1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
32 #include "llvm/CodeGen/LiveStackAnalysis.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/FileSystem.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52 
53 namespace {
54   struct MachineVerifier {
55 
MachineVerifier__anon289e30a70111::MachineVerifier56     MachineVerifier(Pass *pass, const char *b) :
57       PASS(pass),
58       Banner(b)
59       {}
60 
61     bool runOnMachineFunction(MachineFunction &MF);
62 
63     Pass *const PASS;
64     const char *Banner;
65     const MachineFunction *MF;
66     const TargetMachine *TM;
67     const TargetInstrInfo *TII;
68     const TargetRegisterInfo *TRI;
69     const MachineRegisterInfo *MRI;
70 
71     unsigned foundErrors;
72 
73     typedef SmallVector<unsigned, 16> RegVector;
74     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
75     typedef DenseSet<unsigned> RegSet;
76     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
77     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
78 
79     const MachineInstr *FirstTerminator;
80     BlockSet FunctionBlocks;
81 
82     BitVector regsReserved;
83     RegSet regsLive;
84     RegVector regsDefined, regsDead, regsKilled;
85     RegMaskVector regMasks;
86     RegSet regsLiveInButUnused;
87 
88     SlotIndex lastIndex;
89 
90     // Add Reg and any sub-registers to RV
addRegWithSubRegs__anon289e30a70111::MachineVerifier91     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
92       RV.push_back(Reg);
93       if (TargetRegisterInfo::isPhysicalRegister(Reg))
94         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
95           RV.push_back(*SubRegs);
96     }
97 
98     struct BBInfo {
99       // Is this MBB reachable from the MF entry point?
100       bool reachable;
101 
102       // Vregs that must be live in because they are used without being
103       // defined. Map value is the user.
104       RegMap vregsLiveIn;
105 
106       // Regs killed in MBB. They may be defined again, and will then be in both
107       // regsKilled and regsLiveOut.
108       RegSet regsKilled;
109 
110       // Regs defined in MBB and live out. Note that vregs passing through may
111       // be live out without being mentioned here.
112       RegSet regsLiveOut;
113 
114       // Vregs that pass through MBB untouched. This set is disjoint from
115       // regsKilled and regsLiveOut.
116       RegSet vregsPassed;
117 
118       // Vregs that must pass through MBB because they are needed by a successor
119       // block. This set is disjoint from regsLiveOut.
120       RegSet vregsRequired;
121 
122       // Set versions of block's predecessor and successor lists.
123       BlockSet Preds, Succs;
124 
BBInfo__anon289e30a70111::MachineVerifier::BBInfo125       BBInfo() : reachable(false) {}
126 
127       // Add register to vregsPassed if it belongs there. Return true if
128       // anything changed.
addPassed__anon289e30a70111::MachineVerifier::BBInfo129       bool addPassed(unsigned Reg) {
130         if (!TargetRegisterInfo::isVirtualRegister(Reg))
131           return false;
132         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
133           return false;
134         return vregsPassed.insert(Reg).second;
135       }
136 
137       // Same for a full set.
addPassed__anon289e30a70111::MachineVerifier::BBInfo138       bool addPassed(const RegSet &RS) {
139         bool changed = false;
140         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
141           if (addPassed(*I))
142             changed = true;
143         return changed;
144       }
145 
146       // Add register to vregsRequired if it belongs there. Return true if
147       // anything changed.
addRequired__anon289e30a70111::MachineVerifier::BBInfo148       bool addRequired(unsigned Reg) {
149         if (!TargetRegisterInfo::isVirtualRegister(Reg))
150           return false;
151         if (regsLiveOut.count(Reg))
152           return false;
153         return vregsRequired.insert(Reg).second;
154       }
155 
156       // Same for a full set.
addRequired__anon289e30a70111::MachineVerifier::BBInfo157       bool addRequired(const RegSet &RS) {
158         bool changed = false;
159         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
160           if (addRequired(*I))
161             changed = true;
162         return changed;
163       }
164 
165       // Same for a full map.
addRequired__anon289e30a70111::MachineVerifier::BBInfo166       bool addRequired(const RegMap &RM) {
167         bool changed = false;
168         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
169           if (addRequired(I->first))
170             changed = true;
171         return changed;
172       }
173 
174       // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anon289e30a70111::MachineVerifier::BBInfo175       bool isLiveOut(unsigned Reg) const {
176         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
177       }
178     };
179 
180     // Extra register info per MBB.
181     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
182 
isReserved__anon289e30a70111::MachineVerifier183     bool isReserved(unsigned Reg) {
184       return Reg < regsReserved.size() && regsReserved.test(Reg);
185     }
186 
isAllocatable__anon289e30a70111::MachineVerifier187     bool isAllocatable(unsigned Reg) {
188       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
189     }
190 
191     // Analysis information if available
192     LiveVariables *LiveVars;
193     LiveIntervals *LiveInts;
194     LiveStacks *LiveStks;
195     SlotIndexes *Indexes;
196 
197     void visitMachineFunctionBefore();
198     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
199     void visitMachineBundleBefore(const MachineInstr *MI);
200     void visitMachineInstrBefore(const MachineInstr *MI);
201     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
202     void visitMachineInstrAfter(const MachineInstr *MI);
203     void visitMachineBundleAfter(const MachineInstr *MI);
204     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
205     void visitMachineFunctionAfter();
206 
207     void report(const char *msg, const MachineFunction *MF);
208     void report(const char *msg, const MachineBasicBlock *MBB);
209     void report(const char *msg, const MachineInstr *MI);
210     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
211     void report(const char *msg, const MachineFunction *MF,
212                 const LiveInterval &LI);
213     void report(const char *msg, const MachineBasicBlock *MBB,
214                 const LiveInterval &LI);
215     void report(const char *msg, const MachineFunction *MF,
216                 const LiveRange &LR, unsigned Reg, unsigned LaneMask);
217     void report(const char *msg, const MachineBasicBlock *MBB,
218                 const LiveRange &LR, unsigned Reg, unsigned LaneMask);
219 
220     void verifyInlineAsm(const MachineInstr *MI);
221 
222     void checkLiveness(const MachineOperand *MO, unsigned MONum);
223     void markReachable(const MachineBasicBlock *MBB);
224     void calcRegsPassed();
225     void checkPHIOps(const MachineBasicBlock *MBB);
226 
227     void calcRegsRequired();
228     void verifyLiveVariables();
229     void verifyLiveIntervals();
230     void verifyLiveInterval(const LiveInterval&);
231     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
232                               unsigned);
233     void verifyLiveRangeSegment(const LiveRange&,
234                                 const LiveRange::const_iterator I, unsigned,
235                                 unsigned);
236     void verifyLiveRange(const LiveRange&, unsigned, unsigned LaneMask = 0);
237 
238     void verifyStackFrame();
239   };
240 
241   struct MachineVerifierPass : public MachineFunctionPass {
242     static char ID; // Pass ID, replacement for typeid
243     const std::string Banner;
244 
MachineVerifierPass__anon289e30a70111::MachineVerifierPass245     MachineVerifierPass(const std::string &banner = nullptr)
246       : MachineFunctionPass(ID), Banner(banner) {
247         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
248       }
249 
getAnalysisUsage__anon289e30a70111::MachineVerifierPass250     void getAnalysisUsage(AnalysisUsage &AU) const override {
251       AU.setPreservesAll();
252       MachineFunctionPass::getAnalysisUsage(AU);
253     }
254 
runOnMachineFunction__anon289e30a70111::MachineVerifierPass255     bool runOnMachineFunction(MachineFunction &MF) override {
256       MF.verify(this, Banner.c_str());
257       return false;
258     }
259   };
260 
261 }
262 
263 char MachineVerifierPass::ID = 0;
264 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
265                 "Verify generated machine code", false, false)
266 
createMachineVerifierPass(const std::string & Banner)267 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
268   return new MachineVerifierPass(Banner);
269 }
270 
verify(Pass * p,const char * Banner) const271 void MachineFunction::verify(Pass *p, const char *Banner) const {
272   MachineVerifier(p, Banner)
273     .runOnMachineFunction(const_cast<MachineFunction&>(*this));
274 }
275 
runOnMachineFunction(MachineFunction & MF)276 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
277   foundErrors = 0;
278 
279   this->MF = &MF;
280   TM = &MF.getTarget();
281   TII = MF.getSubtarget().getInstrInfo();
282   TRI = MF.getSubtarget().getRegisterInfo();
283   MRI = &MF.getRegInfo();
284 
285   LiveVars = nullptr;
286   LiveInts = nullptr;
287   LiveStks = nullptr;
288   Indexes = nullptr;
289   if (PASS) {
290     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
291     // We don't want to verify LiveVariables if LiveIntervals is available.
