr)495 static bool isInBoundsGep(Value *Ptr) {
496 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
497 return GEP->isInBounds();
498 return false;
499 }
500
501 /// \brief Check whether the access through \p Ptr has a constant stride.
isStridedPtr(ScalarEvolution * SE,Value * Ptr,const Loop * Lp,const ValueToValueMap & StridesMap)502 static int isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
503 const ValueToValueMap &StridesMap) {
504 const Type *Ty = Ptr->getType();
505 assert(Ty->isPointerTy() && "Unexpected non-ptr");
506
507 // Make sure that the pointer does not point to aggregate types.
508 const PointerType *PtrTy = cast<PointerType>(Ty);
509 if (PtrTy->getElementType()->isAggregateType()) {
510 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
511 << *Ptr << "\n");
512 return 0;
513 }
514
515 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
516
517 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
518 if (!AR) {
519 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
520 << *Ptr << " SCEV: " << *PtrScev << "\n");
521 return 0;
522 }
523
524 // The accesss function must stride over the innermost loop.
525 if (Lp != AR->getLoop()) {
526 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
527 *Ptr << " SCEV: " << *PtrScev << "\n");
528 }
529
530 // The address calculation must not wrap. Otherwise, a dependence could be
531 // inverted.
532 // An inbounds getelementptr that is a AddRec with a unit stride
533 // cannot wrap per definition. The unit stride requirement is checked later.
534 // An getelementptr without an inbounds attribute and unit stride would have
535 // to access the pointer value "0" which is undefined behavior in address
536 // space 0, therefore we can also vectorize this case.
537 bool IsInBoundsGEP = isInBoundsGep(Ptr);
538 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
539 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
540 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
541 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
542 << *Ptr << " SCEV: " << *PtrScev << "\n");
543 return 0;
544 }
545
546 // Check the step is constant.
547 const SCEV *Step = AR->getStepRecurrence(*SE);
548
549 // Calculate the pointer stride and check if it is consecutive.
550 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
551 if (!C) {
552 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
553 " SCEV: " << *PtrScev << "\n");
554 return 0;
555 }
556
557 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
558 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
559 const APInt &APStepVal = C->getValue()->getValue();
560
561 // Huge step value - give up.
562 if (APStepVal.getBitWidth() > 64)
563 return 0;
564
565 int64_t StepVal = APStepVal.getSExtValue();
566
567 // Strided access.
568 int64_t Stride = StepVal / Size;
569 int64_t Rem = StepVal % Size;
570 if (Rem)
571 return 0;
572
573 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
574 // know we can't "wrap around the address space". In case of address space
575 // zero we know that this won't happen without triggering undefined behavior.
576 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
577 Stride != 1 && Stride != -1)
578 return 0;
579
580 return Stride;
581 }
582
isSafeForVectorization(DepType Type)583 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
584 switch (Type) {
585 case NoDep:
586 case Forward:
587 case BackwardVectorizable:
588 return true;
589
590 case Unknown:
591 case ForwardButPreventsForwarding:
592 case Backward:
593 case BackwardVectorizableButPreventsForwarding:
594 return false;
595 }
596 llvm_unreachable("unexpected DepType!");
597 }
598
isInterestingDependence(DepType Type)599 bool MemoryDepChecker::Dependence::isInterestingDependence(DepType Type) {
600 switch (Type) {
601 case NoDep:
602 case Forward:
603 return false;
604
605 case BackwardVectorizable:
606 case Unknown:
607 case ForwardButPreventsForwarding:
608 case Backward:
609 case BackwardVectorizableButPreventsForwarding:
610 return true;
611 }
612 llvm_unreachable("unexpected DepType!");
613 }
614
isPossiblyBackward() const615 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
616 switch (Type) {
617 case NoDep:
618 case Forward:
619 case ForwardButPreventsForwarding:
620 return false;
621
622 case Unknown:
623 case BackwardVectorizable:
624 case Backward:
625 case BackwardVectorizableButPreventsForwarding:
626 return true;
627 }
628 llvm_unreachable("unexpected DepType!");
629 }
630
couldPreventStoreLoadForward(unsigned Distance,unsigned TypeByteSize)631 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
632 unsigned TypeByteSize) {
633 // If loads occur at a distance that is not a multiple of a feasible vector
634 // factor store-load forwarding does not take place.
