1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation  ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MSP430TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MSP430ISelLowering.h"
15 #include "MSP430.h"
16 #include "MSP430MachineFunctionInfo.h"
17 #include "MSP430Subtarget.h"
18 #include "MSP430TargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGISel.h"
25 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "msp430-lower"
40 
41 typedef enum {
42   NoHWMult,
43   HWMultIntr,
44   HWMultNoIntr
45 } HWMultUseMode;
46 
47 static cl::opt<HWMultUseMode>
48 HWMultMode("msp430-hwmult-mode", cl::Hidden,
49            cl::desc("Hardware multiplier use mode"),
50            cl::init(HWMultNoIntr),
51            cl::values(
52              clEnumValN(NoHWMult, "no",
53                 "Do not use hardware multiplier"),
54              clEnumValN(HWMultIntr, "interrupts",
55                 "Assume hardware multiplier can be used inside interrupts"),
56              clEnumValN(HWMultNoIntr, "use",
57                 "Assume hardware multiplier cannot be used inside interrupts"),
58              clEnumValEnd));
59 
MSP430TargetLowering(const TargetMachine & TM,const MSP430Subtarget & STI)60 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
61                                            const MSP430Subtarget &STI)
62     : TargetLowering(TM) {
63 
64   // Set up the register classes.
65   addRegisterClass(MVT::i8,  &MSP430::GR8RegClass);
66   addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
67 
68   // Compute derived properties from the register classes
69   computeRegisterProperties(STI.getRegisterInfo());
70 
71   // Provide all sorts of operation actions
72 
73   // Division is expensive
74   setIntDivIsCheap(false);
75 
76   setStackPointerRegisterToSaveRestore(MSP430::SP);
77   setBooleanContents(ZeroOrOneBooleanContent);
78   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
79 
80   // We have post-incremented loads / stores.
81   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
82   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
83 
84   for (MVT VT : MVT::integer_valuetypes()) {
85     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
86     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
87     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
88     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8,  Expand);
89     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
90   }
91 
92   // We don't have any truncstores
93   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
94 
95   setOperationAction(ISD::SRA,              MVT::i8,    Custom);
96   setOperationAction(ISD::SHL,              MVT::i8,    Custom);
97   setOperationAction(ISD::SRL,              MVT::i8,    Custom);
98   setOperationAction(ISD::SRA,              MVT::i16,   Custom);
99   setOperationAction(ISD::SHL,              MVT::i16,   Custom);
100   setOperationAction(ISD::SRL,              MVT::i16,   Custom);
101   setOperationAction(ISD::ROTL,             MVT::i8,    Expand);
102   setOperationAction(ISD::ROTR,             MVT::i8,    Expand);
103   setOperationAction(ISD::ROTL,             MVT::i16,   Expand);
104   setOperationAction(ISD::ROTR,             MVT::i16,   Expand);
105   setOperationAction(ISD::GlobalAddress,    MVT::i16,   Custom);
106   setOperationAction(ISD::ExternalSymbol,   MVT::i16,   Custom);
107   setOperationAction(ISD::BlockAddress,     MVT::i16,   Custom);
108   setOperationAction(ISD::BR_JT,            MVT::Other, Expand);
109   setOperationAction(ISD::BR_CC,            MVT::i8,    Custom);
110   setOperationAction(ISD::BR_CC,            MVT::i16,   Custom);
111   setOperationAction(ISD::BRCOND,           MVT::Other, Expand);
112   setOperationAction(ISD::SETCC,            MVT::i8,    Custom);
113   setOperationAction(ISD::SETCC,            MVT::i16,   Custom);
114   setOperationAction(ISD::SELECT,           MVT::i8,    Expand);
115   setOperationAction(ISD::SELECT,           MVT::i16,   Expand);
116   setOperationAction(ISD::SELECT_CC,        MVT::i8,    Custom);
117   setOperationAction(ISD::SELECT_CC,        MVT::i16,   Custom);
118   setOperationAction(ISD::SIGN_EXTEND,      MVT::i16,   Custom);
119   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
120   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
121 
122   setOperationAction(ISD::CTTZ,             MVT::i8,    Expand);
123   setOperationAction(ISD::CTTZ,             MVT::i16,   Expand);
124   setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::i8,    Expand);
125   setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::i16,   Expand);
126   setOperationAction(ISD::CTLZ,             MVT::i8,    Expand);
127   setOperationAction(ISD::CTLZ,             MVT::i16,   Expand);
128   setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::i8,    Expand);
129   setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::i16,   Expand);
130   setOperationAction(ISD::CTPOP,            MVT::i8,    Expand);
131   setOperationAction(ISD::CTPOP,            MVT::i16,   Expand);
132 
133   setOperationAction(ISD::SHL_PARTS,        MVT::i8,    Expand);
134   setOperationAction(ISD::SHL_PARTS,        MVT::i16,   Expand);
135   setOperationAction(ISD::SRL_PARTS,        MVT::i8,    Expand);
136   setOperationAction(ISD::SRL_PARTS,        MVT::i16,   Expand);
137   setOperationAction(ISD::SRA_PARTS,        MVT::i8,    Expand);
138   setOperationAction(ISD::SRA_PARTS,        MVT::i16,   Expand);
139 
140   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,   Expand);
141 
142   // FIXME: Implement efficiently multiplication by a constant
143   setOperationAction(ISD::MUL,              MVT::i8,    Expand);
144   setOperationAction(ISD::MULHS,            MVT::i8,    Expand);
145   setOperationAction(ISD::MULHU,            MVT::i8,    Expand);
146   setOperationAction(ISD::SMUL_LOHI,        MVT::i8,    Expand);
147   setOperationAction(ISD::UMUL_LOHI,        MVT::i8,    Expand);
148   setOperationAction(ISD::MUL,              MVT::i16,   Expand);
149   setOperationAction(ISD::MULHS,            MVT::i16,   Expand);
150   setOperationAction(ISD::MULHU,            MVT::i16,   Expand);
151   setOperationAction(ISD::SMUL_LOHI,        MVT::i16,   Expand);
152   setOperationAction(ISD::UMUL_LOHI,        MVT::i16,   Expand);
153 
154   setOperationAction(ISD::UDIV,             MVT::i8,    Expand);
155   setOperationAction(ISD::UDIVREM,          MVT::i8,    Expand);
156   setOperationAction(ISD::UREM,             MVT::i8,    Expand);
157   setOperationAction(ISD::SDIV,             MVT::i8,    Expand);
158   setOperationAction(ISD::SDIVREM,          MVT::i8,    Expand);
159   setOperationAction(ISD::SREM,             MVT::i8,    Expand);
160   setOperationAction(ISD::UDIV,             MVT::i16,   Expand);
161   setOperationAction(ISD::UDIVREM,          MVT::i16,   Expand);
162   setOperationAction(ISD::UREM,             MVT::i16,   Expand);
163   setOperationAction(ISD::SDIV,             MVT::i16,   Expand);
164   setOperationAction(ISD::SDIVREM,          MVT::i16,   Expand);
165   setOperationAction(ISD::SREM,             MVT::i16,   Expand);
166 
167   // varargs support
168   setOperationAction(ISD::VASTART,          MVT::Other, Custom);
169   setOperationAction(ISD::VAARG,            MVT::Other, Expand);
170   setOperationAction(ISD::VAEND,            MVT::Other, Expand);
171   setOperationAction(ISD::VACOPY,           MVT::Other, Expand);
172   setOperationAction(ISD::JumpTable,        MVT::i16,   Custom);
173 
174   // Libcalls names.