292     if (!LiveInts)
293       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
294     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
295     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
296   }
297 
298   visitMachineFunctionBefore();
299   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
300        MFI!=MFE; ++MFI) {
301     visitMachineBasicBlockBefore(MFI);
302     // Keep track of the current bundle header.
303     const MachineInstr *CurBundle = nullptr;
304     // Do we expect the next instruction to be part of the same bundle?
305     bool InBundle = false;
306 
307     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
308            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
309       if (MBBI->getParent() != MFI) {
310         report("Bad instruction parent pointer", MFI);
311         errs() << "Instruction: " << *MBBI;
312         continue;
313       }
314 
315       // Check for consistent bundle flags.
316       if (InBundle && !MBBI->isBundledWithPred())
317         report("Missing BundledPred flag, "
318                "BundledSucc was set on predecessor", MBBI);
319       if (!InBundle && MBBI->isBundledWithPred())
320         report("BundledPred flag is set, "
321                "but BundledSucc not set on predecessor", MBBI);
322 
323       // Is this a bundle header?
324       if (!MBBI->isInsideBundle()) {
325         if (CurBundle)
326           visitMachineBundleAfter(CurBundle);
327         CurBundle = MBBI;
328         visitMachineBundleBefore(CurBundle);
329       } else if (!CurBundle)
330         report("No bundle header", MBBI);
331       visitMachineInstrBefore(MBBI);
332       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
333         visitMachineOperand(&MBBI->getOperand(I), I);
334       visitMachineInstrAfter(MBBI);
335 
336       // Was this the last bundled instruction?
337       InBundle = MBBI->isBundledWithSucc();
338     }
339     if (CurBundle)
340       visitMachineBundleAfter(CurBundle);
341     if (InBundle)
342       report("BundledSucc flag set on last instruction in block", &MFI->back());
343     visitMachineBasicBlockAfter(MFI);
344   }
345   visitMachineFunctionAfter();
346 
347   if (foundErrors)
348     report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
349 
350   // Clean up.
351   regsLive.clear();
352   regsDefined.clear();
353   regsDead.clear();
354   regsKilled.clear();
355   regMasks.clear();
356   regsLiveInButUnused.clear();
357   MBBInfoMap.clear();
358 
359   return false;                 // no changes
360 }
361 
report(const char * msg,const MachineFunction * MF)362 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
363   assert(MF);
364   errs() << '\n';
365   if (!foundErrors++) {
366     if (Banner)
367       errs() << "# " << Banner << '\n';
368     MF->print(errs(), Indexes);
369   }
370   errs() << "*** Bad machine code: " << msg << " ***\n"
371       << "- function:    " << MF->getName() << "\n";
372 }
373 
report(const char * msg,const MachineBasicBlock * MBB)374 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
375   assert(MBB);
376   report(msg, MBB->getParent());
377   errs() << "- basic block: BB#" << MBB->getNumber()
378       << ' ' << MBB->getName()
379       << " (" << (const void*)MBB << ')';
380   if (Indexes)
381     errs() << " [" << Indexes->getMBBStartIdx(MBB)
382         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
383   errs() << '\n';
384 }
385 
report(const char * msg,const MachineInstr * MI)386 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
387   assert(MI);
388   report(msg, MI->getParent());
389   errs() << "- instruction: ";
390   if (Indexes && Indexes->hasIndex(MI))
391     errs() << Indexes->getInstructionIndex(MI) << '\t';
392   MI->print(errs(), TM);
393 }
394 
report(const char * msg,const MachineOperand * MO,unsigned MONum)395 void MachineVerifier::report(const char *msg,
396                              const MachineOperand *MO, unsigned MONum) {
397   assert(MO);
398   report(msg, MO->getParent());
399   errs() << "- operand " << MONum << ":   ";
400   MO->print(errs(), TRI);
401   errs() << "\n";
402 }
403 
report(const char * msg,const MachineFunction * MF,const LiveInterval & LI)404 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
405                              const LiveInterval &LI) {
406   report(msg, MF);
407   errs() << "- interval:    " << LI << '\n';
408 }
409 
report(const char * msg,const MachineBasicBlock * MBB,const LiveInterval & LI)410 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
411                              const LiveInterval &LI) {
412   report(msg, MBB);
413   errs() << "- interval:    " << LI << '\n';
414 }
415 
report(const char * msg,const MachineBasicBlock * MBB,const LiveRange & LR,unsigned Reg,unsigned LaneMask)416 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
417                              const LiveRange &LR, unsigned Reg,
418                              unsigned LaneMask) {
419   report(msg, MBB);
420   errs() << "- liverange:   " << LR << '\n';
421   errs() << "- register:    " << PrintReg(Reg, TRI) << '\n';
422   if (LaneMask != 0)
423     errs() << "- lanemask:    " << format("%04X\n", LaneMask);
424 }
425 
report(const char * msg,const MachineFunction * MF,const LiveRange & LR,unsigned Reg,unsigned LaneMask)426 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
427                              const LiveRange &LR, unsigned Reg,
428                              unsigned LaneMask) {
429   report(msg, MF);
430   errs() << "- liverange:   " << LR << '\n';
431   errs() << "- register:    " << PrintReg(Reg, TRI) << '\n';
432   if (LaneMask != 0)
433     errs() << "- lanemask:    " << format("%04X\n", LaneMask);
434 }
435 
markReachable(const MachineBasicBlock * MBB)436 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
437   BBInfo &MInfo = MBBInfoMap[MBB];
438   if (!MInfo.reachable) {
439     MInfo.reachable = true;
440     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
441            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
442       markReachable(*SuI);
443   }
444 }
445 
visitMachineFunctionBefore()446 void MachineVerifier::visitMachineFunctionBefore() {
447   lastIndex = SlotIndex();
448   regsReserved = MRI->getReservedRegs();
449 
450   // A sub-register of a reserved register is also reserved
451   for (int Reg = regsReserved.find_first(); Reg>=0;
452        Reg = regsReserved.find_next(Reg)) {
453     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
454       // FIXME: This should probably be:
455       // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
456       regsReserved.set(*SubRegs);
457     }
458   }
459 
460   markReachable(&MF->front());
461 
462   // Build a set of the basic blocks in the function.
463   FunctionBlocks.clear();
464   for (const auto &MBB : *MF) {
465     FunctionBlocks.insert(&MBB);
466     BBInfo &MInfo = MBBInfoMap[&MBB];
467 
468     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
469     if (MInfo.Preds.size() != MBB.pred_size())
470       report("MBB has duplicate entries in its predecessor list.", &MBB);
471 
472     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
473     if (MInfo.Succs.size() != MBB.succ_size())
474       report("MBB has duplicate entries in its successor list.", &MBB);
475   }
476 
477   // Check that the register use lists are sane.