635 // Positive dependences might cause troubles because vectorizing them might
636 // prevent store-load forwarding making vectorized code run a lot slower.
637 // a[i] = a[i-3] ^ a[i-8];
638 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
639 // hence on your typical architecture store-load forwarding does not take
640 // place. Vectorizing in such cases does not make sense.
641 // Store-load forwarding distance.
642 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
643 // Maximum vector factor.
644 unsigned MaxVFWithoutSLForwardIssues =
645 VectorizerParams::MaxVectorWidth * TypeByteSize;
646 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
647 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
648
649 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
650 vf *= 2) {
651 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
652 MaxVFWithoutSLForwardIssues = (vf >>=1);
653 break;
654 }
655 }
656
657 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
658 DEBUG(dbgs() << "LAA: Distance " << Distance <<
659 " that could cause a store-load forwarding conflict\n");
660 return true;
661 }
662
663 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
664 MaxVFWithoutSLForwardIssues !=
665 VectorizerParams::MaxVectorWidth * TypeByteSize)
666 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
667 return false;
668 }
669
670 MemoryDepChecker::Dependence::DepType
isDependent(const MemAccessInfo & A,unsigned AIdx,const MemAccessInfo & B,unsigned BIdx,const ValueToValueMap & Strides)671 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
672 const MemAccessInfo &B, unsigned BIdx,
673 const ValueToValueMap &Strides) {
674 assert (AIdx < BIdx && "Must pass arguments in program order");
675
676 Value *APtr = A.getPointer();
677 Value *BPtr = B.getPointer();
678 bool AIsWrite = A.getInt();
679 bool BIsWrite = B.getInt();
680
681 // Two reads are independent.
682 if (!AIsWrite && !BIsWrite)
683 return Dependence::NoDep;
684
685 // We cannot check pointers in different address spaces.
686 if (APtr->getType()->getPointerAddressSpace() !=
687 BPtr->getType()->getPointerAddressSpace())
688 return Dependence::Unknown;
689
690 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
691 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
692
693 int StrideAPtr = isStridedPtr(SE, APtr, InnermostLoop, Strides);
694 int StrideBPtr = isStridedPtr(SE, BPtr, InnermostLoop, Strides);
695
696 const SCEV *Src = AScev;
697 const SCEV *Sink = BScev;
698
699 // If the induction step is negative we have to invert source and sink of the
700 // dependence.
701 if (StrideAPtr < 0) {
702 //Src = BScev;
703 //Sink = AScev;
704 std::swap(APtr, BPtr);
705 std::swap(Src, Sink);
706 std::swap(AIsWrite, BIsWrite);
707 std::swap(AIdx, BIdx);
708 std::swap(StrideAPtr, StrideBPtr);
709 }
710
711 const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
712
713 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
714 << "(Induction step: " << StrideAPtr << ")\n");
715 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
716 << *InstMap[BIdx] << ": " << *Dist << "\n");
717
718 // Need consecutive accesses. We don't want to vectorize
719 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
720 // the address space.
721 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
722 DEBUG(dbgs() << "Non-consecutive pointer access\n");
723 return Dependence::Unknown;
724 }
725
726 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
727 if (!C) {
728 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
729 ShouldRetryWithRuntimeCheck = true;
730 return Dependence::Unknown;
731 }
732
733 Type *ATy = APtr->getType()->getPointerElementType();
734 Type *BTy = BPtr->getType()->getPointerElementType();
735 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
736 unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
737
738 // Negative distances are not plausible dependencies.
