1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 // of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 // widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 // of vectorization. It decides on the optimal vector width, which
27 // can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // Other ideas/concepts are from:
38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39 //
40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
41 // Vectorizing Compilers.
42 //
43 //===----------------------------------------------------------------------===//
44
45 #include "llvm/Transforms/Vectorize.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/EquivalenceClasses.h"
48 #include "llvm/ADT/Hashing.h"
49 #include "llvm/ADT/MapVector.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/Analysis/AliasAnalysis.h"
57 #include "llvm/Analysis/AliasSetTracker.h"
58 #include "llvm/Analysis/AssumptionCache.h"
59 #include "llvm/Analysis/BlockFrequencyInfo.h"
60 #include "llvm/Analysis/CodeMetrics.h"
61 #include "llvm/Analysis/LoopAccessAnalysis.h"
62 #include "llvm/Analysis/LoopInfo.h"
63 #include "llvm/Analysis/LoopIterator.h"
64 #include "llvm/Analysis/LoopPass.h"
65 #include "llvm/Analysis/ScalarEvolution.h"
66 #include "llvm/Analysis/ScalarEvolutionExpander.h"
67 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
68 #include "llvm/Analysis/TargetTransformInfo.h"
69 #include "llvm/Analysis/ValueTracking.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugInfo.h"
73 #include "llvm/IR/DerivedTypes.h"
74 #include "llvm/IR/DiagnosticInfo.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/Function.h"
77 #include "llvm/IR/IRBuilder.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/IR/ValueHandle.h"
86 #include "llvm/IR/Verifier.h"
87 #include "llvm/Pass.h"
88 #include "llvm/Support/BranchProbability.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Transforms/Scalar.h"
93 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
94 #include "llvm/Transforms/Utils/Local.h"
95 #include "llvm/Transforms/Utils/VectorUtils.h"
96 #include "llvm/Transforms/Utils/LoopUtils.h"
97 #include <algorithm>
98 #include <map>
99 #include <tuple>
100
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103
104 #define LV_NAME "loop-vectorize"
105 #define DEBUG_TYPE LV_NAME
106
107 STATISTIC(LoopsVectorized, "Number of loops vectorized");
108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
109
110 static cl::opt<bool>
111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
112 cl::desc("Enable if-conversion during vectorization."));
113
114 /// We don't vectorize loops with a known constant trip count below this number.
115 static cl::opt<unsigned>
116 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
117 cl::Hidden,
118 cl::desc("Don't vectorize loops with a constant "
119 "trip count that is smaller than this "
120 "value."));
121
122 /// This enables versioning on the strides of symbolically striding memory
123 /// accesses in code like the following.
124 /// for (i = 0; i < N; ++i)
125 /// A[i * Stride1] += B[i * Stride2] ...
126 ///
127 /// Will be roughly translated to
128 /// if (Stride1 == 1 && Stride2 == 1) {
129 /// for (i = 0; i < N; i+=4)
130 /// A[i:i+3] += ...
131 /// } else
132 /// ...
133 static cl::opt<bool> EnableMemAccessVersioning(
134 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
135 cl::desc("Enable symblic stride memory access versioning"));
136
137 /// We don't unroll loops with a known constant trip count below this number.
138 static const unsigned TinyTripCountUnrollThreshold = 128;
139
140 static cl::opt<unsigned> ForceTargetNumScalarRegs(
141 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
142 cl::desc("A flag that overrides the target's number of scalar registers."));
143
144 static cl::opt<unsigned> ForceTargetNumVectorRegs(
145 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
146 cl::desc("A flag that overrides the target's number of vector registers."));
147
148 /// Maximum vectorization interleave count.
149 static const unsigned MaxInterleaveFactor = 16;
150
151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
152 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
153 cl::desc("A flag that overrides the target's max interleave factor for "
154 "scalar loops."));
155
156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
157 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
158 cl::desc("A flag that overrides the target's max interleave factor for "
159 "vectorized loops."));
160
161 static cl::opt<unsigned> ForceTargetInstructionCost(
162 "force-target-instruction-cost", cl::init(0), cl::Hidden,
163 cl::desc("A flag that overrides the target's expected cost for "
164 "an instruction to a single constant value. Mostly "
165 "useful for getting consistent testing."));
166
167 static cl::opt<unsigned> SmallLoopCost(
168 "small-loop-cost", cl::init(20), cl::Hidden,
169 cl::desc("The cost of a loop that is considered 'small' by the unroller."));
170
171 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
172 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
173 cl::desc("Enable the use of the block frequency analysis to access PGO "
174 "heuristics minimizing code growth in cold regions and being more "
175 "aggressive in hot regions."));
176
177 // Runtime unroll loops for load/store throughput.
178 static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
179 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
180 cl::desc("Enable runtime unrolling until load/store ports are saturated"));
181
182 /// The number of stores in a loop that are allowed to need predication.
183 static cl::opt<unsigned> NumberOfStoresToPredicate(
184 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
185 cl::desc("Max number of stores to be predicated behind an if."));
186
187 static cl::opt<bool> EnableIndVarRegisterHeur(
188 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
189 cl::desc("Count the induction variable only once when unrolling"));
190
191 static cl::opt<bool> EnableCondStoresVectorization(
192 "enable-cond-stores-vec", cl::init(false), cl::Hidden,
193 cl::desc("Enable if predication of stores during vectorization."));
194
195 static cl::opt<unsigned> MaxNestedScalarReductionUF(
196 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden,
197 cl::desc("The maximum unroll factor to use when unrolling a scalar "
198 "reduction in a nested loop."));
199
200 namespace {
201
202 // Forward declarations.
203 class LoopVectorizationLegality;
204 class LoopVectorizationCostModel;
205 class LoopVectorizeHints;
206
207 /// \brief This modifies LoopAccessReport to initialize message with
208 /// loop-vectorizer-specific part.
209 class VectorizationReport : public LoopAccessReport {
210 public:
VectorizationReport(Instruction * I=nullptr)211 VectorizationReport(Instruction *I = nullptr)
212 : LoopAccessReport("loop not vectorized: ", I) {}
213
214 /// \brief This allows promotion of the loop-access analysis report into the
215 /// loop-vectorizer report. It modifies the message to add the
216 /// loop-vectorizer-specific part of the message.
VectorizationReport(const LoopAccessReport & R)217 explicit VectorizationReport(const LoopAccessReport &R)
218 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
219 R.getInstr()) {}
220 };
221
222 /// A helper function for converting Scalar types to vector types.
223 /// If the incoming type is void, we return void. If the VF is 1, we return
224 /// the scalar type.
ToVectorTy(Type * Scalar,unsigned VF)225 static Type* ToVectorTy(Type *Scalar, unsigned VF) {
226 if (Scalar->isVoidTy() || VF == 1)
227 return Scalar;
228 return VectorType::get(Scalar, VF);
229 }
230
231 /// InnerLoopVectorizer vectorizes loops which contain only one basic
232 /// block to a specified vectorization factor (VF).
233 /// This class performs the widening of scalars into vectors, or multiple
234 /// scalars. This class also implements the following features:
235 /// * It inserts an epilogue loop for handling loops that don't have iteration
236 /// counts that are known to be a multiple of the vectorization factor.
237 /// * It handles the code generation for reduction variables.
238 /// * Scalarization (implementation using scalars) of un-vectorizable
239 /// instructions.
240 /// InnerLoopVectorizer does not perform any vectorization-legality
241 /// checks, and relies on the caller to check for the different legality
242 /// aspects. The InnerLoopVectorizer relies on the
243 /// LoopVectorizationLegality class to provide information about the induction
244 /// and reduction variables that were found to a given vectorization factor.
245 class InnerLoopVectorizer {
246 public:
InnerLoopVectorizer(Loop * OrigLoop,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,unsigned VecWidth,unsigned UnrollFactor)247 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
248 DominatorTree *DT, const TargetLibraryInfo *TLI,
249 const TargetTransformInfo *TTI, unsigned VecWidth,
250 unsigned UnrollFactor)
251 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
252 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
253 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
254 Legal(nullptr), AddedSafetyChecks(false) {}
255
256 // Perform the actual loop widening (vectorization).
vectorize(LoopVectorizationLegality * L)257 void vectorize(LoopVectorizationLegality *L) {
258 Legal = L;
259 // Create a new empty loop. Unlink the old loop and connect the new one.
260 createEmptyLoop();
261 // Widen each instruction in the old loop to a new one in the new loop.
262 // Use the Legality module to find the induction and reduction variables.
263 vectorizeLoop();
264 // Register the new loop and update the analysis passes.
265 updateAnalysis();
266 }
267
268 // Return true if any runtime check is added.
IsSafetyChecksAdded()269 bool IsSafetyChecksAdded() {
270 return AddedSafetyChecks;
271 }
272
~InnerLoopVectorizer()273 virtual ~InnerLoopVectorizer() {}
274
275 protected:
276 /// A small list of PHINodes.
277 typedef SmallVector<PHINode*, 4> PhiVector;
278 /// When we unroll loops we have multiple vector values for each scalar.
279 /// This data structure holds the unrolled and vectorized values that
280 /// originated from one scalar instruction.
281 typedef SmallVector<Value*, 2> VectorParts;
282
283 // When we if-convert we need create edge masks. We have to cache values so
284 // that we don't end up with exponential recursion/IR.
285 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
286 VectorParts> EdgeMaskCache;
287
288 /// \brief Add checks for strides that where assumed to be 1.
289 ///
290 /// Returns the last check instruction and the first check instruction in the
291 /// pair as (first, last).
292 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
293
294 /// Create an empty loop, based on the loop ranges of the old loop.
295 void createEmptyLoop();
296 /// Copy and widen the instructions from the old loop.
297 virtual void vectorizeLoop();
298
299 /// \brief The Loop exit block may have single value PHI nodes where the
300 /// incoming value is 'Undef'. While vectorizing we only handled real values
301 /// that were defined inside the loop. Here we fix the 'undef case'.
302 /// See PR14725.
303 void fixLCSSAPHIs();
304
305 /// A helper function that computes the predicate of the block BB, assuming
306 /// that the header block of the loop is set to True. It returns the *entry*
307 /// mask for the block BB.
308 VectorParts createBlockInMask(BasicBlock *BB);
309 /// A helper function that computes the predicate of the edge between SRC
310 /// and DST.
311 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
312
313 /// A helper function to vectorize a single BB within the innermost loop.
314 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
315
316 /// Vectorize a single PHINode in a block. This method handles the induction
317 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
318 /// arbitrary length vectors.
319 void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
320 unsigned UF, unsigned VF, PhiVector *PV);
321
322 /// Insert the new loop to the loop hierarchy and pass manager
323 /// and update the analysis passes.
324 void updateAnalysis();
325
326 /// This instruction is un-vectorizable. Implement it as a sequence
327 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
328 /// scalarized instruction behind an if block predicated on the control
329 /// dependence of the instruction.
330 virtual void scalarizeInstruction(Instruction *Instr,
331 bool IfPredicateStore=false);
332
333 /// Vectorize Load and Store instructions,
334 virtual void vectorizeMemoryInstruction(Instruction *Instr);
335
336 /// Create a broadcast instruction. This method generates a broadcast
337 /// instruction (shuffle) for loop invariant values and for the induction
338 /// value. If this is the induction variable then we extend it to N, N+1, ...
339 /// this is needed because each iteration in the loop corresponds to a SIMD
340 /// element.
341 virtual Value *getBroadcastInstrs(Value *V);
342
343 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
344 /// to each vector element of Val. The sequence starts at StartIndex.
345 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
346
347 /// When we go over instructions in the basic block we rely on previous
348 /// values within the current basic block or on loop invariant values.
349 /// When we widen (vectorize) values we place them in the map. If the values
350 /// are not within the map, they have to be loop invariant, so we simply
351 /// broadcast them into a vector.
352 VectorParts &getVectorValue(Value *V);
353
354 /// Generate a shuffle sequence that will reverse the vector Vec.
355 virtual Value *reverseVector(Value *Vec);
356
357 /// This is a helper class that holds the vectorizer state. It maps scalar
358 /// instructions to vector instructions. When the code is 'unrolled' then
359 /// then a single scalar value is mapped to multiple vector parts. The parts
360 /// are stored in the VectorPart type.
361 struct ValueMap {
362 /// C'tor. UnrollFactor controls the number of vectors ('parts') that
363 /// are mapped.
ValueMap__anon63bf7e8f0111::InnerLoopVectorizer::ValueMap364 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
365
366 /// \return True if 'Key' is saved in the Value Map.
has__anon63bf7e8f0111::InnerLoopVectorizer::ValueMap367 bool has(Value *Key) const { return MapStorage.count(Key); }
368
369 /// Initializes a new entry in the map. Sets all of the vector parts to the
370 /// save value in 'Val'.
371 /// \return A reference to a vector with splat values.
splat__anon63bf7e8f0111::InnerLoopVectorizer::ValueMap372 VectorParts &splat(Value *Key, Value *Val) {
373 VectorParts &Entry = MapStorage[Key];
374 Entry.assign(UF, Val);
375 return Entry;
376 }
377
378 ///\return A reference to the value that is stored at 'Key'.
get__anon63bf7e8f0111::InnerLoopVectorizer::ValueMap379 VectorParts &get(Value *Key) {
380 VectorParts &Entry = MapStorage[Key];
381 if (Entry.empty())
382 Entry.resize(UF);
383 assert(Entry.size() == UF);
384 return Entry;
385 }
386
387 private:
388 /// The unroll factor. Each entry in the map stores this number of vector
389 /// elements.
390 unsigned UF;
391
392 /// Map storage. We use std::map and not DenseMap because insertions to a
393 /// dense map invalidates its iterators.
394 std::map<Value *, VectorParts> MapStorage;
395 };
396
397 /// The original loop.
398 Loop *OrigLoop;
399 /// Scev analysis to use.
400 ScalarEvolution *SE;
401 /// Loop Info.
402 LoopInfo *LI;
403 /// Dominator Tree.
404 DominatorTree *DT;
405 /// Alias Analysis.
406 AliasAnalysis *AA;
407 /// Target Library Info.
408 const TargetLibraryInfo *TLI;
409 /// Target Transform Info.
410 const TargetTransformInfo *TTI;
411
412 /// The vectorization SIMD factor to use. Each vector will have this many
413 /// vector elements.
414 unsigned VF;
415
416 protected:
417 /// The vectorization unroll factor to use. Each scalar is vectorized to this
418 /// many different vector instructions.
419 unsigned UF;
420
421 /// The builder that we use
422 IRBuilder<> Builder;
423
424 // --- Vectorization state ---
425
426 /// The vector-loop preheader.
427 BasicBlock *LoopVectorPreHeader;
428 /// The scalar-loop preheader.
429 BasicBlock *LoopScalarPreHeader;
430 /// Middle Block between the vector and the scalar.
431 BasicBlock *LoopMiddleBlock;
432 ///The ExitBlock of the scalar loop.
433 BasicBlock *LoopExitBlock;
434 ///The vector loop body.
435 SmallVector<BasicBlock *, 4> LoopVectorBody;
436 ///The scalar loop body.
437 BasicBlock *LoopScalarBody;
438 /// A list of all bypass blocks. The first block is the entry of the loop.
439 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
440
441 /// The new Induction variable which was added to the new block.
442 PHINode *Induction;
443 /// The induction variable of the old basic block.
444 PHINode *OldInduction;
445 /// Holds the extended (to the widest induction type) start index.
446 Value *ExtendedIdx;
447 /// Maps scalars to widened vectors.
448 ValueMap WidenMap;
449 EdgeMaskCache MaskCache;
450
451 LoopVectorizationLegality *Legal;
452
453 // Record whether runtime check is added.
454 bool AddedSafetyChecks;
455 };
456
457 class InnerLoopUnroller : public InnerLoopVectorizer {
458 public:
InnerLoopUnroller(Loop * OrigLoop,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,unsigned UnrollFactor)459 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
460 DominatorTree *DT, const TargetLibraryInfo *TLI,
461 const TargetTransformInfo *TTI, unsigned UnrollFactor)
462 : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor) {}
463
464 private:
465 void scalarizeInstruction(Instruction *Instr,
466 bool IfPredicateStore = false) override;
467 void vectorizeMemoryInstruction(Instruction *Instr) override;
468 Value *getBroadcastInstrs(Value *V) override;
469 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
470 Value *reverseVector(Value *Vec) override;
471 };
472
473 /// \brief Look for a meaningful debug location on the instruction or it's
474 /// operands.
getDebugLocFromInstOrOperands(Instruction * I)475 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
476 if (!I)
477 return I;
478
479 DebugLoc Empty;
480 if (I->getDebugLoc() != Empty)
481 return I;
482
483 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
484 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
485 if (OpInst->getDebugLoc() != Empty)
486 return OpInst;
487 }
488
489 return I;
490 }
491
492 /// \brief Set the debug location in the builder using the debug location in the
493 /// instruction.
setDebugLocFromInst(IRBuilder<> & B,const Value * Ptr)494 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
495 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
496 B.SetCurrentDebugLocation(Inst->getDebugLoc());
497 else
498 B.SetCurrentDebugLocation(DebugLoc());
499 }
500
501 #ifndef NDEBUG
502 /// \return string containing a file name and a line # for the given loop.
getDebugLocString(const Loop * L)503 static std::string getDebugLocString(const Loop *L) {
504 std::string Result;
505 if (L) {
506 raw_string_ostream OS(Result);
507 if (const DebugLoc LoopDbgLoc = L->getStartLoc())
508 LoopDbgLoc.print(OS);
509 else
510 // Just print the module name.
511 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
512 OS.flush();
513 }
514 return Result;
515 }
516 #endif
517
518 /// \brief Propagate known metadata from one instruction to another.
propagateMetadata(Instruction * To,const Instruction * From)519 static void propagateMetadata(Instruction *To, const Instruction *From) {
520 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
521 From->getAllMetadataOtherThanDebugLoc(Metadata);
522
523 for (auto M : Metadata) {
524 unsigned Kind = M.first;
525
526 // These are safe to transfer (this is safe for TBAA, even when we
527 // if-convert, because should that metadata have had a control dependency
528 // on the condition, and thus actually aliased with some other
529 // non-speculated memory access when the condition was false, this would be
530 // caught by the runtime overlap checks).
531 if (Kind != LLVMContext::MD_tbaa &&
532 Kind != LLVMContext::MD_alias_scope &&
533 Kind != LLVMContext::MD_noalias &&
534 Kind != LLVMContext::MD_fpmath)
535 continue;
536
537 To->setMetadata(Kind, M.second);
538 }
539 }
540
541 /// \brief Propagate known metadata from one instruction to a vector of others.
propagateMetadata(SmallVectorImpl<Value * > & To,const Instruction * From)542 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) {
543 for (Value *V : To)
544 if (Instruction *I = dyn_cast<Instruction>(V))
545 propagateMetadata(I, From);
546 }
547
548 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
549 /// to what vectorization factor.
550 /// This class does not look at the profitability of vectorization, only the
551 /// legality. This class has two main kinds of checks:
552 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
553 /// will change the order of memory accesses in a way that will change the
554 /// correctness of the program.
555 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
556 /// checks for a number of different conditions, such as the availability of a
557 /// single induction variable, that all types are supported and vectorize-able,
558 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
559 /// This class is also used by InnerLoopVectorizer for identifying
560 /// induction variable and the different reduction variables.
561 class LoopVectorizationLegality {
562 public:
LoopVectorizationLegality(Loop * L,ScalarEvolution * SE,DominatorTree * DT,TargetLibraryInfo * TLI,AliasAnalysis * AA,Function * F,const TargetTransformInfo * TTI,LoopAccessAnalysis * LAA)563 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
564 TargetLibraryInfo *TLI, AliasAnalysis *AA,
565 Function *F, const TargetTransformInfo *TTI,
566 LoopAccessAnalysis *LAA)
567 : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F),
568 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), Induction(nullptr),
569 WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
570
571 /// This enum represents the kinds of reductions that we support.
572 enum ReductionKind {
573 RK_NoReduction, ///< Not a reduction.
574 RK_IntegerAdd, ///< Sum of integers.
575 RK_IntegerMult, ///< Product of integers.
576 RK_IntegerOr, ///< Bitwise or logical OR of numbers.
577 RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
578 RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
579 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
580 RK_FloatAdd, ///< Sum of floats.
581 RK_FloatMult, ///< Product of floats.
582 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
583 };
584
585 /// This enum represents the kinds of inductions that we support.
586 enum InductionKind {
587 IK_NoInduction, ///< Not an induction variable.
588 IK_IntInduction, ///< Integer induction variable. Step = C.
589 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem).
590 };
591
592 // This enum represents the kind of minmax reduction.
593 enum MinMaxReductionKind {
594 MRK_Invalid,
595 MRK_UIntMin,
596 MRK_UIntMax,
597 MRK_SIntMin,
598 MRK_SIntMax,
599 MRK_FloatMin,
600 MRK_FloatMax
601 };
602
603 /// This struct holds information about reduction variables.
604 struct ReductionDescriptor {
ReductionDescriptor__anon63bf7e8f0111::LoopVectorizationLegality::ReductionDescriptor605 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
606 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
607
ReductionDescriptor__anon63bf7e8f0111::LoopVectorizationLegality::ReductionDescriptor608 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
609 MinMaxReductionKind MK)
610 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
611
612 // The starting value of the reduction.
613 // It does not have to be zero!
614 TrackingVH<Value> StartValue;
615 // The instruction who's value is used outside the loop.
616 Instruction *LoopExitInstr;
617 // The kind of the reduction.
618 ReductionKind Kind;
619 // If this a min/max reduction the kind of reduction.
620 MinMaxReductionKind MinMaxKind;
621 };
622
623 /// This POD struct holds information about a potential reduction operation.
624 struct ReductionInstDesc {
ReductionInstDesc__anon63bf7e8f0111::LoopVectorizationLegality::ReductionInstDesc625 ReductionInstDesc(bool IsRedux, Instruction *I) :
626 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
627
ReductionInstDesc__anon63bf7e8f0111::LoopVectorizationLegality::ReductionInstDesc628 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
629 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
630
631 // Is this instruction a reduction candidate.
632 bool IsReduction;
633 // The last instruction in a min/max pattern (select of the select(icmp())
634 // pattern), or the current reduction instruction otherwise.
635 Instruction *PatternLastInst;
636 // If this is a min/max pattern the comparison predicate.
637 MinMaxReductionKind MinMaxKind;
638 };
639
640 /// A struct for saving information about induction variables.
641 struct InductionInfo {
InductionInfo__anon63bf7e8f0111::LoopVectorizationLegality::InductionInfo642 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step)
643 : StartValue(Start), IK(K), StepValue(Step) {
644 assert(IK != IK_NoInduction && "Not an induction");
645 assert(StartValue && "StartValue is null");
646 assert(StepValue && !StepValue->isZero() && "StepValue is zero");
647 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
648 "StartValue is not a pointer for pointer induction");
649 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
650 "StartValue is not an integer for integer induction");
651 assert(StepValue->getType()->isIntegerTy() &&
652 "StepValue is not an integer");
653 }
InductionInfo__anon63bf7e8f0111::LoopVectorizationLegality::InductionInfo654 InductionInfo()
655 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {}
656
657 /// Get the consecutive direction. Returns:
658 /// 0 - unknown or non-consecutive.
659 /// 1 - consecutive and increasing.
660 /// -1 - consecutive and decreasing.
getConsecutiveDirection__anon63bf7e8f0111::LoopVectorizationLegality::InductionInfo661 int getConsecutiveDirection() const {
662 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne()))
663 return StepValue->getSExtValue();
664 return 0;
665 }
666
667 /// Compute the transformed value of Index at offset StartValue using step
668 /// StepValue.