175   if (HWMultMode == HWMultIntr) {
176     setLibcallName(RTLIB::MUL_I8,  "__mulqi3hw");
177     setLibcallName(RTLIB::MUL_I16, "__mulhi3hw");
178   } else if (HWMultMode == HWMultNoIntr) {
179     setLibcallName(RTLIB::MUL_I8,  "__mulqi3hw_noint");
180     setLibcallName(RTLIB::MUL_I16, "__mulhi3hw_noint");
181   }
182 
183   setMinFunctionAlignment(1);
184   setPrefFunctionAlignment(2);
185 }
186 
LowerOperation(SDValue Op,SelectionDAG & DAG) const187 SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
188                                              SelectionDAG &DAG) const {
189   switch (Op.getOpcode()) {
190   case ISD::SHL: // FALLTHROUGH
191   case ISD::SRL:
192   case ISD::SRA:              return LowerShifts(Op, DAG);
193   case ISD::GlobalAddress:    return LowerGlobalAddress(Op, DAG);
194   case ISD::BlockAddress:     return LowerBlockAddress(Op, DAG);
195   case ISD::ExternalSymbol:   return LowerExternalSymbol(Op, DAG);
196   case ISD::SETCC:            return LowerSETCC(Op, DAG);
197   case ISD::BR_CC:            return LowerBR_CC(Op, DAG);
198   case ISD::SELECT_CC:        return LowerSELECT_CC(Op, DAG);
199   case ISD::SIGN_EXTEND:      return LowerSIGN_EXTEND(Op, DAG);
200   case ISD::RETURNADDR:       return LowerRETURNADDR(Op, DAG);
201   case ISD::FRAMEADDR:        return LowerFRAMEADDR(Op, DAG);
202   case ISD::VASTART:          return LowerVASTART(Op, DAG);
203   case ISD::JumpTable:        return LowerJumpTable(Op, DAG);
204   default:
205     llvm_unreachable("unimplemented operand");
206   }
207 }
208 
209 //===----------------------------------------------------------------------===//
210 //                       MSP430 Inline Assembly Support
211 //===----------------------------------------------------------------------===//
212 
213 /// getConstraintType - Given a constraint letter, return the type of
214 /// constraint it is for this target.
215 TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const216 MSP430TargetLowering::getConstraintType(const std::string &Constraint) const {
217   if (Constraint.size() == 1) {
218     switch (Constraint[0]) {
219     case 'r':
220       return C_RegisterClass;
221     default:
222       break;
223     }
224   }
225   return TargetLowering::getConstraintType(Constraint);
226 }
227 
228 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,const std::string & Constraint,MVT VT) const229 MSP430TargetLowering::getRegForInlineAsmConstraint(
230     const TargetRegisterInfo *TRI, const std::string &Constraint,
231     MVT VT) const {
232   if (Constraint.size() == 1) {
233     // GCC Constraint Letters
234     switch (Constraint[0]) {
235     default: break;
236     case 'r':   // GENERAL_REGS
237       if (VT == MVT::i8)
238         return std::make_pair(0U, &MSP430::GR8RegClass);
239 
240       return std::make_pair(0U, &MSP430::GR16RegClass);
241     }
242   }
243 
244   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
245 }
246 
247 //===----------------------------------------------------------------------===//
248 //                      Calling Convention Implementation
249 //===----------------------------------------------------------------------===//
250 
251 #include "MSP430GenCallingConv.inc"
252 
253 /// For each argument in a function store the number of pieces it is composed
254 /// of.
255 template<typename ArgT>
ParseFunctionArgs(const SmallVectorImpl<ArgT> & Args,SmallVectorImpl<unsigned> & Out)256 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
257                               SmallVectorImpl<unsigned> &Out) {
258   unsigned CurrentArgIndex = ~0U;
259   for (unsigned i = 0, e = Args.size(); i != e; i++) {
260     if (CurrentArgIndex == Args[i].OrigArgIndex) {
261       Out.back()++;
262     } else {
263       Out.push_back(1);
264       CurrentArgIndex++;
265     }
266   }
267 }
268 
AnalyzeVarArgs(CCState & State,const SmallVectorImpl<ISD::OutputArg> & Outs)269 static void AnalyzeVarArgs(CCState &State,
270                            const SmallVectorImpl<ISD::OutputArg> &Outs) {
271   State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
272 }
273 
AnalyzeVarArgs(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins)274 static void AnalyzeVarArgs(CCState &State,
275                            const SmallVectorImpl<ISD::InputArg> &Ins) {
276   State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
277 }
278 
279 /// Analyze incoming and outgoing function arguments. We need custom C++ code
280 /// to handle special constraints in the ABI like reversing the order of the
281 /// pieces of splitted arguments. In addition, all pieces of a certain argument
282 /// have to be passed either using registers or the stack but never mixing both.