739 const APInt &Val = C->getValue()->getValue();
740 if (Val.isNegative()) {
741 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
742 if (IsTrueDataDependence &&
743 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
744 ATy != BTy))
745 return Dependence::ForwardButPreventsForwarding;
746
747 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
748 return Dependence::Forward;
749 }
750
751 // Write to the same location with the same size.
752 // Could be improved to assert type sizes are the same (i32 == float, etc).
753 if (Val == 0) {
754 if (ATy == BTy)
755 return Dependence::NoDep;
756 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
757 return Dependence::Unknown;
758 }
759
760 assert(Val.isStrictlyPositive() && "Expect a positive value");
761
762 if (ATy != BTy) {
763 DEBUG(dbgs() <<
764 "LAA: ReadWrite-Write positive dependency with different types\n");
765 return Dependence::Unknown;
766 }
767
768 unsigned Distance = (unsigned) Val.getZExtValue();
769
770 // Bail out early if passed-in parameters make vectorization not feasible.
771 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
772 VectorizerParams::VectorizationFactor : 1);
773 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
774 VectorizerParams::VectorizationInterleave : 1);
775
776 // The distance must be bigger than the size needed for a vectorized version
777 // of the operation and the size of the vectorized operation must not be
778 // bigger than the currrent maximum size.
779 if (Distance < 2*TypeByteSize ||
780 2*TypeByteSize > MaxSafeDepDistBytes ||
781 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
782 DEBUG(dbgs() << "LAA: Failure because of Positive distance "
783 << Val.getSExtValue() << '\n');
784 return Dependence::Backward;
785 }
786
787 // Positive distance bigger than max vectorization factor.
788 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
789 Distance : MaxSafeDepDistBytes;
790
791 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
792 if (IsTrueDataDependence &&
793 couldPreventStoreLoadForward(Distance, TypeByteSize))
794 return Dependence::BackwardVectorizableButPreventsForwarding;
795
796 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() <<
797 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
798
799 return Dependence::BackwardVectorizable;
800 }
801
areDepsSafe(DepCandidates & AccessSets,MemAccessInfoSet & CheckDeps,const ValueToValueMap & Strides)802 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
803 MemAccessInfoSet &CheckDeps,
804 const ValueToValueMap &Strides) {
805
806 MaxSafeDepDistBytes = -1U;
807 while (!CheckDeps.empty()) {
808 MemAccessInfo CurAccess = *CheckDeps.begin();
809
810 // Get the relevant memory access set.
811 EquivalenceClasses<MemAccessInfo>::iterator I =
812 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
813
814 // Check accesses within this set.
815 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
816 AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
817
818 // Check every access pair.
819 while (AI != AE) {
820 CheckDeps.erase(*AI);
821 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
822 while (OI != AE) {
823 // Check every accessing instruction pair in program order.
824 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
825 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
826 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
827 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
828 auto A = std::make_pair(&*AI, *I1);
829 auto B = std::make_pair(&*OI, *I2);
830
831 assert(*I1 != *I2);
832 if (*I1 > *I2)
833 std::swap(A, B);
834
835 Dependence::DepType Type =
836 isDependent(*A.first, A.second, *B.first, B.second, Strides);
837 SafeForVectorization &= Dependence::isSafeForVectorization(Type);
838
839 // Gather dependences unless we accumulated MaxInterestingDependence
840 // dependences. In that case return as soon as we find the first
841 // unsafe dependence. This puts a limit on this quadratic
842 // algorithm.