669 /// For integer induction, returns StartValue + Index * StepValue.
670 /// For pointer induction, returns StartValue[Index * StepValue].
671 /// FIXME: The newly created binary instructions should contain nsw/nuw
672 /// flags, which can be found from the original scalar operations.
transform__anon63bf7e8f0111::LoopVectorizationLegality::InductionInfo673 Value *transform(IRBuilder<> &B, Value *Index) const {
674 switch (IK) {
675 case IK_IntInduction:
676 assert(Index->getType() == StartValue->getType() &&
677 "Index type does not match StartValue type");
678 if (StepValue->isMinusOne())
679 return B.CreateSub(StartValue, Index);
680 if (!StepValue->isOne())
681 Index = B.CreateMul(Index, StepValue);
682 return B.CreateAdd(StartValue, Index);
683
684 case IK_PtrInduction:
685 if (StepValue->isMinusOne())
686 Index = B.CreateNeg(Index);
687 else if (!StepValue->isOne())
688 Index = B.CreateMul(Index, StepValue);
689 return B.CreateGEP(nullptr, StartValue, Index);
690
691 case IK_NoInduction:
692 return nullptr;
693 }
694 llvm_unreachable("invalid enum");
695 }
696
697 /// Start value.
698 TrackingVH<Value> StartValue;
699 /// Induction kind.
700 InductionKind IK;
701 /// Step value.
702 ConstantInt *StepValue;
703 };
704
705 /// ReductionList contains the reduction descriptors for all
706 /// of the reductions that were found in the loop.
707 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
708
709 /// InductionList saves induction variables and maps them to the
710 /// induction descriptor.
711 typedef MapVector<PHINode*, InductionInfo> InductionList;
712
713 /// Returns true if it is legal to vectorize this loop.
714 /// This does not mean that it is profitable to vectorize this
715 /// loop, only that it is legal to do so.
716 bool canVectorize();
717
718 /// Returns the Induction variable.
getInduction()719 PHINode *getInduction() { return Induction; }
720
721 /// Returns the reduction variables found in the loop.
getReductionVars()722 ReductionList *getReductionVars() { return &Reductions; }
723
724 /// Returns the induction variables found in the loop.
getInductionVars()725 InductionList *getInductionVars() { return &Inductions; }
726
727 /// Returns the widest induction type.
getWidestInductionType()728 Type *getWidestInductionType() { return WidestIndTy; }
729
730 /// Returns True if V is an induction variable in this loop.
731 bool isInductionVariable(const Value *V);
732
733 /// Return true if the block BB needs to be predicated in order for the loop
734 /// to be vectorized.
735 bool blockNeedsPredication(BasicBlock *BB);
736
737 /// Check if this pointer is consecutive when vectorizing. This happens
738 /// when the last index of the GEP is the induction variable, or that the
739 /// pointer itself is an induction variable.
740 /// This check allows us to vectorize A[idx] into a wide load/store.
741 /// Returns:
742 /// 0 - Stride is unknown or non-consecutive.
743 /// 1 - Address is consecutive.
744 /// -1 - Address is consecutive, and decreasing.
745 int isConsecutivePtr(Value *Ptr);
746
747 /// Returns true if the value V is uniform within the loop.
748 bool isUniform(Value *V);
749
750 /// Returns true if this instruction will remain scalar after vectorization.
isUniformAfterVectorization(Instruction * I)751 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
752
753 /// Returns the information that we collected about runtime memory check.
getRuntimePointerCheck() const754 const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const {
755 return LAI->getRuntimePointerCheck();
756 }
757
getLAI() const758 const LoopAccessInfo *getLAI() const {
759 return LAI;
760 }
761
762 /// This function returns the identity element (or neutral element) for
763 /// the operation K.
764 static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
765
getMaxSafeDepDistBytes()766 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
767
hasStride(Value * V)768 bool hasStride(Value *V) { return StrideSet.count(V); }
mustCheckStrides()769 bool mustCheckStrides() { return !StrideSet.empty(); }
strides_begin()770 SmallPtrSet<Value *, 8>::iterator strides_begin() {
771 return StrideSet.begin();
772 }
strides_end()773 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
774
775 /// Returns true if the target machine supports masked store operation
776 /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedStore(Type * DataType,Value * Ptr)777 bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
778 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr));
779 }
780 /// Returns true if the target machine supports masked load operation
781 /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedLoad(Type * DataType,Value * Ptr)782 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
783 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr));
784 }
785 /// Returns true if vector representation of the instruction \p I
786 /// requires mask.
isMaskRequired(const Instruction * I)787 bool isMaskRequired(const Instruction* I) {
788 return (MaskedOp.count(I) != 0);
789 }
getNumStores() const790 unsigned getNumStores() const {
791 return LAI->getNumStores();
792 }
getNumLoads() const793 unsigned getNumLoads() const {
794 return LAI->getNumLoads();
795 }
getNumPredStores() const796 unsigned getNumPredStores() const {
797 return NumPredStores;
798 }
799 private:
800 /// Check if a single basic block loop is vectorizable.
801 /// At this point we know that this is a loop with a constant trip count
802 /// and we only need to check individual instructions.
803 bool canVectorizeInstrs();
804
805 /// When we vectorize loops we may change the order in which
806 /// we read and write from memory. This method checks if it is
807 /// legal to vectorize the code, considering only memory constrains.
808 /// Returns true if the loop is vectorizable
809 bool canVectorizeMemory();
810
811 /// Return true if we can vectorize this loop using the IF-conversion
812 /// transformation.
813 bool canVectorizeWithIfConvert();
814
815 /// Collect the variables that need to stay uniform after vectorization.
816 void collectLoopUniforms();
817
818 /// Return true if all of the instructions in the block can be speculatively
819 /// executed. \p SafePtrs is a list of addresses that are known to be legal
820 /// and we know that we can read from them without segfault.
821 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
822
823 /// Returns True, if 'Phi' is the kind of reduction variable for type
824 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
825 bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
826 /// Returns a struct describing if the instruction 'I' can be a reduction
827 /// variable of type 'Kind'. If the reduction is a min/max pattern of
828 /// select(icmp()) this function advances the instruction pointer 'I' from the
829 /// compare instruction to the select instruction and stores this pointer in
830 /// 'PatternLastInst' member of the returned struct.
831 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
832 ReductionInstDesc &Desc);
833 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
834 /// pattern corresponding to a min(X, Y) or max(X, Y).
835 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
836 ReductionInstDesc &Prev);
837 /// Returns the induction kind of Phi and record the step. This function may
838 /// return NoInduction if the PHI is not an induction variable.
839 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue);
840
841 /// \brief Collect memory access with loop invariant strides.
842 ///
843 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
844 /// invariant.
845 void collectStridedAccess(Value *LoadOrStoreInst);
846
847 /// Report an analysis message to assist the user in diagnosing loops that are
848 /// not vectorized. These are handled as LoopAccessReport rather than
849 /// VectorizationReport because the << operator of VectorizationReport returns
850 /// LoopAccessReport.
emitAnalysis(const LoopAccessReport & Message)851 void emitAnalysis(const LoopAccessReport &Message) {
852 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME);
853 }
854
855 unsigned NumPredStores;
856
857 /// The loop that we evaluate.
858 Loop *TheLoop;
859 /// Scev analysis.
860 ScalarEvolution *SE;
861 /// Target Library Info.
862 TargetLibraryInfo *TLI;
863 /// Parent function
864 Function *TheFunction;
865 /// Target Transform Info
866 const TargetTransformInfo *TTI;
867 /// Dominator Tree.
868 DominatorTree *DT;
869 // LoopAccess analysis.
870 LoopAccessAnalysis *LAA;
871 // And the loop-accesses info corresponding to this loop. This pointer is
872 // null until canVectorizeMemory sets it up.
873 const LoopAccessInfo *LAI;
874
875 // --- vectorization state --- //
876
877 /// Holds the integer induction variable. This is the counter of the
878 /// loop.
879 PHINode *Induction;
880 /// Holds the reduction variables.
881 ReductionList Reductions;
882 /// Holds all of the induction variables that we found in the loop.
883 /// Notice that inductions don't need to start at zero and that induction
884 /// variables can be pointers.
885 InductionList Inductions;
886 /// Holds the widest induction type encountered.
887 Type *WidestIndTy;
888
889 /// Allowed outside users. This holds the reduction
890 /// vars which can be accessed from outside the loop.
891 SmallPtrSet<Value*, 4> AllowedExit;
892 /// This set holds the variables which are known to be uniform after
893 /// vectorization.
894 SmallPtrSet<Instruction*, 4> Uniforms;
895
896 /// Can we assume the absence of NaNs.
897 bool HasFunNoNaNAttr;
898
899 ValueToValueMap Strides;
900 SmallPtrSet<Value *, 8> StrideSet;
901
902 /// While vectorizing these instructions we have to generate a
903 /// call to the appropriate masked intrinsic
904 SmallPtrSet<const Instruction*, 8> MaskedOp;
905 };
906
907 /// LoopVectorizationCostModel - estimates the expected speedups due to
908 /// vectorization.
909 /// In many cases vectorization is not profitable. This can happen because of
910 /// a number of reasons. In this class we mainly attempt to predict the
911 /// expected speedup/slowdowns due to the supported instruction set. We use the
912 /// TargetTransformInfo to query the different backends for the cost of
913 /// different operations.
914 class LoopVectorizationCostModel {
915 public:
LoopVectorizationCostModel(Loop * L,ScalarEvolution * SE,LoopInfo * LI,LoopVectorizationLegality * Legal,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,AssumptionCache * AC,const Function * F,const LoopVectorizeHints * Hints)916 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
917 LoopVectorizationLegality *Legal,
918 const TargetTransformInfo &TTI,
919 const TargetLibraryInfo *TLI, AssumptionCache *AC,
920 const Function *F, const LoopVectorizeHints *Hints)
921 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI),
922 TheFunction(F), Hints(Hints) {
923 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
924 }
925
926 /// Information about vectorization costs
927 struct VectorizationFactor {
928 unsigned Width; // Vector width with best cost
929 unsigned Cost; // Cost of the loop with that width
930 };
931 /// \return The most profitable vectorization factor and the cost of that VF.
932 /// This method checks every power of two up to VF. If UserVF is not ZERO
933 /// then this vectorization factor will be selected if vectorization is
934 /// possible.
935 VectorizationFactor selectVectorizationFactor(bool OptForSize);
936
937 /// \return The size (in bits) of the widest type in the code that
938 /// needs to be vectorized. We ignore values that remain scalar such as
939 /// 64 bit loop indices.
940 unsigned getWidestType();
941
942 /// \return The most profitable unroll factor.
943 /// If UserUF is non-zero then this method finds the best unroll-factor
944 /// based on register pressure and other parameters.
945 /// VF and LoopCost are the selected vectorization factor and the cost of the
946 /// selected VF.
947 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost);
948
949 /// \brief A struct that represents some properties of the register usage
950 /// of a loop.
951 struct RegisterUsage {
952 /// Holds the number of loop invariant values that are used in the loop.
953 unsigned LoopInvariantRegs;
954 /// Holds the maximum number of concurrent live intervals in the loop.
955 unsigned MaxLocalUsers;
956 /// Holds the number of instructions in the loop.
957 unsigned NumInstructions;
958 };
959
960 /// \return information about the register usage of the loop.
961 RegisterUsage calculateRegisterUsage();
962
963 private:
964 /// Returns the expected execution cost. The unit of the cost does
965 /// not matter because we use the 'cost' units to compare different
966 /// vector widths. The cost that is returned is *not* normalized by
967 /// the factor width.
968 unsigned expectedCost(unsigned VF);
969
970 /// Returns the execution time cost of an instruction for a given vector
971 /// width. Vector width of one means scalar.
972 unsigned getInstructionCost(Instruction *I, unsigned VF);
973
974 /// Returns whether the instruction is a load or store and will be a emitted
975 /// as a vector operation.
976 bool isConsecutiveLoadOrStore(Instruction *I);
977
978 /// Report an analysis message to assist the user in diagnosing loops that are
979 /// not vectorized. These are handled as LoopAccessReport rather than
980 /// VectorizationReport because the << operator of VectorizationReport returns
981 /// LoopAccessReport.
emitAnalysis(const LoopAccessReport & Message)982 void emitAnalysis(const LoopAccessReport &Message) {
983 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME);
984 }
985
986 /// Values used only by @llvm.assume calls.
987 SmallPtrSet<const Value *, 32> EphValues;
988
989 /// The loop that we evaluate.
990 Loop *TheLoop;
991 /// Scev analysis.
992 ScalarEvolution *SE;
993 /// Loop Info analysis.
994 LoopInfo *LI;
995 /// Vectorization legality.
996 LoopVectorizationLegality *Legal;
997 /// Vector target information.
998 const TargetTransformInfo &TTI;
999 /// Target Library Info.
1000 const TargetLibraryInfo *TLI;
1001 const Function *TheFunction;
1002 // Loop Vectorize Hint.
1003 const LoopVectorizeHints *Hints;
1004 };
1005
1006 /// Utility class for getting and setting loop vectorizer hints in the form
1007 /// of loop metadata.
1008 /// This class keeps a number of loop annotations locally (as member variables)
1009 /// and can, upon request, write them back as metadata on the loop. It will
1010 /// initially scan the loop for existing metadata, and will update the local
1011 /// values based on information in the loop.
1012 /// We cannot write all values to metadata, as the mere presence of some info,
1013 /// for example 'force', means a decision has been made. So, we need to be
1014 /// careful NOT to add them if the user hasn't specifically asked so.
1015 class LoopVectorizeHints {
1016 enum HintKind {
1017 HK_WIDTH,
1018 HK_UNROLL,
1019 HK_FORCE
1020 };
1021
1022 /// Hint - associates name and validation with the hint value.
1023 struct Hint {
1024 const char * Name;
1025 unsigned Value; // This may have to change for non-numeric values.
1026 HintKind Kind;
1027
Hint__anon63bf7e8f0111::LoopVectorizeHints::Hint1028 Hint(const char * Name, unsigned Value, HintKind Kind)
1029 : Name(Name), Value(Value), Kind(Kind) { }
1030
validate__anon63bf7e8f0111::LoopVectorizeHints::Hint1031 bool validate(unsigned Val) {
1032 switch (Kind) {
1033 case HK_WIDTH:
1034 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
1035 case HK_UNROLL:
1036 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1037 case HK_FORCE:
1038 return (Val <= 1);
1039 }
1040 return false;
1041 }
1042 };
1043
1044 /// Vectorization width.
1045 Hint Width;
1046 /// Vectorization interleave factor.
1047 Hint Interleave;
1048 /// Vectorization forced
1049 Hint Force;
1050
1051 /// Return the loop metadata prefix.
Prefix()1052 static StringRef Prefix() { return "llvm.loop."; }
1053
1054 public:
1055 enum ForceKind {
1056 FK_Undefined = -1, ///< Not selected.
1057 FK_Disabled = 0, ///< Forcing disabled.
1058 FK_Enabled = 1, ///< Forcing enabled.
1059 };
1060
LoopVectorizeHints(const Loop * L,bool DisableInterleaving)1061 LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
1062 : Width("vectorize.width", VectorizerParams::VectorizationFactor,
1063 HK_WIDTH),
1064 Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1065 Force("vectorize.enable", FK_Undefined, HK_FORCE),
1066 TheLoop(L) {
1067 // Populate values with existing loop metadata.
1068 getHintsFromMetadata();
1069
1070 // force-vector-interleave overrides DisableInterleaving.
1071 if (VectorizerParams::isInterleaveForced())
1072 Interleave.Value = VectorizerParams::VectorizationInterleave;
1073
1074 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
1075 << "LV: Interleaving disabled by the pass manager\n");
1076 }
1077
1078 /// Mark the loop L as already vectorized by setting the width to 1.
setAlreadyVectorized()1079 void setAlreadyVectorized() {
1080 Width.Value = Interleave.Value = 1;
1081 Hint Hints[] = {Width, Interleave};
1082 writeHintsToMetadata(Hints);
1083 }
1084
1085 /// Dumps all the hint information.
emitRemark() const1086 std::string emitRemark() const {
1087 VectorizationReport R;
1088 if (Force.Value == LoopVectorizeHints::FK_Disabled)
1089 R << "vectorization is explicitly disabled";
1090 else {
1091 R << "use -Rpass-analysis=loop-vectorize for more info";
1092 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1093 R << " (Force=true";
1094 if (Width.Value != 0)
1095 R << ", Vector Width=" << Width.Value;
1096 if (Interleave.Value != 0)
1097 R << ", Interleave Count=" << Interleave.Value;
1098 R << ")";
1099 }
1100 }
1101
1102 return R.str();
1103 }
1104
getWidth() const1105 unsigned getWidth() const { return Width.Value; }
getInterleave() const1106 unsigned getInterleave() const { return Interleave.Value; }
getForce() const1107 enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1108
1109 private:
1110 /// Find hints specified in the loop metadata and update local values.
getHintsFromMetadata()1111 void getHintsFromMetadata() {
1112 MDNode *LoopID = TheLoop->getLoopID();
1113 if (!LoopID)
1114 return;
1115
1116 // First operand should refer to the loop id itself.
1117 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1118 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1119
1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1121 const MDString *S = nullptr;
1122 SmallVector<Metadata *, 4> Args;
1123
1124 // The expected hint is either a MDString or a MDNode with the first
1125 // operand a MDString.
1126 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1127 if (!MD || MD->getNumOperands() == 0)
1128 continue;
1129 S = dyn_cast<MDString>(MD->getOperand(0));
1130 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1131 Args.push_back(MD->getOperand(i));
1132 } else {
1133 S = dyn_cast<MDString>(LoopID->getOperand(i));
1134 assert(Args.size() == 0 && "too many arguments for MDString");
1135 }
1136
1137 if (!S)
1138 continue;
1139
1140 // Check if the hint starts with the loop metadata prefix.
1141 StringRef Name = S->getString();
1142 if (Args.size() == 1)
1143 setHint(Name, Args[0]);
1144 }
1145 }
1146
1147 /// Checks string hint with one operand and set value if valid.
setHint(StringRef Name,Metadata * Arg)1148 void setHint(StringRef Name, Metadata *Arg) {
1149 if (!Name.startswith(Prefix()))
1150 return;
1151 Name = Name.substr(Prefix().size(), StringRef::npos);
1152
1153 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1154 if (!C) return;
1155 unsigned Val = C->getZExtValue();
1156
1157 Hint *Hints[] = {&Width, &Interleave, &Force};
1158 for (auto H : Hints) {
1159 if (Name == H->Name) {
1160 if (H->validate(Val))
1161 H->Value = Val;
1162 else
1163 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1164 break;
1165 }
1166 }
1167 }
1168
1169 /// Create a new hint from name / value pair.
createHintMetadata(StringRef Name,unsigned V) const1170 MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1171 LLVMContext &Context = TheLoop->getHeader()->getContext();
1172 Metadata *MDs[] = {MDString::get(Context, Name),
1173 ConstantAsMetadata::get(
1174 ConstantInt::get(Type::getInt32Ty(Context), V))};
1175 return MDNode::get(Context, MDs);
1176 }
1177
1178 /// Matches metadata with hint name.
matchesHintMetadataName(MDNode * Node,ArrayRef<Hint> HintTypes)1179 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1180 MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
1181 if (!Name)
1182 return false;
1183
1184 for (auto H : HintTypes)
1185 if (Name->getString().endswith(H.Name))
1186 return true;
1187 return false;
1188 }
1189
1190 /// Sets current hints into loop metadata, keeping other values intact.
writeHintsToMetadata(ArrayRef<Hint> HintTypes)1191 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1192 if (HintTypes.size() == 0)
1193 return;
1194
1195 // Reserve the first element to LoopID (see below).
1196 SmallVector<Metadata *, 4> MDs(1);
1197 // If the loop already has metadata, then ignore the existing operands.
1198 MDNode *LoopID = TheLoop->getLoopID();
1199 if (LoopID) {
1200 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1201 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1202 // If node in update list, ignore old value.
1203 if (!matchesHintMetadataName(Node, HintTypes))
1204 MDs.push_back(Node);
1205 }
1206 }
1207
1208 // Now, add the missing hints.
1209 for (auto H : HintTypes)
1210 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1211
1212 // Replace current metadata node with new one.
1213 LLVMContext &Context = TheLoop->getHeader()->getContext();
1214 MDNode *NewLoopID = MDNode::get(Context, MDs);
1215 // Set operand 0 to refer to the loop id itself.
1216 NewLoopID->replaceOperandWith(0, NewLoopID);
1217
1218 TheLoop->setLoopID(NewLoopID);
1219 }
1220
1221 /// The loop these hints belong to.
1222 const Loop *TheLoop;
1223 };
1224
emitMissedWarning(Function * F,Loop * L,const LoopVectorizeHints & LH)1225 static void emitMissedWarning(Function *F, Loop *L,
1226 const LoopVectorizeHints &LH) {
1227 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
1228 L->getStartLoc(), LH.emitRemark());
1229
1230 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1231 if (LH.getWidth() != 1)
1232 emitLoopVectorizeWarning(
1233 F->getContext(), *F, L->getStartLoc(),
1234 "failed explicitly specified loop vectorization");
1235 else if (LH.getInterleave() != 1)
1236 emitLoopInterleaveWarning(
1237 F->getContext(), *F, L->getStartLoc(),
1238 "failed explicitly specified loop interleaving");
1239 }
1240 }
1241
addInnerLoop(Loop & L,SmallVectorImpl<Loop * > & V)1242 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1243 if (L.empty())
1244 return V.push_back(&L);
1245
1246 for (Loop *InnerL : L)
1247 addInnerLoop(*InnerL, V);
1248 }
1249
1250 /// The LoopVectorize Pass.
1251 struct LoopVectorize : public FunctionPass {
1252 /// Pass identification, replacement for typeid
1253 static char ID;
1254
LoopVectorize__anon63bf7e8f0111::LoopVectorize1255 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1256 : FunctionPass(ID),
1257 DisableUnrolling(NoUnrolling),
1258 AlwaysVectorize(AlwaysVectorize) {
1259 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1260 }
1261
1262 ScalarEvolution *SE;
1263 LoopInfo *LI;
1264 TargetTransformInfo *TTI;
1265 DominatorTree *DT;
1266 BlockFrequencyInfo *BFI;
1267 TargetLibraryInfo *TLI;
1268 AliasAnalysis *AA;
1269 AssumptionCache *AC;
1270 LoopAccessAnalysis *LAA;
1271 bool DisableUnrolling;
1272 bool AlwaysVectorize;
1273
1274 BlockFrequency ColdEntryFreq;
1275
runOnFunction__anon63bf7e8f0111::LoopVectorize1276 bool runOnFunction(Function &F) override {
1277 SE = &getAnalysis<ScalarEvolution>();
1278 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1279 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1280 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1281 BFI = &getAnalysis<BlockFrequencyInfo>();
1282 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1283 TLI = TLIP ? &TLIP->getTLI() : nullptr;
1284 AA = &getAnalysis<AliasAnalysis>();
1285 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1286 LAA = &getAnalysis<LoopAccessAnalysis>();
1287
1288 // Compute some weights outside of the loop over the loops. Compute this
1289 // using a BranchProbability to re-use its scaling math.
1290 const BranchProbability ColdProb(1, 5); // 20%
1291 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
1292
1293 // If the target claims to have no vector registers don't attempt
1294 // vectorization.
1295 if (!TTI->getNumberOfRegisters(true))
1296 return false;
1297
1298 // Build up a worklist of inner-loops to vectorize. This is necessary as
1299 // the act of vectorizing or partially unrolling a loop creates new loops
1300 // and can invalidate iterators across the loops.
