1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Mangle.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/VTableBuilder.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/DiagnosticOptions.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/MathExtras.h"
31
32 using namespace clang;
33
34 namespace {
35
36 /// \brief Retrieve the declaration context that should be used when mangling
37 /// the given declaration.
getEffectiveDeclContext(const Decl * D)38 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
39 // The ABI assumes that lambda closure types that occur within
40 // default arguments live in the context of the function. However, due to
41 // the way in which Clang parses and creates function declarations, this is
42 // not the case: the lambda closure type ends up living in the context
43 // where the function itself resides, because the function declaration itself
44 // had not yet been created. Fix the context here.
45 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
46 if (RD->isLambda())
47 if (ParmVarDecl *ContextParam =
48 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
49 return ContextParam->getDeclContext();
50 }
51
52 // Perform the same check for block literals.
53 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
54 if (ParmVarDecl *ContextParam =
55 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
56 return ContextParam->getDeclContext();
57 }
58
59 const DeclContext *DC = D->getDeclContext();
60 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
61 return getEffectiveDeclContext(CD);
62
63 return DC;
64 }
65
getEffectiveParentContext(const DeclContext * DC)66 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
67 return getEffectiveDeclContext(cast<Decl>(DC));
68 }
69
getStructor(const NamedDecl * ND)70 static const FunctionDecl *getStructor(const NamedDecl *ND) {
71 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
72 return FTD->getTemplatedDecl();
73
74 const auto *FD = cast<FunctionDecl>(ND);
75 if (const auto *FTD = FD->getPrimaryTemplate())
76 return FTD->getTemplatedDecl();
77
78 return FD;
79 }
80
isLambda(const NamedDecl * ND)81 static bool isLambda(const NamedDecl *ND) {
82 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
83 if (!Record)
84 return false;
85
86 return Record->isLambda();
87 }
88
89 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
90 /// Microsoft Visual C++ ABI.
91 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
92 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
93 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
94 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
95 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
96 llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
97 llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
98
99 public:
MicrosoftMangleContextImpl(ASTContext & Context,DiagnosticsEngine & Diags)100 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
101 : MicrosoftMangleContext(Context, Diags) {}
102 bool shouldMangleCXXName(const NamedDecl *D) override;
103 bool shouldMangleStringLiteral(const StringLiteral *SL) override;
104 void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
105 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
106 raw_ostream &) override;
107 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
108 raw_ostream &) override;
109 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
110 const ThisAdjustment &ThisAdjustment,
111 raw_ostream &) override;
112 void mangleCXXVFTable(const CXXRecordDecl *Derived,
113 ArrayRef<const CXXRecordDecl *> BasePath,
114 raw_ostream &Out) override;
115 void mangleCXXVBTable(const CXXRecordDecl *Derived,
116 ArrayRef<const CXXRecordDecl *> BasePath,
117 raw_ostream &Out) override;
118 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
119 uint32_t NumEntries, raw_ostream &Out) override;
120 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
121 raw_ostream &Out) override;
122 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
123 CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
124 int32_t VBPtrOffset, uint32_t VBIndex,
125 raw_ostream &Out) override;
126 void mangleCXXCatchHandlerType(QualType T, uint32_t Flags,
127 raw_ostream &Out) override;
128 void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
129 void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
130 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
131 uint32_t NVOffset, int32_t VBPtrOffset,
132 uint32_t VBTableOffset, uint32_t Flags,
133 raw_ostream &Out) override;
134 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
135 raw_ostream &Out) override;
136 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
137 raw_ostream &Out) override;
138 void
139 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
140 ArrayRef<const CXXRecordDecl *> BasePath,
141 raw_ostream &Out) override;
142 void mangleTypeName(QualType T, raw_ostream &) override;
143 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
144 raw_ostream &) override;
145 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
146 raw_ostream &) override;
147 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
148 raw_ostream &) override;
149 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
150 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
151 void mangleDynamicAtExitDestructor(const VarDecl *D,
152 raw_ostream &Out) override;
153 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
154 raw_ostream &Out) override;
155 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
156 raw_ostream &Out) override;
157 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
158 void mangleCXXVTableBitSet(const CXXRecordDecl *RD,
159 raw_ostream &Out) override;
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)160 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
161 // Lambda closure types are already numbered.
162 if (isLambda(ND))
163 return false;
164
165 const DeclContext *DC = getEffectiveDeclContext(ND);
166 if (!DC->isFunctionOrMethod())
167 return false;
168
169 // Use the canonical number for externally visible decls.
170 if (ND->isExternallyVisible()) {
171 disc = getASTContext().getManglingNumber(ND);
172 return true;
173 }
174
175 // Anonymous tags are already numbered.
176 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
177 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
178 return false;
179 }
180
181 // Make up a reasonable number for internal decls.
182 unsigned &discriminator = Uniquifier[ND];
183 if (!discriminator)
184 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
185 disc = discriminator + 1;
186 return true;
187 }
188
getLambdaId(const CXXRecordDecl * RD)189 unsigned getLambdaId(const CXXRecordDecl *RD) {
190 assert(RD->isLambda() && "RD must be a lambda!");
191 assert(!RD->isExternallyVisible() && "RD must not be visible!");
192 assert(RD->getLambdaManglingNumber() == 0 &&
193 "RD must not have a mangling number!");
194 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
195 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
196 return Result.first->second;
197 }
198
199 private:
200 void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
201 };
202
203 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
204 /// Microsoft Visual C++ ABI.
205 class MicrosoftCXXNameMangler {
206 MicrosoftMangleContextImpl &Context;
207 raw_ostream &Out;
208
209 /// The "structor" is the top-level declaration being mangled, if
210 /// that's not a template specialization; otherwise it's the pattern
211 /// for that specialization.
212 const NamedDecl *Structor;
213 unsigned StructorType;
214
215 typedef llvm::SmallVector<std::string, 10> BackRefVec;
216 BackRefVec NameBackReferences;
217
218 typedef llvm::DenseMap<void *, unsigned> ArgBackRefMap;
219 ArgBackRefMap TypeBackReferences;
220
getASTContext() const221 ASTContext &getASTContext() const { return Context.getASTContext(); }
222
223 // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
224 // this check into mangleQualifiers().
225 const bool PointersAre64Bit;
226
227 public:
228 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
229
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_)230 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
231 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
232 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
233 64) {}
234
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)235 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
236 const CXXConstructorDecl *D, CXXCtorType Type)
237 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
238 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
239 64) {}
240
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)241 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
242 const CXXDestructorDecl *D, CXXDtorType Type)
243 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
244 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
245 64) {}
246
getStream() const247 raw_ostream &getStream() const { return Out; }
248
249 void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
250 void mangleName(const NamedDecl *ND);
251 void mangleFunctionEncoding(const FunctionDecl *FD);
252 void mangleVariableEncoding(const VarDecl *VD);
253 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
254 void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
255 const CXXMethodDecl *MD);
256 void mangleVirtualMemPtrThunk(
257 const CXXMethodDecl *MD,
258 const MicrosoftVTableContext::MethodVFTableLocation &ML);
259 void mangleNumber(int64_t Number);
260 void mangleType(QualType T, SourceRange Range,
261 QualifierMangleMode QMM = QMM_Mangle);
262 void mangleFunctionType(const FunctionType *T,
263 const FunctionDecl *D = nullptr,
264 bool ForceThisQuals = false);
265 void mangleNestedName(const NamedDecl *ND);
266
267 private:
mangleUnqualifiedName(const NamedDecl * ND)268 void mangleUnqualifiedName(const NamedDecl *ND) {
269 mangleUnqualifiedName(ND, ND->getDeclName());
270 }
271 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
272 void mangleSourceName(StringRef Name);
273 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
274 void mangleCXXDtorType(CXXDtorType T);
275 void mangleQualifiers(Qualifiers Quals, bool IsMember);
276 void mangleRefQualifier(RefQualifierKind RefQualifier);
277 void manglePointerCVQualifiers(Qualifiers Quals);
278 void manglePointerExtQualifiers(Qualifiers Quals, const Type *PointeeType);
279
280 void mangleUnscopedTemplateName(const TemplateDecl *ND);
281 void
282 mangleTemplateInstantiationName(const TemplateDecl *TD,
283 const TemplateArgumentList &TemplateArgs);
284 void mangleObjCMethodName(const ObjCMethodDecl *MD);
285
286 void mangleArgumentType(QualType T, SourceRange Range);
287
288 // Declare manglers for every type class.
289 #define ABSTRACT_TYPE(CLASS, PARENT)
290 #define NON_CANONICAL_TYPE(CLASS, PARENT)
291 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
292 SourceRange Range);
293 #include "clang/AST/TypeNodes.def"
294 #undef ABSTRACT_TYPE
295 #undef NON_CANONICAL_TYPE
296 #undef TYPE
297
298 void mangleType(const TagDecl *TD);
299 void mangleDecayedArrayType(const ArrayType *T);
300 void mangleArrayType(const ArrayType *T);
301 void mangleFunctionClass(const FunctionDecl *FD);
302 void mangleCallingConvention(CallingConv CC);
303 void mangleCallingConvention(const FunctionType *T);
304 void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
305 void mangleExpression(const Expr *E);
306 void mangleThrowSpecification(const FunctionProtoType *T);
307
308 void mangleTemplateArgs(const TemplateDecl *TD,
309 const TemplateArgumentList &TemplateArgs);
310 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
311 const NamedDecl *Parm);
312 };
313 }
314
shouldMangleCXXName(const NamedDecl * D)315 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
316 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
317 LanguageLinkage L = FD->getLanguageLinkage();
318 // Overloadable functions need mangling.
319 if (FD->hasAttr<OverloadableAttr>())
320 return true;
321
322 // The ABI expects that we would never mangle "typical" user-defined entry
323 // points regardless of visibility or freestanding-ness.
324 //
325 // N.B. This is distinct from asking about "main". "main" has a lot of
326 // special rules associated with it in the standard while these
327 // user-defined entry points are outside of the purview of the standard.
328 // For example, there can be only one definition for "main" in a standards
329 // compliant program; however nothing forbids the existence of wmain and
330 // WinMain in the same translation unit.
331 if (FD->isMSVCRTEntryPoint())
332 return false;
333
334 // C++ functions and those whose names are not a simple identifier need
335 // mangling.
336 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
337 return true;
338
339 // C functions are not mangled.
340 if (L == CLanguageLinkage)
341 return false;
342 }
343
344 // Otherwise, no mangling is done outside C++ mode.
345 if (!getASTContext().getLangOpts().CPlusPlus)
346 return false;
347
348 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
349 // C variables are not mangled.
350 if (VD->isExternC())
351 return false;
352
353 // Variables at global scope with non-internal linkage are not mangled.
354 const DeclContext *DC = getEffectiveDeclContext(D);
355 // Check for extern variable declared locally.
356 if (DC->isFunctionOrMethod() && D->hasLinkage())
357 while (!DC->isNamespace() && !DC->isTranslationUnit())
358 DC = getEffectiveParentContext(DC);
359
360 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
361 !isa<VarTemplateSpecializationDecl>(D))
362 return false;
363 }
364
365 return true;
366 }
367
368 bool
shouldMangleStringLiteral(const StringLiteral * SL)369 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
370 return true;
371 }
372
mangle(const NamedDecl * D,StringRef Prefix)373 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
374 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
375 // Therefore it's really important that we don't decorate the
376 // name with leading underscores or leading/trailing at signs. So, by
377 // default, we emit an asm marker at the start so we get the name right.
378 // Callers can override this with a custom prefix.
379
380 // <mangled-name> ::= ? <name> <type-encoding>
381 Out << Prefix;
382 mangleName(D);
383 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
384 mangleFunctionEncoding(FD);
385 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
386 mangleVariableEncoding(VD);
387 else {
388 // TODO: Fields? Can MSVC even mangle them?
389 // Issue a diagnostic for now.
390 DiagnosticsEngine &Diags = Context.getDiags();
391 unsigned DiagID = Diags.getCustomDiagID(
392 DiagnosticsEngine::Error, "cannot mangle this declaration yet");
393 Diags.Report(D->getLocation(), DiagID) << D->getSourceRange();
394 }
395 }
396
mangleFunctionEncoding(const FunctionDecl * FD)397 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
398 // <type-encoding> ::= <function-class> <function-type>
399
400 // Since MSVC operates on the type as written and not the canonical type, it
401 // actually matters which decl we have here. MSVC appears to choose the
402 // first, since it is most likely to be the declaration in a header file.