478   MRI->verifyUseLists();
479 
480   verifyStackFrame();
481 }
482 
483 // Does iterator point to a and b as the first two elements?
matchPair(MachineBasicBlock::const_succ_iterator i,const MachineBasicBlock * a,const MachineBasicBlock * b)484 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
485                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
486   if (*i == a)
487     return *++i == b;
488   if (*i == b)
489     return *++i == a;
490   return false;
491 }
492 
493 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)494 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
495   FirstTerminator = nullptr;
496 
497   if (MRI->isSSA()) {
498     // If this block has allocatable physical registers live-in, check that
499     // it is an entry block or landing pad.
500     for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
501            LE = MBB->livein_end();
502          LI != LE; ++LI) {
503       unsigned reg = *LI;
504       if (isAllocatable(reg) && !MBB->isLandingPad() &&
505           MBB != MBB->getParent()->begin()) {
506         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
507       }
508     }
509   }
510 
511   // Count the number of landing pad successors.
512   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
513   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
514        E = MBB->succ_end(); I != E; ++I) {
515     if ((*I)->isLandingPad())
516       LandingPadSuccs.insert(*I);
517     if (!FunctionBlocks.count(*I))
518       report("MBB has successor that isn't part of the function.", MBB);
519     if (!MBBInfoMap[*I].Preds.count(MBB)) {
520       report("Inconsistent CFG", MBB);
521       errs() << "MBB is not in the predecessor list of the successor BB#"
522           << (*I)->getNumber() << ".\n";
523     }
524   }
525 
526   // Check the predecessor list.
527   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
528        E = MBB->pred_end(); I != E; ++I) {
529     if (!FunctionBlocks.count(*I))
530       report("MBB has predecessor that isn't part of the function.", MBB);
531     if (!MBBInfoMap[*I].Succs.count(MBB)) {
532       report("Inconsistent CFG", MBB);
533       errs() << "MBB is not in the successor list of the predecessor BB#"
534           << (*I)->getNumber() << ".\n";
535     }
536   }
537 
538   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
539   const BasicBlock *BB = MBB->getBasicBlock();
540   if (LandingPadSuccs.size() > 1 &&
541       !(AsmInfo &&
542         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
543         BB && isa<SwitchInst>(BB->getTerminator())))
544     report("MBB has more than one landing pad successor", MBB);
545 
546   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
547   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
548   SmallVector<MachineOperand, 4> Cond;
549   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
550                           TBB, FBB, Cond)) {
551     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
552     // check whether its answers match up with reality.
553     if (!TBB && !FBB) {
554       // Block falls through to its successor.
555       MachineFunction::const_iterator MBBI = MBB;
556       ++MBBI;
557       if (MBBI == MF->end()) {
558         // It's possible that the block legitimately ends with a noreturn
559         // call or an unreachable, in which case it won't actually fall
560         // out the bottom of the function.
561       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
562         // It's possible that the block legitimately ends with a noreturn
563         // call or an unreachable, in which case it won't actuall fall
564         // out of the block.
565       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
566         report("MBB exits via unconditional fall-through but doesn't have "
567                "exactly one CFG successor!", MBB);
568       } else if (!MBB->isSuccessor(MBBI)) {
569         report("MBB exits via unconditional fall-through but its successor "
570                "differs from its CFG successor!", MBB);
571       }
572       if (!MBB->empty() && MBB->back().isBarrier() &&
573           !TII->isPredicated(&MBB->back())) {
574         report("MBB exits via unconditional fall-through but ends with a "
575                "barrier instruction!", MBB);
576       }
577       if (!Cond.empty()) {
578         report("MBB exits via unconditional fall-through but has a condition!",
579                MBB);
580       }
581     } else if (TBB && !FBB && Cond.empty()) {
582       // Block unconditionally branches somewhere.
583       // If the block has exactly one successor, that happens to be a
584       // landingpad, accept it as valid control flow.
585       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
586           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
587            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
588         report("MBB exits via unconditional branch but doesn't have "
589                "exactly one CFG successor!", MBB);
590       } else if (!MBB->isSuccessor(TBB)) {
591         report("MBB exits via unconditional branch but the CFG "
592                "successor doesn't match the actual successor!", MBB);
593       }
594       if (MBB->empty()) {
595         report("MBB exits via unconditional branch but doesn't contain "
596                "any instructions!", MBB);
597       } else if (!MBB->back().isBarrier()) {
598         report("MBB exits via unconditional branch but doesn't end with a "
599                "barrier instruction!", MBB);
600       } else if (!MBB->back().isTerminator()) {
601         report("MBB exits via unconditional branch but the branch isn't a "
602                "terminator instruction!", MBB);
603       }
604     } else if (TBB && !FBB && !Cond.empty()) {
605       // Block conditionally branches somewhere, otherwise falls through.
606       MachineFunction::const_iterator MBBI = MBB;
607       ++MBBI;
608       if (MBBI == MF->end()) {
609         report("MBB conditionally falls through out of function!", MBB);
610       } else if (MBB->succ_size() == 1) {
611         // A conditional branch with only one successor is weird, but allowed.
612         if (&*MBBI != TBB)
613           report("MBB exits via conditional branch/fall-through but only has "
614                  "one CFG successor!", MBB);
615         else if (TBB != *MBB->succ_begin())
616           report("MBB exits via conditional branch/fall-through but the CFG "
617                  "successor don't match the actual successor!", MBB);
618       } else if (MBB->succ_size() != 2) {
619         report("MBB exits via conditional branch/fall-through but doesn't have "
620                "exactly two CFG successors!", MBB);
621       } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
622         report("MBB exits via conditional branch/fall-through but the CFG "
623                "successors don't match the actual successors!", MBB);
624       }
625       if (MBB->empty()) {
626         report("MBB exits via conditional branch/fall-through but doesn't "
627                "contain any instructions!", MBB);
628       } else if (MBB->back().isBarrier()) {
629         report("MBB exits via conditional branch/fall-through but ends with a "
630                "barrier instruction!", MBB);
631       } else if (!MBB->back().isTerminator()) {
632         report("MBB exits via conditional branch/fall-through but the branch "
633                "isn't a terminator instruction!", MBB);
634       }
635     } else if (TBB && FBB) {
636       // Block conditionally branches somewhere, otherwise branches
637       // somewhere else.
638       if (MBB->succ_size() == 1) {
639         // A conditional branch with only one successor is weird, but allowed.
640         if (FBB != TBB)
641           report("MBB exits via conditional branch/branch through but only has "
642                  "one CFG successor!", MBB);
643         else if (TBB != *MBB->succ_begin())
644           report("MBB exits via conditional branch/branch through but the CFG "
645                  "successor don't match the actual successor!", MBB);
646       } else if (MBB->succ_size() != 2) {
647         report("MBB exits via conditional branch/branch but doesn't have "
648                "exactly two CFG successors!", MBB);
649       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
650         report("MBB exits via conditional branch/branch but the CFG "
651                "successors don't match the actual successors!", MBB);
652       }
653       if (MBB->empty()) {
654         report("MBB exits via conditional branch/branch but doesn't "
655                "contain any instructions!", MBB);
656       } else if (!MBB->back().isBarrier()) {
657         report("MBB exits via conditional branch/branch but doesn't end with a "
658                "barrier instruction!", MBB);
659       } else if (!MBB->back().isTerminator()) {
660         report("MBB exits via conditional branch/branch but the branch "
661                "isn't a terminator instruction!", MBB);
662       }
663       if (Cond.empty()) {
664         report("MBB exits via conditinal branch/branch but there's no "
665                "condition!", MBB);
666       }
667     } else {
668       report("AnalyzeBranch returned invalid data!", MBB);
669     }
670   }
671 
672   regsLive.clear();
673   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
674          E = MBB->livein_end(); I != E; ++I) {
675     if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
676       report("MBB live-in list contains non-physical register", MBB);
677       continue;
678     }
679     for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true);
680          SubRegs.isValid(); ++SubRegs)
681       regsLive.insert(*SubRegs);
682   }
683   regsLiveInButUnused = regsLive;
684 
685   const MachineFrameInfo *MFI = MF->getFrameInfo();
686   assert(MFI && "Function has no frame info");
687   BitVector PR = MFI->getPristineRegs(MBB);
688   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
689     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
690          SubRegs.isValid(); ++SubRegs)
691       regsLive.insert(*SubRegs);
692   }
693 
694   regsKilled.clear();
695   regsDefined.clear();
696 
697   if (Indexes)
698     lastIndex = Indexes->getMBBStartIdx(MBB);
699 }
700 
701 // This function gets called for all bundle headers, including normal
702 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)703 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
704   if (Indexes && Indexes->hasIndex(MI)) {
705     SlotIndex idx = Indexes->getInstructionIndex(MI);
706     if (!(idx > lastIndex)) {
707       report("Instruction index out of order", MI);
708       errs() << "Last instruction was at " << lastIndex << '\n';
709     }
710     lastIndex = idx;
711   }
712 
713   // Ensure non-terminators don't follow terminators.