843 if (RecordInterestingDependences) {
844 if (Dependence::isInterestingDependence(Type))
845 InterestingDependences.push_back(
846 Dependence(A.second, B.second, Type));
847
848 if (InterestingDependences.size() >= MaxInterestingDependence) {
849 RecordInterestingDependences = false;
850 InterestingDependences.clear();
851 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
852 }
853 }
854 if (!RecordInterestingDependences && !SafeForVectorization)
855 return false;
856 }
857 ++OI;
858 }
859 AI++;
860 }
861 }
862
863 DEBUG(dbgs() << "Total Interesting Dependences: "
864 << InterestingDependences.size() << "\n");
865 return SafeForVectorization;
866 }
867
868 SmallVector<Instruction *, 4>
getInstructionsForAccess(Value * Ptr,bool isWrite) const869 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
870 MemAccessInfo Access(Ptr, isWrite);
871 auto &IndexVector = Accesses.find(Access)->second;
872
873 SmallVector<Instruction *, 4> Insts;
874 std::transform(IndexVector.begin(), IndexVector.end(),
875 std::back_inserter(Insts),
876 [&](unsigned Idx) { return this->InstMap[Idx]; });
877 return Insts;
878 }
879
880 const char *MemoryDepChecker::Dependence::DepName[] = {
881 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
882 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
883
print(raw_ostream & OS,unsigned Depth,const SmallVectorImpl<Instruction * > & Instrs) const884 void MemoryDepChecker::Dependence::print(
885 raw_ostream &OS, unsigned Depth,
886 const SmallVectorImpl<Instruction *> &Instrs) const {
887 OS.indent(Depth) << DepName[Type] << ":\n";
888 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
889 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
890 }
891
canAnalyzeLoop()892 bool LoopAccessInfo::canAnalyzeLoop() {
893 // We can only analyze innermost loops.
894 if (!TheLoop->empty()) {
895 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
896 return false;
897 }
898
899 // We must have a single backedge.
900 if (TheLoop->getNumBackEdges() != 1) {
901 emitAnalysis(
902 LoopAccessReport() <<
903 "loop control flow is not understood by analyzer");
904 return false;
905 }
906
907 // We must have a single exiting block.
908 if (!TheLoop->getExitingBlock()) {
909 emitAnalysis(
910 LoopAccessReport() <<
911 "loop control flow is not understood by analyzer");
912 return false;
913 }
914
915 // We only handle bottom-tested loops, i.e. loop in which the condition is
916 // checked at the end of each iteration. With that we can assume that all
917 // instructions in the loop are executed the same number of times.
918 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
919 emitAnalysis(
920 LoopAccessReport() <<
921 "loop control flow is not understood by analyzer");
922 return false;
923 }
924
925 // We need to have a loop header.
926 DEBUG(dbgs() << "LAA: Found a loop: " <<
927 TheLoop->getHeader()->getName() << '\n');
928
929 // ScalarEvolution needs to be able to find the exit count.
930 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
931 if (ExitCount == SE->getCouldNotCompute()) {
932 emitAnalysis(LoopAccessReport() <<
933 "could not determine number of loop iterations");
934 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
935 return false;
936 }
937
938 return true;
939 }
940
analyzeLoop(const ValueToValueMap & Strides)941 void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
942
943 typedef SmallVector<Value*, 16> ValueVector;
944 typedef SmallPtrSet<Value*, 16> ValueSet;
945
946 // Holds the Load and Store *instructions*.
947 ValueVector Loads;
948 ValueVector Stores;
949
950 // Holds all the different accesses in the loop.
951 unsigned NumReads = 0;
952 unsigned NumReadWrites = 0;
953
954 PtrRtCheck.Pointers.clear();
955 PtrRtCheck.Need = false;
956
957 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
958
959 // For each block.
960 for (Loop::block_iterator bb = TheLoop->block_begin(),
961 be = TheLoop->block_end(); bb != be; ++bb) {
962
963 // Scan the BB and collect legal loads and stores.
964 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
965 ++it) {
966
967 // If this is a load, save it. If this instruction can read from memory
968 // but is not a load, then we quit. Notice that we don't handle function
969 // calls that read or write.