403 FD = FD->getFirstDecl();
404
405 // We should never ever see a FunctionNoProtoType at this point.
406 // We don't even know how to mangle their types anyway :).
407 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
408
409 // extern "C" functions can hold entities that must be mangled.
410 // As it stands, these functions still need to get expressed in the full
411 // external name. They have their class and type omitted, replaced with '9'.
412 if (Context.shouldMangleDeclName(FD)) {
413 // First, the function class.
414 mangleFunctionClass(FD);
415
416 mangleFunctionType(FT, FD);
417 } else
418 Out << '9';
419 }
420
mangleVariableEncoding(const VarDecl * VD)421 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
422 // <type-encoding> ::= <storage-class> <variable-type>
423 // <storage-class> ::= 0 # private static member
424 // ::= 1 # protected static member
425 // ::= 2 # public static member
426 // ::= 3 # global
427 // ::= 4 # static local
428
429 // The first character in the encoding (after the name) is the storage class.
430 if (VD->isStaticDataMember()) {
431 // If it's a static member, it also encodes the access level.
432 switch (VD->getAccess()) {
433 default:
434 case AS_private: Out << '0'; break;
435 case AS_protected: Out << '1'; break;
436 case AS_public: Out << '2'; break;
437 }
438 }
439 else if (!VD->isStaticLocal())
440 Out << '3';
441 else
442 Out << '4';
443 // Now mangle the type.
444 // <variable-type> ::= <type> <cvr-qualifiers>
445 // ::= <type> <pointee-cvr-qualifiers> # pointers, references
446 // Pointers and references are odd. The type of 'int * const foo;' gets
447 // mangled as 'QAHA' instead of 'PAHB', for example.
448 SourceRange SR = VD->getSourceRange();
449 QualType Ty = VD->getType();
450 if (Ty->isPointerType() || Ty->isReferenceType() ||
451 Ty->isMemberPointerType()) {
452 mangleType(Ty, SR, QMM_Drop);
453 manglePointerExtQualifiers(
454 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), nullptr);
455 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
456 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
457 // Member pointers are suffixed with a back reference to the member
458 // pointer's class name.
459 mangleName(MPT->getClass()->getAsCXXRecordDecl());
460 } else
461 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
462 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
463 // Global arrays are funny, too.
464 mangleDecayedArrayType(AT);
465 if (AT->getElementType()->isArrayType())
466 Out << 'A';
467 else
468 mangleQualifiers(Ty.getQualifiers(), false);
469 } else {
470 mangleType(Ty, SR, QMM_Drop);
471 mangleQualifiers(Ty.getQualifiers(), false);
472 }
473 }
474
mangleMemberDataPointer(const CXXRecordDecl * RD,const ValueDecl * VD)475 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
476 const ValueDecl *VD) {
477 // <member-data-pointer> ::= <integer-literal>
478 // ::= $F <number> <number>
479 // ::= $G <number> <number> <number>
480
481 int64_t FieldOffset;
482 int64_t VBTableOffset;
483 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
484 if (VD) {
485 FieldOffset = getASTContext().getFieldOffset(VD);
486 assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
487 "cannot take address of bitfield");
488 FieldOffset /= getASTContext().getCharWidth();
489
490 VBTableOffset = 0;
491 } else {
492 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
493
494 VBTableOffset = -1;
495 }
496
497 char Code = '\0';
498 switch (IM) {
499 case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break;
500 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break;
501 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break;
502 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
503 }
504
505 Out << '$' << Code;
506
507 mangleNumber(FieldOffset);
508
509 // The C++ standard doesn't allow base-to-derived member pointer conversions
510 // in template parameter contexts, so the vbptr offset of data member pointers
511 // is always zero.
512 if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
513 mangleNumber(0);
514 if (MSInheritanceAttr::hasVBTableOffsetField(IM))
515 mangleNumber(VBTableOffset);
516 }
517
518 void
mangleMemberFunctionPointer(const CXXRecordDecl * RD,const CXXMethodDecl * MD)519 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
520 const CXXMethodDecl *MD) {
521 // <member-function-pointer> ::= $1? <name>
522 // ::= $H? <name> <number>
523 // ::= $I? <name> <number> <number>
524 // ::= $J? <name> <number> <number> <number>
525
526 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
527
528 char Code = '\0';
529 switch (IM) {
530 case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break;
531 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break;
532 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break;
533 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
534 }
535
536 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
537 // thunk.
538 uint64_t NVOffset = 0;
539 uint64_t VBTableOffset = 0;
540 uint64_t VBPtrOffset = 0;
541 if (MD) {
542 Out << '$' << Code << '?';
543 if (MD->isVirtual()) {
544 MicrosoftVTableContext *VTContext =
545 cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
546 const MicrosoftVTableContext::MethodVFTableLocation &ML =
547 VTContext->getMethodVFTableLocation(GlobalDecl(MD));
548 mangleVirtualMemPtrThunk(MD, ML);
549 NVOffset = ML.VFPtrOffset.getQuantity();
550 VBTableOffset = ML.VBTableIndex * 4;
551 if (ML.VBase) {
552 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
553 VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
554 }
555 } else {
556 mangleName(MD);
557 mangleFunctionEncoding(MD);
558 }
559 } else {
560 // Null single inheritance member functions are encoded as a simple nullptr.
561 if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
562 Out << "$0A@";
563 return;
564 }
565 if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
566 VBTableOffset = -1;
567 Out << '$' << Code;
568 }
569
570 if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
571 mangleNumber(NVOffset);
572 if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
573 mangleNumber(VBPtrOffset);
574 if (MSInheritanceAttr::hasVBTableOffsetField(IM))
575 mangleNumber(VBTableOffset);
576 }
577
mangleVirtualMemPtrThunk(const CXXMethodDecl * MD,const MicrosoftVTableContext::MethodVFTableLocation & ML)578 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
579 const CXXMethodDecl *MD,
580 const MicrosoftVTableContext::MethodVFTableLocation &ML) {
581 // Get the vftable offset.
582 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
583 getASTContext().getTargetInfo().getPointerWidth(0));
584 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
585
586 Out << "?_9";
587 mangleName(MD->getParent());
588 Out << "$B";
589 mangleNumber(OffsetInVFTable);
590 Out << 'A';
591 mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
592 }
593
mangleName(const NamedDecl * ND)594 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
595 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
596
597 // Always start with the unqualified name.
598 mangleUnqualifiedName(ND);
599
600 mangleNestedName(ND);
601
602 // Terminate the whole name with an '@'.
603 Out << '@';
604 }
605
mangleNumber(int64_t Number)606 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
607 // <non-negative integer> ::= A@ # when Number == 0
608 // ::= <decimal digit> # when 1 <= Number <= 10
609 // ::= <hex digit>+ @ # when Number >= 10
610 //
611 // <number> ::= [?] <non-negative integer>
612
613 uint64_t Value = static_cast<uint64_t>(Number);
614 if (Number < 0) {
615 Value = -Value;
616 Out << '?';
617 }
618
619 if (Value == 0)
620 Out << "A@";
621 else if (Value >= 1 && Value <= 10)
622 Out << (Value - 1);
623 else {
624 // Numbers that are not encoded as decimal digits are represented as nibbles
625 // in the range of ASCII characters 'A' to 'P'.
626 // The number 0x123450 would be encoded as 'BCDEFA'
627 char EncodedNumberBuffer[sizeof(uint64_t) * 2];
628 MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
629 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
630 for (; Value != 0; Value >>= 4)
631 *I++ = 'A' + (Value & 0xf);
632 Out.write(I.base(), I - BufferRef.rbegin());
633 Out << '@';
634 }
635 }
636
637 static const TemplateDecl *
isTemplate(const NamedDecl * ND,const TemplateArgumentList * & TemplateArgs)638 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
639 // Check if we have a function template.
640 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
641 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
642 TemplateArgs = FD->getTemplateSpecializationArgs();
643 return TD;
644 }
645 }
646
647 // Check if we have a class template.
648 if (const ClassTemplateSpecializationDecl *Spec =
649 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
650 TemplateArgs = &Spec->getTemplateArgs();
651 return Spec->getSpecializedTemplate();
652 }
653
654 // Check if we have a variable template.
655 if (const VarTemplateSpecializationDecl *Spec =
656 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
657 TemplateArgs = &Spec->getTemplateArgs();
658 return Spec->getSpecializedTemplate();
659 }
660
661 return nullptr;
662 }
663
mangleUnqualifiedName(const NamedDecl * ND,DeclarationName Name)664 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
665 DeclarationName Name) {
666 // <unqualified-name> ::= <operator-name>
667 // ::= <ctor-dtor-name>
668 // ::= <source-name>
669 // ::= <template-name>
670
671 // Check if we have a template.
672 const TemplateArgumentList *TemplateArgs = nullptr;
673 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
674 // Function templates aren't considered for name back referencing. This
675 // makes sense since function templates aren't likely to occur multiple
676 // times in a symbol.
677 // FIXME: Test alias template mangling with MSVC 2013.
678 if (!isa<ClassTemplateDecl>(TD)) {
679 mangleTemplateInstantiationName(TD, *TemplateArgs);
680 Out << '@';
681 return;
682 }
683
684 // Here comes the tricky thing: if we need to mangle something like
685 // void foo(A::X<Y>, B::X<Y>),
686 // the X<Y> part is aliased. However, if you need to mangle
687 // void foo(A::X<A::Y>, A::X<B::Y>),
688 // the A::X<> part is not aliased.
689 // That said, from the mangler's perspective we have a structure like this:
690 // namespace[s] -> type[ -> template-parameters]
691 // but from the Clang perspective we have
692 // type [ -> template-parameters]
693 // \-> namespace[s]
694 // What we do is we create a new mangler, mangle the same type (without
695 // a namespace suffix) to a string using the extra mangler and then use
696 // the mangled type name as a key to check the mangling of different types
697 // for aliasing.
698
699 llvm::SmallString<64> TemplateMangling;
700 llvm::raw_svector_ostream Stream(TemplateMangling);
701 MicrosoftCXXNameMangler Extra(Context, Stream);
702 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
703 Stream.flush();
704
705 mangleSourceName(TemplateMangling);
706 return;
707 }
708
709 switch (Name.getNameKind()) {
710 case DeclarationName::Identifier: {
711 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
712 mangleSourceName(II->getName());
713 break;
714 }
715
716 // Otherwise, an anonymous entity. We must have a declaration.
717 assert(ND && "mangling empty name without declaration");
718
719 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
720 if (NS->isAnonymousNamespace()) {
721 Out << "?A@";
722 break;
723 }
724 }
725
726 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
727 // We must have an anonymous union or struct declaration.
728 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
729 assert(RD && "expected variable decl to have a record type");
730 // Anonymous types with no tag or typedef get the name of their
731 // declarator mangled in. If they have no declarator, number them with
732 // a $S prefix.
733 llvm::SmallString<64> Name("$S");
734 // Get a unique id for the anonymous struct.
735 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
736 mangleSourceName(Name.str());
737 break;
738 }
739
740 // We must have an anonymous struct.
741 const TagDecl *TD = cast<TagDecl>(ND);
742 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
743 assert(TD->getDeclContext() == D->getDeclContext() &&
744 "Typedef should not be in another decl context!");
745 assert(D->getDeclName().getAsIdentifierInfo() &&
746 "Typedef was not named!");
747 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
748 break;
749 }
750
751 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
752 if (Record->isLambda()) {
753 llvm::SmallString<10> Name("<lambda_");
754 unsigned LambdaId;
755 if (Record->getLambdaManglingNumber())
756 LambdaId = Record->getLambdaManglingNumber();
757 else
758 LambdaId = Context.getLambdaId(Record);
759
760 Name += llvm::utostr(LambdaId);
761 Name += ">";
762
763 mangleSourceName(Name);
764 break;
765 }
766 }
767
768 llvm::SmallString<64> Name("<unnamed-type-");
769 if (TD->hasDeclaratorForAnonDecl()) {
770 // Anonymous types with no tag or typedef get the name of their
771 // declarator mangled in if they have one.
772 Name += TD->getDeclaratorForAnonDecl()->getName();
773 } else {
774 // Otherwise, number the types using a $S prefix.