1301 SmallVector<Loop *, 8> Worklist;
1302
1303 for (Loop *L : *LI)
1304 addInnerLoop(*L, Worklist);
1305
1306 LoopsAnalyzed += Worklist.size();
1307
1308 // Now walk the identified inner loops.
1309 bool Changed = false;
1310 while (!Worklist.empty())
1311 Changed |= processLoop(Worklist.pop_back_val());
1312
1313 // Process each loop nest in the function.
1314 return Changed;
1315 }
1316
AddRuntimeUnrollDisableMetaData__anon63bf7e8f0111::LoopVectorize1317 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
1318 SmallVector<Metadata *, 4> MDs;
1319 // Reserve first location for self reference to the LoopID metadata node.
1320 MDs.push_back(nullptr);
1321 bool IsUnrollMetadata = false;
1322 MDNode *LoopID = L->getLoopID();
1323 if (LoopID) {
1324 // First find existing loop unrolling disable metadata.
1325 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1326 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1327 if (MD) {
1328 const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1329 IsUnrollMetadata =
1330 S && S->getString().startswith("llvm.loop.unroll.disable");
1331 }
1332 MDs.push_back(LoopID->getOperand(i));
1333 }
1334 }
1335
1336 if (!IsUnrollMetadata) {
1337 // Add runtime unroll disable metadata.
1338 LLVMContext &Context = L->getHeader()->getContext();
1339 SmallVector<Metadata *, 1> DisableOperands;
1340 DisableOperands.push_back(
1341 MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
1342 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
1343 MDs.push_back(DisableNode);
1344 MDNode *NewLoopID = MDNode::get(Context, MDs);
1345 // Set operand 0 to refer to the loop id itself.
1346 NewLoopID->replaceOperandWith(0, NewLoopID);
1347 L->setLoopID(NewLoopID);
1348 }
1349 }
1350
processLoop__anon63bf7e8f0111::LoopVectorize1351 bool processLoop(Loop *L) {
1352 assert(L->empty() && "Only process inner loops.");
1353
1354 #ifndef NDEBUG
1355 const std::string DebugLocStr = getDebugLocString(L);
1356 #endif /* NDEBUG */
1357
1358 DEBUG(dbgs() << "\nLV: Checking a loop in \""
1359 << L->getHeader()->getParent()->getName() << "\" from "
1360 << DebugLocStr << "\n");
1361
1362 LoopVectorizeHints Hints(L, DisableUnrolling);
1363
1364 DEBUG(dbgs() << "LV: Loop hints:"
1365 << " force="
1366 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
1367 ? "disabled"
1368 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
1369 ? "enabled"
1370 : "?")) << " width=" << Hints.getWidth()
1371 << " unroll=" << Hints.getInterleave() << "\n");
1372
1373 // Function containing loop
1374 Function *F = L->getHeader()->getParent();
1375
1376 // Looking at the diagnostic output is the only way to determine if a loop
1377 // was vectorized (other than looking at the IR or machine code), so it
1378 // is important to generate an optimization remark for each loop. Most of
1379 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
1380 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
1381 // less verbose reporting vectorized loops and unvectorized loops that may
1382 // benefit from vectorization, respectively.
1383
1384 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
1385 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1386 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1387 L->getStartLoc(), Hints.emitRemark());
1388 return false;
1389 }
1390
1391 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
1392 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1393 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1394 L->getStartLoc(), Hints.emitRemark());
1395 return false;
1396 }
1397
1398 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) {
1399 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1400 emitOptimizationRemarkAnalysis(
1401 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1402 "loop not vectorized: vector width and interleave count are "
1403 "explicitly set to 1");
1404 return false;
1405 }
1406
1407 // Check the loop for a trip count threshold:
1408 // do not vectorize loops with a tiny trip count.
1409 const unsigned TC = SE->getSmallConstantTripCount(L);
1410 if (TC > 0u && TC < TinyTripCountVectorThreshold) {
1411 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
1412 << "This loop is not worth vectorizing.");
1413 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
1414 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
1415 else {
1416 DEBUG(dbgs() << "\n");
1417 emitOptimizationRemarkAnalysis(
1418 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1419 "vectorization is not beneficial and is not explicitly forced");
1420 return false;
1421 }
1422 }
1423
1424 // Check if it is legal to vectorize the loop.
1425 LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA);
1426 if (!LVL.canVectorize()) {
1427 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
1428 emitMissedWarning(F, L, Hints);
1429 return false;
1430 }
1431
1432 // Use the cost model.
1433 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, AC, F, &Hints);
1434
1435 // Check the function attributes to find out if this function should be
1436 // optimized for size.
1437 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1438 F->hasFnAttribute(Attribute::OptimizeForSize);
1439
1440 // Compute the weighted frequency of this loop being executed and see if it
1441 // is less than 20% of the function entry baseline frequency. Note that we
1442 // always have a canonical loop here because we think we *can* vectoriez.
1443 // FIXME: This is hidden behind a flag due to pervasive problems with
1444 // exactly what block frequency models.
1445 if (LoopVectorizeWithBlockFrequency) {
1446 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
1447 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1448 LoopEntryFreq < ColdEntryFreq)
1449 OptForSize = true;
1450 }
1451
1452 // Check the function attributes to see if implicit floats are allowed.a
1453 // FIXME: This check doesn't seem possibly correct -- what if the loop is
1454 // an integer loop and the vector instructions selected are purely integer
1455 // vector instructions?
1456 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1457 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
1458 "attribute is used.\n");
1459 emitOptimizationRemarkAnalysis(
1460 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1461 "loop not vectorized due to NoImplicitFloat attribute");
1462 emitMissedWarning(F, L, Hints);
1463 return false;
1464 }
1465
1466 // Select the optimal vectorization factor.
1467 const LoopVectorizationCostModel::VectorizationFactor VF =
1468 CM.selectVectorizationFactor(OptForSize);
1469
1470 // Select the unroll factor.
1471 const unsigned UF =
1472 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost);
1473
1474 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1475 << DebugLocStr << '\n');
1476 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
1477
1478 if (VF.Width == 1) {
1479 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
1480
1481 if (UF == 1) {
1482 emitOptimizationRemarkAnalysis(
1483 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1484 "not beneficial to vectorize and user disabled interleaving");
1485 return false;
1486 }
1487 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
1488
1489 // Report the unrolling decision.
1490 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1491 Twine("unrolled with interleaving factor " +
1492 Twine(UF) +
1493 " (vectorization not beneficial)"));
1494
1495 // We decided not to vectorize, but we may want to unroll.
1496
1497 InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, UF);
1498 Unroller.vectorize(&LVL);
1499 } else {
1500 // If we decided that it is *legal* to vectorize the loop then do it.
1501 InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, UF);
1502 LB.vectorize(&LVL);
1503 ++LoopsVectorized;
1504
1505 // Add metadata to disable runtime unrolling scalar loop when there's no
1506 // runtime check about strides and memory. Because at this situation,
1507 // scalar loop is rarely used not worthy to be unrolled.
1508 if (!LB.IsSafetyChecksAdded())
1509 AddRuntimeUnrollDisableMetaData(L);
1510
1511 // Report the vectorization decision.
1512 emitOptimizationRemark(
1513 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1514 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
1515 ", unrolling interleave factor: " + Twine(UF) + ")");
1516 }
1517
1518 // Mark the loop as already vectorized to avoid vectorizing again.
1519 Hints.setAlreadyVectorized();
1520
1521 DEBUG(verifyFunction(*L->getHeader()->getParent()));
1522 return true;
1523 }
1524
getAnalysisUsage__anon63bf7e8f0111::LoopVectorize1525 void getAnalysisUsage(AnalysisUsage &AU) const override {
1526 AU.addRequired<AssumptionCacheTracker>();
1527 AU.addRequiredID(LoopSimplifyID);
1528 AU.addRequiredID(LCSSAID);
1529 AU.addRequired<BlockFrequencyInfo>();
1530 AU.addRequired<DominatorTreeWrapperPass>();
1531 AU.addRequired<LoopInfoWrapperPass>();
1532 AU.addRequired<ScalarEvolution>();
1533 AU.addRequired<TargetTransformInfoWrapperPass>();
1534 AU.addRequired<AliasAnalysis>();
1535 AU.addRequired<LoopAccessAnalysis>();
1536 AU.addPreserved<LoopInfoWrapperPass>();
1537 AU.addPreserved<DominatorTreeWrapperPass>();
1538 AU.addPreserved<AliasAnalysis>();
1539 }
1540
1541 };
1542
1543 } // end anonymous namespace
1544
1545 //===----------------------------------------------------------------------===//
1546 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1547 // LoopVectorizationCostModel.
1548 //===----------------------------------------------------------------------===//
1549
getBroadcastInstrs(Value * V)1550 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1551 // We need to place the broadcast of invariant variables outside the loop.
1552 Instruction *Instr = dyn_cast<Instruction>(V);
1553 bool NewInstr =
1554 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
1555 Instr->getParent()) != LoopVectorBody.end());
1556 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1557
1558 // Place the code for broadcasting invariant variables in the new preheader.
1559 IRBuilder<>::InsertPointGuard Guard(Builder);
1560 if (Invariant)
1561 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1562
1563 // Broadcast the scalar into all locations in the vector.
1564 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1565
1566 return Shuf;
1567 }
1568
getStepVector(Value * Val,int StartIdx,Value * Step)1569 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
1570 Value *Step) {
1571 assert(Val->getType()->isVectorTy() && "Must be a vector");
1572 assert(Val->getType()->getScalarType()->isIntegerTy() &&
1573 "Elem must be an integer");
1574 assert(Step->getType() == Val->getType()->getScalarType() &&
1575 "Step has wrong type");
1576 // Create the types.
1577 Type *ITy = Val->getType()->getScalarType();
1578 VectorType *Ty = cast<VectorType>(Val->getType());
1579 int VLen = Ty->getNumElements();
1580 SmallVector<Constant*, 8> Indices;
1581
1582 // Create a vector of consecutive numbers from zero to VF.
1583 for (int i = 0; i < VLen; ++i)
1584 Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
1585
1586 // Add the consecutive indices to the vector value.
1587 Constant *Cv = ConstantVector::get(Indices);
1588 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1589 Step = Builder.CreateVectorSplat(VLen, Step);
1590 assert(Step->getType() == Val->getType() && "Invalid step vec");
1591 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1592 // which can be found from the original scalar operations.
1593 Step = Builder.CreateMul(Cv, Step);
1594 return Builder.CreateAdd(Val, Step, "induction");
1595 }
1596
1597 /// \brief Find the operand of the GEP that should be checked for consecutive
1598 /// stores. This ignores trailing indices that have no effect on the final
1599 /// pointer.
getGEPInductionOperand(const GetElementPtrInst * Gep)1600 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
1601 const DataLayout &DL = Gep->getModule()->getDataLayout();
1602 unsigned LastOperand = Gep->getNumOperands() - 1;
1603 unsigned GEPAllocSize = DL.getTypeAllocSize(
1604 cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1605
1606 // Walk backwards and try to peel off zeros.
1607 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1608 // Find the type we're currently indexing into.
1609 gep_type_iterator GEPTI = gep_type_begin(Gep);
1610 std::advance(GEPTI, LastOperand - 1);
1611
1612 // If it's a type with the same allocation size as the result of the GEP we
1613 // can peel off the zero index.
1614 if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
1615 break;
1616 --LastOperand;
1617 }
1618
1619 return LastOperand;
1620 }
1621
isConsecutivePtr(Value * Ptr)1622 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1623 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
1624 // Make sure that the pointer does not point to structs.
1625 if (Ptr->getType()->getPointerElementType()->isAggregateType())
1626 return 0;
1627
1628 // If this value is a pointer induction variable we know it is consecutive.
1629 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1630 if (Phi && Inductions.count(Phi)) {
1631 InductionInfo II = Inductions[Phi];
1632 return II.getConsecutiveDirection();
1633 }
1634
1635 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1636 if (!Gep)
1637 return 0;
1638
1639 unsigned NumOperands = Gep->getNumOperands();
1640 Value *GpPtr = Gep->getPointerOperand();
1641 // If this GEP value is a consecutive pointer induction variable and all of
1642 // the indices are constant then we know it is consecutive. We can
1643 Phi = dyn_cast<PHINode>(GpPtr);
1644 if (Phi && Inductions.count(Phi)) {
1645
1646 // Make sure that the pointer does not point to structs.
1647 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1648 if (GepPtrType->getElementType()->isAggregateType())
1649 return 0;
1650
1651 // Make sure that all of the index operands are loop invariant.
1652 for (unsigned i = 1; i < NumOperands; ++i)
1653 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1654 return 0;
1655
1656 InductionInfo II = Inductions[Phi];
1657 return II.getConsecutiveDirection();
1658 }
1659
1660 unsigned InductionOperand = getGEPInductionOperand(Gep);
1661
1662 // Check that all of the gep indices are uniform except for our induction
1663 // operand.
1664 for (unsigned i = 0; i != NumOperands; ++i)
1665 if (i != InductionOperand &&
1666 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1667 return 0;
1668
1669 // We can emit wide load/stores only if the last non-zero index is the
1670 // induction variable.
1671 const SCEV *Last = nullptr;
1672 if (!Strides.count(Gep))
1673 Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1674 else {
1675 // Because of the multiplication by a stride we can have a s/zext cast.
1676 // We are going to replace this stride by 1 so the cast is safe to ignore.
1677 //
1678 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
1679 // %0 = trunc i64 %indvars.iv to i32
1680 // %mul = mul i32 %0, %Stride1
1681 // %idxprom = zext i32 %mul to i64 << Safe cast.
1682 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
1683 //
1684 Last = replaceSymbolicStrideSCEV(SE, Strides,
1685 Gep->getOperand(InductionOperand), Gep);
1686 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
1687 Last =
1688 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
1689 ? C->getOperand()
1690 : Last;
1691 }
1692 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1693 const SCEV *Step = AR->getStepRecurrence(*SE);
1694
1695 // The memory is consecutive because the last index is consecutive
1696 // and all other indices are loop invariant.
1697 if (Step->isOne())
1698 return 1;
1699 if (Step->isAllOnesValue())
1700 return -1;
1701 }
1702
1703 return 0;
1704 }
1705
isUniform(Value * V)1706 bool LoopVectorizationLegality::isUniform(Value *V) {
1707 return LAI->isUniform(V);
1708 }
1709
1710 InnerLoopVectorizer::VectorParts&
getVectorValue(Value * V)1711 InnerLoopVectorizer::getVectorValue(Value *V) {
1712 assert(V != Induction && "The new induction variable should not be used.");
1713 assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1714
1715 // If we have a stride that is replaced by one, do it here.
1716 if (Legal->hasStride(V))
1717 V = ConstantInt::get(V->getType(), 1);
1718
1719 // If we have this scalar in the map, return it.
1720 if (WidenMap.has(V))
1721 return WidenMap.get(V);
1722
1723 // If this scalar is unknown, assume that it is a constant or that it is
1724 // loop invariant. Broadcast V and save the value for future uses.
1725 Value *B = getBroadcastInstrs(V);
1726 return WidenMap.splat(V, B);
1727 }
1728
reverseVector(Value * Vec)1729 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1730 assert(Vec->getType()->isVectorTy() && "Invalid type");
1731 SmallVector<Constant*, 8> ShuffleMask;
1732 for (unsigned i = 0; i < VF; ++i)
1733 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1734
1735 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1736 ConstantVector::get(ShuffleMask),
1737 "reverse");
1738 }
1739
vectorizeMemoryInstruction(Instruction * Instr)1740 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
1741 // Attempt to issue a wide load.
1742 LoadInst *LI = dyn_cast<LoadInst>(Instr);
1743 StoreInst *SI = dyn_cast<StoreInst>(Instr);
1744
1745 assert((LI || SI) && "Invalid Load/Store instruction");
1746
1747 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1748 Type *DataTy = VectorType::get(ScalarDataTy, VF);
1749 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1750 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1751 // An alignment of 0 means target abi alignment. We need to use the scalar's
1752 // target abi alignment in such a case.
1753 const DataLayout &DL = Instr->getModule()->getDataLayout();
1754 if (!Alignment)
1755 Alignment = DL.getABITypeAlignment(ScalarDataTy);
1756 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1757 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
1758 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
1759
1760 if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
1761 !Legal->isMaskRequired(SI))
1762 return scalarizeInstruction(Instr, true);
1763
1764 if (ScalarAllocatedSize != VectorElementSize)
1765 return scalarizeInstruction(Instr);
1766
1767 // If the pointer is loop invariant or if it is non-consecutive,
1768 // scalarize the load.
1769 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1770 bool Reverse = ConsecutiveStride < 0;
1771 bool UniformLoad = LI && Legal->isUniform(Ptr);
1772 if (!ConsecutiveStride || UniformLoad)
1773 return scalarizeInstruction(Instr);
1774
1775 Constant *Zero = Builder.getInt32(0);
1776 VectorParts &Entry = WidenMap.get(Instr);
1777
1778 // Handle consecutive loads/stores.
1779 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1780 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1781 setDebugLocFromInst(Builder, Gep);
1782 Value *PtrOperand = Gep->getPointerOperand();
1783 Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1784 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1785
1786 // Create the new GEP with the new induction variable.
1787 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1788 Gep2->setOperand(0, FirstBasePtr);
1789 Gep2->setName("gep.indvar.base");
1790 Ptr = Builder.Insert(Gep2);
1791 } else if (Gep) {
1792 setDebugLocFromInst(Builder, Gep);
1793 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1794 OrigLoop) && "Base ptr must be invariant");
1795
1796 // The last index does not have to be the induction. It can be
1797 // consecutive and be a function of the index. For example A[I+1];
1798 unsigned NumOperands = Gep->getNumOperands();
1799 unsigned InductionOperand = getGEPInductionOperand(Gep);
1800 // Create the new GEP with the new induction variable.
1801 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1802
1803 for (unsigned i = 0; i < NumOperands; ++i) {
1804 Value *GepOperand = Gep->getOperand(i);
1805 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1806
1807 // Update last index or loop invariant instruction anchored in loop.
1808 if (i == InductionOperand ||
1809 (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1810 assert((i == InductionOperand ||
1811 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1812 "Must be last index or loop invariant");
1813
1814 VectorParts &GEPParts = getVectorValue(GepOperand);
1815 Value *Index = GEPParts[0];
1816 Index = Builder.CreateExtractElement(Index, Zero);
1817 Gep2->setOperand(i, Index);
1818 Gep2->setName("gep.indvar.idx");
1819 }
1820 }
1821 Ptr = Builder.Insert(Gep2);
1822 } else {
1823 // Use the induction element ptr.
1824 assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1825 setDebugLocFromInst(Builder, Ptr);
1826 VectorParts &PtrVal = getVectorValue(Ptr);
1827 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1828 }
1829
1830 VectorParts Mask = createBlockInMask(Instr->getParent());
1831 // Handle Stores:
1832 if (SI) {
1833 assert(!Legal->isUniform(SI->getPointerOperand()) &&
1834 "We do not allow storing to uniform addresses");
1835 setDebugLocFromInst(Builder, SI);
1836 // We don't want to update the value in the map as it might be used in
1837 // another expression. So don't use a reference type for "StoredVal".
1838 VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1839
1840 for (unsigned Part = 0; Part < UF; ++Part) {
1841 // Calculate the pointer for the specific unroll-part.
1842 Value *PartPtr =
1843 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
1844
1845 if (Reverse) {
1846 // If we store to reverse consecutive memory locations then we need
1847 // to reverse the order of elements in the stored value.
1848 StoredVal[Part] = reverseVector(StoredVal[Part]);
1849 // If the address is consecutive but reversed, then the
1850 // wide store needs to start at the last vector element.
1851 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
1852 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
1853 Mask[Part] = reverseVector(Mask[Part]);
1854 }
1855
1856 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1857 DataTy->getPointerTo(AddressSpace));
1858
1859 Instruction *NewSI;
1860 if (Legal->isMaskRequired(SI))
1861 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
1862 Mask[Part]);
1863 else
1864 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
1865 propagateMetadata(NewSI, SI);
1866 }
1867 return;
1868 }
1869
1870 // Handle loads.
1871 assert(LI && "Must have a load instruction");
1872 setDebugLocFromInst(Builder, LI);
1873 for (unsigned Part = 0; Part < UF; ++Part) {
1874 // Calculate the pointer for the specific unroll-part.
1875 Value *PartPtr =
1876 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
1877
1878 if (Reverse) {
1879 // If the address is consecutive but reversed, then the
1880 // wide load needs to start at the last vector element.
1881 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
1882 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
1883 Mask[Part] = reverseVector(Mask[Part]);
1884 }
1885
1886 Instruction* NewLI;
1887 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1888 DataTy->getPointerTo(AddressSpace));
1889 if (Legal->isMaskRequired(LI))
1890 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
1891 UndefValue::get(DataTy),
1892 "wide.masked.load");
1893 else
1894 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
1895 propagateMetadata(NewLI, LI);
1896 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
1897 }
1898 }
1899
scalarizeInstruction(Instruction * Instr,bool IfPredicateStore)1900 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
1901 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1902 // Holds vector parameters or scalars, in case of uniform vals.
1903 SmallVector<VectorParts, 4> Params;
1904
1905 setDebugLocFromInst(Builder, Instr);
1906
1907 // Find all of the vectorized parameters.
1908 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1909 Value *SrcOp = Instr->getOperand(op);
1910
1911 // If we are accessing the old induction variable, use the new one.
1912 if (SrcOp == OldInduction) {
1913 Params.push_back(getVectorValue(SrcOp));
1914 continue;
1915 }
1916
1917 // Try using previously calculated values.
1918 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1919
1920 // If the src is an instruction that appeared earlier in the basic block
1921 // then it should already be vectorized.
1922 if (SrcInst && OrigLoop->contains(SrcInst)) {
1923 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1924 // The parameter is a vector value from earlier.
1925 Params.push_back(WidenMap.get(SrcInst));
1926 } else {
1927 // The parameter is a scalar from outside the loop. Maybe even a constant.
1928 VectorParts Scalars;
1929 Scalars.append(UF, SrcOp);
1930 Params.push_back(Scalars);
1931 }
1932 }
1933
1934 assert(Params.size() == Instr->getNumOperands() &&
1935 "Invalid number of operands");
1936
1937 // Does this instruction return a value ?
1938 bool IsVoidRetTy = Instr->getType()->isVoidTy();
1939
1940 Value *UndefVec = IsVoidRetTy ? nullptr :
1941 UndefValue::get(VectorType::get(Instr->getType(), VF));
1942 // Create a new entry in the WidenMap and initialize it to Undef or Null.
1943 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1944
1945 Instruction *InsertPt = Builder.GetInsertPoint();
1946 BasicBlock *IfBlock = Builder.GetInsertBlock();
1947 BasicBlock *CondBlock = nullptr;
1948
1949 VectorParts Cond;
1950 Loop *VectorLp = nullptr;
1951 if (IfPredicateStore) {
1952 assert(Instr->getParent()->getSinglePredecessor() &&
1953 "Only support single predecessor blocks");
1954 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
1955 Instr->getParent());
1956 VectorLp = LI->getLoopFor(IfBlock);
1957 assert(VectorLp && "Must have a loop for this block");
1958 }
1959
1960 // For each vector unroll 'part':
1961 for (unsigned Part = 0; Part < UF; ++Part) {
1962 // For each scalar that we create:
1963 for (unsigned Width = 0; Width < VF; ++Width) {
1964
1965 // Start if-block.