970 if (it->mayReadFromMemory()) {
971 // Many math library functions read the rounding mode. We will only
972 // vectorize a loop if it contains known function calls that don't set
973 // the flag. Therefore, it is safe to ignore this read from memory.
974 CallInst *Call = dyn_cast<CallInst>(it);
975 if (Call && getIntrinsicIDForCall(Call, TLI))
976 continue;
977
978 // If the function has an explicit vectorized counterpart, we can safely
979 // assume that it can be vectorized.
980 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
981 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
982 continue;
983
984 LoadInst *Ld = dyn_cast<LoadInst>(it);
985 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
986 emitAnalysis(LoopAccessReport(Ld)
987 << "read with atomic ordering or volatile read");
988 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
989 CanVecMem = false;
990 return;
991 }
992 NumLoads++;
993 Loads.push_back(Ld);
994 DepChecker.addAccess(Ld);
995 continue;
996 }
997
998 // Save 'store' instructions. Abort if other instructions write to memory.
999 if (it->mayWriteToMemory()) {
1000 StoreInst *St = dyn_cast<StoreInst>(it);
1001 if (!St) {
1002 emitAnalysis(LoopAccessReport(it) <<
1003 "instruction cannot be vectorized");
1004 CanVecMem = false;
1005 return;
1006 }
1007 if (!St->isSimple() && !IsAnnotatedParallel) {
1008 emitAnalysis(LoopAccessReport(St)
1009 << "write with atomic ordering or volatile write");
1010 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1011 CanVecMem = false;
1012 return;
1013 }
1014 NumStores++;
1015 Stores.push_back(St);
1016 DepChecker.addAccess(St);
1017 }
1018 } // Next instr.
1019 } // Next block.
1020
1021 // Now we have two lists that hold the loads and the stores.
1022 // Next, we find the pointers that they use.
1023
1024 // Check if we see any stores. If there are no stores, then we don't
1025 // care if the pointers are *restrict*.
1026 if (!Stores.size()) {
1027 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1028 CanVecMem = true;
1029 return;
1030 }
1031
1032 MemoryDepChecker::DepCandidates DependentAccesses;
1033 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1034 AA, DependentAccesses);
1035
1036 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1037 // multiple times on the same object. If the ptr is accessed twice, once
1038 // for read and once for write, it will only appear once (on the write
1039 // list). This is okay, since we are going to check for conflicts between
1040 // writes and between reads and writes, but not between reads and reads.
1041 ValueSet Seen;
1042
1043 ValueVector::iterator I, IE;
1044 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1045 StoreInst *ST = cast<StoreInst>(*I);
1046 Value* Ptr = ST->getPointerOperand();
1047 // Check for store to loop invariant address.
1048 StoreToLoopInvariantAddress |= isUniform(Ptr);
1049 // If we did *not* see this pointer before, insert it to the read-write
1050 // list. At this phase it is only a 'write' list.
1051 if (Seen.insert(Ptr).second) {
1052 ++NumReadWrites;
1053
1054 AliasAnalysis::Location Loc = AA->getLocation(ST);
1055 // The TBAA metadata could have a control dependency on the predication
1056 // condition, so we cannot rely on it when determining whether or not we
1057 // need runtime pointer checks.
1058 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1059 Loc.AATags.TBAA = nullptr;
1060
1061 Accesses.addStore(Loc);
1062 }
1063 }
1064
1065 if (IsAnnotatedParallel) {
1066 DEBUG(dbgs()
1067 << "LAA: A loop annotated parallel, ignore memory dependency "
1068 << "checks.\n");
1069 CanVecMem = true;
1070 return;
1071 }
1072
1073 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1074 LoadInst *LD = cast<LoadInst>(*I);
1075 Value* Ptr = LD->getPointerOperand();
1076 // If we did *not* see this pointer before, insert it to the
1077 // read list. If we *did* see it before, then it is already in
1078 // the read-write list. This allows us to vectorize expressions
1079 // such as A[i] += x; Because the address of A[i] is a read-write
1080 // pointer. This only works if the index of A[i] is consecutive.