775 Name += "$S";
776 Name += llvm::utostr(Context.getAnonymousStructId(TD));
777 }
778 Name += ">";
779 mangleSourceName(Name.str());
780 break;
781 }
782
783 case DeclarationName::ObjCZeroArgSelector:
784 case DeclarationName::ObjCOneArgSelector:
785 case DeclarationName::ObjCMultiArgSelector:
786 llvm_unreachable("Can't mangle Objective-C selector names here!");
787
788 case DeclarationName::CXXConstructorName:
789 if (Structor == getStructor(ND)) {
790 if (StructorType == Ctor_CopyingClosure) {
791 Out << "?_O";
792 return;
793 }
794 if (StructorType == Ctor_DefaultClosure) {
795 Out << "?_F";
796 return;
797 }
798 }
799 Out << "?0";
800 return;
801
802 case DeclarationName::CXXDestructorName:
803 if (ND == Structor)
804 // If the named decl is the C++ destructor we're mangling,
805 // use the type we were given.
806 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
807 else
808 // Otherwise, use the base destructor name. This is relevant if a
809 // class with a destructor is declared within a destructor.
810 mangleCXXDtorType(Dtor_Base);
811 break;
812
813 case DeclarationName::CXXConversionFunctionName:
814 // <operator-name> ::= ?B # (cast)
815 // The target type is encoded as the return type.
816 Out << "?B";
817 break;
818
819 case DeclarationName::CXXOperatorName:
820 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
821 break;
822
823 case DeclarationName::CXXLiteralOperatorName: {
824 Out << "?__K";
825 mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
826 break;
827 }
828
829 case DeclarationName::CXXUsingDirective:
830 llvm_unreachable("Can't mangle a using directive name!");
831 }
832 }
833
mangleNestedName(const NamedDecl * ND)834 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
835 // <postfix> ::= <unqualified-name> [<postfix>]
836 // ::= <substitution> [<postfix>]
837 const DeclContext *DC = getEffectiveDeclContext(ND);
838
839 while (!DC->isTranslationUnit()) {
840 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
841 unsigned Disc;
842 if (Context.getNextDiscriminator(ND, Disc)) {
843 Out << '?';
844 mangleNumber(Disc);
845 Out << '?';
846 }
847 }
848
849 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
850 DiagnosticsEngine &Diags = Context.getDiags();
851 unsigned DiagID =
852 Diags.getCustomDiagID(DiagnosticsEngine::Error,
853 "cannot mangle a local inside this block yet");
854 Diags.Report(BD->getLocation(), DiagID);
855
856 // FIXME: This is completely, utterly, wrong; see ItaniumMangle
857 // for how this should be done.
858 Out << "__block_invoke" << Context.getBlockId(BD, false);
859 Out << '@';
860 continue;
861 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
862 mangleObjCMethodName(Method);
863 } else if (isa<NamedDecl>(DC)) {
864 ND = cast<NamedDecl>(DC);
865 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
866 mangle(FD, "?");
867 break;
868 } else
869 mangleUnqualifiedName(ND);
870 }
871 DC = DC->getParent();
872 }
873 }
874
mangleCXXDtorType(CXXDtorType T)875 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
876 // Microsoft uses the names on the case labels for these dtor variants. Clang
877 // uses the Itanium terminology internally. Everything in this ABI delegates
878 // towards the base dtor.
879 switch (T) {
880 // <operator-name> ::= ?1 # destructor
881 case Dtor_Base: Out << "?1"; return;
882 // <operator-name> ::= ?_D # vbase destructor
883 case Dtor_Complete: Out << "?_D"; return;
884 // <operator-name> ::= ?_G # scalar deleting destructor
885 case Dtor_Deleting: Out << "?_G"; return;
886 // <operator-name> ::= ?_E # vector deleting destructor
887 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
888 // it.
889 case Dtor_Comdat:
890 llvm_unreachable("not expecting a COMDAT");
891 }
892 llvm_unreachable("Unsupported dtor type?");
893 }
894
mangleOperatorName(OverloadedOperatorKind OO,SourceLocation Loc)895 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
896 SourceLocation Loc) {
897 switch (OO) {
898 // ?0 # constructor
899 // ?1 # destructor
900 // <operator-name> ::= ?2 # new
901 case OO_New: Out << "?2"; break;
902 // <operator-name> ::= ?3 # delete
903 case OO_Delete: Out << "?3"; break;
904 // <operator-name> ::= ?4 # =
905 case OO_Equal: Out << "?4"; break;
906 // <operator-name> ::= ?5 # >>
907 case OO_GreaterGreater: Out << "?5"; break;
908 // <operator-name> ::= ?6 # <<
909 case OO_LessLess: Out << "?6"; break;
910 // <operator-name> ::= ?7 # !
911 case OO_Exclaim: Out << "?7"; break;
912 // <operator-name> ::= ?8 # ==
913 case OO_EqualEqual: Out << "?8"; break;
914 // <operator-name> ::= ?9 # !=
915 case OO_ExclaimEqual: Out << "?9"; break;
916 // <operator-name> ::= ?A # []
917 case OO_Subscript: Out << "?A"; break;
918 // ?B # conversion
919 // <operator-name> ::= ?C # ->
920 case OO_Arrow: Out << "?C"; break;
921 // <operator-name> ::= ?D # *
922 case OO_Star: Out << "?D"; break;
923 // <operator-name> ::= ?E # ++
924 case OO_PlusPlus: Out << "?E"; break;
925 // <operator-name> ::= ?F # --
926 case OO_MinusMinus: Out << "?F"; break;
927 // <operator-name> ::= ?G # -
928 case OO_Minus: Out << "?G"; break;
929 // <operator-name> ::= ?H # +
930 case OO_Plus: Out << "?H"; break;
931 // <operator-name> ::= ?I # &
932 case OO_Amp: Out << "?I"; break;
933 // <operator-name> ::= ?J # ->*
934 case OO_ArrowStar: Out << "?J"; break;
935 // <operator-name> ::= ?K # /
936 case OO_Slash: Out << "?K"; break;
937 // <operator-name> ::= ?L # %
938 case OO_Percent: Out << "?L"; break;
939 // <operator-name> ::= ?M # <
940 case OO_Less: Out << "?M"; break;
941 // <operator-name> ::= ?N # <=
942 case OO_LessEqual: Out << "?N"; break;
943 // <operator-name> ::= ?O # >
944 case OO_Greater: Out << "?O"; break;
945 // <operator-name> ::= ?P # >=
946 case OO_GreaterEqual: Out << "?P"; break;
947 // <operator-name> ::= ?Q # ,
948 case OO_Comma: Out << "?Q"; break;
949 // <operator-name> ::= ?R # ()
950 case OO_Call: Out << "?R"; break;
951 // <operator-name> ::= ?S # ~
952 case OO_Tilde: Out << "?S"; break;
953 // <operator-name> ::= ?T # ^
954 case OO_Caret: Out << "?T"; break;
955 // <operator-name> ::= ?U # |
956 case OO_Pipe: Out << "?U"; break;
957 // <operator-name> ::= ?V # &&
958 case OO_AmpAmp: Out << "?V"; break;
959 // <operator-name> ::= ?W # ||
960 case OO_PipePipe: Out << "?W"; break;
961 // <operator-name> ::= ?X # *=
962 case OO_StarEqual: Out << "?X"; break;
963 // <operator-name> ::= ?Y # +=
964 case OO_PlusEqual: Out << "?Y"; break;
965 // <operator-name> ::= ?Z # -=
966 case OO_MinusEqual: Out << "?Z"; break;
967 // <operator-name> ::= ?_0 # /=
968 case OO_SlashEqual: Out << "?_0"; break;
969 // <operator-name> ::= ?_1 # %=
970 case OO_PercentEqual: Out << "?_1"; break;
971 // <operator-name> ::= ?_2 # >>=
972 case OO_GreaterGreaterEqual: Out << "?_2"; break;
973 // <operator-name> ::= ?_3 # <<=
974 case OO_LessLessEqual: Out << "?_3"; break;
975 // <operator-name> ::= ?_4 # &=
976 case OO_AmpEqual: Out << "?_4"; break;
977 // <operator-name> ::= ?_5 # |=
978 case OO_PipeEqual: Out << "?_5"; break;
979 // <operator-name> ::= ?_6 # ^=
980 case OO_CaretEqual: Out << "?_6"; break;
981 // ?_7 # vftable
982 // ?_8 # vbtable
983 // ?_9 # vcall
984 // ?_A # typeof
985 // ?_B # local static guard
986 // ?_C # string
987 // ?_D # vbase destructor
988 // ?_E # vector deleting destructor
989 // ?_F # default constructor closure
990 // ?_G # scalar deleting destructor
991 // ?_H # vector constructor iterator
992 // ?_I # vector destructor iterator
993 // ?_J # vector vbase constructor iterator
994 // ?_K # virtual displacement map
995 // ?_L # eh vector constructor iterator
996 // ?_M # eh vector destructor iterator
997 // ?_N # eh vector vbase constructor iterator
998 // ?_O # copy constructor closure
999 // ?_P<name> # udt returning <name>
1000 // ?_Q # <unknown>
1001 // ?_R0 # RTTI Type Descriptor
1002 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1003 // ?_R2 # RTTI Base Class Array
1004 // ?_R3 # RTTI Class Hierarchy Descriptor
1005 // ?_R4 # RTTI Complete Object Locator
1006 // ?_S # local vftable
1007 // ?_T # local vftable constructor closure
1008 // <operator-name> ::= ?_U # new[]
1009 case OO_Array_New: Out << "?_U"; break;
1010 // <operator-name> ::= ?_V # delete[]
1011 case OO_Array_Delete: Out << "?_V"; break;
1012
1013 case OO_Conditional: {
1014 DiagnosticsEngine &Diags = Context.getDiags();
1015 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1016 "cannot mangle this conditional operator yet");
1017 Diags.Report(Loc, DiagID);
1018 break;
1019 }
1020
1021 case OO_None:
1022 case NUM_OVERLOADED_OPERATORS:
1023 llvm_unreachable("Not an overloaded operator");
1024 }
1025 }
1026
mangleSourceName(StringRef Name)1027 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1028 // <source name> ::= <identifier> @
1029 BackRefVec::iterator Found =
1030 std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
1031 if (Found == NameBackReferences.end()) {
1032 if (NameBackReferences.size() < 10)
1033 NameBackReferences.push_back(Name);
1034 Out << Name << '@';
1035 } else {
1036 Out << (Found - NameBackReferences.begin());
1037 }
1038 }
1039
mangleObjCMethodName(const ObjCMethodDecl * MD)1040 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1041 Context.mangleObjCMethodName(MD, Out);
1042 }
1043
mangleTemplateInstantiationName(const TemplateDecl * TD,const TemplateArgumentList & TemplateArgs)1044 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1045 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1046 // <template-name> ::= <unscoped-template-name> <template-args>
1047 // ::= <substitution>
1048 // Always start with the unqualified name.
1049
1050 // Templates have their own context for back references.
1051 ArgBackRefMap OuterArgsContext;
1052 BackRefVec OuterTemplateContext;
1053 NameBackReferences.swap(OuterTemplateContext);
1054 TypeBackReferences.swap(OuterArgsContext);
1055
1056 mangleUnscopedTemplateName(TD);
1057 mangleTemplateArgs(TD, TemplateArgs);
1058
1059 // Restore the previous back reference contexts.
1060 NameBackReferences.swap(OuterTemplateContext);
1061 TypeBackReferences.swap(OuterArgsContext);
1062 }
1063
1064 void
mangleUnscopedTemplateName(const TemplateDecl * TD)1065 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1066 // <unscoped-template-name> ::= ?$ <unqualified-name>
1067 Out << "?$";
1068 mangleUnqualifiedName(TD);
1069 }
1070
mangleIntegerLiteral(const llvm::APSInt & Value,bool IsBoolean)1071 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1072 bool IsBoolean) {
1073 // <integer-literal> ::= $0 <number>
1074 Out << "$0";
1075 // Make sure booleans are encoded as 0/1.
1076 if (IsBoolean && Value.getBoolValue())
1077 mangleNumber(1);
1078 else if (Value.isSigned())
1079 mangleNumber(Value.getSExtValue());
1080 else
1081 mangleNumber(Value.getZExtValue());
1082 }
1083
mangleExpression(const Expr * E)1084 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1085 // See if this is a constant expression.
1086 llvm::APSInt Value;
1087 if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1088 mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1089 return;
1090 }
1091
1092 // Look through no-op casts like template parameter substitutions.