283 template<typename ArgT>
AnalyzeArguments(CCState & State,SmallVectorImpl<CCValAssign> & ArgLocs,const SmallVectorImpl<ArgT> & Args)284 static void AnalyzeArguments(CCState &State,
285                              SmallVectorImpl<CCValAssign> &ArgLocs,
286                              const SmallVectorImpl<ArgT> &Args) {
287   static const MCPhysReg RegList[] = {
288     MSP430::R15, MSP430::R14, MSP430::R13, MSP430::R12
289   };
290   static const unsigned NbRegs = array_lengthof(RegList);
291 
292   if (State.isVarArg()) {
293     AnalyzeVarArgs(State, Args);
294     return;
295   }
296 
297   SmallVector<unsigned, 4> ArgsParts;
298   ParseFunctionArgs(Args, ArgsParts);
299 
300   unsigned RegsLeft = NbRegs;
301   bool UseStack = false;
302   unsigned ValNo = 0;
303 
304   for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
305     MVT ArgVT = Args[ValNo].VT;
306     ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
307     MVT LocVT = ArgVT;
308     CCValAssign::LocInfo LocInfo = CCValAssign::Full;
309 
310     // Promote i8 to i16
311     if (LocVT == MVT::i8) {
312       LocVT = MVT::i16;
313       if (ArgFlags.isSExt())
314           LocInfo = CCValAssign::SExt;
315       else if (ArgFlags.isZExt())
316           LocInfo = CCValAssign::ZExt;
317       else
318           LocInfo = CCValAssign::AExt;
319     }
320 
321     // Handle byval arguments
322     if (ArgFlags.isByVal()) {
323       State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
324       continue;
325     }
326 
327     unsigned Parts = ArgsParts[i];
328 
329     if (!UseStack && Parts <= RegsLeft) {
330       unsigned FirstVal = ValNo;
331       for (unsigned j = 0; j < Parts; j++) {
332         unsigned Reg = State.AllocateReg(RegList);
333         State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
334         RegsLeft--;
335       }
336 
337       // Reverse the order of the pieces to agree with the "big endian" format
338       // required in the calling convention ABI.
339       SmallVectorImpl<CCValAssign>::iterator B = ArgLocs.begin() + FirstVal;
340       std::reverse(B, B + Parts);
341     } else {
342       UseStack = true;
343       for (unsigned j = 0; j < Parts; j++)
344         CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
345     }
346   }
347 }
348 
AnalyzeRetResult(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins)349 static void AnalyzeRetResult(CCState &State,
350                              const SmallVectorImpl<ISD::InputArg> &Ins) {
351   State.AnalyzeCallResult(Ins, RetCC_MSP430);
352 }
353 
AnalyzeRetResult(CCState & State,const SmallVectorImpl<ISD::OutputArg> & Outs)354 static void AnalyzeRetResult(CCState &State,
355                              const SmallVectorImpl<ISD::OutputArg> &Outs) {
356   State.AnalyzeReturn(Outs, RetCC_MSP430);
357 }
358 
359 template<typename ArgT>
AnalyzeReturnValues(CCState & State,SmallVectorImpl<CCValAssign> & RVLocs,const SmallVectorImpl<ArgT> & Args)360 static void AnalyzeReturnValues(CCState &State,
361                                 SmallVectorImpl<CCValAssign> &RVLocs,
362                                 const SmallVectorImpl<ArgT> &Args) {
363   AnalyzeRetResult(State, Args);
364 
365   // Reverse splitted return values to get the "big endian" format required
366   // to agree with the calling convention ABI.
367   std::reverse(RVLocs.begin(), RVLocs.end());
368 }
369 
370 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const371 MSP430TargetLowering::LowerFormalArguments(SDValue Chain,
372                                            CallingConv::ID CallConv,
373                                            bool isVarArg,
374                                            const SmallVectorImpl<ISD::InputArg>
375                                              &Ins,
376                                            SDLoc dl,
377                                            SelectionDAG &DAG,
378                                            SmallVectorImpl<SDValue> &InVals)
379                                              const {
380 
381   switch (CallConv) {
382   default:
383     llvm_unreachable("Unsupported calling convention");
384   case CallingConv::C:
385   case CallingConv::Fast:
386     return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
387   case CallingConv::MSP430_INTR:
388     if (Ins.empty())
389       return Chain;
390     report_fatal_error("ISRs cannot have arguments");
391   }
392 }
393 
394 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const395 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
396                                 SmallVectorImpl<SDValue> &InVals) const {
397   SelectionDAG &DAG                     = CLI.DAG;
398   SDLoc &dl                             = CLI.DL;
399   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
400   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
401   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
402   SDValue Chain                         = CLI.Chain;
403   SDValue Callee                        = CLI.Callee;
404   bool &isTailCall                      = CLI.IsTailCall;
405   CallingConv::ID CallConv              = CLI.CallConv;
406   bool isVarArg                         = CLI.IsVarArg;
407 
408   // MSP430 target does not yet support tail call optimization.
409   isTailCall = false;
410 
411   switch (CallConv) {
412   default:
413     llvm_unreachable("Unsupported calling convention");
414   case CallingConv::Fast:
415   case CallingConv::C:
416     return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
417                           Outs, OutVals, Ins, dl, DAG, InVals);
418   case CallingConv::MSP430_INTR:
419     report_fatal_error("ISRs cannot be called directly");
420   }
421 }
422 
423 /// LowerCCCArguments - transform physical registers into virtual registers and
424 /// generate load operations for arguments places on the stack.
425 // FIXME: struct return stuff
426 SDValue
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const427 MSP430TargetLowering::LowerCCCArguments(SDValue Chain,
428                                         CallingConv::ID CallConv,
429                                         bool isVarArg,
430                                         const SmallVectorImpl<ISD::InputArg>
431                                           &Ins,
432                                         SDLoc dl,
433                                         SelectionDAG &DAG,
434                                         SmallVectorImpl<SDValue> &InVals)
435                                           const {
436   MachineFunction &MF = DAG.getMachineFunction();
437   MachineFrameInfo *MFI = MF.getFrameInfo();
438   MachineRegisterInfo &RegInfo = MF.getRegInfo();
439   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
440 
441   // Assign locations to all of the incoming arguments.