1966 Value *Cmp = nullptr;
1967 if (IfPredicateStore) {
1968 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
1969 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
1970 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1971 LoopVectorBody.push_back(CondBlock);
1972 VectorLp->addBasicBlockToLoop(CondBlock, *LI);
1973 // Update Builder with newly created basic block.
1974 Builder.SetInsertPoint(InsertPt);
1975 }
1976
1977 Instruction *Cloned = Instr->clone();
1978 if (!IsVoidRetTy)
1979 Cloned->setName(Instr->getName() + ".cloned");
1980 // Replace the operands of the cloned instructions with extracted scalars.
1981 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1982 Value *Op = Params[op][Part];
1983 // Param is a vector. Need to extract the right lane.
1984 if (Op->getType()->isVectorTy())
1985 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1986 Cloned->setOperand(op, Op);
1987 }
1988
1989 // Place the cloned scalar in the new loop.
1990 Builder.Insert(Cloned);
1991
1992 // If the original scalar returns a value we need to place it in a vector
1993 // so that future users will be able to use it.
1994 if (!IsVoidRetTy)
1995 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1996 Builder.getInt32(Width));
1997 // End if-block.
1998 if (IfPredicateStore) {
1999 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
2000 LoopVectorBody.push_back(NewIfBlock);
2001 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
2002 Builder.SetInsertPoint(InsertPt);
2003 Instruction *OldBr = IfBlock->getTerminator();
2004 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
2005 OldBr->eraseFromParent();
2006 IfBlock = NewIfBlock;
2007 }
2008 }
2009 }
2010 }
2011
getFirstInst(Instruction * FirstInst,Value * V,Instruction * Loc)2012 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
2013 Instruction *Loc) {
2014 if (FirstInst)
2015 return FirstInst;
2016 if (Instruction *I = dyn_cast<Instruction>(V))
2017 return I->getParent() == Loc->getParent() ? I : nullptr;
2018 return nullptr;
2019 }
2020
2021 std::pair<Instruction *, Instruction *>
addStrideCheck(Instruction * Loc)2022 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
2023 Instruction *tnullptr = nullptr;
2024 if (!Legal->mustCheckStrides())
2025 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
2026
2027 IRBuilder<> ChkBuilder(Loc);
2028
2029 // Emit checks.
2030 Value *Check = nullptr;
2031 Instruction *FirstInst = nullptr;
2032 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
2033 SE = Legal->strides_end();
2034 SI != SE; ++SI) {
2035 Value *Ptr = stripIntegerCast(*SI);
2036 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
2037 "stride.chk");
2038 // Store the first instruction we create.
2039 FirstInst = getFirstInst(FirstInst, C, Loc);
2040 if (Check)
2041 Check = ChkBuilder.CreateOr(Check, C);
2042 else
2043 Check = C;
2044 }
2045
2046 // We have to do this trickery because the IRBuilder might fold the check to a
2047 // constant expression in which case there is no Instruction anchored in a
2048 // the block.
2049 LLVMContext &Ctx = Loc->getContext();
2050 Instruction *TheCheck =
2051 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
2052 ChkBuilder.Insert(TheCheck, "stride.not.one");
2053 FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
2054
2055 return std::make_pair(FirstInst, TheCheck);
2056 }
2057
createEmptyLoop()2058 void InnerLoopVectorizer::createEmptyLoop() {
2059 /*
2060 In this function we generate a new loop. The new loop will contain
2061 the vectorized instructions while the old loop will continue to run the
2062 scalar remainder.
2063
2064 [ ] <-- Back-edge taken count overflow check.
2065 / |
2066 / v
2067 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2068 | / |
2069 | / v
2070 || [ ] <-- vector pre header.
2071 || |
2072 || v
2073 || [ ] \
2074 || [ ]_| <-- vector loop.
2075 || |
2076 | \ v
2077 | >[ ] <--- middle-block.
2078 | / |
2079 | / v
2080 -|- >[ ] <--- new preheader.
2081 | |
2082 | v
2083 | [ ] \
2084 | [ ]_| <-- old scalar loop to handle remainder.
2085 \ |
2086 \ v
2087 >[ ] <-- exit block.
2088 ...
2089 */
2090
2091 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2092 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
2093 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2094 assert(BypassBlock && "Invalid loop structure");
2095 assert(ExitBlock && "Must have an exit block");
2096
2097 // Some loops have a single integer induction variable, while other loops
2098 // don't. One example is c++ iterators that often have multiple pointer
2099 // induction variables. In the code below we also support a case where we
2100 // don't have a single induction variable.
2101 OldInduction = Legal->getInduction();
2102 Type *IdxTy = Legal->getWidestInductionType();
2103
2104 // Find the loop boundaries.
2105 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
2106 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
2107
2108 // The exit count might have the type of i64 while the phi is i32. This can
2109 // happen if we have an induction variable that is sign extended before the
2110 // compare. The only way that we get a backedge taken count is that the
2111 // induction variable was signed and as such will not overflow. In such a case
2112 // truncation is legal.
2113 if (ExitCount->getType()->getPrimitiveSizeInBits() >
2114 IdxTy->getPrimitiveSizeInBits())
2115 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
2116
2117 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
2118 // Get the total trip count from the count by adding 1.
2119 ExitCount = SE->getAddExpr(BackedgeTakeCount,
2120 SE->getConstant(BackedgeTakeCount->getType(), 1));
2121
2122 const DataLayout &DL = OldBasicBlock->getModule()->getDataLayout();
2123
2124 // Expand the trip count and place the new instructions in the preheader.
2125 // Notice that the pre-header does not change, only the loop body.
2126 SCEVExpander Exp(*SE, DL, "induction");
2127
2128 // We need to test whether the backedge-taken count is uint##_max. Adding one
2129 // to it will cause overflow and an incorrect loop trip count in the vector
2130 // body. In case of overflow we want to directly jump to the scalar remainder
2131 // loop.
2132 Value *BackedgeCount =
2133 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
2134 BypassBlock->getTerminator());
2135 if (BackedgeCount->getType()->isPointerTy())
2136 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
2137 "backedge.ptrcnt.to.int",
2138 BypassBlock->getTerminator());
2139 Instruction *CheckBCOverflow =
2140 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
2141 Constant::getAllOnesValue(BackedgeCount->getType()),
2142 "backedge.overflow", BypassBlock->getTerminator());
2143
2144 // The loop index does not have to start at Zero. Find the original start
2145 // value from the induction PHI node. If we don't have an induction variable
2146 // then we know that it starts at zero.
2147 Builder.SetInsertPoint(BypassBlock->getTerminator());
2148 Value *StartIdx = ExtendedIdx = OldInduction ?
2149 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
2150 IdxTy):
2151 ConstantInt::get(IdxTy, 0);
2152
2153 // We need an instruction to anchor the overflow check on. StartIdx needs to
2154 // be defined before the overflow check branch. Because the scalar preheader
2155 // is going to merge the start index and so the overflow branch block needs to
2156 // contain a definition of the start index.
2157 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
2158 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
2159 BypassBlock->getTerminator());
2160
2161 // Count holds the overall loop count (N).
2162 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2163 BypassBlock->getTerminator());
2164
2165 LoopBypassBlocks.push_back(BypassBlock);
2166
2167 // Split the single block loop into the two loop structure described above.
2168 BasicBlock *VectorPH =
2169 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
2170 BasicBlock *VecBody =
2171 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2172 BasicBlock *MiddleBlock =
2173 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2174 BasicBlock *ScalarPH =
2175 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2176
2177 // Create and register the new vector loop.
2178 Loop* Lp = new Loop();
2179 Loop *ParentLoop = OrigLoop->getParentLoop();
2180
2181 // Insert the new loop into the loop nest and register the new basic blocks
2182 // before calling any utilities such as SCEV that require valid LoopInfo.
2183 if (ParentLoop) {
2184 ParentLoop->addChildLoop(Lp);
2185 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
2186 ParentLoop->addBasicBlockToLoop(VectorPH, *LI);
2187 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
2188 } else {
2189 LI->addTopLevelLoop(Lp);
2190 }
2191 Lp->addBasicBlockToLoop(VecBody, *LI);
2192
2193 // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
2194 // inside the loop.
2195 Builder.SetInsertPoint(VecBody->getFirstNonPHI());
2196
2197 // Generate the induction variable.
2198 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2199 Induction = Builder.CreatePHI(IdxTy, 2, "index");
2200 // The loop step is equal to the vectorization factor (num of SIMD elements)
2201 // times the unroll factor (num of SIMD instructions).
2202 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2203
2204 // This is the IR builder that we use to add all of the logic for bypassing
2205 // the new vector loop.
2206 IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
2207 setDebugLocFromInst(BypassBuilder,
2208 getDebugLocFromInstOrOperands(OldInduction));
2209
2210 // We may need to extend the index in case there is a type mismatch.
2211 // We know that the count starts at zero and does not overflow.
2212 if (Count->getType() != IdxTy) {
2213 // The exit count can be of pointer type. Convert it to the correct
2214 // integer type.
2215 if (ExitCount->getType()->isPointerTy())
2216 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
2217 else
2218 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
2219 }
2220
2221 // Add the start index to the loop count to get the new end index.
2222 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
2223
2224 // Now we need to generate the expression for N - (N % VF), which is
2225 // the part that the vectorized body will execute.
2226 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
2227 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
2228 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
2229 "end.idx.rnd.down");
2230
2231 // Now, compare the new count to zero. If it is zero skip the vector loop and
2232 // jump to the scalar loop.
2233 Value *Cmp =
2234 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
2235
2236 BasicBlock *LastBypassBlock = BypassBlock;
2237
2238 // Generate code to check that the loops trip count that we computed by adding
2239 // one to the backedge-taken count will not overflow.
2240 {
2241 auto PastOverflowCheck =
2242 std::next(BasicBlock::iterator(OverflowCheckAnchor));
2243 BasicBlock *CheckBlock =
2244 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
2245 if (ParentLoop)
2246 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
2247 LoopBypassBlocks.push_back(CheckBlock);
2248 Instruction *OldTerm = LastBypassBlock->getTerminator();
2249 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
2250 OldTerm->eraseFromParent();
2251 LastBypassBlock = CheckBlock;
2252 }
2253
2254 // Generate the code to check that the strides we assumed to be one are really
2255 // one. We want the new basic block to start at the first instruction in a
2256 // sequence of instructions that form a check.
2257 Instruction *StrideCheck;
2258 Instruction *FirstCheckInst;
2259 std::tie(FirstCheckInst, StrideCheck) =
2260 addStrideCheck(LastBypassBlock->getTerminator());
2261 if (StrideCheck) {
2262 AddedSafetyChecks = true;
2263 // Create a new block containing the stride check.
2264 BasicBlock *CheckBlock =
2265 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
2266 if (ParentLoop)
2267 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
2268 LoopBypassBlocks.push_back(CheckBlock);
2269
2270 // Replace the branch into the memory check block with a conditional branch
2271 // for the "few elements case".
2272 Instruction *OldTerm = LastBypassBlock->getTerminator();
2273 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2274 OldTerm->eraseFromParent();
2275
2276 Cmp = StrideCheck;
2277 LastBypassBlock = CheckBlock;
2278 }
2279
2280 // Generate the code that checks in runtime if arrays overlap. We put the
2281 // checks into a separate block to make the more common case of few elements
2282 // faster.
2283 Instruction *MemRuntimeCheck;
2284 std::tie(FirstCheckInst, MemRuntimeCheck) =
2285 Legal->getLAI()->addRuntimeCheck(LastBypassBlock->getTerminator());
2286 if (MemRuntimeCheck) {
2287 AddedSafetyChecks = true;
2288 // Create a new block containing the memory check.
2289 BasicBlock *CheckBlock =
2290 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.memcheck");
2291 if (ParentLoop)
2292 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
2293 LoopBypassBlocks.push_back(CheckBlock);
2294
2295 // Replace the branch into the memory check block with a conditional branch
2296 // for the "few elements case".
2297 Instruction *OldTerm = LastBypassBlock->getTerminator();
2298 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2299 OldTerm->eraseFromParent();
2300
2301 Cmp = MemRuntimeCheck;
2302 LastBypassBlock = CheckBlock;
2303 }
2304
2305 LastBypassBlock->getTerminator()->eraseFromParent();
2306 BranchInst::Create(MiddleBlock, VectorPH, Cmp,
2307 LastBypassBlock);
2308
2309 // We are going to resume the execution of the scalar loop.
2310 // Go over all of the induction variables that we found and fix the
2311 // PHIs that are left in the scalar version of the loop.
2312 // The starting values of PHI nodes depend on the counter of the last
2313 // iteration in the vectorized loop.
2314 // If we come from a bypass edge then we need to start from the original
2315 // start value.
2316
2317 // This variable saves the new starting index for the scalar loop.
2318 PHINode *ResumeIndex = nullptr;
2319 LoopVectorizationLegality::InductionList::iterator I, E;
2320 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2321 // Set builder to point to last bypass block.
2322 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
2323 for (I = List->begin(), E = List->end(); I != E; ++I) {
2324 PHINode *OrigPhi = I->first;
2325 LoopVectorizationLegality::InductionInfo II = I->second;
2326
2327 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
2328 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
2329 MiddleBlock->getTerminator());
2330 // We might have extended the type of the induction variable but we need a
2331 // truncated version for the scalar loop.
2332 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
2333 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
2334 MiddleBlock->getTerminator()) : nullptr;
2335
2336 // Create phi nodes to merge from the backedge-taken check block.
2337 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
2338 ScalarPH->getTerminator());
2339 BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
2340
2341 PHINode *BCTruncResumeVal = nullptr;
2342 if (OrigPhi == OldInduction) {
2343 BCTruncResumeVal =
2344 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
2345 ScalarPH->getTerminator());
2346 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
2347 }
2348
2349 Value *EndValue = nullptr;
2350 switch (II.IK) {
2351 case LoopVectorizationLegality::IK_NoInduction:
2352 llvm_unreachable("Unknown induction");
2353 case LoopVectorizationLegality::IK_IntInduction: {
2354 // Handle the integer induction counter.
2355 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
2356
2357 // We have the canonical induction variable.
2358 if (OrigPhi == OldInduction) {
2359 // Create a truncated version of the resume value for the scalar loop,
2360 // we might have promoted the type to a larger width.
2361 EndValue =
2362 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
2363 // The new PHI merges the original incoming value, in case of a bypass,
2364 // or the value at the end of the vectorized loop.
2365 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2366 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2367 TruncResumeVal->addIncoming(EndValue, VecBody);
2368
2369 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2370
2371 // We know what the end value is.
2372 EndValue = IdxEndRoundDown;
2373 // We also know which PHI node holds it.
2374 ResumeIndex = ResumeVal;
2375 break;
2376 }
2377
2378 // Not the canonical induction variable - add the vector loop count to the
2379 // start value.
2380 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2381 II.StartValue->getType(),
2382 "cast.crd");
2383 EndValue = II.transform(BypassBuilder, CRD);
2384 EndValue->setName("ind.end");
2385 break;
2386 }
2387 case LoopVectorizationLegality::IK_PtrInduction: {
2388 EndValue = II.transform(BypassBuilder, CountRoundDown);
2389 EndValue->setName("ptr.ind.end");
2390 break;
2391 }
2392 }// end of case
2393
2394 // The new PHI merges the original incoming value, in case of a bypass,
2395 // or the value at the end of the vectorized loop.
2396 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
2397 if (OrigPhi == OldInduction)
2398 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
2399 else
2400 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2401 }
2402 ResumeVal->addIncoming(EndValue, VecBody);
2403
2404 // Fix the scalar body counter (PHI node).
2405 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2406
2407 // The old induction's phi node in the scalar body needs the truncated
2408 // value.
2409 if (OrigPhi == OldInduction) {
2410 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
2411 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
2412 } else {
2413 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2414 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2415 }
2416 }
2417
2418 // If we are generating a new induction variable then we also need to
2419 // generate the code that calculates the exit value. This value is not
2420 // simply the end of the counter because we may skip the vectorized body
2421 // in case of a runtime check.
2422 if (!OldInduction){
2423 assert(!ResumeIndex && "Unexpected resume value found");
2424 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
2425 MiddleBlock->getTerminator());
2426 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2427 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
2428 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
2429 }
2430
2431 // Make sure that we found the index where scalar loop needs to continue.
2432 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
2433 "Invalid resume Index");
2434
2435 // Add a check in the middle block to see if we have completed
2436 // all of the iterations in the first vector loop.
2437 // If (N - N%VF) == N, then we *don't* need to run the remainder.
2438 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
2439 ResumeIndex, "cmp.n",
2440 MiddleBlock->getTerminator());
2441
2442 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
2443 // Remove the old terminator.
2444 MiddleBlock->getTerminator()->eraseFromParent();
2445
2446 // Create i+1 and fill the PHINode.
2447 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
2448 Induction->addIncoming(StartIdx, VectorPH);
2449 Induction->addIncoming(NextIdx, VecBody);
2450 // Create the compare.
2451 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
2452 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
2453
2454 // Now we have two terminators. Remove the old one from the block.
2455 VecBody->getTerminator()->eraseFromParent();
2456
2457 // Get ready to start creating new instructions into the vectorized body.
2458 Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
2459
2460 // Save the state.
2461 LoopVectorPreHeader = VectorPH;
2462 LoopScalarPreHeader = ScalarPH;
2463 LoopMiddleBlock = MiddleBlock;
2464 LoopExitBlock = ExitBlock;
2465 LoopVectorBody.push_back(VecBody);
2466 LoopScalarBody = OldBasicBlock;
2467
2468 LoopVectorizeHints Hints(Lp, true);
2469 Hints.setAlreadyVectorized();
2470 }
2471
2472 /// This function returns the identity element (or neutral element) for
2473 /// the operation K.
2474 Constant*
getReductionIdentity(ReductionKind K,Type * Tp)2475 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
2476 switch (K) {
2477 case RK_IntegerXor:
2478 case RK_IntegerAdd:
2479 case RK_IntegerOr:
2480 // Adding, Xoring, Oring zero to a number does not change it.
2481 return ConstantInt::get(Tp, 0);
2482 case RK_IntegerMult:
2483 // Multiplying a number by 1 does not change it.
2484 return ConstantInt::get(Tp, 1);
2485 case RK_IntegerAnd:
2486 // AND-ing a number with an all-1 value does not change it.
2487 return ConstantInt::get(Tp, -1, true);
2488 case RK_FloatMult:
2489 // Multiplying a number by 1 does not change it.
2490 return ConstantFP::get(Tp, 1.0L);
2491 case RK_FloatAdd:
2492 // Adding zero to a number does not change it.
2493 return ConstantFP::get(Tp, 0.0L);
2494 default:
2495 llvm_unreachable("Unknown reduction kind");
2496 }
2497 }
2498
2499 /// This function translates the reduction kind to an LLVM binary operator.
2500 static unsigned
getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind)2501 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
2502 switch (Kind) {
2503 case LoopVectorizationLegality::RK_IntegerAdd:
2504 return Instruction::Add;
2505 case LoopVectorizationLegality::RK_IntegerMult:
2506 return Instruction::Mul;
2507 case LoopVectorizationLegality::RK_IntegerOr:
2508 return Instruction::Or;
2509 case LoopVectorizationLegality::RK_IntegerAnd:
2510 return Instruction::And;
2511 case LoopVectorizationLegality::RK_IntegerXor:
2512 return Instruction::Xor;
2513 case LoopVectorizationLegality::RK_FloatMult:
2514 return Instruction::FMul;
2515 case LoopVectorizationLegality::RK_FloatAdd:
2516 return Instruction::FAdd;
2517 case LoopVectorizationLegality::RK_IntegerMinMax:
2518 return Instruction::ICmp;
2519 case LoopVectorizationLegality::RK_FloatMinMax:
2520 return Instruction::FCmp;
2521 default:
2522 llvm_unreachable("Unknown reduction operation");
2523 }
2524 }
2525
createMinMaxOp(IRBuilder<> & Builder,LoopVectorizationLegality::MinMaxReductionKind RK,Value * Left,Value * Right)2526 static Value *createMinMaxOp(IRBuilder<> &Builder,
2527 LoopVectorizationLegality::MinMaxReductionKind RK,
2528 Value *Left, Value *Right) {
2529 CmpInst::Predicate P = CmpInst::ICMP_NE;
2530 switch (RK) {
2531 default:
2532 llvm_unreachable("Unknown min/max reduction kind");
2533 case LoopVectorizationLegality::MRK_UIntMin:
2534 P = CmpInst::ICMP_ULT;
2535 break;
2536 case LoopVectorizationLegality::MRK_UIntMax:
2537 P = CmpInst::ICMP_UGT;
2538 break;
2539 case LoopVectorizationLegality::MRK_SIntMin:
2540 P = CmpInst::ICMP_SLT;
2541 break;
2542 case LoopVectorizationLegality::MRK_SIntMax:
2543 P = CmpInst::ICMP_SGT;
2544 break;
2545 case LoopVectorizationLegality::MRK_FloatMin:
2546 P = CmpInst::FCMP_OLT;
2547 break;
2548 case LoopVectorizationLegality::MRK_FloatMax:
2549 P = CmpInst::FCMP_OGT;
2550 break;
2551 }
2552
2553 Value *Cmp;
2554 if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2555 RK == LoopVectorizationLegality::MRK_FloatMax)
2556 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2557 else
2558 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2559
2560 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2561 return Select;
2562 }
2563
2564 namespace {
2565 struct CSEDenseMapInfo {
canHandle__anon63bf7e8f0211::CSEDenseMapInfo2566 static bool canHandle(Instruction *I) {
2567 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2568 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2569 }
getEmptyKey__anon63bf7e8f0211::CSEDenseMapInfo2570 static inline Instruction *getEmptyKey() {
2571 return DenseMapInfo<Instruction *>::getEmptyKey();
2572 }
getTombstoneKey__anon63bf7e8f0211::CSEDenseMapInfo2573 static inline Instruction *getTombstoneKey() {
2574 return DenseMapInfo<Instruction *>::getTombstoneKey();
2575 }
getHashValue__anon63bf7e8f0211::CSEDenseMapInfo2576 static unsigned getHashValue(Instruction *I) {
2577 assert(canHandle(I) && "Unknown instruction!");
2578 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2579 I->value_op_end()));
2580 }
isEqual__anon63bf7e8f0211::CSEDenseMapInfo2581 static bool isEqual(Instruction *LHS, Instruction *RHS) {
2582 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2583 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2584 return LHS == RHS;
2585 return LHS->isIdenticalTo(RHS);
2586 }
2587 };
2588 }
2589
2590 /// \brief Check whether this block is a predicated block.
2591 /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
2592 /// = ...; " blocks. We start with one vectorized basic block. For every
2593 /// conditional block we split this vectorized block. Therefore, every second
2594 /// block will be a predicated one.
isPredicatedBlock(unsigned BlockNum)2595 static bool isPredicatedBlock(unsigned BlockNum) {
2596 return BlockNum % 2;
2597 }
2598
2599 ///\brief Perform cse of induction variable instructions.
cse(SmallVector<BasicBlock *,4> & BBs)2600 static void cse(SmallVector<BasicBlock *, 4> &BBs) {
2601 // Perform simple cse.
2602 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2603 for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
2604 BasicBlock *BB = BBs[i];
2605 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2606 Instruction *In = I++;
2607
2608 if (!CSEDenseMapInfo::canHandle(In))
2609 continue;
2610
2611 // Check if we can replace this instruction with any of the
2612 // visited instructions.
2613 if (Instruction *V = CSEMap.lookup(In)) {
2614 In->replaceAllUsesWith(V);
2615 In->eraseFromParent();
2616 continue;
2617 }
2618 // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
2619 // ...;" blocks for predicated stores. Every second block is a predicated
2620 // block.