1093 E = E->IgnoreParenNoopCasts(Context.getASTContext());
1094
1095 const CXXUuidofExpr *UE = nullptr;
1096 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1097 if (UO->getOpcode() == UO_AddrOf)
1098 UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1099 } else
1100 UE = dyn_cast<CXXUuidofExpr>(E);
1101
1102 if (UE) {
1103 // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1104 // const __s_GUID _GUID_{lower case UUID with underscores}
1105 StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
1106 std::string Name = "_GUID_" + Uuid.lower();
1107 std::replace(Name.begin(), Name.end(), '-', '_');
1108
1109 // If we had to peek through an address-of operator, treat this like we are
1110 // dealing with a pointer type. Otherwise, treat it like a const reference.
1111 //
1112 // N.B. This matches up with the handling of TemplateArgument::Declaration
1113 // in mangleTemplateArg
1114 if (UE == E)
1115 Out << "$E?";
1116 else
1117 Out << "$1?";
1118 Out << Name << "@@3U__s_GUID@@B";
1119 return;
1120 }
1121
1122 // As bad as this diagnostic is, it's better than crashing.
1123 DiagnosticsEngine &Diags = Context.getDiags();
1124 unsigned DiagID = Diags.getCustomDiagID(
1125 DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1126 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1127 << E->getSourceRange();
1128 }
1129
mangleTemplateArgs(const TemplateDecl * TD,const TemplateArgumentList & TemplateArgs)1130 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1131 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1132 // <template-args> ::= <template-arg>+
1133 const TemplateParameterList *TPL = TD->getTemplateParameters();
1134 assert(TPL->size() == TemplateArgs.size() &&
1135 "size mismatch between args and parms!");
1136
1137 unsigned Idx = 0;
1138 for (const TemplateArgument &TA : TemplateArgs.asArray())
1139 mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
1140 }
1141
mangleTemplateArg(const TemplateDecl * TD,const TemplateArgument & TA,const NamedDecl * Parm)1142 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1143 const TemplateArgument &TA,
1144 const NamedDecl *Parm) {
1145 // <template-arg> ::= <type>
1146 // ::= <integer-literal>
1147 // ::= <member-data-pointer>
1148 // ::= <member-function-pointer>
1149 // ::= $E? <name> <type-encoding>
1150 // ::= $1? <name> <type-encoding>
1151 // ::= $0A@
1152 // ::= <template-args>
1153
1154 switch (TA.getKind()) {
1155 case TemplateArgument::Null:
1156 llvm_unreachable("Can't mangle null template arguments!");
1157 case TemplateArgument::TemplateExpansion:
1158 llvm_unreachable("Can't mangle template expansion arguments!");
1159 case TemplateArgument::Type: {
1160 QualType T = TA.getAsType();
1161 mangleType(T, SourceRange(), QMM_Escape);
1162 break;
1163 }
1164 case TemplateArgument::Declaration: {
1165 const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
1166 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1167 mangleMemberDataPointer(
1168 cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
1169 cast<ValueDecl>(ND));
1170 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1171 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1172 if (MD && MD->isInstance())
1173 mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
1174 else
1175 mangle(FD, "$1?");
1176 } else {
1177 mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1178 }
1179 break;
1180 }
1181 case TemplateArgument::Integral:
1182 mangleIntegerLiteral(TA.getAsIntegral(),
1183 TA.getIntegralType()->isBooleanType());
1184 break;
1185 case TemplateArgument::NullPtr: {
1186 QualType T = TA.getNullPtrType();
1187 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1188 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1189 if (MPT->isMemberFunctionPointerType() && isa<ClassTemplateDecl>(TD)) {
1190 mangleMemberFunctionPointer(RD, nullptr);
1191 return;
1192 }
1193 if (MPT->isMemberDataPointer()) {
1194 mangleMemberDataPointer(RD, nullptr);
1195 return;
1196 }
1197 }
1198 Out << "$0A@";
1199 break;
1200 }
1201 case TemplateArgument::Expression:
1202 mangleExpression(TA.getAsExpr());
1203 break;
1204 case TemplateArgument::Pack: {
1205 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1206 if (TemplateArgs.empty()) {
1207 if (isa<TemplateTypeParmDecl>(Parm) ||
1208 isa<TemplateTemplateParmDecl>(Parm))
1209 // MSVC 2015 changed the mangling for empty expanded template packs,
1210 // use the old mangling for link compatibility for old versions.
1211 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(19)
1212 ? "$$V"
1213 : "$$$V");
1214 else if (isa<NonTypeTemplateParmDecl>(Parm))
1215 Out << "$S";
1216 else
1217 llvm_unreachable("unexpected template parameter decl!");
1218 } else {
1219 for (const TemplateArgument &PA : TemplateArgs)
1220 mangleTemplateArg(TD, PA, Parm);
1221 }
1222 break;
1223 }
1224 case TemplateArgument::Template: {
1225 const NamedDecl *ND =
1226 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1227 if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1228 mangleType(TD);
1229 } else if (isa<TypeAliasDecl>(ND)) {
1230 Out << "$$Y";
1231 mangleName(ND);
1232 } else {
1233 llvm_unreachable("unexpected template template NamedDecl!");
1234 }
1235 break;
1236 }
1237 }
1238 }
1239
mangleQualifiers(Qualifiers Quals,bool IsMember)1240 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1241 bool IsMember) {
1242 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1243 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1244 // 'I' means __restrict (32/64-bit).
1245 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1246 // keyword!
1247 // <base-cvr-qualifiers> ::= A # near
1248 // ::= B # near const
1249 // ::= C # near volatile
1250 // ::= D # near const volatile
1251 // ::= E # far (16-bit)
1252 // ::= F # far const (16-bit)
1253 // ::= G # far volatile (16-bit)
1254 // ::= H # far const volatile (16-bit)
1255 // ::= I # huge (16-bit)
1256 // ::= J # huge const (16-bit)
1257 // ::= K # huge volatile (16-bit)
1258 // ::= L # huge const volatile (16-bit)
1259 // ::= M <basis> # based
1260 // ::= N <basis> # based const
1261 // ::= O <basis> # based volatile
1262 // ::= P <basis> # based const volatile
1263 // ::= Q # near member
1264 // ::= R # near const member
1265 // ::= S # near volatile member
1266 // ::= T # near const volatile member
1267 // ::= U # far member (16-bit)
1268 // ::= V # far const member (16-bit)
1269 // ::= W # far volatile member (16-bit)
1270 // ::= X # far const volatile member (16-bit)
1271 // ::= Y # huge member (16-bit)
1272 // ::= Z # huge const member (16-bit)
1273 // ::= 0 # huge volatile member (16-bit)
1274 // ::= 1 # huge const volatile member (16-bit)
1275 // ::= 2 <basis> # based member
1276 // ::= 3 <basis> # based const member
1277 // ::= 4 <basis> # based volatile member
1278 // ::= 5 <basis> # based const volatile member
1279 // ::= 6 # near function (pointers only)
1280 // ::= 7 # far function (pointers only)
1281 // ::= 8 # near method (pointers only)
1282 // ::= 9 # far method (pointers only)
1283 // ::= _A <basis> # based function (pointers only)
1284 // ::= _B <basis> # based function (far?) (pointers only)
1285 // ::= _C <basis> # based method (pointers only)
1286 // ::= _D <basis> # based method (far?) (pointers only)
1287 // ::= _E # block (Clang)
1288 // <basis> ::= 0 # __based(void)
1289 // ::= 1 # __based(segment)?
1290 // ::= 2 <name> # __based(name)
1291 // ::= 3 # ?
1292 // ::= 4 # ?
1293 // ::= 5 # not really based
1294 bool HasConst = Quals.hasConst(),
1295 HasVolatile = Quals.hasVolatile();
1296
1297 if (!IsMember) {
1298 if (HasConst && HasVolatile) {
1299 Out << 'D';
1300 } else if (HasVolatile) {
1301 Out << 'C';
1302 } else if (HasConst) {
1303 Out << 'B';
1304 } else {
1305 Out << 'A';
1306 }
1307 } else {
1308 if (HasConst && HasVolatile) {
1309 Out << 'T';
1310 } else if (HasVolatile) {
1311 Out << 'S';
1312 } else if (HasConst) {
1313 Out << 'R';
1314 } else {
1315 Out << 'Q';
1316 }
1317 }
1318
1319 // FIXME: For now, just drop all extension qualifiers on the floor.
1320 }
1321
1322 void
mangleRefQualifier(RefQualifierKind RefQualifier)1323 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1324 // <ref-qualifier> ::= G # lvalue reference
1325 // ::= H # rvalue-reference
1326 switch (RefQualifier) {
1327 case RQ_None:
1328 break;
1329
1330 case RQ_LValue:
1331 Out << 'G';
1332 break;
1333
1334 case RQ_RValue:
1335 Out << 'H';
1336 break;
1337 }
1338 }
1339
1340 void
manglePointerExtQualifiers(Qualifiers Quals,const Type * PointeeType)1341 MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1342 const Type *PointeeType) {
1343 bool HasRestrict = Quals.hasRestrict();
1344 if (PointersAre64Bit && (!PointeeType || !PointeeType->isFunctionType()))
1345 Out << 'E';
1346
1347 if (HasRestrict)
1348 Out << 'I';
1349 }
1350
manglePointerCVQualifiers(Qualifiers Quals)1351 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1352 // <pointer-cv-qualifiers> ::= P # no qualifiers
1353 // ::= Q # const
1354 // ::= R # volatile
1355 // ::= S # const volatile
1356 bool HasConst = Quals.hasConst(),
1357 HasVolatile = Quals.hasVolatile();
1358
1359 if (HasConst && HasVolatile) {
1360 Out << 'S';
1361 } else if (HasVolatile) {
1362 Out << 'R';
1363 } else if (HasConst) {
1364 Out << 'Q';
1365 } else {
1366 Out << 'P';
1367 }
1368 }
1369
mangleArgumentType(QualType T,SourceRange Range)1370 void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
1371 SourceRange Range) {
1372 // MSVC will backreference two canonically equivalent types that have slightly
1373 // different manglings when mangled alone.
1374
1375 // Decayed types do not match up with non-decayed versions of the same type.
1376 //
1377 // e.g.
1378 // void (*x)(void) will not form a backreference with void x(void)
1379 void *TypePtr;
1380 if (const DecayedType *DT = T->getAs<DecayedType>()) {
1381 TypePtr = DT->getOriginalType().getCanonicalType().getAsOpaquePtr();
1382 // If the original parameter was textually written as an array,
1383 // instead treat the decayed parameter like it's const.
1384 //
1385 // e.g.
1386 // int [] -> int * const
1387 if (DT->getOriginalType()->isArrayType())
1388 T = T.withConst();
1389 } else
1390 TypePtr = T.getCanonicalType().getAsOpaquePtr();
1391
1392 ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1393
1394 if (Found == TypeBackReferences.end()) {
1395 size_t OutSizeBefore = Out.GetNumBytesInBuffer();
1396
1397 mangleType(T, Range, QMM_Drop);
1398
1399 // See if it's worth creating a back reference.
1400 // Only types longer than 1 character are considered
1401 // and only 10 back references slots are available:
1402 bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
1403 if (LongerThanOneChar && TypeBackReferences.size() < 10) {
1404 size_t Size = TypeBackReferences.size();
1405 TypeBackReferences[TypePtr] = Size;
1406 }
1407 } else {
1408 Out << Found->second;
1409 }
1410 }
1411
mangleType(QualType T,SourceRange Range,QualifierMangleMode QMM)1412 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1413 QualifierMangleMode QMM) {
1414 // Don't use the canonical types. MSVC includes things like 'const' on
1415 // pointer arguments to function pointers that canonicalization strips away.
1416 T = T.getDesugaredType(getASTContext());
1417 Qualifiers Quals = T.getLocalQualifiers();
1418 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1419 // If there were any Quals, getAsArrayType() pushed them onto the array
1420 // element type.
1421 if (QMM == QMM_Mangle)
1422 Out << 'A';
1423 else if (QMM == QMM_Escape || QMM == QMM_Result)
1424 Out << "$$B";
1425 mangleArrayType(AT);
1426 return;
1427 }
1428
1429 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1430 T->isBlockPointerType();
1431
1432 switch (QMM) {
1433 case QMM_Drop:
1434 break;
1435 case QMM_Mangle:
1436 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1437 Out << '6';
1438 mangleFunctionType(FT);
1439 return;
1440 }
1441 mangleQualifiers(Quals, false);
1442 break;
1443 case QMM_Escape:
1444 if (!IsPointer && Quals) {
1445 Out << "$$C";
1446 mangleQualifiers(Quals, false);
1447 }
1448 break;
1449 case QMM_Result:
1450 if ((!IsPointer && Quals) || isa<TagType>(T)) {
1451 Out << '?';
1452 mangleQualifiers(Quals, false);
1453 }
1454 break;
1455 }
1456
1457 // We have to mangle these now, while we still have enough information.