1081 // If the address of i is unknown (for example A[B[i]]) then we may
1082 // read a few words, modify, and write a few words, and some of the
1083 // words may be written to the same address.
1084 bool IsReadOnlyPtr = false;
1085 if (Seen.insert(Ptr).second || !isStridedPtr(SE, Ptr, TheLoop, Strides)) {
1086 ++NumReads;
1087 IsReadOnlyPtr = true;
1088 }
1089
1090 AliasAnalysis::Location Loc = AA->getLocation(LD);
1091 // The TBAA metadata could have a control dependency on the predication
1092 // condition, so we cannot rely on it when determining whether or not we
1093 // need runtime pointer checks.
1094 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1095 Loc.AATags.TBAA = nullptr;
1096
1097 Accesses.addLoad(Loc, IsReadOnlyPtr);
1098 }
1099
1100 // If we write (or read-write) to a single destination and there are no
1101 // other reads in this loop then is it safe to vectorize.
1102 if (NumReadWrites == 1 && NumReads == 0) {
1103 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1104 CanVecMem = true;
1105 return;
1106 }
1107
1108 // Build dependence sets and check whether we need a runtime pointer bounds
1109 // check.
1110 Accesses.buildDependenceSets();
1111 bool NeedRTCheck = Accesses.isRTCheckNeeded();
1112
1113 // Find pointers with computable bounds. We are going to use this information
1114 // to place a runtime bound check.
1115 bool CanDoRT = false;
1116 if (NeedRTCheck)
1117 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
1118 Strides);
1119
1120 DEBUG(dbgs() << "LAA: We need to do " << NumComparisons <<
1121 " pointer comparisons.\n");
1122
1123 // If we only have one set of dependences to check pointers among we don't
1124 // need a runtime check.
1125 if (NumComparisons == 0 && NeedRTCheck)
1126 NeedRTCheck = false;
1127
1128 // Check that we found the bounds for the pointer.
1129 if (CanDoRT)
1130 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1131 else if (NeedRTCheck) {
1132 emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1133 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " <<
1134 "the array bounds.\n");
1135 PtrRtCheck.reset();
1136 CanVecMem = false;
1137 return;
1138 }
1139
1140 PtrRtCheck.Need = NeedRTCheck;
1141
1142 CanVecMem = true;
1143 if (Accesses.isDependencyCheckNeeded()) {
1144 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1145 CanVecMem = DepChecker.areDepsSafe(
1146 DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1147 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1148
1149 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1150 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1151 NeedRTCheck = true;
1152
1153 // Clear the dependency checks. We assume they are not needed.
1154 Accesses.resetDepChecks();
1155
1156 PtrRtCheck.reset();
1157 PtrRtCheck.Need = true;
1158
1159 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
1160 TheLoop, Strides, true);
1161 // Check that we found the bounds for the pointer.
1162 if (!CanDoRT && NumComparisons > 0) {
1163 emitAnalysis(LoopAccessReport()
1164 << "cannot check memory dependencies at runtime");
1165 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1166 PtrRtCheck.reset();
1167 CanVecMem = false;
1168 return;
1169 }
1170
1171 CanVecMem = true;
1172 }
1173 }
1174
1175 if (CanVecMem)
1176 DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
1177 << (NeedRTCheck ? "" : " don't")
1178 << " need a runtime memory check.\n");
1179 else {
1180 emitAnalysis(LoopAccessReport() <<
1181 "unsafe dependent memory operations in loop");
1182 DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1183 }
1184 }
1185
blockNeedsPredication(BasicBlock * BB,Loop * TheLoop,DominatorTree * DT)1186 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1187 DominatorTree *DT) {
1188 assert(TheLoop->contains(BB) && "Unknown block used");
1189
1190 // Blocks that do not dominate the latch need predication.