714   // Ignore predicated terminators formed by if conversion.
715   // FIXME: If conversion shouldn't need to violate this rule.
716   if (MI->isTerminator() && !TII->isPredicated(MI)) {
717     if (!FirstTerminator)
718       FirstTerminator = MI;
719   } else if (FirstTerminator) {
720     report("Non-terminator instruction after the first terminator", MI);
721     errs() << "First terminator was:\t" << *FirstTerminator;
722   }
723 }
724 
725 // The operands on an INLINEASM instruction must follow a template.
726 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)727 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
728   // The first two operands on INLINEASM are the asm string and global flags.
729   if (MI->getNumOperands() < 2) {
730     report("Too few operands on inline asm", MI);
731     return;
732   }
733   if (!MI->getOperand(0).isSymbol())
734     report("Asm string must be an external symbol", MI);
735   if (!MI->getOperand(1).isImm())
736     report("Asm flags must be an immediate", MI);
737   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
738   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
739   if (!isUInt<5>(MI->getOperand(1).getImm()))
740     report("Unknown asm flags", &MI->getOperand(1), 1);
741 
742   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
743 
744   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
745   unsigned NumOps;
746   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
747     const MachineOperand &MO = MI->getOperand(OpNo);
748     // There may be implicit ops after the fixed operands.
749     if (!MO.isImm())
750       break;
751     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
752   }
753 
754   if (OpNo > MI->getNumOperands())
755     report("Missing operands in last group", MI);
756 
757   // An optional MDNode follows the groups.
758   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
759     ++OpNo;
760 
761   // All trailing operands must be implicit registers.
762   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
763     const MachineOperand &MO = MI->getOperand(OpNo);
764     if (!MO.isReg() || !MO.isImplicit())
765       report("Expected implicit register after groups", &MO, OpNo);
766   }
767 }
768 
visitMachineInstrBefore(const MachineInstr * MI)769 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
770   const MCInstrDesc &MCID = MI->getDesc();
771   if (MI->getNumOperands() < MCID.getNumOperands()) {
772     report("Too few operands", MI);
773     errs() << MCID.getNumOperands() << " operands expected, but "
774         << MI->getNumOperands() << " given.\n";
775   }
776 
777   // Check the tied operands.
778   if (MI->isInlineAsm())
779     verifyInlineAsm(MI);
780 
781   // Check the MachineMemOperands for basic consistency.
782   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
783        E = MI->memoperands_end(); I != E; ++I) {
784     if ((*I)->isLoad() && !MI->mayLoad())
785       report("Missing mayLoad flag", MI);
786     if ((*I)->isStore() && !MI->mayStore())
787       report("Missing mayStore flag", MI);
788   }
789 
790   // Debug values must not have a slot index.
791   // Other instructions must have one, unless they are inside a bundle.
792   if (LiveInts) {
793     bool mapped = !LiveInts->isNotInMIMap(MI);
794     if (MI->isDebugValue()) {
795       if (mapped)
796         report("Debug instruction has a slot index", MI);
797     } else if (MI->isInsideBundle()) {
798       if (mapped)
799         report("Instruction inside bundle has a slot index", MI);
800     } else {
801       if (!mapped)
802         report("Missing slot index", MI);
803     }
804   }
805 
806   StringRef ErrorInfo;
807   if (!TII->verifyInstruction(MI, ErrorInfo))
808     report(ErrorInfo.data(), MI);
809 }
810 
811 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)812 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
813   const MachineInstr *MI = MO->getParent();
814   const MCInstrDesc &MCID = MI->getDesc();
815 
816   // The first MCID.NumDefs operands must be explicit register defines
817   if (MONum < MCID.getNumDefs()) {
818     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
819     if (!MO->isReg())
820       report("Explicit definition must be a register", MO, MONum);
821     else if (!MO->isDef() && !MCOI.isOptionalDef())
822       report("Explicit definition marked as use", MO, MONum);
823     else if (MO->isImplicit())
824       report("Explicit definition marked as implicit", MO, MONum);
825   } else if (MONum < MCID.getNumOperands()) {
826     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
827     // Don't check if it's the last operand in a variadic instruction. See,
828     // e.g., LDM_RET in the arm back end.
829     if (MO->isReg() &&
830         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
831       if (MO->isDef() && !MCOI.isOptionalDef())
832         report("Explicit operand marked as def", MO, MONum);
833       if (MO->isImplicit())
834         report("Explicit operand marked as implicit", MO, MONum);
835     }
836 
837     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
838     if (TiedTo != -1) {
839       if (!MO->isReg())
840         report("Tied use must be a register", MO, MONum);
841       else if (!MO->isTied())
842         report("Operand should be tied", MO, MONum);
843       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
844         report("Tied def doesn't match MCInstrDesc", MO, MONum);
845     } else if (MO->isReg() && MO->isTied())
846       report("Explicit operand should not be tied", MO, MONum);
847   } else {
848     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
849     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
850       report("Extra explicit operand on non-variadic instruction", MO, MONum);
851   }
852 
853   switch (MO->getType()) {
854   case MachineOperand::MO_Register: {
855     const unsigned Reg = MO->getReg();
856     if (!Reg)
857       return;
858     if (MRI->tracksLiveness() && !MI->isDebugValue())
859       checkLiveness(MO, MONum);
860 
861     // Verify the consistency of tied operands.
862     if (MO->isTied()) {
863       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
864       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
865       if (!OtherMO.isReg())
866         report("Must be tied to a register", MO, MONum);
867       if (!OtherMO.isTied())
868         report("Missing tie flags on tied operand", MO, MONum);
869       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
870         report("Inconsistent tie links", MO, MONum);
871       if (MONum < MCID.getNumDefs()) {
872         if (OtherIdx < MCID.getNumOperands()) {
873           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
874             report("Explicit def tied to explicit use without tie constraint",
875                    MO, MONum);
876         } else {
877           if (!OtherMO.isImplicit())
878             report("Explicit def should be tied to implicit use", MO, MONum);
879         }
880       }
881     }
882 
883     // Verify two-address constraints after leaving SSA form.
884     unsigned DefIdx;
885     if (!MRI->isSSA() && MO->isUse() &&
886         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
887         Reg != MI->getOperand(DefIdx).getReg())
888       report("Two-address instruction operands must be identical", MO, MONum);
889 
890     // Check register classes.
891     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
892       unsigned SubIdx = MO->getSubReg();
893 
894       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
895         if (SubIdx) {
896           report("Illegal subregister index for physical register", MO, MONum);
897           return;
898         }
899         if (const TargetRegisterClass *DRC =
900               TII->getRegClass(MCID, MONum, TRI, *MF)) {
901           if (!DRC->contains(Reg)) {
902             report("Illegal physical register for instruction", MO, MONum);
903             errs() << TRI->getName(Reg) << " is not a "
904                 << TRI->getRegClassName(DRC) << " register.\n";
905           }
906         }
907       } else {
908         // Virtual register.