2621 if (isPredicatedBlock(i))
2622 continue;
2623
2624 CSEMap[In] = In;
2625 }
2626 }
2627 }
2628
2629 /// \brief Adds a 'fast' flag to floating point operations.
addFastMathFlag(Value * V)2630 static Value *addFastMathFlag(Value *V) {
2631 if (isa<FPMathOperator>(V)){
2632 FastMathFlags Flags;
2633 Flags.setUnsafeAlgebra();
2634 cast<Instruction>(V)->setFastMathFlags(Flags);
2635 }
2636 return V;
2637 }
2638
2639 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if
2640 /// the result needs to be inserted and/or extracted from vectors.
getScalarizationOverhead(Type * Ty,bool Insert,bool Extract,const TargetTransformInfo & TTI)2641 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
2642 const TargetTransformInfo &TTI) {
2643 if (Ty->isVoidTy())
2644 return 0;
2645
2646 assert(Ty->isVectorTy() && "Can only scalarize vectors");
2647 unsigned Cost = 0;
2648
2649 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
2650 if (Insert)
2651 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i);
2652 if (Extract)
2653 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i);
2654 }
2655
2656 return Cost;
2657 }
2658
2659 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
2660 // Return the cost of the instruction, including scalarization overhead if it's
2661 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
2662 // i.e. either vector version isn't available, or is too expensive.
getVectorCallCost(CallInst * CI,unsigned VF,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,bool & NeedToScalarize)2663 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
2664 const TargetTransformInfo &TTI,
2665 const TargetLibraryInfo *TLI,
2666 bool &NeedToScalarize) {
2667 Function *F = CI->getCalledFunction();
2668 StringRef FnName = CI->getCalledFunction()->getName();
2669 Type *ScalarRetTy = CI->getType();
2670 SmallVector<Type *, 4> Tys, ScalarTys;
2671 for (auto &ArgOp : CI->arg_operands())
2672 ScalarTys.push_back(ArgOp->getType());
2673
2674 // Estimate cost of scalarized vector call. The source operands are assumed
2675 // to be vectors, so we need to extract individual elements from there,
2676 // execute VF scalar calls, and then gather the result into the vector return
2677 // value.
2678 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
2679 if (VF == 1)
2680 return ScalarCallCost;
2681
2682 // Compute corresponding vector type for return value and arguments.
2683 Type *RetTy = ToVectorTy(ScalarRetTy, VF);
2684 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i)
2685 Tys.push_back(ToVectorTy(ScalarTys[i], VF));
2686
2687 // Compute costs of unpacking argument values for the scalar calls and
2688 // packing the return values to a vector.
2689 unsigned ScalarizationCost =
2690 getScalarizationOverhead(RetTy, true, false, TTI);
2691 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i)
2692 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI);
2693
2694 unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
2695
2696 // If we can't emit a vector call for this function, then the currently found
2697 // cost is the cost we need to return.
2698 NeedToScalarize = true;
2699 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
2700 return Cost;
2701
2702 // If the corresponding vector cost is cheaper, return its cost.
2703 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
2704 if (VectorCallCost < Cost) {
2705 NeedToScalarize = false;
2706 return VectorCallCost;
2707 }
2708 return Cost;
2709 }
2710
2711 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
2712 // factor VF. Return the cost of the instruction, including scalarization
2713 // overhead if it's needed.
getVectorIntrinsicCost(CallInst * CI,unsigned VF,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI)2714 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
2715 const TargetTransformInfo &TTI,
2716 const TargetLibraryInfo *TLI) {
2717 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2718 assert(ID && "Expected intrinsic call!");
2719
2720 Type *RetTy = ToVectorTy(CI->getType(), VF);
2721 SmallVector<Type *, 4> Tys;
2722 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
2723 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
2724
2725 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
2726 }
2727
vectorizeLoop()2728 void InnerLoopVectorizer::vectorizeLoop() {
2729 //===------------------------------------------------===//
2730 //
2731 // Notice: any optimization or new instruction that go
2732 // into the code below should be also be implemented in
2733 // the cost-model.
2734 //
2735 //===------------------------------------------------===//
2736 Constant *Zero = Builder.getInt32(0);
2737
2738 // In order to support reduction variables we need to be able to vectorize
2739 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2740 // stages. First, we create a new vector PHI node with no incoming edges.
2741 // We use this value when we vectorize all of the instructions that use the
2742 // PHI. Next, after all of the instructions in the block are complete we
2743 // add the new incoming edges to the PHI. At this point all of the
2744 // instructions in the basic block are vectorized, so we can use them to
2745 // construct the PHI.
2746 PhiVector RdxPHIsToFix;
2747
2748 // Scan the loop in a topological order to ensure that defs are vectorized
2749 // before users.
2750 LoopBlocksDFS DFS(OrigLoop);
2751 DFS.perform(LI);
2752
2753 // Vectorize all of the blocks in the original loop.
2754 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2755 be = DFS.endRPO(); bb != be; ++bb)
2756 vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
2757
2758 // At this point every instruction in the original loop is widened to
2759 // a vector form. We are almost done. Now, we need to fix the PHI nodes
2760 // that we vectorized. The PHI nodes are currently empty because we did
2761 // not want to introduce cycles. Notice that the remaining PHI nodes
2762 // that we need to fix are reduction variables.
2763
2764 // Create the 'reduced' values for each of the induction vars.
2765 // The reduced values are the vector values that we scalarize and combine
2766 // after the loop is finished.
2767 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2768 it != e; ++it) {
2769 PHINode *RdxPhi = *it;
2770 assert(RdxPhi && "Unable to recover vectorized PHI");
2771
2772 // Find the reduction variable descriptor.
2773 assert(Legal->getReductionVars()->count(RdxPhi) &&
2774 "Unable to find the reduction variable");
2775 LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2776 (*Legal->getReductionVars())[RdxPhi];
2777
2778 setDebugLocFromInst(Builder, RdxDesc.StartValue);
2779
2780 // We need to generate a reduction vector from the incoming scalar.
2781 // To do so, we need to generate the 'identity' vector and override
2782 // one of the elements with the incoming scalar reduction. We need
2783 // to do it in the vector-loop preheader.
2784 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
2785
2786 // This is the vector-clone of the value that leaves the loop.
2787 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2788 Type *VecTy = VectorExit[0]->getType();
2789
2790 // Find the reduction identity variable. Zero for addition, or, xor,
2791 // one for multiplication, -1 for And.
2792 Value *Identity;
2793 Value *VectorStart;
2794 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2795 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2796 // MinMax reduction have the start value as their identify.
2797 if (VF == 1) {
2798 VectorStart = Identity = RdxDesc.StartValue;
2799 } else {
2800 VectorStart = Identity = Builder.CreateVectorSplat(VF,
2801 RdxDesc.StartValue,
2802 "minmax.ident");
2803 }
2804 } else {
2805 // Handle other reduction kinds:
2806 Constant *Iden =
2807 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2808 VecTy->getScalarType());
2809 if (VF == 1) {
2810 Identity = Iden;
2811 // This vector is the Identity vector where the first element is the
2812 // incoming scalar reduction.
2813 VectorStart = RdxDesc.StartValue;
2814 } else {
2815 Identity = ConstantVector::getSplat(VF, Iden);
2816
2817 // This vector is the Identity vector where the first element is the
2818 // incoming scalar reduction.
2819 VectorStart = Builder.CreateInsertElement(Identity,
2820 RdxDesc.StartValue, Zero);
2821 }
2822 }
2823
2824 // Fix the vector-loop phi.
2825
2826 // Reductions do not have to start at zero. They can start with
2827 // any loop invariant values.
2828 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2829 BasicBlock *Latch = OrigLoop->getLoopLatch();
2830 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2831 VectorParts &Val = getVectorValue(LoopVal);
2832 for (unsigned part = 0; part < UF; ++part) {
2833 // Make sure to add the reduction stat value only to the
2834 // first unroll part.
2835 Value *StartVal = (part == 0) ? VectorStart : Identity;
2836 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal,
2837 LoopVectorPreHeader);
2838 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
2839 LoopVectorBody.back());
2840 }
2841
2842 // Before each round, move the insertion point right between
2843 // the PHIs and the values we are going to write.
2844 // This allows us to write both PHINodes and the extractelement
2845 // instructions.
2846 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2847
2848 VectorParts RdxParts;
2849 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2850 for (unsigned part = 0; part < UF; ++part) {
2851 // This PHINode contains the vectorized reduction variable, or
2852 // the initial value vector, if we bypass the vector loop.
2853 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2854 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2855 Value *StartVal = (part == 0) ? VectorStart : Identity;
2856 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2857 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2858 NewPhi->addIncoming(RdxExitVal[part],
2859 LoopVectorBody.back());
2860 RdxParts.push_back(NewPhi);
2861 }
2862
2863 // Reduce all of the unrolled parts into a single vector.
2864 Value *ReducedPartRdx = RdxParts[0];
2865 unsigned Op = getReductionBinOp(RdxDesc.Kind);
2866 setDebugLocFromInst(Builder, ReducedPartRdx);
2867 for (unsigned part = 1; part < UF; ++part) {
2868 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2869 // Floating point operations had to be 'fast' to enable the reduction.
2870 ReducedPartRdx = addFastMathFlag(
2871 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
2872 ReducedPartRdx, "bin.rdx"));
2873 else
2874 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2875 ReducedPartRdx, RdxParts[part]);
2876 }
2877
2878 if (VF > 1) {
2879 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2880 // and vector ops, reducing the set of values being computed by half each
2881 // round.
2882 assert(isPowerOf2_32(VF) &&
2883 "Reduction emission only supported for pow2 vectors!");
2884 Value *TmpVec = ReducedPartRdx;
2885 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
2886 for (unsigned i = VF; i != 1; i >>= 1) {
2887 // Move the upper half of the vector to the lower half.
2888 for (unsigned j = 0; j != i/2; ++j)
2889 ShuffleMask[j] = Builder.getInt32(i/2 + j);
2890
2891 // Fill the rest of the mask with undef.
2892 std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2893 UndefValue::get(Builder.getInt32Ty()));
2894
2895 Value *Shuf =
2896 Builder.CreateShuffleVector(TmpVec,
2897 UndefValue::get(TmpVec->getType()),
2898 ConstantVector::get(ShuffleMask),
2899 "rdx.shuf");
2900
2901 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2902 // Floating point operations had to be 'fast' to enable the reduction.
2903 TmpVec = addFastMathFlag(Builder.CreateBinOp(
2904 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
2905 else
2906 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2907 }
2908
2909 // The result is in the first element of the vector.
2910 ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2911 Builder.getInt32(0));
2912 }
2913
2914 // Create a phi node that merges control-flow from the backedge-taken check
2915 // block and the middle block.
2916 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
2917 LoopScalarPreHeader->getTerminator());
2918 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
2919 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2920
2921 // Now, we need to fix the users of the reduction variable
2922 // inside and outside of the scalar remainder loop.
2923 // We know that the loop is in LCSSA form. We need to update the
2924 // PHI nodes in the exit blocks.
2925 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2926 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2927 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2928 if (!LCSSAPhi) break;
2929
2930 // All PHINodes need to have a single entry edge, or two if
2931 // we already fixed them.
2932 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2933
2934 // We found our reduction value exit-PHI. Update it with the
2935 // incoming bypass edge.
2936 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2937 // Add an edge coming from the bypass.
2938 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2939 break;
2940 }
2941 }// end of the LCSSA phi scan.
2942
2943 // Fix the scalar loop reduction variable with the incoming reduction sum
2944 // from the vector body and from the backedge value.
2945 int IncomingEdgeBlockIdx =
2946 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2947 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2948 // Pick the other block.
2949 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2950 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
2951 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2952 }// end of for each redux variable.
2953
2954 fixLCSSAPHIs();
2955
2956 // Remove redundant induction instructions.
2957 cse(LoopVectorBody);
2958 }
2959
fixLCSSAPHIs()2960 void InnerLoopVectorizer::fixLCSSAPHIs() {
2961 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2962 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2963 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2964 if (!LCSSAPhi) break;
2965 if (LCSSAPhi->getNumIncomingValues() == 1)
2966 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2967 LoopMiddleBlock);
2968 }
2969 }
2970
2971 InnerLoopVectorizer::VectorParts
createEdgeMask(BasicBlock * Src,BasicBlock * Dst)2972 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2973 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2974 "Invalid edge");
2975
2976 // Look for cached value.
2977 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2978 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2979 if (ECEntryIt != MaskCache.end())
2980 return ECEntryIt->second;
2981
2982 VectorParts SrcMask = createBlockInMask(Src);
2983
2984 // The terminator has to be a branch inst!
2985 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2986 assert(BI && "Unexpected terminator found");
2987
2988 if (BI->isConditional()) {
2989 VectorParts EdgeMask = getVectorValue(BI->getCondition());
2990
2991 if (BI->getSuccessor(0) != Dst)
2992 for (unsigned part = 0; part < UF; ++part)
2993 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2994
2995 for (unsigned part = 0; part < UF; ++part)
2996 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2997
2998 MaskCache[Edge] = EdgeMask;
2999 return EdgeMask;
3000 }
3001
3002 MaskCache[Edge] = SrcMask;
3003 return SrcMask;
3004 }
3005
3006 InnerLoopVectorizer::VectorParts
createBlockInMask(BasicBlock * BB)3007 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
3008 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
3009
3010 // Loop incoming mask is all-one.
3011 if (OrigLoop->getHeader() == BB) {
3012 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
3013 return getVectorValue(C);
3014 }
3015
3016 // This is the block mask. We OR all incoming edges, and with zero.
3017 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
3018 VectorParts BlockMask = getVectorValue(Zero);
3019
3020 // For each pred:
3021 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
3022 VectorParts EM = createEdgeMask(*it, BB);
3023 for (unsigned part = 0; part < UF; ++part)
3024 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
3025 }
3026
3027 return BlockMask;
3028 }
3029
widenPHIInstruction(Instruction * PN,InnerLoopVectorizer::VectorParts & Entry,unsigned UF,unsigned VF,PhiVector * PV)3030 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
3031 InnerLoopVectorizer::VectorParts &Entry,
3032 unsigned UF, unsigned VF, PhiVector *PV) {
3033 PHINode* P = cast<PHINode>(PN);
3034 // Handle reduction variables:
3035 if (Legal->getReductionVars()->count(P)) {
3036 for (unsigned part = 0; part < UF; ++part) {
3037 // This is phase one of vectorizing PHIs.
3038 Type *VecTy = (VF == 1) ? PN->getType() :
3039 VectorType::get(PN->getType(), VF);
3040 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
3041 LoopVectorBody.back()-> getFirstInsertionPt());
3042 }
3043 PV->push_back(P);
3044 return;
3045 }
3046
3047 setDebugLocFromInst(Builder, P);
3048 // Check for PHI nodes that are lowered to vector selects.
3049 if (P->getParent() != OrigLoop->getHeader()) {
3050 // We know that all PHIs in non-header blocks are converted into
3051 // selects, so we don't have to worry about the insertion order and we
3052 // can just use the builder.
3053 // At this point we generate the predication tree. There may be
3054 // duplications since this is a simple recursive scan, but future
3055 // optimizations will clean it up.
3056
3057 unsigned NumIncoming = P->getNumIncomingValues();
3058
3059 // Generate a sequence of selects of the form:
3060 // SELECT(Mask3, In3,
3061 // SELECT(Mask2, In2,
3062 // ( ...)))
3063 for (unsigned In = 0; In < NumIncoming; In++) {
3064 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
3065 P->getParent());
3066 VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
3067
3068 for (unsigned part = 0; part < UF; ++part) {
3069 // We might have single edge PHIs (blocks) - use an identity
3070 // 'select' for the first PHI operand.
3071 if (In == 0)
3072 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3073 In0[part]);
3074 else
3075 // Select between the current value and the previous incoming edge
3076 // based on the incoming mask.
3077 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3078 Entry[part], "predphi");
3079 }
3080 }
3081 return;
3082 }
3083
3084 // This PHINode must be an induction variable.
3085 // Make sure that we know about it.
3086 assert(Legal->getInductionVars()->count(P) &&
3087 "Not an induction variable");
3088
3089 LoopVectorizationLegality::InductionInfo II =
3090 Legal->getInductionVars()->lookup(P);
3091
3092 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
3093 // which can be found from the original scalar operations.
3094 switch (II.IK) {
3095 case LoopVectorizationLegality::IK_NoInduction:
3096 llvm_unreachable("Unknown induction");
3097 case LoopVectorizationLegality::IK_IntInduction: {
3098 assert(P->getType() == II.StartValue->getType() && "Types must match");
3099 Type *PhiTy = P->getType();
3100 Value *Broadcasted;
3101 if (P == OldInduction) {
3102 // Handle the canonical induction variable. We might have had to
3103 // extend the type.
3104 Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
3105 } else {
3106 // Handle other induction variables that are now based on the
3107 // canonical one.
3108 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
3109 "normalized.idx");
3110 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
3111 Broadcasted = II.transform(Builder, NormalizedIdx);
3112 Broadcasted->setName("offset.idx");
3113 }
3114 Broadcasted = getBroadcastInstrs(Broadcasted);
3115 // After broadcasting the induction variable we need to make the vector
3116 // consecutive by adding 0, 1, 2, etc.
3117 for (unsigned part = 0; part < UF; ++part)
3118 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue);
3119 return;
3120 }
3121 case LoopVectorizationLegality::IK_PtrInduction:
3122 // Handle the pointer induction variable case.
3123 assert(P->getType()->isPointerTy() && "Unexpected type.");
3124 // This is the normalized GEP that starts counting at zero.
3125 Value *NormalizedIdx =
3126 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx");
3127 // This is the vector of results. Notice that we don't generate
3128 // vector geps because scalar geps result in better code.
3129 for (unsigned part = 0; part < UF; ++part) {
3130 if (VF == 1) {
3131 int EltIndex = part;
3132 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3133 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx);
3134 Value *SclrGep = II.transform(Builder, GlobalIdx);
3135 SclrGep->setName("next.gep");
3136 Entry[part] = SclrGep;
3137 continue;
3138 }
3139
3140 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
3141 for (unsigned int i = 0; i < VF; ++i) {
3142 int EltIndex = i + part * VF;
3143 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3144 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx);
3145 Value *SclrGep = II.transform(Builder, GlobalIdx);
3146 SclrGep->setName("next.gep");
3147 VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
3148 Builder.getInt32(i),
3149 "insert.gep");
3150 }
3151 Entry[part] = VecVal;
3152 }
3153 return;
3154 }
3155 }
3156
vectorizeBlockInLoop(BasicBlock * BB,PhiVector * PV)3157 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
3158 // For each instruction in the old loop.
3159 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3160 VectorParts &Entry = WidenMap.get(it);
3161 switch (it->getOpcode()) {
3162 case Instruction::Br:
3163 // Nothing to do for PHIs and BR, since we already took care of the
3164 // loop control flow instructions.
3165 continue;
3166 case Instruction::PHI: {
3167 // Vectorize PHINodes.
3168 widenPHIInstruction(it, Entry, UF, VF, PV);
3169 continue;
3170 }// End of PHI.
3171
3172 case Instruction::Add:
3173 case Instruction::FAdd:
3174 case Instruction::Sub:
3175 case Instruction::FSub:
3176 case Instruction::Mul:
3177 case Instruction::FMul:
3178 case Instruction::UDiv:
3179 case Instruction::SDiv:
3180 case Instruction::FDiv:
3181 case Instruction::URem:
3182 case Instruction::SRem:
3183 case Instruction::FRem:
3184 case Instruction::Shl:
3185 case Instruction::LShr:
3186 case Instruction::AShr:
3187 case Instruction::And:
3188 case Instruction::Or:
3189 case Instruction::Xor: {
3190 // Just widen binops.
3191 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
3192 setDebugLocFromInst(Builder, BinOp);
3193 VectorParts &A = getVectorValue(it->getOperand(0));
3194 VectorParts &B = getVectorValue(it->getOperand(1));
3195
3196 // Use this vector value for all users of the original instruction.
3197 for (unsigned Part = 0; Part < UF; ++Part) {
3198 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
3199
3200 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
3201 VecOp->copyIRFlags(BinOp);
3202
3203 Entry[Part] = V;
3204 }
3205
3206 propagateMetadata(Entry, it);
3207 break;
3208 }
3209 case Instruction::Select: {
3210 // Widen selects.
3211 // If the selector is loop invariant we can create a select
3212 // instruction with a scalar condition. Otherwise, use vector-select.
3213 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
3214 OrigLoop);
3215 setDebugLocFromInst(Builder, it);
3216
3217 // The condition can be loop invariant but still defined inside the
3218 // loop. This means that we can't just use the original 'cond' value.
3219 // We have to take the 'vectorized' value and pick the first lane.
3220 // Instcombine will make this a no-op.
3221 VectorParts &Cond = getVectorValue(it->getOperand(0));
3222 VectorParts &Op0 = getVectorValue(it->getOperand(1));
3223 VectorParts &Op1 = getVectorValue(it->getOperand(2));
3224
3225 Value *ScalarCond = (VF == 1) ? Cond[0] :
3226 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
3227
3228 for (unsigned Part = 0; Part < UF; ++Part) {
3229 Entry[Part] = Builder.CreateSelect(
3230 InvariantCond ? ScalarCond : Cond[Part],
3231 Op0[Part],
3232 Op1[Part]);
3233 }
3234
3235 propagateMetadata(Entry, it);
3236 break;
3237 }
3238
3239 case Instruction::ICmp:
3240 case Instruction::FCmp: {
3241 // Widen compares. Generate vector compares.
3242 bool FCmp = (it->getOpcode() == Instruction::FCmp);
3243 CmpInst *Cmp = dyn_cast<CmpInst>(it);
3244 setDebugLocFromInst(Builder, it);
3245 VectorParts &A = getVectorValue(it->getOperand(0));
3246 VectorParts &B = getVectorValue(it->getOperand(1));
3247 for (unsigned Part = 0; Part < UF; ++Part) {
3248 Value *C = nullptr;
3249 if (FCmp)
3250 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
3251 else
3252 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
3253 Entry[Part] = C;
3254 }
3255
3256 propagateMetadata(Entry, it);
3257 break;
3258 }
3259
3260 case Instruction::Store:
3261 case Instruction::Load:
3262 vectorizeMemoryInstruction(it);
3263 break;
3264 case Instruction::ZExt:
3265 case Instruction::SExt:
3266 case Instruction::FPToUI:
3267 case Instruction::FPToSI:
3268 case Instruction::FPExt:
3269 case Instruction::PtrToInt:
3270 case Instruction::IntToPtr:
3271 case Instruction::SIToFP:
3272 case Instruction::UIToFP:
3273 case Instruction::Trunc:
3274 case Instruction::FPTrunc:
3275 case Instruction::BitCast: {
3276 CastInst *CI = dyn_cast<CastInst>(it);
3277 setDebugLocFromInst(Builder, it);
3278 /// Optimize the special case where the source is the induction
3279 /// variable. Notice that we can only optimize the 'trunc' case
3280 /// because: a. FP conversions lose precision, b. sext/zext may wrap,
3281 /// c. other casts depend on pointer size.
3282 if (CI->getOperand(0) == OldInduction &&
3283 it->getOpcode() == Instruction::Trunc) {
3284 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
3285 CI->getType());
3286 Value *Broadcasted = getBroadcastInstrs(ScalarCast);
3287 LoopVectorizationLegality::InductionInfo II =
3288 Legal->getInductionVars()->lookup(OldInduction);
3289 Constant *Step =
3290 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue());
3291 for (unsigned Part = 0; Part < UF; ++Part)
3292 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
3293 propagateMetadata(Entry, it);
3294 break;
3295 }
3296 /// Vectorize casts.