1458 if (IsPointer) {
1459 manglePointerCVQualifiers(Quals);
1460 manglePointerExtQualifiers(Quals, T->getPointeeType().getTypePtr());
1461 }
1462 const Type *ty = T.getTypePtr();
1463
1464 switch (ty->getTypeClass()) {
1465 #define ABSTRACT_TYPE(CLASS, PARENT)
1466 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1467 case Type::CLASS: \
1468 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1469 return;
1470 #define TYPE(CLASS, PARENT) \
1471 case Type::CLASS: \
1472 mangleType(cast<CLASS##Type>(ty), Range); \
1473 break;
1474 #include "clang/AST/TypeNodes.def"
1475 #undef ABSTRACT_TYPE
1476 #undef NON_CANONICAL_TYPE
1477 #undef TYPE
1478 }
1479 }
1480
mangleType(const BuiltinType * T,SourceRange Range)1481 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
1482 SourceRange Range) {
1483 // <type> ::= <builtin-type>
1484 // <builtin-type> ::= X # void
1485 // ::= C # signed char
1486 // ::= D # char
1487 // ::= E # unsigned char
1488 // ::= F # short
1489 // ::= G # unsigned short (or wchar_t if it's not a builtin)
1490 // ::= H # int
1491 // ::= I # unsigned int
1492 // ::= J # long
1493 // ::= K # unsigned long
1494 // L # <none>
1495 // ::= M # float
1496 // ::= N # double
1497 // ::= O # long double (__float80 is mangled differently)
1498 // ::= _J # long long, __int64
1499 // ::= _K # unsigned long long, __int64
1500 // ::= _L # __int128
1501 // ::= _M # unsigned __int128
1502 // ::= _N # bool
1503 // _O # <array in parameter>
1504 // ::= _T # __float80 (Intel)
1505 // ::= _W # wchar_t
1506 // ::= _Z # __float80 (Digital Mars)
1507 switch (T->getKind()) {
1508 case BuiltinType::Void: Out << 'X'; break;
1509 case BuiltinType::SChar: Out << 'C'; break;
1510 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
1511 case BuiltinType::UChar: Out << 'E'; break;
1512 case BuiltinType::Short: Out << 'F'; break;
1513 case BuiltinType::UShort: Out << 'G'; break;
1514 case BuiltinType::Int: Out << 'H'; break;
1515 case BuiltinType::UInt: Out << 'I'; break;
1516 case BuiltinType::Long: Out << 'J'; break;
1517 case BuiltinType::ULong: Out << 'K'; break;
1518 case BuiltinType::Float: Out << 'M'; break;
1519 case BuiltinType::Double: Out << 'N'; break;
1520 // TODO: Determine size and mangle accordingly
1521 case BuiltinType::LongDouble: Out << 'O'; break;
1522 case BuiltinType::LongLong: Out << "_J"; break;
1523 case BuiltinType::ULongLong: Out << "_K"; break;
1524 case BuiltinType::Int128: Out << "_L"; break;
1525 case BuiltinType::UInt128: Out << "_M"; break;
1526 case BuiltinType::Bool: Out << "_N"; break;
1527 case BuiltinType::Char16: Out << "_S"; break;
1528 case BuiltinType::Char32: Out << "_U"; break;
1529 case BuiltinType::WChar_S:
1530 case BuiltinType::WChar_U: Out << "_W"; break;
1531
1532 #define BUILTIN_TYPE(Id, SingletonId)
1533 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1534 case BuiltinType::Id:
1535 #include "clang/AST/BuiltinTypes.def"
1536 case BuiltinType::Dependent:
1537 llvm_unreachable("placeholder types shouldn't get to name mangling");
1538
1539 case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
1540 case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
1541 case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
1542
1543 case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
1544 case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
1545 case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
1546 case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
1547 case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
1548 case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
1549 case BuiltinType::OCLSampler: Out << "PAUocl_sampler@@"; break;
1550 case BuiltinType::OCLEvent: Out << "PAUocl_event@@"; break;
1551
1552 case BuiltinType::NullPtr: Out << "$$T"; break;
1553
1554 case BuiltinType::Half: {
1555 DiagnosticsEngine &Diags = Context.getDiags();
1556 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1557 "cannot mangle this built-in %0 type yet");
1558 Diags.Report(Range.getBegin(), DiagID)
1559 << T->getName(Context.getASTContext().getPrintingPolicy())
1560 << Range;
1561 break;
1562 }
1563 }
1564 }
1565
1566 // <type> ::= <function-type>
mangleType(const FunctionProtoType * T,SourceRange)1567 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
1568 SourceRange) {
1569 // Structors only appear in decls, so at this point we know it's not a
1570 // structor type.
1571 // FIXME: This may not be lambda-friendly.
1572 if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
1573 Out << "$$A8@@";
1574 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
1575 } else {
1576 Out << "$$A6";
1577 mangleFunctionType(T);
1578 }
1579 }
mangleType(const FunctionNoProtoType * T,SourceRange)1580 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1581 SourceRange) {
1582 llvm_unreachable("Can't mangle K&R function prototypes");
1583 }
1584
mangleFunctionType(const FunctionType * T,const FunctionDecl * D,bool ForceThisQuals)1585 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
1586 const FunctionDecl *D,
1587 bool ForceThisQuals) {
1588 // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1589 // <return-type> <argument-list> <throw-spec>
1590 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1591
1592 SourceRange Range;
1593 if (D) Range = D->getSourceRange();
1594
1595 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
1596 CallingConv CC = T->getCallConv();
1597 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
1598 if (MD->isInstance())
1599 HasThisQuals = true;
1600 if (isa<CXXDestructorDecl>(MD)) {
1601 IsStructor = true;
1602 } else if (isa<CXXConstructorDecl>(MD)) {
1603 IsStructor = true;
1604 IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
1605 StructorType == Ctor_DefaultClosure) &&
1606 getStructor(MD) == Structor;
1607 if (IsCtorClosure)
1608 CC = getASTContext().getDefaultCallingConvention(
1609 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1610 }
1611 }
1612
1613 // If this is a C++ instance method, mangle the CVR qualifiers for the
1614 // this pointer.
1615 if (HasThisQuals) {
1616 Qualifiers Quals = Qualifiers::fromCVRMask(Proto->getTypeQuals());
1617 manglePointerExtQualifiers(Quals, /*PointeeType=*/nullptr);
1618 mangleRefQualifier(Proto->getRefQualifier());
1619 mangleQualifiers(Quals, /*IsMember=*/false);
1620 }
1621
1622 mangleCallingConvention(CC);
1623
1624 // <return-type> ::= <type>
1625 // ::= @ # structors (they have no declared return type)
1626 if (IsStructor) {
1627 if (isa<CXXDestructorDecl>(D) && D == Structor &&
1628 StructorType == Dtor_Deleting) {
1629 // The scalar deleting destructor takes an extra int argument.
1630 // However, the FunctionType generated has 0 arguments.
1631 // FIXME: This is a temporary hack.
1632 // Maybe should fix the FunctionType creation instead?
1633 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
1634 return;
1635 }
1636 if (IsCtorClosure) {
1637 // Default constructor closure and copy constructor closure both return
1638 // void.
1639 Out << 'X';
1640
1641 if (StructorType == Ctor_DefaultClosure) {
1642 // Default constructor closure always has no arguments.
1643 Out << 'X';
1644 } else if (StructorType == Ctor_CopyingClosure) {
1645 // Copy constructor closure always takes an unqualified reference.
1646 mangleArgumentType(getASTContext().getLValueReferenceType(
1647 Proto->getParamType(0)
1648 ->getAs<LValueReferenceType>()
1649 ->getPointeeType(),
1650 /*SpelledAsLValue=*/true),
1651 Range);
1652 Out << '@';
1653 } else {
1654 llvm_unreachable("unexpected constructor closure!");
1655 }
1656 Out << 'Z';
1657 return;
1658 }
1659 Out << '@';
1660 } else {
1661 QualType ResultType = Proto->getReturnType();
1662 if (const auto *AT =
1663 dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
1664 Out << '?';
1665 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
1666 Out << '?';
1667 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
1668 Out << '@';
1669 } else {
1670 if (ResultType->isVoidType())
1671 ResultType = ResultType.getUnqualifiedType();
1672 mangleType(ResultType, Range, QMM_Result);
1673 }
1674 }
1675
1676 // <argument-list> ::= X # void
1677 // ::= <type>+ @
1678 // ::= <type>* Z # varargs
1679 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
1680 Out << 'X';
1681 } else {
1682 // Happens for function pointer type arguments for example.
1683 for (const QualType &Arg : Proto->param_types())
1684 mangleArgumentType(Arg, Range);
1685 // <builtin-type> ::= Z # ellipsis
1686 if (Proto->isVariadic())
1687 Out << 'Z';
1688 else
1689 Out << '@';
1690 }
1691
1692 mangleThrowSpecification(Proto);
1693 }
1694
mangleFunctionClass(const FunctionDecl * FD)1695 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1696 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
1697 // # pointer. in 64-bit mode *all*
1698 // # 'this' pointers are 64-bit.
1699 // ::= <global-function>
1700 // <member-function> ::= A # private: near
1701 // ::= B # private: far
1702 // ::= C # private: static near
1703 // ::= D # private: static far
1704 // ::= E # private: virtual near
1705 // ::= F # private: virtual far
1706 // ::= I # protected: near
1707 // ::= J # protected: far
1708 // ::= K # protected: static near
1709 // ::= L # protected: static far
1710 // ::= M # protected: virtual near
1711 // ::= N # protected: virtual far
1712 // ::= Q # public: near
1713 // ::= R # public: far
1714 // ::= S # public: static near
1715 // ::= T # public: static far
1716 // ::= U # public: virtual near
1717 // ::= V # public: virtual far
1718 // <global-function> ::= Y # global near
1719 // ::= Z # global far
1720 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1721 switch (MD->getAccess()) {
1722 case AS_none:
1723 llvm_unreachable("Unsupported access specifier");
1724 case AS_private:
1725 if (MD->isStatic())
1726 Out << 'C';
1727 else if (MD->isVirtual())
1728 Out << 'E';
1729 else
1730 Out << 'A';
1731 break;
1732 case AS_protected:
1733 if (MD->isStatic())
1734 Out << 'K';
1735 else if (MD->isVirtual())
1736 Out << 'M';
1737 else
1738 Out << 'I';
1739 break;
1740 case AS_public:
1741 if (MD->isStatic())
1742 Out << 'S';
1743 else if (MD->isVirtual())
1744 Out << 'U';
1745 else
1746 Out << 'Q';
1747 }
1748 } else
1749 Out << 'Y';
1750 }
mangleCallingConvention(CallingConv CC)1751 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
1752 // <calling-convention> ::= A # __cdecl
1753 // ::= B # __export __cdecl
1754 // ::= C # __pascal
1755 // ::= D # __export __pascal
1756 // ::= E # __thiscall
1757 // ::= F # __export __thiscall
1758 // ::= G # __stdcall
1759 // ::= H # __export __stdcall
1760 // ::= I # __fastcall
1761 // ::= J # __export __fastcall
1762 // ::= Q # __vectorcall
1763 // The 'export' calling conventions are from a bygone era
1764 // (*cough*Win16*cough*) when functions were declared for export with
1765 // that keyword. (It didn't actually export them, it just made them so
1766 // that they could be in a DLL and somebody from another module could call
1767 // them.)
1768
1769 switch (CC) {
1770 default:
1771 llvm_unreachable("Unsupported CC for mangling");
1772 case CC_X86_64Win64:
1773 case CC_X86_64SysV:
1774 case CC_C: Out << 'A'; break;
1775 case CC_X86Pascal: Out << 'C'; break;
1776 case CC_X86ThisCall: Out << 'E'; break;
1777 case CC_X86StdCall: Out << 'G'; break;
1778 case CC_X86FastCall: Out << 'I'; break;
1779 case CC_X86VectorCall: Out << 'Q'; break;
1780 }
1781 }
mangleCallingConvention(const FunctionType * T)1782 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
1783 mangleCallingConvention(T->getCallConv());
1784 }
mangleThrowSpecification(const FunctionProtoType * FT)1785 void MicrosoftCXXNameMangler::mangleThrowSpecification(
1786 const FunctionProtoType *FT) {
1787 // <throw-spec> ::= Z # throw(...) (default)
1788 // ::= @ # throw() or __declspec/__attribute__((nothrow))
1789 // ::= <type>+
1790 // NOTE: Since the Microsoft compiler ignores throw specifications, they are
1791 // all actually mangled as 'Z'. (They're ignored because their associated
1792 // functionality isn't implemented, and probably never will be.)