909         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
910         if (SubIdx) {
911           const TargetRegisterClass *SRC =
912             TRI->getSubClassWithSubReg(RC, SubIdx);
913           if (!SRC) {
914             report("Invalid subregister index for virtual register", MO, MONum);
915             errs() << "Register class " << TRI->getRegClassName(RC)
916                 << " does not support subreg index " << SubIdx << "\n";
917             return;
918           }
919           if (RC != SRC) {
920             report("Invalid register class for subregister index", MO, MONum);
921             errs() << "Register class " << TRI->getRegClassName(RC)
922                 << " does not fully support subreg index " << SubIdx << "\n";
923             return;
924           }
925         }
926         if (const TargetRegisterClass *DRC =
927               TII->getRegClass(MCID, MONum, TRI, *MF)) {
928           if (SubIdx) {
929             const TargetRegisterClass *SuperRC =
930                 TRI->getLargestLegalSuperClass(RC, *MF);
931             if (!SuperRC) {
932               report("No largest legal super class exists.", MO, MONum);
933               return;
934             }
935             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
936             if (!DRC) {
937               report("No matching super-reg register class.", MO, MONum);
938               return;
939             }
940           }
941           if (!RC->hasSuperClassEq(DRC)) {
942             report("Illegal virtual register for instruction", MO, MONum);
943             errs() << "Expected a " << TRI->getRegClassName(DRC)
944                 << " register, but got a " << TRI->getRegClassName(RC)
945                 << " register\n";
946           }
947         }
948       }
949     }
950     break;
951   }
952 
953   case MachineOperand::MO_RegisterMask:
954     regMasks.push_back(MO->getRegMask());
955     break;
956 
957   case MachineOperand::MO_MachineBasicBlock:
958     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
959       report("PHI operand is not in the CFG", MO, MONum);
960     break;
961 
962   case MachineOperand::MO_FrameIndex:
963     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
964         LiveInts && !LiveInts->isNotInMIMap(MI)) {
965       LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
966       SlotIndex Idx = LiveInts->getInstructionIndex(MI);
967       if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
968         report("Instruction loads from dead spill slot", MO, MONum);
969         errs() << "Live stack: " << LI << '\n';
970       }
971       if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
972         report("Instruction stores to dead spill slot", MO, MONum);
973         errs() << "Live stack: " << LI << '\n';
974       }
975     }
976     break;
977 
978   default:
979     break;
980   }
981 }
982 
checkLiveness(const MachineOperand * MO,unsigned MONum)983 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
984   const MachineInstr *MI = MO->getParent();
985   const unsigned Reg = MO->getReg();
986 
987   // Both use and def operands can read a register.
988   if (MO->readsReg()) {
989     regsLiveInButUnused.erase(Reg);
990 
991     if (MO->isKill())
992       addRegWithSubRegs(regsKilled, Reg);
993 
994     // Check that LiveVars knows this kill.
995     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
996         MO->isKill()) {
997       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
998       if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
999         report("Kill missing from LiveVariables", MO, MONum);
1000     }
1001 
1002     // Check LiveInts liveness and kill.
1003     if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
1004       SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
1005       // Check the cached regunit intervals.
1006       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1007         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1008           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
1009             LiveQueryResult LRQ = LR->Query(UseIdx);
1010             if (!LRQ.valueIn()) {
1011               report("No live segment at use", MO, MONum);
1012               errs() << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
1013                   << ' ' << *LR << '\n';
1014             }
1015             if (MO->isKill() && !LRQ.isKill()) {
1016               report("Live range continues after kill flag", MO, MONum);
1017               errs() << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
1018             }
1019           }
1020         }
1021       }
1022 
1023       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1024         if (LiveInts->hasInterval(Reg)) {
1025           // This is a virtual register interval.
1026           const LiveInterval &LI = LiveInts->getInterval(Reg);
1027           LiveQueryResult LRQ = LI.Query(UseIdx);
1028           if (!LRQ.valueIn()) {
1029             report("No live segment at use", MO, MONum);
1030             errs() << UseIdx << " is not live in " << LI << '\n';
1031           }
1032           // Check for extra kill flags.
1033           // Note that we allow missing kill flags for now.
1034           if (MO->isKill() && !LRQ.isKill()) {
1035             report("Live range continues after kill flag", MO, MONum);
1036             errs() << "Live range: " << LI << '\n';
1037           }
1038         } else {
1039           report("Virtual register has no live interval", MO, MONum);
1040         }
1041       }
1042     }
1043 
1044     // Use of a dead register.
1045     if (!regsLive.count(Reg)) {
1046       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1047         // Reserved registers may be used even when 'dead'.
1048         bool Bad = !isReserved(Reg);
1049         // We are fine if just any subregister has a defined value.
1050         if (Bad) {
1051           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1052                ++SubRegs) {
1053             if (regsLive.count(*SubRegs)) {
1054               Bad = false;
1055               break;
1056             }
1057           }
1058         }
1059         // If there is an additional implicit-use of a super register we stop
1060         // here. By definition we are fine if the super register is not
1061         // (completely) dead, if the complete super register is dead we will
1062         // get a report for its operand.
1063         if (Bad) {
1064           for (const MachineOperand &MOP : MI->uses()) {
1065             if (!MOP.isReg())
1066               continue;
1067             if (!MOP.isImplicit())
1068               continue;
1069             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1070                  ++SubRegs) {
1071               if (*SubRegs == Reg) {
1072                 Bad = false;
1073                 break;
1074               }
1075             }
1076           }
1077         }
1078         if (Bad)
1079           report("Using an undefined physical register", MO, MONum);
1080       } else if (MRI->def_empty(Reg)) {
1081         report("Reading virtual register without a def", MO, MONum);
1082       } else {
1083         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1084         // We don't know which virtual registers are live in, so only complain
1085         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1086         // must be live in. PHI instructions are handled separately.
1087         if (MInfo.regsKilled.count(Reg))
1088           report("Using a killed virtual register", MO, MONum);
1089         else if (!MI->isPHI())
1090           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1091       }
1092     }
1093   }
1094 
1095   if (MO->isDef()) {
1096     // Register defined.
1097     // TODO: verify that earlyclobber ops are not used.
1098     if (MO->isDead())
1099       addRegWithSubRegs(regsDead, Reg);
1100     else
1101       addRegWithSubRegs(regsDefined, Reg);
1102 
1103     // Verify SSA form.
1104     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1105         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1106       report("Multiple virtual register defs in SSA form", MO, MONum);
1107 
1108     // Check LiveInts for a live segment, but only for virtual registers.
1109     if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
1110         !LiveInts->isNotInMIMap(MI)) {
1111       SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
1112       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1113       if (LiveInts->hasInterval(Reg)) {
1114         const LiveInterval &LI = LiveInts->getInterval(Reg);
1115         if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
1116           assert(VNI && "NULL valno is not allowed");
1117           if (VNI->def != DefIdx) {
1118             report("Inconsistent valno->def", MO, MONum);
1119             errs() << "Valno " << VNI->id << " is not defined at "
1120               << DefIdx << " in " << LI << '\n';
1121           }
1122         } else {
1123           report("No live segment at def", MO, MONum);
1124           errs() << DefIdx << " is not live in " << LI << '\n';
1125         }
1126         // Check that, if the dead def flag is present, LiveInts agree.