3297 Type *DestTy = (VF == 1) ? CI->getType() :
3298 VectorType::get(CI->getType(), VF);
3299
3300 VectorParts &A = getVectorValue(it->getOperand(0));
3301 for (unsigned Part = 0; Part < UF; ++Part)
3302 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
3303 propagateMetadata(Entry, it);
3304 break;
3305 }
3306
3307 case Instruction::Call: {
3308 // Ignore dbg intrinsics.
3309 if (isa<DbgInfoIntrinsic>(it))
3310 break;
3311 setDebugLocFromInst(Builder, it);
3312
3313 Module *M = BB->getParent()->getParent();
3314 CallInst *CI = cast<CallInst>(it);
3315
3316 StringRef FnName = CI->getCalledFunction()->getName();
3317 Function *F = CI->getCalledFunction();
3318 Type *RetTy = ToVectorTy(CI->getType(), VF);
3319 SmallVector<Type *, 4> Tys;
3320 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
3321 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
3322
3323 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3324 if (ID &&
3325 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
3326 ID == Intrinsic::lifetime_start)) {
3327 scalarizeInstruction(it);
3328 break;
3329 }
3330 // The flag shows whether we use Intrinsic or a usual Call for vectorized
3331 // version of the instruction.
3332 // Is it beneficial to perform intrinsic call compared to lib call?
3333 bool NeedToScalarize;
3334 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
3335 bool UseVectorIntrinsic =
3336 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
3337 if (!UseVectorIntrinsic && NeedToScalarize) {
3338 scalarizeInstruction(it);
3339 break;
3340 }
3341
3342 for (unsigned Part = 0; Part < UF; ++Part) {
3343 SmallVector<Value *, 4> Args;
3344 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
3345 Value *Arg = CI->getArgOperand(i);
3346 // Some intrinsics have a scalar argument - don't replace it with a
3347 // vector.
3348 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
3349 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
3350 Arg = VectorArg[Part];
3351 }
3352 Args.push_back(Arg);
3353 }
3354
3355 Function *VectorF;
3356 if (UseVectorIntrinsic) {
3357 // Use vector version of the intrinsic.
3358 Type *TysForDecl[] = {CI->getType()};
3359 if (VF > 1)
3360 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
3361 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
3362 } else {
3363 // Use vector version of the library call.
3364 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
3365 assert(!VFnName.empty() && "Vector function name is empty.");
3366 VectorF = M->getFunction(VFnName);
3367 if (!VectorF) {
3368 // Generate a declaration
3369 FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
3370 VectorF =
3371 Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
3372 VectorF->copyAttributesFrom(F);
3373 }
3374 }
3375 assert(VectorF && "Can't create vector function.");
3376 Entry[Part] = Builder.CreateCall(VectorF, Args);
3377 }
3378
3379 propagateMetadata(Entry, it);
3380 break;
3381 }
3382
3383 default:
3384 // All other instructions are unsupported. Scalarize them.
3385 scalarizeInstruction(it);
3386 break;
3387 }// end of switch.
3388 }// end of for_each instr.
3389 }
3390
updateAnalysis()3391 void InnerLoopVectorizer::updateAnalysis() {
3392 // Forget the original basic block.
3393 SE->forgetLoop(OrigLoop);
3394
3395 // Update the dominator tree information.
3396 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
3397 "Entry does not dominate exit.");
3398
3399 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
3400 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
3401 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
3402
3403 // Due to if predication of stores we might create a sequence of "if(pred)
3404 // a[i] = ...; " blocks.
3405 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
3406 if (i == 0)
3407 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
3408 else if (isPredicatedBlock(i)) {
3409 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
3410 } else {
3411 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
3412 }
3413 }
3414
3415 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
3416 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
3417 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
3418 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
3419
3420 DEBUG(DT->verifyDomTree());
3421 }
3422
3423 /// \brief Check whether it is safe to if-convert this phi node.
3424 ///
3425 /// Phi nodes with constant expressions that can trap are not safe to if
3426 /// convert.
canIfConvertPHINodes(BasicBlock * BB)3427 static bool canIfConvertPHINodes(BasicBlock *BB) {
3428 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3429 PHINode *Phi = dyn_cast<PHINode>(I);
3430 if (!Phi)
3431 return true;
3432 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
3433 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
3434 if (C->canTrap())
3435 return false;
3436 }
3437 return true;
3438 }
3439
canVectorizeWithIfConvert()3440 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
3441 if (!EnableIfConversion) {
3442 emitAnalysis(VectorizationReport() << "if-conversion is disabled");
3443 return false;
3444 }
3445
3446 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
3447
3448 // A list of pointers that we can safely read and write to.
3449 SmallPtrSet<Value *, 8> SafePointes;
3450
3451 // Collect safe addresses.
3452 for (Loop::block_iterator BI = TheLoop->block_begin(),
3453 BE = TheLoop->block_end(); BI != BE; ++BI) {
3454 BasicBlock *BB = *BI;
3455
3456 if (blockNeedsPredication(BB))
3457 continue;
3458
3459 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3460 if (LoadInst *LI = dyn_cast<LoadInst>(I))
3461 SafePointes.insert(LI->getPointerOperand());
3462 else if (StoreInst *SI = dyn_cast<StoreInst>(I))
3463 SafePointes.insert(SI->getPointerOperand());
3464 }
3465 }
3466
3467 // Collect the blocks that need predication.
3468 BasicBlock *Header = TheLoop->getHeader();
3469 for (Loop::block_iterator BI = TheLoop->block_begin(),
3470 BE = TheLoop->block_end(); BI != BE; ++BI) {
3471 BasicBlock *BB = *BI;
3472
3473 // We don't support switch statements inside loops.
3474 if (!isa<BranchInst>(BB->getTerminator())) {
3475 emitAnalysis(VectorizationReport(BB->getTerminator())
3476 << "loop contains a switch statement");
3477 return false;
3478 }
3479
3480 // We must be able to predicate all blocks that need to be predicated.
3481 if (blockNeedsPredication(BB)) {
3482 if (!blockCanBePredicated(BB, SafePointes)) {
3483 emitAnalysis(VectorizationReport(BB->getTerminator())
3484 << "control flow cannot be substituted for a select");
3485 return false;
3486 }
3487 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
3488 emitAnalysis(VectorizationReport(BB->getTerminator())
3489 << "control flow cannot be substituted for a select");
3490 return false;
3491 }
3492 }
3493
3494 // We can if-convert this loop.
3495 return true;
3496 }
3497
canVectorize()3498 bool LoopVectorizationLegality::canVectorize() {
3499 // We must have a loop in canonical form. Loops with indirectbr in them cannot
3500 // be canonicalized.
3501 if (!TheLoop->getLoopPreheader()) {
3502 emitAnalysis(
3503 VectorizationReport() <<
3504 "loop control flow is not understood by vectorizer");
3505 return false;
3506 }
3507
3508 // We can only vectorize innermost loops.
3509 if (!TheLoop->getSubLoopsVector().empty()) {
3510 emitAnalysis(VectorizationReport() << "loop is not the innermost loop");
3511 return false;
3512 }
3513
3514 // We must have a single backedge.
3515 if (TheLoop->getNumBackEdges() != 1) {
3516 emitAnalysis(
3517 VectorizationReport() <<
3518 "loop control flow is not understood by vectorizer");
3519 return false;
3520 }
3521
3522 // We must have a single exiting block.
3523 if (!TheLoop->getExitingBlock()) {
3524 emitAnalysis(
3525 VectorizationReport() <<
3526 "loop control flow is not understood by vectorizer");
3527 return false;
3528 }
3529
3530 // We only handle bottom-tested loops, i.e. loop in which the condition is
3531 // checked at the end of each iteration. With that we can assume that all
3532 // instructions in the loop are executed the same number of times.
3533 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
3534 emitAnalysis(
3535 VectorizationReport() <<
3536 "loop control flow is not understood by vectorizer");
3537 return false;
3538 }
3539
3540 // We need to have a loop header.
3541 DEBUG(dbgs() << "LV: Found a loop: " <<
3542 TheLoop->getHeader()->getName() << '\n');
3543
3544 // Check if we can if-convert non-single-bb loops.
3545 unsigned NumBlocks = TheLoop->getNumBlocks();
3546 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
3547 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
3548 return false;
3549 }
3550
3551 // ScalarEvolution needs to be able to find the exit count.
3552 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
3553 if (ExitCount == SE->getCouldNotCompute()) {
3554 emitAnalysis(VectorizationReport() <<
3555 "could not determine number of loop iterations");
3556 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
3557 return false;
3558 }
3559
3560 // Check if we can vectorize the instructions and CFG in this loop.
3561 if (!canVectorizeInstrs()) {
3562 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
3563 return false;
3564 }
3565
3566 // Go over each instruction and look at memory deps.
3567 if (!canVectorizeMemory()) {
3568 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
3569 return false;
3570 }
3571
3572 // Collect all of the variables that remain uniform after vectorization.
3573 collectLoopUniforms();
3574
3575 DEBUG(dbgs() << "LV: We can vectorize this loop" <<
3576 (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" :
3577 "")
3578 <<"!\n");
3579
3580 // Okay! We can vectorize. At this point we don't have any other mem analysis
3581 // which may limit our maximum vectorization factor, so just return true with
3582 // no restrictions.
3583 return true;
3584 }
3585
convertPointerToIntegerType(const DataLayout & DL,Type * Ty)3586 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
3587 if (Ty->isPointerTy())
3588 return DL.getIntPtrType(Ty);
3589
3590 // It is possible that char's or short's overflow when we ask for the loop's
3591 // trip count, work around this by changing the type size.
3592 if (Ty->getScalarSizeInBits() < 32)
3593 return Type::getInt32Ty(Ty->getContext());
3594
3595 return Ty;
3596 }
3597
getWiderType(const DataLayout & DL,Type * Ty0,Type * Ty1)3598 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
3599 Ty0 = convertPointerToIntegerType(DL, Ty0);
3600 Ty1 = convertPointerToIntegerType(DL, Ty1);
3601 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
3602 return Ty0;
3603 return Ty1;
3604 }
3605
3606 /// \brief Check that the instruction has outside loop users and is not an
3607 /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSetImpl<Value * > & Reductions)3608 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
3609 SmallPtrSetImpl<Value *> &Reductions) {
3610 // Reduction instructions are allowed to have exit users. All other
3611 // instructions must not have external users.
3612 if (!Reductions.count(Inst))
3613 //Check that all of the users of the loop are inside the BB.
3614 for (User *U : Inst->users()) {
3615 Instruction *UI = cast<Instruction>(U);
3616 // This user may be a reduction exit value.
3617 if (!TheLoop->contains(UI)) {
3618 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
3619 return true;
3620 }
3621 }
3622 return false;
3623 }
3624
canVectorizeInstrs()3625 bool LoopVectorizationLegality::canVectorizeInstrs() {
3626 BasicBlock *PreHeader = TheLoop->getLoopPreheader();
3627 BasicBlock *Header = TheLoop->getHeader();
3628
3629 // Look for the attribute signaling the absence of NaNs.
3630 Function &F = *Header->getParent();
3631 const DataLayout &DL = F.getParent()->getDataLayout();
3632 if (F.hasFnAttribute("no-nans-fp-math"))
3633 HasFunNoNaNAttr =
3634 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
3635
3636 // For each block in the loop.
3637 for (Loop::block_iterator bb = TheLoop->block_begin(),
3638 be = TheLoop->block_end(); bb != be; ++bb) {
3639
3640 // Scan the instructions in the block and look for hazards.
3641 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3642 ++it) {
3643
3644 if (PHINode *Phi = dyn_cast<PHINode>(it)) {
3645 Type *PhiTy = Phi->getType();
3646 // Check that this PHI type is allowed.
3647 if (!PhiTy->isIntegerTy() &&
3648 !PhiTy->isFloatingPointTy() &&
3649 !PhiTy->isPointerTy()) {
3650 emitAnalysis(VectorizationReport(it)
3651 << "loop control flow is not understood by vectorizer");
3652 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
3653 return false;
3654 }
3655
3656 // If this PHINode is not in the header block, then we know that we
3657 // can convert it to select during if-conversion. No need to check if
3658 // the PHIs in this block are induction or reduction variables.
3659 if (*bb != Header) {
3660 // Check that this instruction has no outside users or is an
3661 // identified reduction value with an outside user.
3662 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
3663 continue;
3664 emitAnalysis(VectorizationReport(it) <<
3665 "value could not be identified as "
3666 "an induction or reduction variable");
3667 return false;
3668 }
3669
3670 // We only allow if-converted PHIs with exactly two incoming values.
3671 if (Phi->getNumIncomingValues() != 2) {
3672 emitAnalysis(VectorizationReport(it)
3673 << "control flow not understood by vectorizer");
3674 DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
3675 return false;
3676 }
3677
3678 // This is the value coming from the preheader.
3679 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
3680 ConstantInt *StepValue = nullptr;
3681 // Check if this is an induction variable.
3682 InductionKind IK = isInductionVariable(Phi, StepValue);
3683
3684 if (IK_NoInduction != IK) {
3685 // Get the widest type.
3686 if (!WidestIndTy)
3687 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
3688 else
3689 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
3690
3691 // Int inductions are special because we only allow one IV.
3692 if (IK == IK_IntInduction && StepValue->isOne()) {
3693 // Use the phi node with the widest type as induction. Use the last
3694 // one if there are multiple (no good reason for doing this other
3695 // than it is expedient).
3696 if (!Induction || PhiTy == WidestIndTy)
3697 Induction = Phi;
3698 }
3699
3700 DEBUG(dbgs() << "LV: Found an induction variable.\n");
3701 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue);
3702
3703 // Until we explicitly handle the case of an induction variable with
3704 // an outside loop user we have to give up vectorizing this loop.
3705 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3706 emitAnalysis(VectorizationReport(it) <<
3707 "use of induction value outside of the "
3708 "loop is not handled by vectorizer");
3709 return false;
3710 }
3711
3712 continue;
3713 }
3714
3715 if (AddReductionVar(Phi, RK_IntegerAdd)) {
3716 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
3717 continue;
3718 }
3719 if (AddReductionVar(Phi, RK_IntegerMult)) {
3720 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
3721 continue;
3722 }
3723 if (AddReductionVar(Phi, RK_IntegerOr)) {
3724 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
3725 continue;
3726 }
3727 if (AddReductionVar(Phi, RK_IntegerAnd)) {
3728 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
3729 continue;
3730 }
3731 if (AddReductionVar(Phi, RK_IntegerXor)) {
3732 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
3733 continue;
3734 }
3735 if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3736 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
3737 continue;
3738 }
3739 if (AddReductionVar(Phi, RK_FloatMult)) {
3740 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
3741 continue;
3742 }
3743 if (AddReductionVar(Phi, RK_FloatAdd)) {
3744 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
3745 continue;
3746 }
3747 if (AddReductionVar(Phi, RK_FloatMinMax)) {
3748 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
3749 "\n");
3750 continue;
3751 }
3752
3753 emitAnalysis(VectorizationReport(it) <<
3754 "value that could not be identified as "
3755 "reduction is used outside the loop");
3756 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
3757 return false;
3758 }// end of PHI handling
3759
3760 // We handle calls that:
3761 // * Are debug info intrinsics.
3762 // * Have a mapping to an IR intrinsic.
3763 // * Have a vector version available.
3764 CallInst *CI = dyn_cast<CallInst>(it);
3765 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) &&
3766 !(CI->getCalledFunction() && TLI &&
3767 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
3768 emitAnalysis(VectorizationReport(it) <<
3769 "call instruction cannot be vectorized");
3770 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
3771 return false;
3772 }
3773
3774 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
3775 // second argument is the same (i.e. loop invariant)
3776 if (CI &&
3777 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
3778 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
3779 emitAnalysis(VectorizationReport(it)
3780 << "intrinsic instruction cannot be vectorized");
3781 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
3782 return false;
3783 }
3784 }
3785
3786 // Check that the instruction return type is vectorizable.
3787 // Also, we can't vectorize extractelement instructions.
3788 if ((!VectorType::isValidElementType(it->getType()) &&
3789 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3790 emitAnalysis(VectorizationReport(it)
3791 << "instruction return type cannot be vectorized");
3792 DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
3793 return false;
3794 }
3795
3796 // Check that the stored type is vectorizable.
3797 if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3798 Type *T = ST->getValueOperand()->getType();
3799 if (!VectorType::isValidElementType(T)) {
3800 emitAnalysis(VectorizationReport(ST) <<
3801 "store instruction cannot be vectorized");
3802 return false;
3803 }
3804 if (EnableMemAccessVersioning)
3805 collectStridedAccess(ST);
3806 }
3807
3808 if (EnableMemAccessVersioning)
3809 if (LoadInst *LI = dyn_cast<LoadInst>(it))
3810 collectStridedAccess(LI);
3811
3812 // Reduction instructions are allowed to have exit users.
3813 // All other instructions must not have external users.
3814 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3815 emitAnalysis(VectorizationReport(it) <<
3816 "value cannot be used outside the loop");
3817 return false;
3818 }
3819
3820 } // next instr.
3821
3822 }
3823
3824 if (!Induction) {
3825 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
3826 if (Inductions.empty()) {
3827 emitAnalysis(VectorizationReport()
3828 << "loop induction variable could not be identified");
3829 return false;
3830 }
3831 }
3832
3833 return true;
3834 }
3835
3836 ///\brief Remove GEPs whose indices but the last one are loop invariant and
3837 /// return the induction operand of the gep pointer.
stripGetElementPtr(Value * Ptr,ScalarEvolution * SE,Loop * Lp)3838 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
3839 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3840 if (!GEP)
3841 return Ptr;
3842
3843 unsigned InductionOperand = getGEPInductionOperand(GEP);
3844
3845 // Check that all of the gep indices are uniform except for our induction
3846 // operand.
3847 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
3848 if (i != InductionOperand &&
3849 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
3850 return Ptr;
3851 return GEP->getOperand(InductionOperand);
3852 }
3853
3854 ///\brief Look for a cast use of the passed value.
getUniqueCastUse(Value * Ptr,Loop * Lp,Type * Ty)3855 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
3856 Value *UniqueCast = nullptr;
3857 for (User *U : Ptr->users()) {
3858 CastInst *CI = dyn_cast<CastInst>(U);
3859 if (CI && CI->getType() == Ty) {
3860 if (!UniqueCast)
3861 UniqueCast = CI;
3862 else
3863 return nullptr;
3864 }
3865 }
3866 return UniqueCast;
3867 }
3868
3869 ///\brief Get the stride of a pointer access in a loop.
3870 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
3871 /// pointer to the Value, or null otherwise.
getStrideFromPointer(Value * Ptr,ScalarEvolution * SE,Loop * Lp)3872 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
3873 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3874 if (!PtrTy || PtrTy->isAggregateType())
3875 return nullptr;
3876
3877 // Try to remove a gep instruction to make the pointer (actually index at this
3878 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
3879 // pointer, otherwise, we are analyzing the index.
3880 Value *OrigPtr = Ptr;
3881
3882 // The size of the pointer access.
3883 int64_t PtrAccessSize = 1;
3884
3885 Ptr = stripGetElementPtr(Ptr, SE, Lp);
3886 const SCEV *V = SE->getSCEV(Ptr);
3887
3888 if (Ptr != OrigPtr)
3889 // Strip off casts.
3890 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
3891 V = C->getOperand();
3892
3893 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
3894 if (!S)
3895 return nullptr;
3896
3897 V = S->getStepRecurrence(*SE);
3898 if (!V)
3899 return nullptr;
3900
3901 // Strip off the size of access multiplication if we are still analyzing the
3902 // pointer.
3903 if (OrigPtr == Ptr) {
3904 const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout();
3905 DL.getTypeAllocSize(PtrTy->getElementType());
3906 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
3907 if (M->getOperand(0)->getSCEVType() != scConstant)
3908 return nullptr;
3909
3910 const APInt &APStepVal =
3911 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
3912
3913 // Huge step value - give up.
3914 if (APStepVal.getBitWidth() > 64)
3915 return nullptr;
3916
3917 int64_t StepVal = APStepVal.getSExtValue();
3918 if (PtrAccessSize != StepVal)
3919 return nullptr;
3920 V = M->getOperand(1);
3921 }
3922 }
3923
3924 // Strip off casts.
3925 Type *StripedOffRecurrenceCast = nullptr;
3926 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
3927 StripedOffRecurrenceCast = C->getType();
3928 V = C->getOperand();
3929 }
3930
3931 // Look for the loop invariant symbolic value.
3932 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
3933 if (!U)
3934 return nullptr;
3935
3936 Value *Stride = U->getValue();
3937 if (!Lp->isLoopInvariant(Stride))
3938 return nullptr;
3939
3940 // If we have stripped off the recurrence cast we have to make sure that we
3941 // return the value that is used in this loop so that we can replace it later.
3942 if (StripedOffRecurrenceCast)
3943 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
3944
3945 return Stride;
3946 }
3947
collectStridedAccess(Value * MemAccess)3948 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) {
3949 Value *Ptr = nullptr;
3950 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
3951 Ptr = LI->getPointerOperand();
3952 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
3953 Ptr = SI->getPointerOperand();
3954 else
3955 return;
3956
3957 Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop);
3958 if (!Stride)
3959 return;
3960
3961 DEBUG(dbgs() << "LV: Found a strided access that we can version");
3962 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
3963 Strides[Ptr] = Stride;
3964 StrideSet.insert(Stride);
3965 }
3966
collectLoopUniforms()3967 void LoopVectorizationLegality::collectLoopUniforms() {
3968 // We now know that the loop is vectorizable!
3969 // Collect variables that will remain uniform after vectorization.
3970 std::vector<Value*> Worklist;
3971 BasicBlock *Latch = TheLoop->getLoopLatch();
3972
3973 // Start with the conditional branch and walk up the block.
3974 Worklist.push_back(Latch->getTerminator()->getOperand(0));
3975
3976 // Also add all consecutive pointer values; these values will be uniform
3977 // after vectorization (and subsequent cleanup) and, until revectorization is
3978 // supported, all dependencies must also be uniform.
3979 for (Loop::block_iterator B = TheLoop->block_begin(),
3980 BE = TheLoop->block_end(); B != BE; ++B)
3981 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
3982 I != IE; ++I)
3983 if (I->getType()->isPointerTy() && isConsecutivePtr(I))
3984 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3985
3986 while (!Worklist.empty()) {
3987 Instruction *I = dyn_cast<Instruction>(Worklist.back());
3988 Worklist.pop_back();
3989
3990 // Look at instructions inside this loop.
3991 // Stop when reaching PHI nodes.
3992 // TODO: we need to follow values all over the loop, not only in this block.
3993 if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
3994 continue;
3995
3996 // This is a known uniform.
3997 Uniforms.insert(I);
3998
3999 // Insert all operands.