442   SmallVector<CCValAssign, 16> ArgLocs;
443   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
444                  *DAG.getContext());
445   AnalyzeArguments(CCInfo, ArgLocs, Ins);
446 
447   // Create frame index for the start of the first vararg value
448   if (isVarArg) {
449     unsigned Offset = CCInfo.getNextStackOffset();
450     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, Offset, true));
451   }
452 
453   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
454     CCValAssign &VA = ArgLocs[i];
455     if (VA.isRegLoc()) {
456       // Arguments passed in registers
457       EVT RegVT = VA.getLocVT();
458       switch (RegVT.getSimpleVT().SimpleTy) {
459       default:
460         {
461 #ifndef NDEBUG
462           errs() << "LowerFormalArguments Unhandled argument type: "
463                << RegVT.getSimpleVT().SimpleTy << "\n";
464 #endif
465           llvm_unreachable(nullptr);
466         }
467       case MVT::i16:
468         unsigned VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
469         RegInfo.addLiveIn(VA.getLocReg(), VReg);
470         SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
471 
472         // If this is an 8-bit value, it is really passed promoted to 16
473         // bits. Insert an assert[sz]ext to capture this, then truncate to the
474         // right size.
475         if (VA.getLocInfo() == CCValAssign::SExt)
476           ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
477                                  DAG.getValueType(VA.getValVT()));
478         else if (VA.getLocInfo() == CCValAssign::ZExt)
479           ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
480                                  DAG.getValueType(VA.getValVT()));
481 
482         if (VA.getLocInfo() != CCValAssign::Full)
483           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
484 
485         InVals.push_back(ArgValue);
486       }
487     } else {
488       // Sanity check
489       assert(VA.isMemLoc());
490 
491       SDValue InVal;
492       ISD::ArgFlagsTy Flags = Ins[i].Flags;
493 
494       if (Flags.isByVal()) {
495         int FI = MFI->CreateFixedObject(Flags.getByValSize(),
496                                         VA.getLocMemOffset(), true);
497         InVal = DAG.getFrameIndex(FI, getPointerTy());
498       } else {
499         // Load the argument to a virtual register
500         unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
501         if (ObjSize > 2) {
502             errs() << "LowerFormalArguments Unhandled argument type: "
503                 << EVT(VA.getLocVT()).getEVTString()
504                 << "\n";
505         }
506         // Create the frame index object for this incoming parameter...
507         int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
508 
509         // Create the SelectionDAG nodes corresponding to a load
510         //from this parameter
511         SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
512         InVal = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
513                             MachinePointerInfo::getFixedStack(FI),
514                             false, false, false, 0);
515       }
516 
517       InVals.push_back(InVal);
518     }
519   }
520 
521   return Chain;
522 }
523 
524 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc dl,SelectionDAG & DAG) const525 MSP430TargetLowering::LowerReturn(SDValue Chain,
526                                   CallingConv::ID CallConv, bool isVarArg,
527                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
528                                   const SmallVectorImpl<SDValue> &OutVals,
529                                   SDLoc dl, SelectionDAG &DAG) const {
530 
531   // CCValAssign - represent the assignment of the return value to a location
532   SmallVector<CCValAssign, 16> RVLocs;
533 
534   // ISRs cannot return any value.
535   if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
536     report_fatal_error("ISRs cannot return any value");
537 
538   // CCState - Info about the registers and stack slot.
539   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
540                  *DAG.getContext());
541 
542   // Analize return values.
543   AnalyzeReturnValues(CCInfo, RVLocs, Outs);
544 
545   SDValue Flag;
546   SmallVector<SDValue, 4> RetOps(1, Chain);
547 
548   // Copy the result values into the output registers.
549   for (unsigned i = 0; i != RVLocs.size(); ++i) {
550     CCValAssign &VA = RVLocs[i];
551     assert(VA.isRegLoc() && "Can only return in registers!");
552 
553     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
554                              OutVals[i], Flag);
555 
556     // Guarantee that all emitted copies are stuck together,
557     // avoiding something bad.
558     Flag = Chain.getValue(1);
559     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
560   }
561 
562   unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
563                   MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
564 
565   RetOps[0] = Chain;  // Update chain.
566 
567   // Add the flag if we have it.
568   if (Flag.getNode())
569     RetOps.push_back(Flag);
570 
571   return DAG.getNode(Opc, dl, MVT::Other, RetOps);
572 }
573 
574 /// LowerCCCCallTo - functions arguments are copied from virtual regs to
575 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
576 // TODO: sret.
577 SDValue
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const578 MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
579                                      CallingConv::ID CallConv, bool isVarArg,
580                                      bool isTailCall,
581                                      const SmallVectorImpl<ISD::OutputArg>
582                                        &Outs,
583                                      const SmallVectorImpl<SDValue> &OutVals,
584                                      const SmallVectorImpl<ISD::InputArg> &Ins,
585                                      SDLoc dl, SelectionDAG &DAG,
586                                      SmallVectorImpl<SDValue> &InVals) const {
587   // Analyze operands of the call, assigning locations to each operand.
588   SmallVector<CCValAssign, 16> ArgLocs;
589   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
590                  *DAG.getContext());
591   AnalyzeArguments(CCInfo, ArgLocs, Outs);
592 
593   // Get a count of how many bytes are to be pushed on the stack.
594   unsigned NumBytes = CCInfo.getNextStackOffset();
595 
596   Chain = DAG.getCALLSEQ_START(Chain ,DAG.getConstant(NumBytes,
597                                                       getPointerTy(), true),
598                                dl);
599 
600   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
601   SmallVector<SDValue, 12> MemOpChains;
602   SDValue StackPtr;
603 
604   // Walk the register/memloc assignments, inserting copies/loads.
605   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
606     CCValAssign &VA = ArgLocs[i];
607 
608     SDValue Arg = OutVals[i];
609 
610     // Promote the value if needed.