1127         if (MO->isDead()) {
1128           LiveQueryResult LRQ = LI.Query(DefIdx);
1129           if (!LRQ.isDeadDef()) {
1130             report("Live range continues after dead def flag", MO, MONum);
1131             errs() << "Live range: " << LI << '\n';
1132           }
1133         }
1134       } else {
1135         report("Virtual register has no Live interval", MO, MONum);
1136       }
1137     }
1138   }
1139 }
1140 
visitMachineInstrAfter(const MachineInstr * MI)1141 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1142 }
1143 
1144 // This function gets called after visiting all instructions in a bundle. The
1145 // argument points to the bundle header.
1146 // Normal stand-alone instructions are also considered 'bundles', and this
1147 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)1148 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1149   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1150   set_union(MInfo.regsKilled, regsKilled);
1151   set_subtract(regsLive, regsKilled); regsKilled.clear();
1152   // Kill any masked registers.
1153   while (!regMasks.empty()) {
1154     const uint32_t *Mask = regMasks.pop_back_val();
1155     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1156       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1157           MachineOperand::clobbersPhysReg(Mask, *I))
1158         regsDead.push_back(*I);
1159   }
1160   set_subtract(regsLive, regsDead);   regsDead.clear();
1161   set_union(regsLive, regsDefined);   regsDefined.clear();
1162 }
1163 
1164 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)1165 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1166   MBBInfoMap[MBB].regsLiveOut = regsLive;
1167   regsLive.clear();
1168 
1169   if (Indexes) {
1170     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1171     if (!(stop > lastIndex)) {
1172       report("Block ends before last instruction index", MBB);
1173       errs() << "Block ends at " << stop
1174           << " last instruction was at " << lastIndex << '\n';
1175     }
1176     lastIndex = stop;
1177   }
1178 }
1179 
1180 // Calculate the largest possible vregsPassed sets. These are the registers that
1181 // can pass through an MBB live, but may not be live every time. It is assumed
1182 // that all vregsPassed sets are empty before the call.
calcRegsPassed()1183 void MachineVerifier::calcRegsPassed() {
1184   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1185   // have any vregsPassed.
1186   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1187   for (const auto &MBB : *MF) {
1188     BBInfo &MInfo = MBBInfoMap[&MBB];
1189     if (!MInfo.reachable)
1190       continue;
1191     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1192            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1193       BBInfo &SInfo = MBBInfoMap[*SuI];
1194       if (SInfo.addPassed(MInfo.regsLiveOut))
1195         todo.insert(*SuI);
1196     }
1197   }
1198 
1199   // Iteratively push vregsPassed to successors. This will converge to the same
1200   // final state regardless of DenseSet iteration order.
1201   while (!todo.empty()) {
1202     const MachineBasicBlock *MBB = *todo.begin();
1203     todo.erase(MBB);
1204     BBInfo &MInfo = MBBInfoMap[MBB];
1205     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1206            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1207       if (*SuI == MBB)
1208         continue;
1209       BBInfo &SInfo = MBBInfoMap[*SuI];
1210       if (SInfo.addPassed(MInfo.vregsPassed))
1211         todo.insert(*SuI);
1212     }
1213   }
1214 }
1215 
1216 // Calculate the set of virtual registers that must be passed through each basic
1217 // block in order to satisfy the requirements of successor blocks. This is very
1218 // similar to calcRegsPassed, only backwards.
calcRegsRequired()1219 void MachineVerifier::calcRegsRequired() {
1220   // First push live-in regs to predecessors' vregsRequired.
1221   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1222   for (const auto &MBB : *MF) {
1223     BBInfo &MInfo = MBBInfoMap[&MBB];
1224     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1225            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1226       BBInfo &PInfo = MBBInfoMap[*PrI];
1227       if (PInfo.addRequired(MInfo.vregsLiveIn))
1228         todo.insert(*PrI);
1229     }
1230   }
1231 
1232   // Iteratively push vregsRequired to predecessors. This will converge to the
1233   // same final state regardless of DenseSet iteration order.
1234   while (!todo.empty()) {
1235     const MachineBasicBlock *MBB = *todo.begin();
1236     todo.erase(MBB);
1237     BBInfo &MInfo = MBBInfoMap[MBB];
1238     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1239            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1240       if (*PrI == MBB)
1241         continue;
1242       BBInfo &SInfo = MBBInfoMap[*PrI];
1243       if (SInfo.addRequired(MInfo.vregsRequired))
1244         todo.insert(*PrI);
1245     }
1246   }
1247 }
1248 
1249 // Check PHI instructions at the beginning of MBB. It is assumed that
1250 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock * MBB)1251 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1252   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1253   for (const auto &BBI : *MBB) {
1254     if (!BBI.isPHI())
1255       break;
1256     seen.clear();
1257 
1258     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1259       unsigned Reg = BBI.getOperand(i).getReg();
1260       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1261       if (!Pre->isSuccessor(MBB))
1262         continue;
1263       seen.insert(Pre);
1264       BBInfo &PrInfo = MBBInfoMap[Pre];
1265       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1266         report("PHI operand is not live-out from predecessor",
1267                &BBI.getOperand(i), i);
1268     }
1269 
1270     // Did we see all predecessors?
1271     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1272            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1273       if (!seen.count(*PrI)) {
1274         report("Missing PHI operand", &BBI);
1275         errs() << "BB#" << (*PrI)->getNumber()
1276             << " is a predecessor according to the CFG.\n";
1277       }
1278     }
1279   }
1280 }
1281 
visitMachineFunctionAfter()1282 void MachineVerifier::visitMachineFunctionAfter() {
1283   calcRegsPassed();
1284 
1285   for (const auto &MBB : *MF) {
1286     BBInfo &MInfo = MBBInfoMap[&MBB];
1287 
1288     // Skip unreachable MBBs.
1289     if (!MInfo.reachable)
1290       continue;
1291 
1292     checkPHIOps(&MBB);
1293   }
1294 
1295   // Now check liveness info if available
1296   calcRegsRequired();
1297 
1298   // Check for killed virtual registers that should be live out.
1299   for (const auto &MBB : *MF) {
1300     BBInfo &MInfo = MBBInfoMap[&MBB];
1301     for (RegSet::iterator
1302          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1303          ++I)
1304       if (MInfo.regsKilled.count(*I)) {
1305         report("Virtual register killed in block, but needed live out.", &MBB);
1306         errs() << "Virtual register " << PrintReg(*I)
1307             << " is used after the block.\n";
1308       }
1309   }
1310 
1311   if (!MF->empty()) {
1312     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1313     for (RegSet::iterator
1314          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1315          ++I)
1316       report("Virtual register def doesn't dominate all uses.",
1317              MRI->getVRegDef(*I));
1318   }
1319 
1320   if (LiveVars)
1321     verifyLiveVariables();
1322   if (LiveInts)
1323     verifyLiveIntervals();
1324 }
1325 
verifyLiveVariables()1326 void MachineVerifier::verifyLiveVariables() {
1327   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1328   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1329     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1330     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1331     for (const auto &MBB : *MF) {
1332       BBInfo &MInfo = MBBInfoMap[&MBB];
1333 
1334       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1335       if (MInfo.vregsRequired.count(Reg)) {
1336         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1337           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1338           errs() << "Virtual register " << PrintReg(Reg)
1339               << " must be live through the block.\n";
1340         }
1341       } else {
1342         if (VI.AliveBlocks.test(MBB.getNumber())) {
1343           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1344           errs() << "Virtual register " << PrintReg(Reg)
1345               << " is not needed live through the block.\n";
1346         }
1347       }
1348     }
1349   }
1350 }
1351 
verifyLiveIntervals()1352 void MachineVerifier::verifyLiveIntervals() {
1353   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1354   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1355     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1356 
1357     // Spilling and splitting may leave unused registers around. Skip them.
1358     if (MRI->reg_nodbg_empty(Reg))
1359       continue;
1360 
1361     if (!LiveInts->hasInterval(Reg)) {
1362       report("Missing live interval for virtual register", MF);
1363       errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1364       continue;
1365     }
1366 
1367     const LiveInterval &LI = LiveInts->getInterval(Reg);
1368     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1369     verifyLiveInterval(LI);
1370   }
1371 
1372   // Verify all the cached regunit intervals.