1793 Out << 'Z';
1794 }
1795
mangleType(const UnresolvedUsingType * T,SourceRange Range)1796 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
1797 SourceRange Range) {
1798 // Probably should be mangled as a template instantiation; need to see what
1799 // VC does first.
1800 DiagnosticsEngine &Diags = Context.getDiags();
1801 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1802 "cannot mangle this unresolved dependent type yet");
1803 Diags.Report(Range.getBegin(), DiagID)
1804 << Range;
1805 }
1806
1807 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
1808 // <union-type> ::= T <name>
1809 // <struct-type> ::= U <name>
1810 // <class-type> ::= V <name>
1811 // <enum-type> ::= W4 <name>
mangleType(const EnumType * T,SourceRange)1812 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
1813 mangleType(cast<TagType>(T)->getDecl());
1814 }
mangleType(const RecordType * T,SourceRange)1815 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
1816 mangleType(cast<TagType>(T)->getDecl());
1817 }
mangleType(const TagDecl * TD)1818 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
1819 switch (TD->getTagKind()) {
1820 case TTK_Union:
1821 Out << 'T';
1822 break;
1823 case TTK_Struct:
1824 case TTK_Interface:
1825 Out << 'U';
1826 break;
1827 case TTK_Class:
1828 Out << 'V';
1829 break;
1830 case TTK_Enum:
1831 Out << "W4";
1832 break;
1833 }
1834 mangleName(TD);
1835 }
1836
1837 // <type> ::= <array-type>
1838 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1839 // [Y <dimension-count> <dimension>+]
1840 // <element-type> # as global, E is never required
1841 // It's supposed to be the other way around, but for some strange reason, it
1842 // isn't. Today this behavior is retained for the sole purpose of backwards
1843 // compatibility.
mangleDecayedArrayType(const ArrayType * T)1844 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
1845 // This isn't a recursive mangling, so now we have to do it all in this
1846 // one call.
1847 manglePointerCVQualifiers(T->getElementType().getQualifiers());
1848 mangleType(T->getElementType(), SourceRange());
1849 }
mangleType(const ConstantArrayType * T,SourceRange)1850 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
1851 SourceRange) {
1852 llvm_unreachable("Should have been special cased");
1853 }
mangleType(const VariableArrayType * T,SourceRange)1854 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
1855 SourceRange) {
1856 llvm_unreachable("Should have been special cased");
1857 }
mangleType(const DependentSizedArrayType * T,SourceRange)1858 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
1859 SourceRange) {
1860 llvm_unreachable("Should have been special cased");
1861 }
mangleType(const IncompleteArrayType * T,SourceRange)1862 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
1863 SourceRange) {
1864 llvm_unreachable("Should have been special cased");
1865 }
mangleArrayType(const ArrayType * T)1866 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
1867 QualType ElementTy(T, 0);
1868 SmallVector<llvm::APInt, 3> Dimensions;
1869 for (;;) {
1870 if (const ConstantArrayType *CAT =
1871 getASTContext().getAsConstantArrayType(ElementTy)) {
1872 Dimensions.push_back(CAT->getSize());
1873 ElementTy = CAT->getElementType();
1874 } else if (ElementTy->isVariableArrayType()) {
1875 const VariableArrayType *VAT =
1876 getASTContext().getAsVariableArrayType(ElementTy);
1877 DiagnosticsEngine &Diags = Context.getDiags();
1878 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1879 "cannot mangle this variable-length array yet");
1880 Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
1881 << VAT->getBracketsRange();
1882 return;
1883 } else if (ElementTy->isDependentSizedArrayType()) {
1884 // The dependent expression has to be folded into a constant (TODO).
1885 const DependentSizedArrayType *DSAT =
1886 getASTContext().getAsDependentSizedArrayType(ElementTy);
1887 DiagnosticsEngine &Diags = Context.getDiags();
1888 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1889 "cannot mangle this dependent-length array yet");
1890 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
1891 << DSAT->getBracketsRange();
1892 return;
1893 } else if (const IncompleteArrayType *IAT =
1894 getASTContext().getAsIncompleteArrayType(ElementTy)) {
1895 Dimensions.push_back(llvm::APInt(32, 0));
1896 ElementTy = IAT->getElementType();
1897 }
1898 else break;
1899 }
1900 Out << 'Y';
1901 // <dimension-count> ::= <number> # number of extra dimensions
1902 mangleNumber(Dimensions.size());
1903 for (const llvm::APInt &Dimension : Dimensions)
1904 mangleNumber(Dimension.getLimitedValue());
1905 mangleType(ElementTy, SourceRange(), QMM_Escape);
1906 }
1907
1908 // <type> ::= <pointer-to-member-type>
1909 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1910 // <class name> <type>
mangleType(const MemberPointerType * T,SourceRange Range)1911 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
1912 SourceRange Range) {
1913 QualType PointeeType = T->getPointeeType();
1914 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
1915 Out << '8';
1916 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1917 mangleFunctionType(FPT, nullptr, true);
1918 } else {
1919 mangleQualifiers(PointeeType.getQualifiers(), true);
1920 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1921 mangleType(PointeeType, Range, QMM_Drop);
1922 }
1923 }
1924
mangleType(const TemplateTypeParmType * T,SourceRange Range)1925 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
1926 SourceRange Range) {
1927 DiagnosticsEngine &Diags = Context.getDiags();
1928 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1929 "cannot mangle this template type parameter type yet");
1930 Diags.Report(Range.getBegin(), DiagID)
1931 << Range;
1932 }
1933
mangleType(const SubstTemplateTypeParmPackType * T,SourceRange Range)1934 void MicrosoftCXXNameMangler::mangleType(
1935 const SubstTemplateTypeParmPackType *T,
1936 SourceRange Range) {
1937 DiagnosticsEngine &Diags = Context.getDiags();
1938 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1939 "cannot mangle this substituted parameter pack yet");
1940 Diags.Report(Range.getBegin(), DiagID)
1941 << Range;
1942 }
1943
1944 // <type> ::= <pointer-type>
1945 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
1946 // # the E is required for 64-bit non-static pointers
mangleType(const PointerType * T,SourceRange Range)1947 void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
1948 SourceRange Range) {
1949 QualType PointeeTy = T->getPointeeType();
1950 mangleType(PointeeTy, Range);
1951 }
mangleType(const ObjCObjectPointerType * T,SourceRange Range)1952 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
1953 SourceRange Range) {
1954 // Object pointers never have qualifiers.
1955 Out << 'A';
1956 manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1957 mangleType(T->getPointeeType(), Range);
1958 }
1959
1960 // <type> ::= <reference-type>
1961 // <reference-type> ::= A E? <cvr-qualifiers> <type>
1962 // # the E is required for 64-bit non-static lvalue references
mangleType(const LValueReferenceType * T,SourceRange Range)1963 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
1964 SourceRange Range) {
1965 Out << 'A';
1966 manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1967 mangleType(T->getPointeeType(), Range);
1968 }
1969
1970 // <type> ::= <r-value-reference-type>
1971 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
1972 // # the E is required for 64-bit non-static rvalue references
mangleType(const RValueReferenceType * T,SourceRange Range)1973 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
1974 SourceRange Range) {
1975 Out << "$$Q";
1976 manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1977 mangleType(T->getPointeeType(), Range);
1978 }
1979
mangleType(const ComplexType * T,SourceRange Range)1980 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
1981 SourceRange Range) {
1982 DiagnosticsEngine &Diags = Context.getDiags();
1983 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1984 "cannot mangle this complex number type yet");
1985 Diags.Report(Range.getBegin(), DiagID)
1986 << Range;
1987 }
1988
mangleType(const VectorType * T,SourceRange Range)1989 void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
1990 SourceRange Range) {
1991 const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
1992 assert(ET && "vectors with non-builtin elements are unsupported");
1993 uint64_t Width = getASTContext().getTypeSize(T);
1994 // Pattern match exactly the typedefs in our intrinsic headers. Anything that
1995 // doesn't match the Intel types uses a custom mangling below.
1996 bool IntelVector = true;
1997 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
1998 Out << "T__m64";
1999 } else if (Width == 128 || Width == 256) {
2000 if (ET->getKind() == BuiltinType::Float)
2001 Out << "T__m" << Width;
2002 else if (ET->getKind() == BuiltinType::LongLong)
2003 Out << "T__m" << Width << 'i';
2004 else if (ET->getKind() == BuiltinType::Double)
2005 Out << "U__m" << Width << 'd';
2006 else
2007 IntelVector = false;
2008 } else {
2009 IntelVector = false;
2010 }
2011
2012 if (!IntelVector) {
2013 // The MS ABI doesn't have a special mangling for vector types, so we define
2014 // our own mangling to handle uses of __vector_size__ on user-specified
2015 // types, and for extensions like __v4sf.
2016 Out << "T__clang_vec" << T->getNumElements() << '_';
2017 mangleType(ET, Range);
2018 }
2019
2020 Out << "@@";
2021 }
2022
mangleType(const ExtVectorType * T,SourceRange Range)2023 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
2024 SourceRange Range) {
2025 DiagnosticsEngine &Diags = Context.getDiags();
2026 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2027 "cannot mangle this extended vector type yet");
2028 Diags.Report(Range.getBegin(), DiagID)
2029 << Range;
2030 }
mangleType(const DependentSizedExtVectorType * T,SourceRange Range)2031 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
2032 SourceRange Range) {
2033 DiagnosticsEngine &Diags = Context.getDiags();
2034 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2035 "cannot mangle this dependent-sized extended vector type yet");
2036 Diags.Report(Range.getBegin(), DiagID)
2037 << Range;
2038 }
2039
mangleType(const ObjCInterfaceType * T,SourceRange)2040 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
2041 SourceRange) {
2042 // ObjC interfaces have structs underlying them.
2043 Out << 'U';
2044 mangleName(T->getDecl());
2045 }
2046
mangleType(const ObjCObjectType * T,SourceRange Range)2047 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
2048 SourceRange Range) {
2049 // We don't allow overloading by different protocol qualification,
2050 // so mangling them isn't necessary.