1191 BasicBlock* Latch = TheLoop->getLoopLatch();
1192 return !DT->dominates(BB, Latch);
1193 }
1194
emitAnalysis(LoopAccessReport & Message)1195 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1196 assert(!Report && "Multiple reports generated");
1197 Report = Message;
1198 }
1199
isUniform(Value * V) const1200 bool LoopAccessInfo::isUniform(Value *V) const {
1201 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1202 }
1203
1204 // FIXME: this function is currently a duplicate of the one in
1205 // LoopVectorize.cpp.
getFirstInst(Instruction * FirstInst,Value * V,Instruction * Loc)1206 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1207 Instruction *Loc) {
1208 if (FirstInst)
1209 return FirstInst;
1210 if (Instruction *I = dyn_cast<Instruction>(V))
1211 return I->getParent() == Loc->getParent() ? I : nullptr;
1212 return nullptr;
1213 }
1214
addRuntimeCheck(Instruction * Loc,const SmallVectorImpl<int> * PtrPartition) const1215 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeCheck(
1216 Instruction *Loc, const SmallVectorImpl<int> *PtrPartition) const {
1217 if (!PtrRtCheck.Need)
1218 return std::make_pair(nullptr, nullptr);
1219
1220 unsigned NumPointers = PtrRtCheck.Pointers.size();
1221 SmallVector<TrackingVH<Value> , 2> Starts;
1222 SmallVector<TrackingVH<Value> , 2> Ends;
1223
1224 LLVMContext &Ctx = Loc->getContext();
1225 SCEVExpander Exp(*SE, DL, "induction");
1226 Instruction *FirstInst = nullptr;
1227
1228 for (unsigned i = 0; i < NumPointers; ++i) {
1229 Value *Ptr = PtrRtCheck.Pointers[i];
1230 const SCEV *Sc = SE->getSCEV(Ptr);
1231
1232 if (SE->isLoopInvariant(Sc, TheLoop)) {
1233 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" <<
1234 *Ptr <<"\n");
1235 Starts.push_back(Ptr);
1236 Ends.push_back(Ptr);
1237 } else {
1238 DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n');
1239 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1240
1241 // Use this type for pointer arithmetic.
1242 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1243
1244 Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc);
1245 Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc);
1246 Starts.push_back(Start);
1247 Ends.push_back(End);
1248 }
1249 }
1250
1251 IRBuilder<> ChkBuilder(Loc);
1252 // Our instructions might fold to a constant.
1253 Value *MemoryRuntimeCheck = nullptr;
1254 for (unsigned i = 0; i < NumPointers; ++i) {
1255 for (unsigned j = i+1; j < NumPointers; ++j) {
1256 if (!PtrRtCheck.needsChecking(i, j, PtrPartition))
1257 continue;
1258
1259 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1260 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1261
1262 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1263 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1264 "Trying to bounds check pointers with different address spaces");
1265
1266 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1267 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1268
1269 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1270 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1271 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
1272 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
1273
1274 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1275 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1276 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1277 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1278 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1279 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1280 if (MemoryRuntimeCheck) {
1281 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1282 "conflict.rdx");
1283 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1284 }
1285 MemoryRuntimeCheck = IsConflict;
1286 }
1287 }
1288
1289 if (!MemoryRuntimeCheck)
1290 return std::make_pair(nullptr, nullptr);
1291
1292 // We have to do this trickery because the IRBuilder might fold the check to a
1293 // constant expression in which case there is no Instruction anchored in a
1294 // the block.