1373   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1374     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1375       verifyLiveRange(*LR, i);
1376 }
1377 
verifyLiveRangeValue(const LiveRange & LR,const VNInfo * VNI,unsigned Reg,unsigned LaneMask)1378 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1379                                            const VNInfo *VNI, unsigned Reg,
1380                                            unsigned LaneMask) {
1381   if (VNI->isUnused())
1382     return;
1383 
1384   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1385 
1386   if (!DefVNI) {
1387     report("Valno not live at def and not marked unused", MF, LR, Reg,
1388            LaneMask);
1389     errs() << "Valno #" << VNI->id << '\n';
1390     return;
1391   }
1392 
1393   if (DefVNI != VNI) {
1394     report("Live segment at def has different valno", MF, LR, Reg, LaneMask);
1395     errs() << "Valno #" << VNI->id << " is defined at " << VNI->def
1396         << " where valno #" << DefVNI->id << " is live\n";
1397     return;
1398   }
1399 
1400   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1401   if (!MBB) {
1402     report("Invalid definition index", MF, LR, Reg, LaneMask);
1403     errs() << "Valno #" << VNI->id << " is defined at " << VNI->def
1404         << " in " << LR << '\n';
1405     return;
1406   }
1407 
1408   if (VNI->isPHIDef()) {
1409     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1410       report("PHIDef value is not defined at MBB start", MBB, LR, Reg,
1411              LaneMask);
1412       errs() << "Valno #" << VNI->id << " is defined at " << VNI->def
1413           << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
1414     }
1415     return;
1416   }
1417 
1418   // Non-PHI def.
1419   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1420   if (!MI) {
1421     report("No instruction at def index", MBB, LR, Reg, LaneMask);
1422     errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1423     return;
1424   }
1425 
1426   if (Reg != 0) {
1427     bool hasDef = false;
1428     bool isEarlyClobber = false;
1429     for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1430       if (!MOI->isReg() || !MOI->isDef())
1431         continue;
1432       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1433         if (MOI->getReg() != Reg)
1434           continue;
1435       } else {
1436         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1437             !TRI->hasRegUnit(MOI->getReg(), Reg))
1438           continue;
1439       }
1440       if (LaneMask != 0 &&
1441           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
1442         continue;
1443       hasDef = true;
1444       if (MOI->isEarlyClobber())
1445         isEarlyClobber = true;
1446     }
1447 
1448     if (!hasDef) {
1449       report("Defining instruction does not modify register", MI);
1450       errs() << "Valno #" << VNI->id << " in " << LR << '\n';
1451     }
1452 
1453     // Early clobber defs begin at USE slots, but other defs must begin at
1454     // DEF slots.
1455     if (isEarlyClobber) {
1456       if (!VNI->def.isEarlyClobber()) {
1457         report("Early clobber def must be at an early-clobber slot", MBB, LR,
1458                Reg, LaneMask);
1459         errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1460       }
1461     } else if (!VNI->def.isRegister()) {
1462       report("Non-PHI, non-early clobber def must be at a register slot",
1463              MBB, LR, Reg, LaneMask);
1464       errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1465     }
1466   }
1467 }
1468 
verifyLiveRangeSegment(const LiveRange & LR,const LiveRange::const_iterator I,unsigned Reg,unsigned LaneMask)1469 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1470                                              const LiveRange::const_iterator I,
1471                                              unsigned Reg, unsigned LaneMask) {
1472   const LiveRange::Segment &S = *I;
1473   const VNInfo *VNI = S.valno;
1474   assert(VNI && "Live segment has no valno");
1475 
1476   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1477     report("Foreign valno in live segment", MF, LR, Reg, LaneMask);
1478     errs() << S << " has a bad valno\n";
1479   }
1480 
1481   if (VNI->isUnused()) {
1482     report("Live segment valno is marked unused", MF, LR, Reg, LaneMask);
1483     errs() << S << '\n';
1484   }
1485 
1486   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1487   if (!MBB) {
1488     report("Bad start of live segment, no basic block", MF, LR, Reg, LaneMask);
1489     errs() << S << '\n';
1490     return;
1491   }
1492   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1493   if (S.start != MBBStartIdx && S.start != VNI->def) {
1494     report("Live segment must begin at MBB entry or valno def", MBB, LR, Reg,
1495            LaneMask);
1496     errs() << S << '\n';
1497   }
1498 
1499   const MachineBasicBlock *EndMBB =
1500     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1501   if (!EndMBB) {
1502     report("Bad end of live segment, no basic block", MF, LR, Reg, LaneMask);
1503     errs() << S << '\n';
1504     return;
1505   }
1506 
1507   // No more checks for live-out segments.
1508   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1509     return;
1510 
1511   // RegUnit intervals are allowed dead phis.
1512   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1513       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1514     return;
1515 
1516   // The live segment is ending inside EndMBB
1517   const MachineInstr *MI =
1518     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1519   if (!MI) {
1520     report("Live segment doesn't end at a valid instruction", EndMBB, LR, Reg,
1521            LaneMask);
1522     errs() << S << '\n';
1523     return;
1524   }
1525 
1526   // The block slot must refer to a basic block boundary.
1527   if (S.end.isBlock()) {
1528     report("Live segment ends at B slot of an instruction", EndMBB, LR, Reg,
1529            LaneMask);
1530     errs() << S << '\n';
1531   }
1532 
1533   if (S.end.isDead()) {
1534     // Segment ends on the dead slot.
1535     // That means there must be a dead def.
1536     if (!SlotIndex::isSameInstr(S.start, S.end)) {
1537       report("Live segment ending at dead slot spans instructions", EndMBB, LR,
1538              Reg, LaneMask);
1539       errs() << S << '\n';
1540     }
1541   }
1542 
1543   // A live segment can only end at an early-clobber slot if it is being
1544   // redefined by an early-clobber def.
1545   if (S.end.isEarlyClobber()) {
1546     if (I+1 == LR.end() || (I+1)->start != S.end) {
1547       report("Live segment ending at early clobber slot must be "
1548              "redefined by an EC def in the same instruction", EndMBB, LR, Reg,
1549              LaneMask);
1550       errs() << S << '\n';
1551     }
1552   }
1553 
1554   // The following checks only apply to virtual registers. Physreg liveness
1555   // is too weird to check.
1556   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1557     // A live segment can end with either a redefinition, a kill flag on a
1558     // use, or a dead flag on a def.
1559     bool hasRead = false;
1560     bool hasSubRegDef = false;
1561     for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1562       if (!MOI->isReg() || MOI->getReg() != Reg)
1563         continue;
1564       if (LaneMask != 0 &&
1565           (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
1566         continue;
1567       if (MOI->isDef() && MOI->getSubReg() != 0)
1568         hasSubRegDef = true;
1569       if (MOI->readsReg())
1570         hasRead = true;
1571     }
1572     if (!S.end.isDead()) {
1573       if (!hasRead) {
1574         // When tracking subregister liveness, the main range must start new
1575         // values on partial register writes, even if there is no read.
1576         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
1577             !hasSubRegDef) {
1578           report("Instruction ending live segment doesn't read the register",
1579                  MI);
1580           errs() << S << " in " << LR << '\n';
1581         }
1582       }
1583     }
1584   }
1585 
1586   // Now check all the basic blocks in this live segment.
1587   MachineFunction::const_iterator MFI = MBB;
1588   // Is this live segment the beginning of a non-PHIDef VN?
1589   if (S.start == VNI->def && !VNI->isPHIDef()) {
1590     // Not live-in to any blocks.
1591     if (MBB == EndMBB)
1592       return;
1593     // Skip this block.