2051 mangleType(T->getBaseType(), Range);
2052 }
2053
mangleType(const BlockPointerType * T,SourceRange Range)2054 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
2055 SourceRange Range) {
2056 Out << "_E";
2057
2058 QualType pointee = T->getPointeeType();
2059 mangleFunctionType(pointee->castAs<FunctionProtoType>());
2060 }
2061
mangleType(const InjectedClassNameType *,SourceRange)2062 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
2063 SourceRange) {
2064 llvm_unreachable("Cannot mangle injected class name type.");
2065 }
2066
mangleType(const TemplateSpecializationType * T,SourceRange Range)2067 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
2068 SourceRange Range) {
2069 DiagnosticsEngine &Diags = Context.getDiags();
2070 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2071 "cannot mangle this template specialization type yet");
2072 Diags.Report(Range.getBegin(), DiagID)
2073 << Range;
2074 }
2075
mangleType(const DependentNameType * T,SourceRange Range)2076 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
2077 SourceRange Range) {
2078 DiagnosticsEngine &Diags = Context.getDiags();
2079 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2080 "cannot mangle this dependent name type yet");
2081 Diags.Report(Range.getBegin(), DiagID)
2082 << Range;
2083 }
2084
mangleType(const DependentTemplateSpecializationType * T,SourceRange Range)2085 void MicrosoftCXXNameMangler::mangleType(
2086 const DependentTemplateSpecializationType *T,
2087 SourceRange Range) {
2088 DiagnosticsEngine &Diags = Context.getDiags();
2089 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2090 "cannot mangle this dependent template specialization type yet");
2091 Diags.Report(Range.getBegin(), DiagID)
2092 << Range;
2093 }
2094
mangleType(const PackExpansionType * T,SourceRange Range)2095 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
2096 SourceRange Range) {
2097 DiagnosticsEngine &Diags = Context.getDiags();
2098 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2099 "cannot mangle this pack expansion yet");
2100 Diags.Report(Range.getBegin(), DiagID)
2101 << Range;
2102 }
2103
mangleType(const TypeOfType * T,SourceRange Range)2104 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
2105 SourceRange Range) {
2106 DiagnosticsEngine &Diags = Context.getDiags();
2107 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2108 "cannot mangle this typeof(type) yet");
2109 Diags.Report(Range.getBegin(), DiagID)
2110 << Range;
2111 }
2112
mangleType(const TypeOfExprType * T,SourceRange Range)2113 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
2114 SourceRange Range) {
2115 DiagnosticsEngine &Diags = Context.getDiags();
2116 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2117 "cannot mangle this typeof(expression) yet");
2118 Diags.Report(Range.getBegin(), DiagID)
2119 << Range;
2120 }
2121
mangleType(const DecltypeType * T,SourceRange Range)2122 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
2123 SourceRange Range) {
2124 DiagnosticsEngine &Diags = Context.getDiags();
2125 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2126 "cannot mangle this decltype() yet");
2127 Diags.Report(Range.getBegin(), DiagID)
2128 << Range;
2129 }
2130
mangleType(const UnaryTransformType * T,SourceRange Range)2131 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2132 SourceRange Range) {
2133 DiagnosticsEngine &Diags = Context.getDiags();
2134 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2135 "cannot mangle this unary transform type yet");
2136 Diags.Report(Range.getBegin(), DiagID)
2137 << Range;
2138 }
2139
mangleType(const AutoType * T,SourceRange Range)2140 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
2141 assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2142
2143 DiagnosticsEngine &Diags = Context.getDiags();
2144 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2145 "cannot mangle this 'auto' type yet");
2146 Diags.Report(Range.getBegin(), DiagID)
2147 << Range;
2148 }
2149
mangleType(const AtomicType * T,SourceRange Range)2150 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
2151 SourceRange Range) {
2152 DiagnosticsEngine &Diags = Context.getDiags();
2153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2154 "cannot mangle this C11 atomic type yet");
2155 Diags.Report(Range.getBegin(), DiagID)
2156 << Range;
2157 }
2158
mangleCXXName(const NamedDecl * D,raw_ostream & Out)2159 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2160 raw_ostream &Out) {
2161 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2162 "Invalid mangleName() call, argument is not a variable or function!");
2163 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2164 "Invalid mangleName() call on 'structor decl!");
2165
2166 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2167 getASTContext().getSourceManager(),
2168 "Mangling declaration");
2169
2170 MicrosoftCXXNameMangler Mangler(*this, Out);
2171 return Mangler.mangle(D);
2172 }
2173
2174 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2175 // <virtual-adjustment>
2176 // <no-adjustment> ::= A # private near
2177 // ::= B # private far
2178 // ::= I # protected near
2179 // ::= J # protected far
2180 // ::= Q # public near
2181 // ::= R # public far
2182 // <static-adjustment> ::= G <static-offset> # private near
2183 // ::= H <static-offset> # private far
2184 // ::= O <static-offset> # protected near
2185 // ::= P <static-offset> # protected far
2186 // ::= W <static-offset> # public near
2187 // ::= X <static-offset> # public far
2188 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2189 // ::= $1 <virtual-shift> <static-offset> # private far
2190 // ::= $2 <virtual-shift> <static-offset> # protected near
2191 // ::= $3 <virtual-shift> <static-offset> # protected far
2192 // ::= $4 <virtual-shift> <static-offset> # public near
2193 // ::= $5 <virtual-shift> <static-offset> # public far
2194 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
2195 // <vtordisp-shift> ::= <offset-to-vtordisp>
2196 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
2197 // <offset-to-vtordisp>
mangleThunkThisAdjustment(const CXXMethodDecl * MD,const ThisAdjustment & Adjustment,MicrosoftCXXNameMangler & Mangler,raw_ostream & Out)2198 static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
2199 const ThisAdjustment &Adjustment,
2200 MicrosoftCXXNameMangler &Mangler,
2201 raw_ostream &Out) {
2202 if (!Adjustment.Virtual.isEmpty()) {
2203 Out << '$';
2204 char AccessSpec;
2205 switch (MD->getAccess()) {
2206 case AS_none:
2207 llvm_unreachable("Unsupported access specifier");
2208 case AS_private:
2209 AccessSpec = '0';
2210 break;
2211 case AS_protected:
2212 AccessSpec = '2';
2213 break;
2214 case AS_public:
2215 AccessSpec = '4';
2216 }
2217 if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
2218 Out << 'R' << AccessSpec;
2219 Mangler.mangleNumber(
2220 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
2221 Mangler.mangleNumber(
2222 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
2223 Mangler.mangleNumber(
2224 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2225 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
2226 } else {
2227 Out << AccessSpec;
2228 Mangler.mangleNumber(
2229 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2230 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2231 }
2232 } else if (Adjustment.NonVirtual != 0) {
2233 switch (MD->getAccess()) {
2234 case AS_none:
2235 llvm_unreachable("Unsupported access specifier");
2236 case AS_private:
2237 Out << 'G';
2238 break;
2239 case AS_protected:
2240 Out << 'O';
2241 break;
2242 case AS_public:
2243 Out << 'W';
2244 }
2245 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2246 } else {
2247 switch (MD->getAccess()) {
2248 case AS_none:
2249 llvm_unreachable("Unsupported access specifier");
2250 case AS_private:
2251 Out << 'A';
2252 break;
2253 case AS_protected:
2254 Out << 'I';
2255 break;
2256 case AS_public:
2257 Out << 'Q';
2258 }
2259 }
2260 }
2261
2262 void
mangleVirtualMemPtrThunk(const CXXMethodDecl * MD,raw_ostream & Out)2263 MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
2264 raw_ostream &Out) {
2265 MicrosoftVTableContext *VTContext =
2266 cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
2267 const MicrosoftVTableContext::MethodVFTableLocation &ML =
2268 VTContext->getMethodVFTableLocation(GlobalDecl(MD));
2269
2270 MicrosoftCXXNameMangler Mangler(*this, Out);
2271 Mangler.getStream() << "\01?";
2272 Mangler.mangleVirtualMemPtrThunk(MD, ML);
2273 }
2274
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)2275 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
2276 const ThunkInfo &Thunk,
2277 raw_ostream &Out) {
2278 MicrosoftCXXNameMangler Mangler(*this, Out);
2279 Out << "\01?";
2280 Mangler.mangleName(MD);
2281 mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
2282 if (!Thunk.Return.isEmpty())
2283 assert(Thunk.Method != nullptr &&
2284 "Thunk info should hold the overridee decl");
2285
2286 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
2287 Mangler.mangleFunctionType(
2288 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
2289 }
2290
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & Adjustment,raw_ostream & Out)2291 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
2292 const CXXDestructorDecl *DD, CXXDtorType Type,
2293 const ThisAdjustment &Adjustment, raw_ostream &Out) {
2294 // FIXME: Actually, the dtor thunk should be emitted for vector deleting
2295 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
2296 // mangling manually until we support both deleting dtor types.
2297 assert(Type == Dtor_Deleting);
2298 MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
2299 Out << "\01??_E";
2300 Mangler.mangleName(DD->getParent());
2301 mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
2302 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
2303 }
2304
mangleCXXVFTable(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2305 void MicrosoftMangleContextImpl::mangleCXXVFTable(
2306 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2307 raw_ostream &Out) {
2308 // <mangled-name> ::= ?_7 <class-name> <storage-class>
2309 // <cvr-qualifiers> [<name>] @
2310 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2311 // is always '6' for vftables.
2312 MicrosoftCXXNameMangler Mangler(*this, Out);
2313 Mangler.getStream() << "\01??_7";
2314 Mangler.mangleName(Derived);
2315 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2316 for (const CXXRecordDecl *RD : BasePath)
2317 Mangler.mangleName(RD);
2318 Mangler.getStream() << '@';
2319 }
2320
mangleCXXVBTable(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2321 void MicrosoftMangleContextImpl::mangleCXXVBTable(
2322 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2323 raw_ostream &Out) {
2324 // <mangled-name> ::= ?_8 <class-name> <storage-class>
2325 // <cvr-qualifiers> [<name>] @
2326 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2327 // is always '7' for vbtables.
2328 MicrosoftCXXNameMangler Mangler(*this, Out);
2329 Mangler.getStream() << "\01??_8";
2330 Mangler.mangleName(Derived);
2331 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
2332 for (const CXXRecordDecl *RD : BasePath)
2333 Mangler.mangleName(RD);
2334 Mangler.getStream() << '@';
2335 }
2336
mangleCXXRTTI(QualType T,raw_ostream & Out)2337 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
2338 MicrosoftCXXNameMangler Mangler(*this, Out);
2339 Mangler.getStream() << "\01??_R0";
2340 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2341 Mangler.getStream() << "@8";
2342 }
2343
mangleCXXRTTIName(QualType T,raw_ostream & Out)2344 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
2345 raw_ostream &Out) {
2346 MicrosoftCXXNameMangler Mangler(*this, Out);
2347 Mangler.getStream() << '.';
2348 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2349 }
2350
mangleCXXCatchHandlerType(QualType T,uint32_t Flags,raw_ostream & Out)2351 void MicrosoftMangleContextImpl::mangleCXXCatchHandlerType(QualType T,
2352 uint32_t Flags,
2353 raw_ostream &Out) {
2354 MicrosoftCXXNameMangler Mangler(*this, Out);
2355 Mangler.getStream() << "llvm.eh.handlertype.";
2356 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2357 Mangler.getStream() << '.' << Flags;
2358 }
2359
mangleCXXThrowInfo(QualType T,bool IsConst,bool IsVolatile,uint32_t NumEntries,raw_ostream & Out)2360 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T,
2361 bool IsConst,
2362 bool IsVolatile,
2363 uint32_t NumEntries,
2364 raw_ostream &Out) {
2365 MicrosoftCXXNameMangler Mangler(*this, Out);
2366 Mangler.getStream() << "_TI";
2367 if (IsConst)
2368 Mangler.getStream() << 'C';
2369 if (IsVolatile)
2370 Mangler.getStream() << 'V';
2371 Mangler.getStream() << NumEntries;
2372 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2373 }
2374
mangleCXXCatchableTypeArray(QualType T,uint32_t NumEntries,raw_ostream & Out)2375 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
2376 QualType T, uint32_t NumEntries, raw_ostream &Out) {
2377 MicrosoftCXXNameMangler Mangler(*this, Out);
2378 Mangler.getStream() << "_CTA";
2379 Mangler.getStream() << NumEntries;
2380 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2381 }
2382
mangleCXXCatchableType(QualType T,const CXXConstructorDecl * CD,CXXCtorType CT,uint32_t Size,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBIndex,raw_ostream & Out)2383 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
2384 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
2385 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
2386 raw_ostream &Out) {
2387 MicrosoftCXXNameMangler Mangler(*this, Out);
2388 Mangler.getStream() << "_CT";
2389
2390 llvm::SmallString<64> RTTIMangling;
2391 {
2392 llvm::raw_svector_ostream Stream(RTTIMangling);
2393 mangleCXXRTTI(T, Stream);
2394 }
2395 Mangler.getStream() << RTTIMangling.substr(1);
2396
2397 // VS2015 CTP6 omits the copy-constructor in the mangled name. This name is,
2398 // in fact, superfluous but I'm not sure the change was made consciously.
2399 // TODO: Revisit this when VS2015 gets released.