611     switch (VA.getLocInfo()) {
612       default: llvm_unreachable("Unknown loc info!");
613       case CCValAssign::Full: break;
614       case CCValAssign::SExt:
615         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
616         break;
617       case CCValAssign::ZExt:
618         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
619         break;
620       case CCValAssign::AExt:
621         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
622         break;
623     }
624 
625     // Arguments that can be passed on register must be kept at RegsToPass
626     // vector
627     if (VA.isRegLoc()) {
628       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
629     } else {
630       assert(VA.isMemLoc());
631 
632       if (!StackPtr.getNode())
633         StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, getPointerTy());
634 
635       SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(),
636                                    StackPtr,
637                                    DAG.getIntPtrConstant(VA.getLocMemOffset()));
638 
639       SDValue MemOp;
640       ISD::ArgFlagsTy Flags = Outs[i].Flags;
641 
642       if (Flags.isByVal()) {
643         SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i16);
644         MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
645                               Flags.getByValAlign(),
646                               /*isVolatile*/false,
647                               /*AlwaysInline=*/true,
648                               /*isTailCall=*/false,
649                               MachinePointerInfo(),
650                               MachinePointerInfo());
651       } else {
652         MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(),
653                              false, false, 0);
654       }
655 
656       MemOpChains.push_back(MemOp);
657     }
658   }
659 
660   // Transform all store nodes into one single node because all store nodes are
661   // independent of each other.
662   if (!MemOpChains.empty())
663     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
664 
665   // Build a sequence of copy-to-reg nodes chained together with token chain and
666   // flag operands which copy the outgoing args into registers.  The InFlag in
667   // necessary since all emitted instructions must be stuck together.
668   SDValue InFlag;
669   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
670     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
671                              RegsToPass[i].second, InFlag);
672     InFlag = Chain.getValue(1);
673   }
674 
675   // If the callee is a GlobalAddress node (quite common, every direct call is)
676   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
677   // Likewise ExternalSymbol -> TargetExternalSymbol.
678   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
679     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
680   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
681     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
682 
683   // Returns a chain & a flag for retval copy to use.
684   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
685   SmallVector<SDValue, 8> Ops;
686   Ops.push_back(Chain);
687   Ops.push_back(Callee);
688 
689   // Add argument registers to the end of the list so that they are
690   // known live into the call.
691   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
692     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
693                                   RegsToPass[i].second.getValueType()));
694 
695   if (InFlag.getNode())
696     Ops.push_back(InFlag);
697 
698   Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
699   InFlag = Chain.getValue(1);
700 
701   // Create the CALLSEQ_END node.
702   Chain = DAG.getCALLSEQ_END(Chain,
703                              DAG.getConstant(NumBytes, getPointerTy(), true),
704                              DAG.getConstant(0, getPointerTy(), true),
705                              InFlag, dl);
706   InFlag = Chain.getValue(1);
707 
708   // Handle result values, copying them out of physregs into vregs that we
709   // return.
710   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
711                          DAG, InVals);
712 }
713 
714 /// LowerCallResult - Lower the result values of a call into the
715 /// appropriate copies out of appropriate physical registers.
716 ///
717 SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const718 MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
719                                       CallingConv::ID CallConv, bool isVarArg,
720                                       const SmallVectorImpl<ISD::InputArg> &Ins,
721                                       SDLoc dl, SelectionDAG &DAG,
722                                       SmallVectorImpl<SDValue> &InVals) const {
723 
724   // Assign locations to each value returned by this call.
725   SmallVector<CCValAssign, 16> RVLocs;
726   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
727                  *DAG.getContext());
728 
729   AnalyzeReturnValues(CCInfo, RVLocs, Ins);
730 
731   // Copy all of the result registers out of their specified physreg.
732   for (unsigned i = 0; i != RVLocs.size(); ++i) {
733     Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
734                                RVLocs[i].getValVT(), InFlag).getValue(1);
735     InFlag = Chain.getValue(2);
736     InVals.push_back(Chain.getValue(0));
737   }
738 
739   return Chain;
740 }
741 
LowerShifts(SDValue Op,SelectionDAG & DAG) const742 SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
743                                           SelectionDAG &DAG) const {
744   unsigned Opc = Op.getOpcode();
745   SDNode* N = Op.getNode();
746   EVT VT = Op.getValueType();
747   SDLoc dl(N);
748 
749   // Expand non-constant shifts to loops:
750   if (!isa<ConstantSDNode>(N->getOperand(1)))
751     switch (Opc) {
752     default: llvm_unreachable("Invalid shift opcode!");
753     case ISD::SHL:
754       return DAG.getNode(MSP430ISD::SHL, dl,
755                          VT, N->getOperand(0), N->getOperand(1));
756     case ISD::SRA:
757       return DAG.getNode(MSP430ISD::SRA, dl,
758                          VT, N->getOperand(0), N->getOperand(1));
759     case ISD::SRL:
760       return DAG.getNode(MSP430ISD::SRL, dl,
761                          VT, N->getOperand(0), N->getOperand(1));
762     }
763 
764   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
765 
766   // Expand the stuff into sequence of shifts.
767   // FIXME: for some shift amounts this might be done better!
768   // E.g.: foo >> (8 + N) => sxt(swpb(foo)) >> N
769   SDValue Victim = N->getOperand(0);
770 
771   if (Opc == ISD::SRL && ShiftAmount) {
772     // Emit a special goodness here:
773     // srl A, 1 => clrc; rrc A
774     Victim = DAG.getNode(MSP430ISD::RRC, dl, VT, Victim);
775     ShiftAmount -= 1;
776   }
777 
778   while (ShiftAmount--)
779     Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
780                          dl, VT, Victim);
781 
782   return Victim;
783 }
784 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const785 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
786                                                  SelectionDAG &DAG) const {
787   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
788   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
789 
790   // Create the TargetGlobalAddress node, folding in the constant offset.
791   SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
792                                               getPointerTy(), Offset);
793   return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op),
794                      getPointerTy(), Result);
795 }
796 
LowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const797 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
798                                                   SelectionDAG &DAG) const {
799   SDLoc dl(Op);
800   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
801   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
802 
803   return DAG.getNode(MSP430ISD::Wrapper, dl, getPointerTy(), Result);
804 }
805 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const806 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
807                                                 SelectionDAG &DAG) const {
808   SDLoc dl(Op);
809   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
810   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
811 
812   return DAG.getNode(MSP430ISD::Wrapper, dl, getPointerTy(), Result);
813 }
814 
EmitCMP(SDValue & LHS,SDValue & RHS,SDValue & TargetCC,ISD::CondCode CC,SDLoc dl,SelectionDAG & DAG)815 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
816                        ISD::CondCode CC,
817                        SDLoc dl, SelectionDAG &DAG) {
818   // FIXME: Handle bittests someday
819   assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
820 
821   // FIXME: Handle jump negative someday
822   MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
823   switch (CC) {
824   default: llvm_unreachable("Invalid integer condition!");
825   case ISD::SETEQ:
826     TCC = MSP430CC::COND_E;     // aka COND_Z
827     // Minor optimization: if LHS is a constant, swap operands, then the
828     // constant can be folded into comparison.