1295 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1296 ConstantInt::getTrue(Ctx));
1297 ChkBuilder.Insert(Check, "memcheck.conflict");
1298 FirstInst = getFirstInst(FirstInst, Check, Loc);
1299 return std::make_pair(FirstInst, Check);
1300 }
1301
LoopAccessInfo(Loop * L,ScalarEvolution * SE,const DataLayout & DL,const TargetLibraryInfo * TLI,AliasAnalysis * AA,DominatorTree * DT,const ValueToValueMap & Strides)1302 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1303 const DataLayout &DL,
1304 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1305 DominatorTree *DT,
1306 const ValueToValueMap &Strides)
1307 : DepChecker(SE, L), NumComparisons(0), TheLoop(L), SE(SE), DL(DL),
1308 TLI(TLI), AA(AA), DT(DT), NumLoads(0), NumStores(0),
1309 MaxSafeDepDistBytes(-1U), CanVecMem(false),
1310 StoreToLoopInvariantAddress(false) {
1311 if (canAnalyzeLoop())
1312 analyzeLoop(Strides);
1313 }
1314
print(raw_ostream & OS,unsigned Depth) const1315 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1316 if (CanVecMem) {
1317 if (PtrRtCheck.Need)
1318 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
1319 else
1320 OS.indent(Depth) << "Memory dependences are safe\n";
1321 }
1322
1323 OS.indent(Depth) << "Store to invariant address was "
1324 << (StoreToLoopInvariantAddress ? "" : "not ")
1325 << "found in loop.\n";
1326
1327 if (Report)
1328 OS.indent(Depth) << "Report: " << Report->str() << "\n";
1329
1330 if (auto *InterestingDependences = DepChecker.getInterestingDependences()) {
1331 OS.indent(Depth) << "Interesting Dependences:\n";
1332 for (auto &Dep : *InterestingDependences) {
1333 Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1334 OS << "\n";
1335 }
1336 } else
1337 OS.indent(Depth) << "Too many interesting dependences, not recorded\n";
1338
1339 // List the pair of accesses need run-time checks to prove independence.
1340 PtrRtCheck.print(OS, Depth);
1341 OS << "\n";
1342 }
1343
1344 const LoopAccessInfo &
getInfo(Loop * L,const ValueToValueMap & Strides)1345 LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1346 auto &LAI = LoopAccessInfoMap[L];
1347
1348 #ifndef NDEBUG
1349 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1350 "Symbolic strides changed for loop");
1351 #endif
1352
1353 if (!LAI) {
1354 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1355 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, Strides);
1356 #ifndef NDEBUG
1357 LAI->NumSymbolicStrides = Strides.size();
1358 #endif
1359 }
1360 return *LAI.get();
1361 }
1362
print(raw_ostream & OS,const Module * M) const1363 void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1364 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1365
1366 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1367 ValueToValueMap NoSymbolicStrides;
1368
1369 for (Loop *TopLevelLoop : *LI)
1370 for (Loop *L : depth_first(TopLevelLoop)) {
1371 OS.indent(2) << L->getHeader()->getName() << ":\n";
1372 auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1373 LAI.print(OS, 4);
1374 }
1375 }
1376
runOnFunction(Function & F)1377 bool LoopAccessAnalysis::runOnFunction(Function &F) {
1378 SE = &getAnalysis<ScalarEvolution>();
1379 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1380 TLI = TLIP ? &TLIP->getTLI() : nullptr;
1381 AA = &getAnalysis<AliasAnalysis>();
1382 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1383
1384 return false;
1385 }
1386
getAnalysisUsage(AnalysisUsage & AU) const1387 void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1388 AU.addRequired<ScalarEvolution>();
1389 AU.addRequired<AliasAnalysis>();
1390 AU.addRequired<DominatorTreeWrapperPass>();
1391 AU.addRequired<LoopInfoWrapperPass>();
1392
1393 AU.setPreservesAll();
1394 }
1395
1396 char LoopAccessAnalysis::ID = 0;
1397 static const char laa_name[] = "Loop Access Analysis";
1398 #define LAA_NAME "loop-accesses"
1399
1400 INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1401 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1402 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1403 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1404 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1405 INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1406
1407 namespace llvm {
createLAAPass()1408 Pass *createLAAPass() {
1409 return new LoopAccessAnalysis();
1410 }
1411 }
1412