2400 llvm::SmallString<64> CopyCtorMangling;
2401 if (CD) {
2402 llvm::raw_svector_ostream Stream(CopyCtorMangling);
2403 mangleCXXCtor(CD, CT, Stream);
2404 }
2405 Mangler.getStream() << CopyCtorMangling.substr(1);
2406
2407 Mangler.getStream() << Size;
2408 if (VBPtrOffset == -1) {
2409 if (NVOffset) {
2410 Mangler.getStream() << NVOffset;
2411 }
2412 } else {
2413 Mangler.getStream() << NVOffset;
2414 Mangler.getStream() << VBPtrOffset;
2415 Mangler.getStream() << VBIndex;
2416 }
2417 }
2418
mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl * Derived,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBTableOffset,uint32_t Flags,raw_ostream & Out)2419 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
2420 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
2421 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
2422 MicrosoftCXXNameMangler Mangler(*this, Out);
2423 Mangler.getStream() << "\01??_R1";
2424 Mangler.mangleNumber(NVOffset);
2425 Mangler.mangleNumber(VBPtrOffset);
2426 Mangler.mangleNumber(VBTableOffset);
2427 Mangler.mangleNumber(Flags);
2428 Mangler.mangleName(Derived);
2429 Mangler.getStream() << "8";
2430 }
2431
mangleCXXRTTIBaseClassArray(const CXXRecordDecl * Derived,raw_ostream & Out)2432 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
2433 const CXXRecordDecl *Derived, raw_ostream &Out) {
2434 MicrosoftCXXNameMangler Mangler(*this, Out);
2435 Mangler.getStream() << "\01??_R2";
2436 Mangler.mangleName(Derived);
2437 Mangler.getStream() << "8";
2438 }
2439
mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl * Derived,raw_ostream & Out)2440 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
2441 const CXXRecordDecl *Derived, raw_ostream &Out) {
2442 MicrosoftCXXNameMangler Mangler(*this, Out);
2443 Mangler.getStream() << "\01??_R3";
2444 Mangler.mangleName(Derived);
2445 Mangler.getStream() << "8";
2446 }
2447
mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2448 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
2449 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2450 raw_ostream &Out) {
2451 // <mangled-name> ::= ?_R4 <class-name> <storage-class>
2452 // <cvr-qualifiers> [<name>] @
2453 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2454 // is always '6' for vftables.
2455 MicrosoftCXXNameMangler Mangler(*this, Out);
2456 Mangler.getStream() << "\01??_R4";
2457 Mangler.mangleName(Derived);
2458 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2459 for (const CXXRecordDecl *RD : BasePath)
2460 Mangler.mangleName(RD);
2461 Mangler.getStream() << '@';
2462 }
2463
mangleSEHFilterExpression(const NamedDecl * EnclosingDecl,raw_ostream & Out)2464 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
2465 const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2466 MicrosoftCXXNameMangler Mangler(*this, Out);
2467 // The function body is in the same comdat as the function with the handler,
2468 // so the numbering here doesn't have to be the same across TUs.
2469 //
2470 // <mangled-name> ::= ?filt$ <filter-number> @0
2471 Mangler.getStream() << "\01?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
2472 Mangler.mangleName(EnclosingDecl);
2473 }
2474
mangleSEHFinallyBlock(const NamedDecl * EnclosingDecl,raw_ostream & Out)2475 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
2476 const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2477 MicrosoftCXXNameMangler Mangler(*this, Out);
2478 // The function body is in the same comdat as the function with the handler,
2479 // so the numbering here doesn't have to be the same across TUs.
2480 //
2481 // <mangled-name> ::= ?fin$ <filter-number> @0
2482 Mangler.getStream() << "\01?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
2483 Mangler.mangleName(EnclosingDecl);
2484 }
2485
mangleTypeName(QualType T,raw_ostream & Out)2486 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
2487 // This is just a made up unique string for the purposes of tbaa. undname
2488 // does *not* know how to demangle it.
2489 MicrosoftCXXNameMangler Mangler(*this, Out);
2490 Mangler.getStream() << '?';
2491 Mangler.mangleType(T, SourceRange());
2492 }
2493
mangleCXXCtor(const CXXConstructorDecl * D,CXXCtorType Type,raw_ostream & Out)2494 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
2495 CXXCtorType Type,
2496 raw_ostream &Out) {
2497 MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2498 mangler.mangle(D);
2499 }
2500
mangleCXXDtor(const CXXDestructorDecl * D,CXXDtorType Type,raw_ostream & Out)2501 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
2502 CXXDtorType Type,
2503 raw_ostream &Out) {
2504 MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2505 mangler.mangle(D);
2506 }
2507
mangleReferenceTemporary(const VarDecl * VD,unsigned,raw_ostream &)2508 void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD,
2509 unsigned,
2510 raw_ostream &) {
2511 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
2512 "cannot mangle this reference temporary yet");
2513 getDiags().Report(VD->getLocation(), DiagID);
2514 }
2515
mangleStaticGuardVariable(const VarDecl * VD,raw_ostream & Out)2516 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
2517 raw_ostream &Out) {
2518 // TODO: This is not correct, especially with respect to VS "14". VS "14"
2519 // utilizes thread local variables to implement thread safe, re-entrant
2520 // initialization for statics. They no longer differentiate between an
2521 // externally visible and non-externally visible static with respect to
2522 // mangling, they all get $TSS <number>.
2523 //
2524 // N.B. This means that they can get more than 32 static variable guards in a
2525 // scope. It also means that they broke compatibility with their own ABI.
2526
2527 // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
2528 // ::= ?$S <guard-num> @ <postfix> @4IA
2529
2530 // The first mangling is what MSVC uses to guard static locals in inline
2531 // functions. It uses a different mangling in external functions to support
2532 // guarding more than 32 variables. MSVC rejects inline functions with more
2533 // than 32 static locals. We don't fully implement the second mangling
2534 // because those guards are not externally visible, and instead use LLVM's
2535 // default renaming when creating a new guard variable.
2536 MicrosoftCXXNameMangler Mangler(*this, Out);
2537
2538 bool Visible = VD->isExternallyVisible();
2539 // <operator-name> ::= ?_B # local static guard
2540 Mangler.getStream() << (Visible ? "\01??_B" : "\01?$S1@");
2541 unsigned ScopeDepth = 0;
2542 if (Visible && !getNextDiscriminator(VD, ScopeDepth))
2543 // If we do not have a discriminator and are emitting a guard variable for
2544 // use at global scope, then mangling the nested name will not be enough to
2545 // remove ambiguities.
2546 Mangler.mangle(VD, "");
2547 else
2548 Mangler.mangleNestedName(VD);
2549 Mangler.getStream() << (Visible ? "@5" : "@4IA");
2550 if (ScopeDepth)
2551 Mangler.mangleNumber(ScopeDepth);
2552 }
2553
mangleInitFiniStub(const VarDecl * D,raw_ostream & Out,char CharCode)2554 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
2555 raw_ostream &Out,
2556 char CharCode) {
2557 MicrosoftCXXNameMangler Mangler(*this, Out);
2558 Mangler.getStream() << "\01??__" << CharCode;
2559 Mangler.mangleName(D);
2560 if (D->isStaticDataMember()) {
2561 Mangler.mangleVariableEncoding(D);
2562 Mangler.getStream() << '@';
2563 }
2564 // This is the function class mangling. These stubs are global, non-variadic,
2565 // cdecl functions that return void and take no args.
2566 Mangler.getStream() << "YAXXZ";
2567 }
2568
mangleDynamicInitializer(const VarDecl * D,raw_ostream & Out)2569 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
2570 raw_ostream &Out) {
2571 // <initializer-name> ::= ?__E <name> YAXXZ
2572 mangleInitFiniStub(D, Out, 'E');
2573 }
2574
2575 void
mangleDynamicAtExitDestructor(const VarDecl * D,raw_ostream & Out)2576 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
2577 raw_ostream &Out) {
2578 // <destructor-name> ::= ?__F <name> YAXXZ
2579 mangleInitFiniStub(D, Out, 'F');
2580 }
2581
mangleStringLiteral(const StringLiteral * SL,raw_ostream & Out)2582 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
2583 raw_ostream &Out) {
2584 // <char-type> ::= 0 # char
2585 // ::= 1 # wchar_t
2586 // ::= ??? # char16_t/char32_t will need a mangling too...
2587 //
2588 // <literal-length> ::= <non-negative integer> # the length of the literal
2589 //
2590 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
2591 // # null-terminator
2592 //
2593 // <encoded-string> ::= <simple character> # uninteresting character
2594 // ::= '?$' <hex digit> <hex digit> # these two nibbles
2595 // # encode the byte for the
2596 // # character
2597 // ::= '?' [a-z] # \xe1 - \xfa
2598 // ::= '?' [A-Z] # \xc1 - \xda
2599 // ::= '?' [0-9] # [,/\:. \n\t'-]
2600 //
2601 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
2602 // <encoded-string> '@'
2603 MicrosoftCXXNameMangler Mangler(*this, Out);
2604 Mangler.getStream() << "\01??_C@_";
2605
2606 // <char-type>: The "kind" of string literal is encoded into the mangled name.
2607 if (SL->isWide())
2608 Mangler.getStream() << '1';
2609 else
2610 Mangler.getStream() << '0';
2611
2612 // <literal-length>: The next part of the mangled name consists of the length
2613 // of the string.
2614 // The StringLiteral does not consider the NUL terminator byte(s) but the
2615 // mangling does.
2616 // N.B. The length is in terms of bytes, not characters.
2617 Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
2618
2619 // We will use the "Rocksoft^tm Model CRC Algorithm" to describe the
2620 // properties of our CRC:
2621 // Width : 32
2622 // Poly : 04C11DB7
2623 // Init : FFFFFFFF
2624 // RefIn : True
2625 // RefOut : True
2626 // XorOut : 00000000
2627 // Check : 340BC6D9
2628 uint32_t CRC = 0xFFFFFFFFU;
2629
2630 auto UpdateCRC = [&CRC](char Byte) {
2631 for (unsigned i = 0; i < 8; ++i) {
2632 bool Bit = CRC & 0x80000000U;
2633 if (Byte & (1U << i))
2634 Bit = !Bit;
2635 CRC <<= 1;
2636 if (Bit)
2637 CRC ^= 0x04C11DB7U;
2638 }
2639 };
2640
2641 auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
2642 unsigned CharByteWidth = SL->getCharByteWidth();
2643 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2644 unsigned OffsetInCodeUnit = Index % CharByteWidth;
2645 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2646 };
2647
2648 auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
2649 unsigned CharByteWidth = SL->getCharByteWidth();
2650 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2651 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
2652 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2653 };
2654
2655 // CRC all the bytes of the StringLiteral.
2656 for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
2657 UpdateCRC(GetLittleEndianByte(I));
2658
2659 // The NUL terminator byte(s) were not present earlier,
2660 // we need to manually process those bytes into the CRC.
2661 for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2662 ++NullTerminator)
2663 UpdateCRC('\x00');
2664
2665 // The literature refers to the process of reversing the bits in the final CRC
2666 // output as "reflection".
2667 CRC = llvm::reverseBits(CRC);
2668
2669 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
2670 // scheme.
2671 Mangler.mangleNumber(CRC);
2672
2673 // <encoded-string>: The mangled name also contains the first 32 _characters_
2674 // (including null-terminator bytes) of the StringLiteral.
2675 // Each character is encoded by splitting them into bytes and then encoding
2676 // the constituent bytes.
2677 auto MangleByte = [&Mangler](char Byte) {
2678 // There are five different manglings for characters:
2679 // - [a-zA-Z0-9_$]: A one-to-one mapping.
2680 // - ?[a-z]: The range from \xe1 to \xfa.
2681 // - ?[A-Z]: The range from \xc1 to \xda.
2682 // - ?[0-9]: The set of [,/\:. \n\t'-].
2683 // - ?$XX: A fallback which maps nibbles.
2684 if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
2685 Mangler.getStream() << Byte;
2686 } else if (isLetter(Byte & 0x7f)) {
2687 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
2688 } else {
2689 const char SpecialChars[] = {',', '/', '\\', ':', '.',
2690 ' ', '\n', '\t', '\'', '-'};
2691 const char *Pos =
2692 std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
2693 if (Pos != std::end(SpecialChars)) {
2694 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
2695 } else {
2696 Mangler.getStream() << "?$";
2697 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
2698 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
2699 }
2700 }
2701 };
2702
2703 // Enforce our 32 character max.
2704 unsigned NumCharsToMangle = std::min(32U, SL->getLength());
2705 for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
2706 ++I)
2707 if (SL->isWide())
2708 MangleByte(GetBigEndianByte(I));
2709 else
2710 MangleByte(GetLittleEndianByte(I));
2711
2712 // Encode the NUL terminator if there is room.
2713 if (NumCharsToMangle < 32)
2714 for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2715 ++NullTerminator)
2716 MangleByte(0);
2717
2718 Mangler.getStream() << '@';
2719 }
2720
mangleCXXVTableBitSet(const CXXRecordDecl * RD,raw_ostream & Out)2721 void MicrosoftMangleContextImpl::mangleCXXVTableBitSet(const CXXRecordDecl *RD,
2722 raw_ostream &Out) {
2723 llvm::report_fatal_error("Cannot mangle bitsets yet");
2724 }
2725
2726 MicrosoftMangleContext *
create(ASTContext & Context,DiagnosticsEngine & Diags)2727 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
2728 return new MicrosoftMangleContextImpl(Context, Diags);
2729 }
2730