829     if (LHS.getOpcode() == ISD::Constant)
830       std::swap(LHS, RHS);
831     break;
832   case ISD::SETNE:
833     TCC = MSP430CC::COND_NE;    // aka COND_NZ
834     // Minor optimization: if LHS is a constant, swap operands, then the
835     // constant can be folded into comparison.
836     if (LHS.getOpcode() == ISD::Constant)
837       std::swap(LHS, RHS);
838     break;
839   case ISD::SETULE:
840     std::swap(LHS, RHS);        // FALLTHROUGH
841   case ISD::SETUGE:
842     // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
843     // fold constant into instruction.
844     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
845       LHS = RHS;
846       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
847       TCC = MSP430CC::COND_LO;
848       break;
849     }
850     TCC = MSP430CC::COND_HS;    // aka COND_C
851     break;
852   case ISD::SETUGT:
853     std::swap(LHS, RHS);        // FALLTHROUGH
854   case ISD::SETULT:
855     // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
856     // fold constant into instruction.
857     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
858       LHS = RHS;
859       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
860       TCC = MSP430CC::COND_HS;
861       break;
862     }
863     TCC = MSP430CC::COND_LO;    // aka COND_NC
864     break;
865   case ISD::SETLE:
866     std::swap(LHS, RHS);        // FALLTHROUGH
867   case ISD::SETGE:
868     // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
869     // fold constant into instruction.
870     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
871       LHS = RHS;
872       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
873       TCC = MSP430CC::COND_L;
874       break;
875     }
876     TCC = MSP430CC::COND_GE;
877     break;
878   case ISD::SETGT:
879     std::swap(LHS, RHS);        // FALLTHROUGH
880   case ISD::SETLT:
881     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
882     // fold constant into instruction.
883     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
884       LHS = RHS;
885       RHS = DAG.getConstant(C->getSExtValue() + 1, C->getValueType(0));
886       TCC = MSP430CC::COND_GE;
887       break;
888     }
889     TCC = MSP430CC::COND_L;
890     break;
891   }
892 
893   TargetCC = DAG.getConstant(TCC, MVT::i8);
894   return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
895 }
896 
897 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const898 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
899   SDValue Chain = Op.getOperand(0);
900   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
901   SDValue LHS   = Op.getOperand(2);
902   SDValue RHS   = Op.getOperand(3);
903   SDValue Dest  = Op.getOperand(4);
904   SDLoc dl  (Op);
905 
906   SDValue TargetCC;
907   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
908 
909   return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
910                      Chain, Dest, TargetCC, Flag);
911 }
912 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const913 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
914   SDValue LHS   = Op.getOperand(0);
915   SDValue RHS   = Op.getOperand(1);
916   SDLoc dl  (Op);
917 
918   // If we are doing an AND and testing against zero, then the CMP
919   // will not be generated.  The AND (or BIT) will generate the condition codes,
920   // but they are different from CMP.
921   // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
922   // lowering & isel wouldn't diverge.
923   bool andCC = false;
924   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
925     if (RHSC->isNullValue() && LHS.hasOneUse() &&
926         (LHS.getOpcode() == ISD::AND ||
927          (LHS.getOpcode() == ISD::TRUNCATE &&
928           LHS.getOperand(0).getOpcode() == ISD::AND))) {
929       andCC = true;
930     }
931   }
932   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
933   SDValue TargetCC;
934   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
935 
936   // Get the condition codes directly from the status register, if its easy.
937   // Otherwise a branch will be generated.  Note that the AND and BIT
938   // instructions generate different flags than CMP, the carry bit can be used
939   // for NE/EQ.
940   bool Invert = false;
941   bool Shift = false;
942   bool Convert = true;
943   switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
944    default:
945     Convert = false;
946     break;
947    case MSP430CC::COND_HS:
948      // Res = SR & 1, no processing is required
949      break;
950    case MSP430CC::COND_LO:
951      // Res = ~(SR & 1)
952      Invert = true;
953      break;
954    case MSP430CC::COND_NE:
955      if (andCC) {
956        // C = ~Z, thus Res = SR & 1, no processing is required
957      } else {
958        // Res = ~((SR >> 1) & 1)
959        Shift = true;
960        Invert = true;
961      }
962      break;
963    case MSP430CC::COND_E:
964      Shift = true;
965      // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
966      // Res = (SR >> 1) & 1 is 1 word shorter.
967      break;
968   }
969   EVT VT = Op.getValueType();
970   SDValue One  = DAG.getConstant(1, VT);
971   if (Convert) {
972     SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
973                                     MVT::i16, Flag);
974     if (Shift)
975       // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
976       SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
977     SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
978     if (Invert)
979       SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
980     return SR;
981   } else {
982     SDValue Zero = DAG.getConstant(0, VT);
983     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
984     SDValue Ops[] = {One, Zero, TargetCC, Flag};
985     return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
986   }
987 }
988 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const989 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
990                                              SelectionDAG &DAG) const {
991   SDValue LHS    = Op.getOperand(0);
992   SDValue RHS    = Op.getOperand(1);
993   SDValue TrueV  = Op.getOperand(2);
994   SDValue FalseV = Op.getOperand(3);
995   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
996   SDLoc dl   (Op);
997 
998   SDValue TargetCC;
999   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1000 
1001   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1002   SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
1003 
1004   return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
1005 }
1006 
LowerSIGN_EXTEND(SDValue Op,SelectionDAG & DAG) const1007 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
1008                                                SelectionDAG &DAG) const {
1009   SDValue Val = Op.getOperand(0);
1010   EVT VT      = Op.getValueType();
1011   SDLoc dl(Op);
1012 
1013   assert(VT == MVT::i16 && "Only support i16 for now!");
1014 
1015   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
1016                      DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
1017                      DAG.getValueType(Val.getValueType()));
1018 }
1019 
1020 SDValue
getReturnAddressFrameIndex(SelectionDAG & DAG) const1021 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
1022   MachineFunction &MF = DAG.getMachineFunction();
1023   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1024   int ReturnAddrIndex = FuncInfo->getRAIndex();
1025 
1026   if (ReturnAddrIndex == 0) {
1027     // Set up a frame object for the return address.