4000 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
4001 }
4002 }
4003
canVectorizeMemory()4004 bool LoopVectorizationLegality::canVectorizeMemory() {
4005 LAI = &LAA->getInfo(TheLoop, Strides);
4006 auto &OptionalReport = LAI->getReport();
4007 if (OptionalReport)
4008 emitAnalysis(VectorizationReport(*OptionalReport));
4009 if (!LAI->canVectorizeMemory())
4010 return false;
4011
4012 if (LAI->hasStoreToLoopInvariantAddress()) {
4013 emitAnalysis(
4014 VectorizationReport()
4015 << "write to a loop invariant address could not be vectorized");
4016 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
4017 return false;
4018 }
4019
4020 if (LAI->getNumRuntimePointerChecks() >
4021 VectorizerParams::RuntimeMemoryCheckThreshold) {
4022 emitAnalysis(VectorizationReport()
4023 << LAI->getNumRuntimePointerChecks() << " exceeds limit of "
4024 << VectorizerParams::RuntimeMemoryCheckThreshold
4025 << " dependent memory operations checked at runtime");
4026 DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
4027 return false;
4028 }
4029 return true;
4030 }
4031
hasMultipleUsesOf(Instruction * I,SmallPtrSetImpl<Instruction * > & Insts)4032 static bool hasMultipleUsesOf(Instruction *I,
4033 SmallPtrSetImpl<Instruction *> &Insts) {
4034 unsigned NumUses = 0;
4035 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
4036 if (Insts.count(dyn_cast<Instruction>(*Use)))
4037 ++NumUses;
4038 if (NumUses > 1)
4039 return true;
4040 }
4041
4042 return false;
4043 }
4044
areAllUsesIn(Instruction * I,SmallPtrSetImpl<Instruction * > & Set)4045 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) {
4046 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4047 if (!Set.count(dyn_cast<Instruction>(*Use)))
4048 return false;
4049 return true;
4050 }
4051
AddReductionVar(PHINode * Phi,ReductionKind Kind)4052 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
4053 ReductionKind Kind) {
4054 if (Phi->getNumIncomingValues() != 2)
4055 return false;
4056
4057 // Reduction variables are only found in the loop header block.
4058 if (Phi->getParent() != TheLoop->getHeader())
4059 return false;
4060
4061 // Obtain the reduction start value from the value that comes from the loop
4062 // preheader.
4063 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
4064
4065 // ExitInstruction is the single value which is used outside the loop.
4066 // We only allow for a single reduction value to be used outside the loop.
4067 // This includes users of the reduction, variables (which form a cycle
4068 // which ends in the phi node).
4069 Instruction *ExitInstruction = nullptr;
4070 // Indicates that we found a reduction operation in our scan.
4071 bool FoundReduxOp = false;
4072
4073 // We start with the PHI node and scan for all of the users of this
4074 // instruction. All users must be instructions that can be used as reduction
4075 // variables (such as ADD). We must have a single out-of-block user. The cycle
4076 // must include the original PHI.
4077 bool FoundStartPHI = false;
4078
4079 // To recognize min/max patterns formed by a icmp select sequence, we store
4080 // the number of instruction we saw from the recognized min/max pattern,
4081 // to make sure we only see exactly the two instructions.
4082 unsigned NumCmpSelectPatternInst = 0;
4083 ReductionInstDesc ReduxDesc(false, nullptr);
4084
4085 SmallPtrSet<Instruction *, 8> VisitedInsts;
4086 SmallVector<Instruction *, 8> Worklist;
4087 Worklist.push_back(Phi);
4088 VisitedInsts.insert(Phi);
4089
4090 // A value in the reduction can be used:
4091 // - By the reduction:
4092 // - Reduction operation:
4093 // - One use of reduction value (safe).
4094 // - Multiple use of reduction value (not safe).
4095 // - PHI:
4096 // - All uses of the PHI must be the reduction (safe).
4097 // - Otherwise, not safe.
4098 // - By one instruction outside of the loop (safe).
4099 // - By further instructions outside of the loop (not safe).
4100 // - By an instruction that is not part of the reduction (not safe).
4101 // This is either:
4102 // * An instruction type other than PHI or the reduction operation.
4103 // * A PHI in the header other than the initial PHI.
4104 while (!Worklist.empty()) {
4105 Instruction *Cur = Worklist.back();
4106 Worklist.pop_back();
4107
4108 // No Users.
4109 // If the instruction has no users then this is a broken chain and can't be
4110 // a reduction variable.
4111 if (Cur->use_empty())
4112 return false;
4113
4114 bool IsAPhi = isa<PHINode>(Cur);
4115
4116 // A header PHI use other than the original PHI.
4117 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
4118 return false;
4119
4120 // Reductions of instructions such as Div, and Sub is only possible if the
4121 // LHS is the reduction variable.
4122 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
4123 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
4124 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
4125 return false;
4126
4127 // Any reduction instruction must be of one of the allowed kinds.
4128 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
4129 if (!ReduxDesc.IsReduction)
4130 return false;
4131
4132 // A reduction operation must only have one use of the reduction value.
4133 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
4134 hasMultipleUsesOf(Cur, VisitedInsts))
4135 return false;
4136
4137 // All inputs to a PHI node must be a reduction value.
4138 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
4139 return false;
4140
4141 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
4142 isa<SelectInst>(Cur)))
4143 ++NumCmpSelectPatternInst;
4144 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
4145 isa<SelectInst>(Cur)))
4146 ++NumCmpSelectPatternInst;
4147
4148 // Check whether we found a reduction operator.
4149 FoundReduxOp |= !IsAPhi;
4150
4151 // Process users of current instruction. Push non-PHI nodes after PHI nodes
4152 // onto the stack. This way we are going to have seen all inputs to PHI
4153 // nodes once we get to them.
4154 SmallVector<Instruction *, 8> NonPHIs;
4155 SmallVector<Instruction *, 8> PHIs;
4156 for (User *U : Cur->users()) {
4157 Instruction *UI = cast<Instruction>(U);
4158
4159 // Check if we found the exit user.
4160 BasicBlock *Parent = UI->getParent();
4161 if (!TheLoop->contains(Parent)) {
4162 // Exit if you find multiple outside users or if the header phi node is
4163 // being used. In this case the user uses the value of the previous
4164 // iteration, in which case we would loose "VF-1" iterations of the
4165 // reduction operation if we vectorize.
4166 if (ExitInstruction != nullptr || Cur == Phi)
4167 return false;
4168
4169 // The instruction used by an outside user must be the last instruction
4170 // before we feed back to the reduction phi. Otherwise, we loose VF-1
4171 // operations on the value.
4172 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
4173 return false;
4174
4175 ExitInstruction = Cur;
4176 continue;
4177 }
4178
4179 // Process instructions only once (termination). Each reduction cycle
4180 // value must only be used once, except by phi nodes and min/max
4181 // reductions which are represented as a cmp followed by a select.
4182 ReductionInstDesc IgnoredVal(false, nullptr);
4183 if (VisitedInsts.insert(UI).second) {
4184 if (isa<PHINode>(UI))
4185 PHIs.push_back(UI);
4186 else
4187 NonPHIs.push_back(UI);
4188 } else if (!isa<PHINode>(UI) &&
4189 ((!isa<FCmpInst>(UI) &&
4190 !isa<ICmpInst>(UI) &&
4191 !isa<SelectInst>(UI)) ||
4192 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
4193 return false;
4194
4195 // Remember that we completed the cycle.
4196 if (UI == Phi)
4197 FoundStartPHI = true;
4198 }
4199 Worklist.append(PHIs.begin(), PHIs.end());
4200 Worklist.append(NonPHIs.begin(), NonPHIs.end());
4201 }
4202
4203 // This means we have seen one but not the other instruction of the
4204 // pattern or more than just a select and cmp.
4205 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
4206 NumCmpSelectPatternInst != 2)
4207 return false;
4208
4209 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
4210 return false;
4211
4212 // We found a reduction var if we have reached the original phi node and we
4213 // only have a single instruction with out-of-loop users.
4214
4215 // This instruction is allowed to have out-of-loop users.
4216 AllowedExit.insert(ExitInstruction);
4217
4218 // Save the description of this reduction variable.
4219 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
4220 ReduxDesc.MinMaxKind);
4221 Reductions[Phi] = RD;
4222 // We've ended the cycle. This is a reduction variable if we have an
4223 // outside user and it has a binary op.
4224
4225 return true;
4226 }
4227
4228 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
4229 /// pattern corresponding to a min(X, Y) or max(X, Y).
4230 LoopVectorizationLegality::ReductionInstDesc
isMinMaxSelectCmpPattern(Instruction * I,ReductionInstDesc & Prev)4231 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
4232 ReductionInstDesc &Prev) {
4233
4234 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
4235 "Expect a select instruction");
4236 Instruction *Cmp = nullptr;
4237 SelectInst *Select = nullptr;
4238
4239 // We must handle the select(cmp()) as a single instruction. Advance to the
4240 // select.
4241 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
4242 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
4243 return ReductionInstDesc(false, I);
4244 return ReductionInstDesc(Select, Prev.MinMaxKind);
4245 }
4246
4247 // Only handle single use cases for now.
4248 if (!(Select = dyn_cast<SelectInst>(I)))
4249 return ReductionInstDesc(false, I);
4250 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
4251 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
4252 return ReductionInstDesc(false, I);
4253 if (!Cmp->hasOneUse())
4254 return ReductionInstDesc(false, I);
4255
4256 Value *CmpLeft;
4257 Value *CmpRight;
4258
4259 // Look for a min/max pattern.
4260 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4261 return ReductionInstDesc(Select, MRK_UIntMin);
4262 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4263 return ReductionInstDesc(Select, MRK_UIntMax);
4264 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4265 return ReductionInstDesc(Select, MRK_SIntMax);
4266 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4267 return ReductionInstDesc(Select, MRK_SIntMin);
4268 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4269 return ReductionInstDesc(Select, MRK_FloatMin);
4270 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4271 return ReductionInstDesc(Select, MRK_FloatMax);
4272 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4273 return ReductionInstDesc(Select, MRK_FloatMin);
4274 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4275 return ReductionInstDesc(Select, MRK_FloatMax);
4276
4277 return ReductionInstDesc(false, I);
4278 }
4279
4280 LoopVectorizationLegality::ReductionInstDesc
isReductionInstr(Instruction * I,ReductionKind Kind,ReductionInstDesc & Prev)4281 LoopVectorizationLegality::isReductionInstr(Instruction *I,
4282 ReductionKind Kind,
4283 ReductionInstDesc &Prev) {
4284 bool FP = I->getType()->isFloatingPointTy();
4285 bool FastMath = FP && I->hasUnsafeAlgebra();
4286 switch (I->getOpcode()) {
4287 default:
4288 return ReductionInstDesc(false, I);
4289 case Instruction::PHI:
4290 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
4291 Kind != RK_FloatMinMax))
4292 return ReductionInstDesc(false, I);
4293 return ReductionInstDesc(I, Prev.MinMaxKind);
4294 case Instruction::Sub:
4295 case Instruction::Add:
4296 return ReductionInstDesc(Kind == RK_IntegerAdd, I);
4297 case Instruction::Mul:
4298 return ReductionInstDesc(Kind == RK_IntegerMult, I);
4299 case Instruction::And:
4300 return ReductionInstDesc(Kind == RK_IntegerAnd, I);
4301 case Instruction::Or:
4302 return ReductionInstDesc(Kind == RK_IntegerOr, I);
4303 case Instruction::Xor:
4304 return ReductionInstDesc(Kind == RK_IntegerXor, I);
4305 case Instruction::FMul:
4306 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
4307 case Instruction::FSub:
4308 case Instruction::FAdd:
4309 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
4310 case Instruction::FCmp:
4311 case Instruction::ICmp:
4312 case Instruction::Select:
4313 if (Kind != RK_IntegerMinMax &&
4314 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
4315 return ReductionInstDesc(false, I);
4316 return isMinMaxSelectCmpPattern(I, Prev);
4317 }
4318 }
4319
isInductionPHI(PHINode * Phi,ScalarEvolution * SE,ConstantInt * & StepValue)4320 bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
4321 ConstantInt *&StepValue) {
4322 Type *PhiTy = Phi->getType();
4323 // We only handle integer and pointer inductions variables.
4324 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
4325 return false;
4326
4327 // Check that the PHI is consecutive.
4328 const SCEV *PhiScev = SE->getSCEV(Phi);
4329 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
4330 if (!AR) {
4331 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
4332 return false;
4333 }
4334
4335 const SCEV *Step = AR->getStepRecurrence(*SE);
4336 // Calculate the pointer stride and check if it is consecutive.
4337 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4338 if (!C)
4339 return false;
4340
4341 ConstantInt *CV = C->getValue();
4342 if (PhiTy->isIntegerTy()) {
4343 StepValue = CV;
4344 return true;
4345 }
4346
4347 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
4348 Type *PointerElementType = PhiTy->getPointerElementType();
4349 // The pointer stride cannot be determined if the pointer element type is not
4350 // sized.
4351 if (!PointerElementType->isSized())
4352 return false;
4353
4354 const DataLayout &DL = Phi->getModule()->getDataLayout();
4355 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
4356 int64_t CVSize = CV->getSExtValue();
4357 if (CVSize % Size)
4358 return false;
4359 StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
4360 return true;
4361 }
4362
4363 LoopVectorizationLegality::InductionKind
isInductionVariable(PHINode * Phi,ConstantInt * & StepValue)4364 LoopVectorizationLegality::isInductionVariable(PHINode *Phi,
4365 ConstantInt *&StepValue) {
4366 if (!isInductionPHI(Phi, SE, StepValue))
4367 return IK_NoInduction;
4368
4369 Type *PhiTy = Phi->getType();
4370 // Found an Integer induction variable.
4371 if (PhiTy->isIntegerTy())
4372 return IK_IntInduction;
4373 // Found an Pointer induction variable.
4374 return IK_PtrInduction;
4375 }
4376
isInductionVariable(const Value * V)4377 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4378 Value *In0 = const_cast<Value*>(V);
4379 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4380 if (!PN)
4381 return false;
4382
4383 return Inductions.count(PN);
4384 }
4385
blockNeedsPredication(BasicBlock * BB)4386 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
4387 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
4388 }
4389
blockCanBePredicated(BasicBlock * BB,SmallPtrSetImpl<Value * > & SafePtrs)4390 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
4391 SmallPtrSetImpl<Value *> &SafePtrs) {
4392
4393 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4394 // Check that we don't have a constant expression that can trap as operand.
4395 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
4396 OI != OE; ++OI) {
4397 if (Constant *C = dyn_cast<Constant>(*OI))
4398 if (C->canTrap())
4399 return false;
4400 }
4401 // We might be able to hoist the load.
4402 if (it->mayReadFromMemory()) {
4403 LoadInst *LI = dyn_cast<LoadInst>(it);
4404 if (!LI)
4405 return false;
4406 if (!SafePtrs.count(LI->getPointerOperand())) {
4407 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) {
4408 MaskedOp.insert(LI);
4409 continue;
4410 }
4411 return false;
4412 }
4413 }
4414
4415 // We don't predicate stores at the moment.
4416 if (it->mayWriteToMemory()) {
4417 StoreInst *SI = dyn_cast<StoreInst>(it);
4418 // We only support predication of stores in basic blocks with one
4419 // predecessor.
4420 if (!SI)
4421 return false;
4422
4423 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
4424 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
4425
4426 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
4427 !isSinglePredecessor) {
4428 // Build a masked store if it is legal for the target, otherwise scalarize
4429 // the block.
4430 bool isLegalMaskedOp =
4431 isLegalMaskedStore(SI->getValueOperand()->getType(),
4432 SI->getPointerOperand());
4433 if (isLegalMaskedOp) {
4434 --NumPredStores;
4435 MaskedOp.insert(SI);
4436 continue;
4437 }
4438 return false;
4439 }
4440 }
4441 if (it->mayThrow())
4442 return false;
4443
4444 // The instructions below can trap.
4445 switch (it->getOpcode()) {
4446 default: continue;
4447 case Instruction::UDiv:
4448 case Instruction::SDiv:
4449 case Instruction::URem:
4450 case Instruction::SRem:
4451 return false;
4452 }
4453 }
4454
4455 return true;
4456 }
4457
4458 LoopVectorizationCostModel::VectorizationFactor
selectVectorizationFactor(bool OptForSize)4459 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
4460 // Width 1 means no vectorize
4461 VectorizationFactor Factor = { 1U, 0U };
4462 if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
4463 emitAnalysis(VectorizationReport() <<
4464 "runtime pointer checks needed. Enable vectorization of this "
4465 "loop with '#pragma clang loop vectorize(enable)' when "
4466 "compiling with -Os");
4467 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
4468 return Factor;
4469 }
4470
4471 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
4472 emitAnalysis(VectorizationReport() <<
4473 "store that is conditionally executed prevents vectorization");
4474 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
4475 return Factor;
4476 }
4477
4478 // Find the trip count.
4479 unsigned TC = SE->getSmallConstantTripCount(TheLoop);
4480 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4481
4482 unsigned WidestType = getWidestType();
4483 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4484 unsigned MaxSafeDepDist = -1U;
4485 if (Legal->getMaxSafeDepDistBytes() != -1U)
4486 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
4487 WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
4488 WidestRegister : MaxSafeDepDist);
4489 unsigned MaxVectorSize = WidestRegister / WidestType;
4490 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
4491 DEBUG(dbgs() << "LV: The Widest register is: "
4492 << WidestRegister << " bits.\n");
4493
4494 if (MaxVectorSize == 0) {
4495 DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4496 MaxVectorSize = 1;
4497 }
4498
4499 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
4500 " into one vector!");
4501
4502 unsigned VF = MaxVectorSize;
4503
4504 // If we optimize the program for size, avoid creating the tail loop.
4505 if (OptForSize) {
4506 // If we are unable to calculate the trip count then don't try to vectorize.
4507 if (TC < 2) {
4508 emitAnalysis
4509 (VectorizationReport() <<
4510 "unable to calculate the loop count due to complex control flow");
4511 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4512 return Factor;
4513 }
4514
4515 // Find the maximum SIMD width that can fit within the trip count.
4516 VF = TC % MaxVectorSize;
4517
4518 if (VF == 0)
4519 VF = MaxVectorSize;
4520
4521 // If the trip count that we found modulo the vectorization factor is not
4522 // zero then we require a tail.
4523 if (VF < 2) {
4524 emitAnalysis(VectorizationReport() <<
4525 "cannot optimize for size and vectorize at the "
4526 "same time. Enable vectorization of this loop "
4527 "with '#pragma clang loop vectorize(enable)' "
4528 "when compiling with -Os");
4529 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4530 return Factor;
4531 }
4532 }
4533
4534 int UserVF = Hints->getWidth();
4535 if (UserVF != 0) {
4536 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4537 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
4538
4539 Factor.Width = UserVF;
4540 return Factor;
4541 }
4542
4543 float Cost = expectedCost(1);
4544 #ifndef NDEBUG
4545 const float ScalarCost = Cost;
4546 #endif /* NDEBUG */
4547 unsigned Width = 1;
4548 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
4549
4550 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
4551 // Ignore scalar width, because the user explicitly wants vectorization.
4552 if (ForceVectorization && VF > 1) {
4553 Width = 2;
4554 Cost = expectedCost(Width) / (float)Width;
4555 }
4556
4557 for (unsigned i=2; i <= VF; i*=2) {
4558 // Notice that the vector loop needs to be executed less times, so
4559 // we need to divide the cost of the vector loops by the width of
4560 // the vector elements.
4561 float VectorCost = expectedCost(i) / (float)i;
4562 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
4563 (int)VectorCost << ".\n");
4564 if (VectorCost < Cost) {
4565 Cost = VectorCost;
4566 Width = i;
4567 }
4568 }
4569
4570 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
4571 << "LV: Vectorization seems to be not beneficial, "
4572 << "but was forced by a user.\n");
4573 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
4574 Factor.Width = Width;
4575 Factor.Cost = Width * Cost;
4576 return Factor;
4577 }
4578
getWidestType()4579 unsigned LoopVectorizationCostModel::getWidestType() {
4580 unsigned MaxWidth = 8;
4581 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
4582
4583 // For each block.
4584 for (Loop::block_iterator bb = TheLoop->block_begin(),
4585 be = TheLoop->block_end(); bb != be; ++bb) {
4586 BasicBlock *BB = *bb;
4587
4588 // For each instruction in the loop.
4589 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4590 Type *T = it->getType();
4591
4592 // Ignore ephemeral values.
4593 if (EphValues.count(it))
4594 continue;
4595
4596 // Only examine Loads, Stores and PHINodes.
4597 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4598 continue;
4599
4600 // Examine PHI nodes that are reduction variables.
4601 if (PHINode *PN = dyn_cast<PHINode>(it))
4602 if (!Legal->getReductionVars()->count(PN))
4603 continue;
4604
4605 // Examine the stored values.
4606 if (StoreInst *ST = dyn_cast<StoreInst>(it))
4607 T = ST->getValueOperand()->getType();
4608
4609 // Ignore loaded pointer types and stored pointer types that are not
4610 // consecutive. However, we do want to take consecutive stores/loads of
4611 // pointer vectors into account.
4612 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
4613 continue;
4614
4615 MaxWidth = std::max(MaxWidth,
4616 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
4617 }
4618 }
4619
4620 return MaxWidth;
4621 }
4622
4623 unsigned
selectUnrollFactor(bool OptForSize,unsigned VF,unsigned LoopCost)4624 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
4625 unsigned VF,
4626 unsigned LoopCost) {
4627
4628 // -- The unroll heuristics --
4629 // We unroll the loop in order to expose ILP and reduce the loop overhead.
4630 // There are many micro-architectural considerations that we can't predict
4631 // at this level. For example, frontend pressure (on decode or fetch) due to
4632 // code size, or the number and capabilities of the execution ports.
4633 //
4634 // We use the following heuristics to select the unroll factor:
4635 // 1. If the code has reductions, then we unroll in order to break the cross
4636 // iteration dependency.
4637 // 2. If the loop is really small, then we unroll in order to reduce the loop
4638 // overhead.
4639 // 3. We don't unroll if we think that we will spill registers to memory due
4640 // to the increased register pressure.
4641
4642 // Use the user preference, unless 'auto' is selected.
4643 int UserUF = Hints->getInterleave();
4644 if (UserUF != 0)
4645 return UserUF;
4646
4647 // When we optimize for size, we don't unroll.
4648 if (OptForSize)
4649 return 1;
4650
4651 // We used the distance for the unroll factor.
4652 if (Legal->getMaxSafeDepDistBytes() != -1U)
4653 return 1;
4654
4655 // Do not unroll loops with a relatively small trip count.
4656 unsigned TC = SE->getSmallConstantTripCount(TheLoop);
4657 if (TC > 1 && TC < TinyTripCountUnrollThreshold)
4658 return 1;
4659
4660 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
4661 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
4662 " registers\n");
4663
4664 if (VF == 1) {
4665 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4666 TargetNumRegisters = ForceTargetNumScalarRegs;
4667 } else {
4668 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4669 TargetNumRegisters = ForceTargetNumVectorRegs;
4670 }
4671
4672 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
4673 // We divide by these constants so assume that we have at least one
4674 // instruction that uses at least one register.
4675 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4676 R.NumInstructions = std::max(R.NumInstructions, 1U);
4677
4678 // We calculate the unroll factor using the following formula.
4679 // Subtract the number of loop invariants from the number of available
4680 // registers. These registers are used by all of the unrolled instances.
4681 // Next, divide the remaining registers by the number of registers that is
4682 // required by the loop, in order to estimate how many parallel instances
4683 // fit without causing spills. All of this is rounded down if necessary to be
4684 // a power of two. We want power of two unroll factors to simplify any
4685 // addressing operations or alignment considerations.
4686 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
4687 R.MaxLocalUsers);
4688
4689 // Don't count the induction variable as unrolled.
4690 if (EnableIndVarRegisterHeur)
4691 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
4692 std::max(1U, (R.MaxLocalUsers - 1)));
4693
4694 // Clamp the unroll factor ranges to reasonable factors.
4695 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor();
4696
4697 // Check if the user has overridden the unroll max.
4698 if (VF == 1) {
4699 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4700 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor;
4701 } else {
4702 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4703 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor;
4704 }
4705
4706 // If we did not calculate the cost for VF (because the user selected the VF)
4707 // then we calculate the cost of VF here.
4708 if (LoopCost == 0)
4709 LoopCost = expectedCost(VF);
4710
4711 // Clamp the calculated UF to be between the 1 and the max unroll factor
4712 // that the target allows.