1594     ++MFI;
1595   }
1596   for (;;) {
1597     assert(LiveInts->isLiveInToMBB(LR, MFI));
1598     // We don't know how to track physregs into a landing pad.
1599     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1600         MFI->isLandingPad()) {
1601       if (&*MFI == EndMBB)
1602         break;
1603       ++MFI;
1604       continue;
1605     }
1606 
1607     // Is VNI a PHI-def in the current block?
1608     bool IsPHI = VNI->isPHIDef() &&
1609       VNI->def == LiveInts->getMBBStartIdx(MFI);
1610 
1611     // Check that VNI is live-out of all predecessors.
1612     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1613          PE = MFI->pred_end(); PI != PE; ++PI) {
1614       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1615       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1616 
1617       // All predecessors must have a live-out value.
1618       if (!PVNI) {
1619         report("Register not marked live out of predecessor", *PI, LR, Reg,
1620                LaneMask);
1621         errs() << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1622             << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
1623             << PEnd << '\n';
1624         continue;
1625       }
1626 
1627       // Only PHI-defs can take different predecessor values.
1628       if (!IsPHI && PVNI != VNI) {
1629         report("Different value live out of predecessor", *PI, LR, Reg,
1630                LaneMask);
1631         errs() << "Valno #" << PVNI->id << " live out of BB#"
1632             << (*PI)->getNumber() << '@' << PEnd
1633             << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1634             << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
1635       }
1636     }
1637     if (&*MFI == EndMBB)
1638       break;
1639     ++MFI;
1640   }
1641 }
1642 
verifyLiveRange(const LiveRange & LR,unsigned Reg,unsigned LaneMask)1643 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1644                                       unsigned LaneMask) {
1645   for (const VNInfo *VNI : LR.valnos)
1646     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1647 
1648   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1649     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1650 }
1651 
verifyLiveInterval(const LiveInterval & LI)1652 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1653   unsigned Reg = LI.reg;
1654   assert(TargetRegisterInfo::isVirtualRegister(Reg));
1655   verifyLiveRange(LI, Reg);
1656 
1657   unsigned Mask = 0;
1658   unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1659   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1660     if ((Mask & SR.LaneMask) != 0)
1661       report("Lane masks of sub ranges overlap in live interval", MF, LI);
1662     if ((SR.LaneMask & ~MaxMask) != 0)
1663       report("Subrange lanemask is invalid", MF, LI);
1664     Mask |= SR.LaneMask;
1665     verifyLiveRange(SR, LI.reg, SR.LaneMask);
1666     if (!LI.covers(SR))
1667       report("A Subrange is not covered by the main range", MF, LI);
1668   }
1669 
1670   // Check the LI only has one connected component.
1671   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1672   unsigned NumComp = ConEQ.Classify(&LI);
1673   if (NumComp > 1) {
1674     report("Multiple connected components in live interval", MF, LI);
1675     for (unsigned comp = 0; comp != NumComp; ++comp) {
1676       errs() << comp << ": valnos";
1677       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1678            E = LI.vni_end(); I!=E; ++I)
1679         if (comp == ConEQ.getEqClass(*I))
1680           errs() << ' ' << (*I)->id;
1681       errs() << '\n';
1682     }
1683   }
1684 }
1685 
1686 namespace {
1687   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1688   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1689   // value is zero.
1690   // We use a bool plus an integer to capture the stack state.
1691   struct StackStateOfBB {
StackStateOfBB__anon289e30a70211::StackStateOfBB1692     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1693       ExitIsSetup(false) { }
StackStateOfBB__anon289e30a70211::StackStateOfBB1694     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1695       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1696       ExitIsSetup(ExitSetup) { }
1697     // Can be negative, which means we are setting up a frame.
1698     int EntryValue;
1699     int ExitValue;
1700     bool EntryIsSetup;
1701     bool ExitIsSetup;
1702   };
1703 }
1704 
1705 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1706 /// by a FrameDestroy <n>, stack adjustments are identical on all
1707 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()1708 void MachineVerifier::verifyStackFrame() {
1709   int FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
1710   int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1711 
1712   SmallVector<StackStateOfBB, 8> SPState;
1713   SPState.resize(MF->getNumBlockIDs());
1714   SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1715 
1716   // Visit the MBBs in DFS order.
1717   for (df_ext_iterator<const MachineFunction*,
1718                        SmallPtrSet<const MachineBasicBlock*, 8> >
1719        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1720        DFI != DFE; ++DFI) {
1721     const MachineBasicBlock *MBB = *DFI;
1722 
1723     StackStateOfBB BBState;
1724     // Check the exit state of the DFS stack predecessor.
1725     if (DFI.getPathLength() >= 2) {
1726       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1727       assert(Reachable.count(StackPred) &&
1728              "DFS stack predecessor is already visited.\n");
1729       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1730       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1731       BBState.ExitValue = BBState.EntryValue;
1732       BBState.ExitIsSetup = BBState.EntryIsSetup;
1733     }
1734 
1735     // Update stack state by checking contents of MBB.
1736     for (const auto &I : *MBB) {
1737       if (I.getOpcode() == FrameSetupOpcode) {
1738         // The first operand of a FrameOpcode should be i32.
1739         int Size = I.getOperand(0).getImm();
1740         assert(Size >= 0 &&
1741           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1742 
1743         if (BBState.ExitIsSetup)
1744           report("FrameSetup is after another FrameSetup", &I);
1745         BBState.ExitValue -= Size;
1746         BBState.ExitIsSetup = true;
1747       }
1748 
1749       if (I.getOpcode() == FrameDestroyOpcode) {
1750         // The first operand of a FrameOpcode should be i32.
1751         int Size = I.getOperand(0).getImm();
1752         assert(Size >= 0 &&
1753           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1754 
1755         if (!BBState.ExitIsSetup)
1756           report("FrameDestroy is not after a FrameSetup", &I);
1757         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1758                                                BBState.ExitValue;
1759         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1760           report("FrameDestroy <n> is after FrameSetup <m>", &I);
1761           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
1762               << AbsSPAdj << ">.\n";
1763         }
1764         BBState.ExitValue += Size;
1765         BBState.ExitIsSetup = false;
1766       }
1767     }
1768     SPState[MBB->getNumber()] = BBState;
1769 
1770     // Make sure the exit state of any predecessor is consistent with the entry
1771     // state.
1772     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
1773          E = MBB->pred_end(); I != E; ++I) {
1774       if (Reachable.count(*I) &&
1775           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
1776            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
1777         report("The exit stack state of a predecessor is inconsistent.", MBB);
1778         errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
1779             << SPState[(*I)->getNumber()].ExitValue << ", "
1780             << SPState[(*I)->getNumber()].ExitIsSetup
1781             << "), while BB#" << MBB->getNumber() << " has entry state ("
1782             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
1783       }
1784     }
1785 
1786     // Make sure the entry state of any successor is consistent with the exit
1787     // state.
1788     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
1789          E = MBB->succ_end(); I != E; ++I) {
1790       if (Reachable.count(*I) &&
1791           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
1792            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
1793         report("The entry stack state of a successor is inconsistent.", MBB);
1794         errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
1795             << SPState[(*I)->getNumber()].EntryValue << ", "
1796             << SPState[(*I)->getNumber()].EntryIsSetup
1797             << "), while BB#" << MBB->getNumber() << " has exit state ("
1798             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
1799       }
1800     }
1801 
1802     // Make sure a basic block with return ends with zero stack adjustment.
1803     if (!MBB->empty() && MBB->back().isReturn()) {
1804       if (BBState.ExitIsSetup)
1805         report("A return block ends with a FrameSetup.", MBB);
1806       if (BBState.ExitValue)
1807         report("A return block ends with a nonzero stack adjustment.", MBB);
1808     }
1809   }
1810 }
1811