1028     uint64_t SlotSize = getDataLayout()->getPointerSize();
1029     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
1030                                                            true);
1031     FuncInfo->setRAIndex(ReturnAddrIndex);
1032   }
1033 
1034   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1035 }
1036 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1037 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
1038                                               SelectionDAG &DAG) const {
1039   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1040   MFI->setReturnAddressIsTaken(true);
1041 
1042   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1043     return SDValue();
1044 
1045   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1046   SDLoc dl(Op);
1047 
1048   if (Depth > 0) {
1049     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1050     SDValue Offset =
1051         DAG.getConstant(getDataLayout()->getPointerSize(), MVT::i16);
1052     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
1053                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
1054                                    FrameAddr, Offset),
1055                        MachinePointerInfo(), false, false, false, 0);
1056   }
1057 
1058   // Just load the return address.
1059   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
1060   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
1061                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
1062 }
1063 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1064 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
1065                                              SelectionDAG &DAG) const {
1066   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1067   MFI->setFrameAddressIsTaken(true);
1068 
1069   EVT VT = Op.getValueType();
1070   SDLoc dl(Op);  // FIXME probably not meaningful
1071   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1072   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1073                                          MSP430::FP, VT);
1074   while (Depth--)
1075     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1076                             MachinePointerInfo(),
1077                             false, false, false, 0);
1078   return FrameAddr;
1079 }
1080 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const1081 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
1082                                            SelectionDAG &DAG) const {
1083   MachineFunction &MF = DAG.getMachineFunction();
1084   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1085 
1086   // Frame index of first vararg argument
1087   SDValue FrameIndex = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1088                                          getPointerTy());
1089   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1090 
1091   // Create a store of the frame index to the location operand
1092   return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex,
1093                       Op.getOperand(1), MachinePointerInfo(SV),
1094                       false, false, 0);
1095 }
1096 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1097 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
1098                                              SelectionDAG &DAG) const {
1099     JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1100     SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
1101     return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT),
1102                        getPointerTy(), Result);
1103 }
1104 
1105 /// getPostIndexedAddressParts - returns true by value, base pointer and
1106 /// offset pointer and addressing mode by reference if this node can be
1107 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const1108 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1109                                                       SDValue &Base,
1110                                                       SDValue &Offset,
1111                                                       ISD::MemIndexedMode &AM,
1112                                                       SelectionDAG &DAG) const {
1113 
1114   LoadSDNode *LD = cast<LoadSDNode>(N);
1115   if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1116     return false;
1117 
1118   EVT VT = LD->getMemoryVT();
1119   if (VT != MVT::i8 && VT != MVT::i16)
1120     return false;
1121 
1122   if (Op->getOpcode() != ISD::ADD)
1123     return false;
1124 
1125   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1126     uint64_t RHSC = RHS->getZExtValue();
1127     if ((VT == MVT::i16 && RHSC != 2) ||
1128         (VT == MVT::i8 && RHSC != 1))
1129       return false;
1130 
1131     Base = Op->getOperand(0);
1132     Offset = DAG.getConstant(RHSC, VT);
1133     AM = ISD::POST_INC;
1134     return true;
1135   }
1136 
1137   return false;
1138 }
1139 
1140 
getTargetNodeName(unsigned Opcode) const1141 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
1142   switch (Opcode) {
1143   default: return nullptr;
1144   case MSP430ISD::RET_FLAG:           return "MSP430ISD::RET_FLAG";
1145   case MSP430ISD::RETI_FLAG:          return "MSP430ISD::RETI_FLAG";
1146   case MSP430ISD::RRA:                return "MSP430ISD::RRA";
1147   case MSP430ISD::RLA:                return "MSP430ISD::RLA";
1148   case MSP430ISD::RRC:                return "MSP430ISD::RRC";
1149   case MSP430ISD::CALL:               return "MSP430ISD::CALL";
1150   case MSP430ISD::Wrapper:            return "MSP430ISD::Wrapper";
1151   case MSP430ISD::BR_CC:              return "MSP430ISD::BR_CC";
1152   case MSP430ISD::CMP:                return "MSP430ISD::CMP";
1153   case MSP430ISD::SELECT_CC:          return "MSP430ISD::SELECT_CC";
1154   case MSP430ISD::SHL:                return "MSP430ISD::SHL";
1155   case MSP430ISD::SRA:                return "MSP430ISD::SRA";
1156   }
1157 }
1158 
isTruncateFree(Type * Ty1,Type * Ty2) const1159 bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
1160                                           Type *Ty2) const {
1161   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1162     return false;
1163 
1164   return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
1165 }
1166 
isTruncateFree(EVT VT1,EVT VT2) const1167 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1168   if (!VT1.isInteger() || !VT2.isInteger())
1169     return false;
1170 
1171   return (VT1.getSizeInBits() > VT2.getSizeInBits());
1172 }
1173 
isZExtFree(Type * Ty1,Type * Ty2) const1174 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
1175   // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1176   return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
1177 }
1178 
isZExtFree(EVT VT1,EVT VT2) const1179 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
1180   // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1181   return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
1182 }
1183 
isZExtFree(SDValue Val,EVT VT2) const1184 bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1185   return isZExtFree(Val.getValueType(), VT2);
1186 }
1187 
1188 //===----------------------------------------------------------------------===//
1189 //  Other Lowering Code
1190 //===----------------------------------------------------------------------===//
1191 
1192 MachineBasicBlock*
EmitShiftInstr(MachineInstr * MI,MachineBasicBlock * BB) const1193 MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI,
1194                                      MachineBasicBlock *BB) const {
1195   MachineFunction *F = BB->getParent();
1196   MachineRegisterInfo &RI = F->getRegInfo();
1197   DebugLoc dl = MI->getDebugLoc();
1198   const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
1199 
1200   unsigned Opc;
1201   const TargetRegisterClass * RC;
1202   switch (MI->getOpcode()) {
1203   default: llvm_unreachable("Invalid shift opcode!");
1204   case MSP430::Shl8:
1205    Opc = MSP430::SHL8r1;
1206    RC = &MSP430::GR8RegClass;
1207    break;
1208   case MSP430::Shl16:
1209    Opc = MSP430::SHL16r1;
1210    RC = &MSP430::GR16RegClass;
1211    break;
1212   case MSP430::Sra8:
1213    Opc = MSP430::SAR8r1;
1214    RC = &MSP430::GR8RegClass;
1215    break;
1216   case MSP430::Sra16:
1217    Opc = MSP430::SAR16r1;
1218    RC = &MSP430::GR16RegClass;
1219    break;
1220   case MSP430::Srl8:
1221    Opc = MSP430::SAR8r1c;
1222    RC = &MSP430::GR8RegClass;
1223    break;
1224   case MSP430::Srl16:
1225    Opc = MSP430::SAR16r1c;
1226    RC = &MSP430::GR16RegClass;
1227    break;
1228   }
1229 
1230   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1231   MachineFunction::iterator I = BB;
1232   ++I;
1233 
1234   // Create loop block
1235   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1236   MachineBasicBlock *RemBB  = F->CreateMachineBasicBlock(LLVM_BB);
1237 
1238   F->insert(I, LoopBB);
1239   F->insert(I, RemBB);
1240 
1241   // Update machine-CFG edges by transferring all successors of the current
1242   // block to the block containing instructions after shift.