4713 if (UF > MaxInterleaveSize)
4714 UF = MaxInterleaveSize;
4715 else if (UF < 1)
4716 UF = 1;
4717
4718 // Unroll if we vectorized this loop and there is a reduction that could
4719 // benefit from unrolling.
4720 if (VF > 1 && Legal->getReductionVars()->size()) {
4721 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
4722 return UF;
4723 }
4724
4725 // Note that if we've already vectorized the loop we will have done the
4726 // runtime check and so unrolling won't require further checks.
4727 bool UnrollingRequiresRuntimePointerCheck =
4728 (VF == 1 && Legal->getRuntimePointerCheck()->Need);
4729
4730 // We want to unroll small loops in order to reduce the loop overhead and
4731 // potentially expose ILP opportunities.
4732 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
4733 if (!UnrollingRequiresRuntimePointerCheck &&
4734 LoopCost < SmallLoopCost) {
4735 // We assume that the cost overhead is 1 and we use the cost model
4736 // to estimate the cost of the loop and unroll until the cost of the
4737 // loop overhead is about 5% of the cost of the loop.
4738 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
4739
4740 // Unroll until store/load ports (estimated by max unroll factor) are
4741 // saturated.
4742 unsigned NumStores = Legal->getNumStores();
4743 unsigned NumLoads = Legal->getNumLoads();
4744 unsigned StoresUF = UF / (NumStores ? NumStores : 1);
4745 unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1);
4746
4747 // If we have a scalar reduction (vector reductions are already dealt with
4748 // by this point), we can increase the critical path length if the loop
4749 // we're unrolling is inside another loop. Limit, by default to 2, so the
4750 // critical path only gets increased by one reduction operation.
4751 if (Legal->getReductionVars()->size() &&
4752 TheLoop->getLoopDepth() > 1) {
4753 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF);
4754 SmallUF = std::min(SmallUF, F);
4755 StoresUF = std::min(StoresUF, F);
4756 LoadsUF = std::min(LoadsUF, F);
4757 }
4758
4759 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
4760 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
4761 return std::max(StoresUF, LoadsUF);
4762 }
4763
4764 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
4765 return SmallUF;
4766 }
4767
4768 // Unroll if this is a large loop (small loops are already dealt with by this
4769 // point) that could benefit from interleaved unrolling.
4770 bool HasReductions = (Legal->getReductionVars()->size() > 0);
4771 if (TTI.enableAggressiveInterleaving(HasReductions)) {
4772 DEBUG(dbgs() << "LV: Unrolling to expose ILP.\n");
4773 return UF;
4774 }
4775
4776 DEBUG(dbgs() << "LV: Not Unrolling.\n");
4777 return 1;
4778 }
4779
4780 LoopVectorizationCostModel::RegisterUsage
calculateRegisterUsage()4781 LoopVectorizationCostModel::calculateRegisterUsage() {
4782 // This function calculates the register usage by measuring the highest number
4783 // of values that are alive at a single location. Obviously, this is a very
4784 // rough estimation. We scan the loop in a topological order in order and
4785 // assign a number to each instruction. We use RPO to ensure that defs are
4786 // met before their users. We assume that each instruction that has in-loop
4787 // users starts an interval. We record every time that an in-loop value is
4788 // used, so we have a list of the first and last occurrences of each
4789 // instruction. Next, we transpose this data structure into a multi map that
4790 // holds the list of intervals that *end* at a specific location. This multi
4791 // map allows us to perform a linear search. We scan the instructions linearly
4792 // and record each time that a new interval starts, by placing it in a set.
4793 // If we find this value in the multi-map then we remove it from the set.
4794 // The max register usage is the maximum size of the set.
4795 // We also search for instructions that are defined outside the loop, but are
4796 // used inside the loop. We need this number separately from the max-interval
4797 // usage number because when we unroll, loop-invariant values do not take
4798 // more register.
4799 LoopBlocksDFS DFS(TheLoop);
4800 DFS.perform(LI);
4801
4802 RegisterUsage R;
4803 R.NumInstructions = 0;
4804
4805 // Each 'key' in the map opens a new interval. The values
4806 // of the map are the index of the 'last seen' usage of the
4807 // instruction that is the key.
4808 typedef DenseMap<Instruction*, unsigned> IntervalMap;
4809 // Maps instruction to its index.
4810 DenseMap<unsigned, Instruction*> IdxToInstr;
4811 // Marks the end of each interval.
4812 IntervalMap EndPoint;
4813 // Saves the list of instruction indices that are used in the loop.
4814 SmallSet<Instruction*, 8> Ends;
4815 // Saves the list of values that are used in the loop but are
4816 // defined outside the loop, such as arguments and constants.
4817 SmallPtrSet<Value*, 8> LoopInvariants;
4818
4819 unsigned Index = 0;
4820 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
4821 be = DFS.endRPO(); bb != be; ++bb) {
4822 R.NumInstructions += (*bb)->size();
4823 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4824 ++it) {
4825 Instruction *I = it;
4826 IdxToInstr[Index++] = I;
4827
4828 // Save the end location of each USE.
4829 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
4830 Value *U = I->getOperand(i);
4831 Instruction *Instr = dyn_cast<Instruction>(U);
4832
4833 // Ignore non-instruction values such as arguments, constants, etc.
4834 if (!Instr) continue;
4835
4836 // If this instruction is outside the loop then record it and continue.
4837 if (!TheLoop->contains(Instr)) {
4838 LoopInvariants.insert(Instr);
4839 continue;
4840 }
4841
4842 // Overwrite previous end points.
4843 EndPoint[Instr] = Index;
4844 Ends.insert(Instr);
4845 }
4846 }
4847 }
4848
4849 // Saves the list of intervals that end with the index in 'key'.
4850 typedef SmallVector<Instruction*, 2> InstrList;
4851 DenseMap<unsigned, InstrList> TransposeEnds;
4852
4853 // Transpose the EndPoints to a list of values that end at each index.
4854 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
4855 it != e; ++it)
4856 TransposeEnds[it->second].push_back(it->first);
4857
4858 SmallSet<Instruction*, 8> OpenIntervals;
4859 unsigned MaxUsage = 0;
4860
4861
4862 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
4863 for (unsigned int i = 0; i < Index; ++i) {
4864 Instruction *I = IdxToInstr[i];
4865 // Ignore instructions that are never used within the loop.
4866 if (!Ends.count(I)) continue;
4867
4868 // Ignore ephemeral values.
4869 if (EphValues.count(I))
4870 continue;
4871
4872 // Remove all of the instructions that end at this location.
4873 InstrList &List = TransposeEnds[i];
4874 for (unsigned int j=0, e = List.size(); j < e; ++j)
4875 OpenIntervals.erase(List[j]);
4876
4877 // Count the number of live interals.
4878 MaxUsage = std::max(MaxUsage, OpenIntervals.size());
4879
4880 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
4881 OpenIntervals.size() << '\n');
4882
4883 // Add the current instruction to the list of open intervals.
4884 OpenIntervals.insert(I);
4885 }
4886
4887 unsigned Invariant = LoopInvariants.size();
4888 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
4889 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
4890 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
4891
4892 R.LoopInvariantRegs = Invariant;
4893 R.MaxLocalUsers = MaxUsage;
4894 return R;
4895 }
4896
expectedCost(unsigned VF)4897 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
4898 unsigned Cost = 0;
4899
4900 // For each block.
4901 for (Loop::block_iterator bb = TheLoop->block_begin(),
4902 be = TheLoop->block_end(); bb != be; ++bb) {
4903 unsigned BlockCost = 0;
4904 BasicBlock *BB = *bb;
4905
4906 // For each instruction in the old loop.
4907 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4908 // Skip dbg intrinsics.
4909 if (isa<DbgInfoIntrinsic>(it))
4910 continue;
4911
4912 // Ignore ephemeral values.
4913 if (EphValues.count(it))
4914 continue;
4915
4916 unsigned C = getInstructionCost(it, VF);
4917
4918 // Check if we should override the cost.
4919 if (ForceTargetInstructionCost.getNumOccurrences() > 0)
4920 C = ForceTargetInstructionCost;
4921
4922 BlockCost += C;
4923 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
4924 VF << " For instruction: " << *it << '\n');
4925 }
4926
4927 // We assume that if-converted blocks have a 50% chance of being executed.
4928 // When the code is scalar then some of the blocks are avoided due to CF.
4929 // When the code is vectorized we execute all code paths.
4930 if (VF == 1 && Legal->blockNeedsPredication(*bb))
4931 BlockCost /= 2;
4932
4933 Cost += BlockCost;
4934 }
4935
4936 return Cost;
4937 }
4938
4939 /// \brief Check whether the address computation for a non-consecutive memory
4940 /// access looks like an unlikely candidate for being merged into the indexing
4941 /// mode.
4942 ///
4943 /// We look for a GEP which has one index that is an induction variable and all
4944 /// other indices are loop invariant. If the stride of this access is also
4945 /// within a small bound we decide that this address computation can likely be
4946 /// merged into the addressing mode.
4947 /// In all other cases, we identify the address computation as complex.
isLikelyComplexAddressComputation(Value * Ptr,LoopVectorizationLegality * Legal,ScalarEvolution * SE,const Loop * TheLoop)4948 static bool isLikelyComplexAddressComputation(Value *Ptr,
4949 LoopVectorizationLegality *Legal,
4950 ScalarEvolution *SE,
4951 const Loop *TheLoop) {
4952 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
4953 if (!Gep)
4954 return true;
4955
4956 // We are looking for a gep with all loop invariant indices except for one
4957 // which should be an induction variable.
4958 unsigned NumOperands = Gep->getNumOperands();
4959 for (unsigned i = 1; i < NumOperands; ++i) {
4960 Value *Opd = Gep->getOperand(i);
4961 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
4962 !Legal->isInductionVariable(Opd))
4963 return true;
4964 }
4965
4966 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
4967 // can likely be merged into the address computation.
4968 unsigned MaxMergeDistance = 64;
4969
4970 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
4971 if (!AddRec)
4972 return true;
4973
4974 // Check the step is constant.
4975 const SCEV *Step = AddRec->getStepRecurrence(*SE);
4976 // Calculate the pointer stride and check if it is consecutive.
4977 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4978 if (!C)
4979 return true;
4980
4981 const APInt &APStepVal = C->getValue()->getValue();
4982
4983 // Huge step value - give up.
4984 if (APStepVal.getBitWidth() > 64)
4985 return true;
4986
4987 int64_t StepVal = APStepVal.getSExtValue();
4988
4989 return StepVal > MaxMergeDistance;
4990 }
4991
isStrideMul(Instruction * I,LoopVectorizationLegality * Legal)4992 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
4993 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
4994 return true;
4995 return false;
4996 }
4997
4998 unsigned
getInstructionCost(Instruction * I,unsigned VF)4999 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5000 // If we know that this instruction will remain uniform, check the cost of
5001 // the scalar version.
5002 if (Legal->isUniformAfterVectorization(I))
5003 VF = 1;
5004
5005 Type *RetTy = I->getType();
5006 Type *VectorTy = ToVectorTy(RetTy, VF);
5007
5008 // TODO: We need to estimate the cost of intrinsic calls.
5009 switch (I->getOpcode()) {
5010 case Instruction::GetElementPtr:
5011 // We mark this instruction as zero-cost because the cost of GEPs in
5012 // vectorized code depends on whether the corresponding memory instruction
5013 // is scalarized or not. Therefore, we handle GEPs with the memory
5014 // instruction cost.
5015 return 0;
5016 case Instruction::Br: {
5017 return TTI.getCFInstrCost(I->getOpcode());
5018 }
5019 case Instruction::PHI:
5020 //TODO: IF-converted IFs become selects.
5021 return 0;
5022 case Instruction::Add:
5023 case Instruction::FAdd:
5024 case Instruction::Sub:
5025 case Instruction::FSub:
5026 case Instruction::Mul:
5027 case Instruction::FMul:
5028 case Instruction::UDiv:
5029 case Instruction::SDiv:
5030 case Instruction::FDiv:
5031 case Instruction::URem:
5032 case Instruction::SRem:
5033 case Instruction::FRem:
5034 case Instruction::Shl:
5035 case Instruction::LShr:
5036 case Instruction::AShr:
5037 case Instruction::And:
5038 case Instruction::Or:
5039 case Instruction::Xor: {
5040 // Since we will replace the stride by 1 the multiplication should go away.
5041 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
5042 return 0;
5043 // Certain instructions can be cheaper to vectorize if they have a constant
5044 // second vector operand. One example of this are shifts on x86.
5045 TargetTransformInfo::OperandValueKind Op1VK =
5046 TargetTransformInfo::OK_AnyValue;
5047 TargetTransformInfo::OperandValueKind Op2VK =
5048 TargetTransformInfo::OK_AnyValue;
5049 TargetTransformInfo::OperandValueProperties Op1VP =
5050 TargetTransformInfo::OP_None;
5051 TargetTransformInfo::OperandValueProperties Op2VP =
5052 TargetTransformInfo::OP_None;
5053 Value *Op2 = I->getOperand(1);
5054
5055 // Check for a splat of a constant or for a non uniform vector of constants.
5056 if (isa<ConstantInt>(Op2)) {
5057 ConstantInt *CInt = cast<ConstantInt>(Op2);
5058 if (CInt && CInt->getValue().isPowerOf2())
5059 Op2VP = TargetTransformInfo::OP_PowerOf2;
5060 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5061 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
5062 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5063 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
5064 if (SplatValue) {
5065 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
5066 if (CInt && CInt->getValue().isPowerOf2())
5067 Op2VP = TargetTransformInfo::OP_PowerOf2;
5068 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5069 }
5070 }
5071
5072 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
5073 Op1VP, Op2VP);
5074 }
5075 case Instruction::Select: {
5076 SelectInst *SI = cast<SelectInst>(I);
5077 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
5078 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
5079 Type *CondTy = SI->getCondition()->getType();
5080 if (!ScalarCond)
5081 CondTy = VectorType::get(CondTy, VF);
5082
5083 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
5084 }
5085 case Instruction::ICmp:
5086 case Instruction::FCmp: {
5087 Type *ValTy = I->getOperand(0)->getType();
5088 VectorTy = ToVectorTy(ValTy, VF);
5089 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
5090 }
5091 case Instruction::Store:
5092 case Instruction::Load: {
5093 StoreInst *SI = dyn_cast<StoreInst>(I);
5094 LoadInst *LI = dyn_cast<LoadInst>(I);
5095 Type *ValTy = (SI ? SI->getValueOperand()->getType() :
5096 LI->getType());
5097 VectorTy = ToVectorTy(ValTy, VF);
5098
5099 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
5100 unsigned AS = SI ? SI->getPointerAddressSpace() :
5101 LI->getPointerAddressSpace();
5102 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
5103 // We add the cost of address computation here instead of with the gep
5104 // instruction because only here we know whether the operation is
5105 // scalarized.
5106 if (VF == 1)
5107 return TTI.getAddressComputationCost(VectorTy) +
5108 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5109
5110 // Scalarized loads/stores.
5111 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5112 bool Reverse = ConsecutiveStride < 0;
5113 const DataLayout &DL = I->getModule()->getDataLayout();
5114 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy);
5115 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF;
5116 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
5117 bool IsComplexComputation =
5118 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
5119 unsigned Cost = 0;
5120 // The cost of extracting from the value vector and pointer vector.
5121 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5122 for (unsigned i = 0; i < VF; ++i) {
5123 // The cost of extracting the pointer operand.
5124 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
5125 // In case of STORE, the cost of ExtractElement from the vector.
5126 // In case of LOAD, the cost of InsertElement into the returned
5127 // vector.
5128 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
5129 Instruction::InsertElement,
5130 VectorTy, i);
5131 }
5132
5133 // The cost of the scalar loads/stores.
5134 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
5135 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5136 Alignment, AS);
5137 return Cost;
5138 }
5139
5140 // Wide load/stores.
5141 unsigned Cost = TTI.getAddressComputationCost(VectorTy);
5142 if (Legal->isMaskRequired(I))
5143 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment,
5144 AS);
5145 else
5146 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5147
5148 if (Reverse)
5149 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
5150 VectorTy, 0);
5151 return Cost;
5152 }
5153 case Instruction::ZExt:
5154 case Instruction::SExt:
5155 case Instruction::FPToUI:
5156 case Instruction::FPToSI:
5157 case Instruction::FPExt:
5158 case Instruction::PtrToInt:
5159 case Instruction::IntToPtr:
5160 case Instruction::SIToFP:
5161 case Instruction::UIToFP:
5162 case Instruction::Trunc:
5163 case Instruction::FPTrunc:
5164 case Instruction::BitCast: {
5165 // We optimize the truncation of induction variable.
5166 // The cost of these is the same as the scalar operation.
5167 if (I->getOpcode() == Instruction::Trunc &&
5168 Legal->isInductionVariable(I->getOperand(0)))
5169 return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
5170 I->getOperand(0)->getType());
5171
5172 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
5173 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
5174 }
5175 case Instruction::Call: {
5176 bool NeedToScalarize;
5177 CallInst *CI = cast<CallInst>(I);
5178 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
5179 if (getIntrinsicIDForCall(CI, TLI))
5180 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
5181 return CallCost;
5182 }
5183 default: {
5184 // We are scalarizing the instruction. Return the cost of the scalar
5185 // instruction, plus the cost of insert and extract into vector
5186 // elements, times the vector width.
5187 unsigned Cost = 0;
5188
5189 if (!RetTy->isVoidTy() && VF != 1) {
5190 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
5191 VectorTy);
5192 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
5193 VectorTy);
5194
5195 // The cost of inserting the results plus extracting each one of the
5196 // operands.
5197 Cost += VF * (InsCost + ExtCost * I->getNumOperands());
5198 }
5199
5200 // The cost of executing VF copies of the scalar instruction. This opcode
5201 // is unknown. Assume that it is the same as 'mul'.
5202 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
5203 return Cost;
5204 }
5205 }// end of switch.
5206 }
5207
5208 char LoopVectorize::ID = 0;
5209 static const char lv_name[] = "Loop Vectorization";
5210 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
5211 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5212 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
5213 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
5214 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
5215 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5216 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
5217 INITIALIZE_PASS_DEPENDENCY(LCSSA)
5218 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5219 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5220 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
5221 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
5222
5223 namespace llvm {
createLoopVectorizePass(bool NoUnrolling,bool AlwaysVectorize)5224 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
5225 return new LoopVectorize(NoUnrolling, AlwaysVectorize);
5226 }
5227 }
5228
isConsecutiveLoadOrStore(Instruction * Inst)5229 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
5230 // Check for a store.
5231 if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
5232 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
5233
5234 // Check for a load.
5235 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
5236 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
5237
5238 return false;
5239 }
5240
5241
scalarizeInstruction(Instruction * Instr,bool IfPredicateStore)5242 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
5243 bool IfPredicateStore) {
5244 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
5245 // Holds vector parameters or scalars, in case of uniform vals.
5246 SmallVector<VectorParts, 4> Params;
5247
5248 setDebugLocFromInst(Builder, Instr);
5249
5250 // Find all of the vectorized parameters.
5251 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5252 Value *SrcOp = Instr->getOperand(op);
5253
5254 // If we are accessing the old induction variable, use the new one.
5255 if (SrcOp == OldInduction) {
5256 Params.push_back(getVectorValue(SrcOp));
5257 continue;
5258 }
5259
5260 // Try using previously calculated values.
5261 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
5262
5263 // If the src is an instruction that appeared earlier in the basic block
5264 // then it should already be vectorized.
5265 if (SrcInst && OrigLoop->contains(SrcInst)) {
5266 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
5267 // The parameter is a vector value from earlier.
5268 Params.push_back(WidenMap.get(SrcInst));
5269 } else {
5270 // The parameter is a scalar from outside the loop. Maybe even a constant.
5271 VectorParts Scalars;
5272 Scalars.append(UF, SrcOp);
5273 Params.push_back(Scalars);
5274 }
5275 }
5276
5277 assert(Params.size() == Instr->getNumOperands() &&
5278 "Invalid number of operands");
5279
5280 // Does this instruction return a value ?
5281 bool IsVoidRetTy = Instr->getType()->isVoidTy();
5282
5283 Value *UndefVec = IsVoidRetTy ? nullptr :
5284 UndefValue::get(Instr->getType());
5285 // Create a new entry in the WidenMap and initialize it to Undef or Null.
5286 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
5287
5288 Instruction *InsertPt = Builder.GetInsertPoint();
5289 BasicBlock *IfBlock = Builder.GetInsertBlock();
5290 BasicBlock *CondBlock = nullptr;
5291
5292 VectorParts Cond;
5293 Loop *VectorLp = nullptr;
5294 if (IfPredicateStore) {
5295 assert(Instr->getParent()->getSinglePredecessor() &&
5296 "Only support single predecessor blocks");
5297 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
5298 Instr->getParent());
5299 VectorLp = LI->getLoopFor(IfBlock);
5300 assert(VectorLp && "Must have a loop for this block");
5301 }
5302
5303 // For each vector unroll 'part':
5304 for (unsigned Part = 0; Part < UF; ++Part) {
5305 // For each scalar that we create:
5306
5307 // Start an "if (pred) a[i] = ..." block.
5308 Value *Cmp = nullptr;
5309 if (IfPredicateStore) {
5310 if (Cond[Part]->getType()->isVectorTy())
5311 Cond[Part] =
5312 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
5313 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
5314 ConstantInt::get(Cond[Part]->getType(), 1));
5315 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
5316 LoopVectorBody.push_back(CondBlock);
5317 VectorLp->addBasicBlockToLoop(CondBlock, *LI);
5318 // Update Builder with newly created basic block.
5319 Builder.SetInsertPoint(InsertPt);
5320 }
5321
5322 Instruction *Cloned = Instr->clone();
5323 if (!IsVoidRetTy)
5324 Cloned->setName(Instr->getName() + ".cloned");
5325 // Replace the operands of the cloned instructions with extracted scalars.
5326 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5327 Value *Op = Params[op][Part];
5328 Cloned->setOperand(op, Op);
5329 }
5330
5331 // Place the cloned scalar in the new loop.
5332 Builder.Insert(Cloned);
5333
5334 // If the original scalar returns a value we need to place it in a vector
5335 // so that future users will be able to use it.
5336 if (!IsVoidRetTy)
5337 VecResults[Part] = Cloned;
5338
5339 // End if-block.
5340 if (IfPredicateStore) {
5341 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
5342 LoopVectorBody.push_back(NewIfBlock);
5343 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
5344 Builder.SetInsertPoint(InsertPt);
5345 Instruction *OldBr = IfBlock->getTerminator();
5346 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
5347 OldBr->eraseFromParent();
5348 IfBlock = NewIfBlock;
5349 }
5350 }
5351 }
5352
vectorizeMemoryInstruction(Instruction * Instr)5353 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
5354 StoreInst *SI = dyn_cast<StoreInst>(Instr);
5355 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
5356
5357 return scalarizeInstruction(Instr, IfPredicateStore);
5358 }
5359
reverseVector(Value * Vec)5360 Value *InnerLoopUnroller::reverseVector(Value *Vec) {
5361 return Vec;
5362 }
5363
getBroadcastInstrs(Value * V)5364 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
5365 return V;
5366 }
5367
getStepVector(Value * Val,int StartIdx,Value * Step)5368 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) {
5369 // When unrolling and the VF is 1, we only need to add a simple scalar.
5370 Type *ITy = Val->getType();
5371 assert(!ITy->isVectorTy() && "Val must be a scalar");
5372 Constant *C = ConstantInt::get(ITy, StartIdx);
5373 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
5374 }
5375