1243   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1244                 BB->end());
1245   RemBB->transferSuccessorsAndUpdatePHIs(BB);
1246 
1247   // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1248   BB->addSuccessor(LoopBB);
1249   BB->addSuccessor(RemBB);
1250   LoopBB->addSuccessor(RemBB);
1251   LoopBB->addSuccessor(LoopBB);
1252 
1253   unsigned ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
1254   unsigned ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
1255   unsigned ShiftReg = RI.createVirtualRegister(RC);
1256   unsigned ShiftReg2 = RI.createVirtualRegister(RC);
1257   unsigned ShiftAmtSrcReg = MI->getOperand(2).getReg();
1258   unsigned SrcReg = MI->getOperand(1).getReg();
1259   unsigned DstReg = MI->getOperand(0).getReg();
1260 
1261   // BB:
1262   // cmp 0, N
1263   // je RemBB
1264   BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
1265     .addReg(ShiftAmtSrcReg).addImm(0);
1266   BuildMI(BB, dl, TII.get(MSP430::JCC))
1267     .addMBB(RemBB)
1268     .addImm(MSP430CC::COND_E);
1269 
1270   // LoopBB:
1271   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1272   // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
1273   // ShiftReg2 = shift ShiftReg
1274   // ShiftAmt2 = ShiftAmt - 1;
1275   BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
1276     .addReg(SrcReg).addMBB(BB)
1277     .addReg(ShiftReg2).addMBB(LoopBB);
1278   BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
1279     .addReg(ShiftAmtSrcReg).addMBB(BB)
1280     .addReg(ShiftAmtReg2).addMBB(LoopBB);
1281   BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1282     .addReg(ShiftReg);
1283   BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
1284     .addReg(ShiftAmtReg).addImm(1);
1285   BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
1286     .addMBB(LoopBB)
1287     .addImm(MSP430CC::COND_NE);
1288 
1289   // RemBB:
1290   // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1291   BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
1292     .addReg(SrcReg).addMBB(BB)
1293     .addReg(ShiftReg2).addMBB(LoopBB);
1294 
1295   MI->eraseFromParent();   // The pseudo instruction is gone now.
1296   return RemBB;
1297 }
1298 
1299 MachineBasicBlock*
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const1300 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1301                                                   MachineBasicBlock *BB) const {
1302   unsigned Opc = MI->getOpcode();
1303 
1304   if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
1305       Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
1306       Opc == MSP430::Srl8 || Opc == MSP430::Srl16)
1307     return EmitShiftInstr(MI, BB);
1308 
1309   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1310   DebugLoc dl = MI->getDebugLoc();
1311 
1312   assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
1313          "Unexpected instr type to insert");
1314 
1315   // To "insert" a SELECT instruction, we actually have to insert the diamond
1316   // control-flow pattern.  The incoming instruction knows the destination vreg
1317   // to set, the condition code register to branch on, the true/false values to
1318   // select between, and a branch opcode to use.
1319   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1320   MachineFunction::iterator I = BB;
1321   ++I;
1322 
1323   //  thisMBB:
1324   //  ...
1325   //   TrueVal = ...
1326   //   cmpTY ccX, r1, r2
1327   //   jCC copy1MBB
1328   //   fallthrough --> copy0MBB
1329   MachineBasicBlock *thisMBB = BB;
1330   MachineFunction *F = BB->getParent();
1331   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1332   MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
1333   F->insert(I, copy0MBB);
1334   F->insert(I, copy1MBB);
1335   // Update machine-CFG edges by transferring all successors of the current
1336   // block to the new block which will contain the Phi node for the select.
1337   copy1MBB->splice(copy1MBB->begin(), BB,
1338                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
1339   copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
1340   // Next, add the true and fallthrough blocks as its successors.
1341   BB->addSuccessor(copy0MBB);
1342   BB->addSuccessor(copy1MBB);
1343 
1344   BuildMI(BB, dl, TII.get(MSP430::JCC))
1345     .addMBB(copy1MBB)
1346     .addImm(MI->getOperand(3).getImm());
1347 
1348   //  copy0MBB:
1349   //   %FalseValue = ...
1350   //   # fallthrough to copy1MBB
1351   BB = copy0MBB;
1352 
1353   // Update machine-CFG edges
1354   BB->addSuccessor(copy1MBB);
1355 
1356   //  copy1MBB:
1357   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1358   //  ...
1359   BB = copy1MBB;
1360   BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI),
1361           MI->getOperand(0).getReg())
1362     .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
1363     .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
1364 
1365   MI->eraseFromParent();   // The pseudo instruction is gone now.
1366   return BB;
1367 }
1368