1 //===- NVPTXLowerAggrCopies.cpp - ------------------------------*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // Lower aggregate copies, memset, memcpy, memmov intrinsics into loops when
10 // the size is large or is not a compile-time constant.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "NVPTXLowerAggrCopies.h"
15 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/Debug.h"
28 
29 #define DEBUG_TYPE "nvptx"
30 
31 using namespace llvm;
32 
33 namespace {
34 // actual analysis class, which is a functionpass
35 struct NVPTXLowerAggrCopies : public FunctionPass {
36   static char ID;
37 
NVPTXLowerAggrCopies__anonef1c0aa40111::NVPTXLowerAggrCopies38   NVPTXLowerAggrCopies() : FunctionPass(ID) {}
39 
getAnalysisUsage__anonef1c0aa40111::NVPTXLowerAggrCopies40   void getAnalysisUsage(AnalysisUsage &AU) const override {
41     AU.addPreserved<MachineFunctionAnalysis>();
42     AU.addPreserved<StackProtector>();
43   }
44 
45   bool runOnFunction(Function &F) override;
46 
47   static const unsigned MaxAggrCopySize = 128;
48 
getPassName__anonef1c0aa40111::NVPTXLowerAggrCopies49   const char *getPassName() const override {
50     return "Lower aggregate copies/intrinsics into loops";
51   }
52 };
53 } // namespace
54 
55 char NVPTXLowerAggrCopies::ID = 0;
56 
57 // Lower MemTransferInst or load-store pair to loop
convertTransferToLoop(Instruction * splitAt,Value * srcAddr,Value * dstAddr,Value * len,bool srcVolatile,bool dstVolatile,LLVMContext & Context,Function & F)58 static void convertTransferToLoop(
59     Instruction *splitAt, Value *srcAddr, Value *dstAddr, Value *len,
60     //unsigned numLoads,
61     bool srcVolatile, bool dstVolatile, LLVMContext &Context, Function &F) {
62   Type *indType = len->getType();
63 
64   BasicBlock *origBB = splitAt->getParent();
65   BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split");
66   BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB);
67 
68   origBB->getTerminator()->setSuccessor(0, loopBB);
69   IRBuilder<> builder(origBB, origBB->getTerminator());
70 
71   // srcAddr and dstAddr are expected to be pointer types,
72   // so no check is made here.
73   unsigned srcAS = cast<PointerType>(srcAddr->getType())->getAddressSpace();
74   unsigned dstAS = cast<PointerType>(dstAddr->getType())->getAddressSpace();
75 
76   // Cast pointers to (char *)
77   srcAddr = builder.CreateBitCast(srcAddr, Type::getInt8PtrTy(Context, srcAS));
78   dstAddr = builder.CreateBitCast(dstAddr, Type::getInt8PtrTy(Context, dstAS));
79 
80   IRBuilder<> loop(loopBB);
81   // The loop index (ind) is a phi node.
82   PHINode *ind = loop.CreatePHI(indType, 0);
83   // Incoming value for ind is 0
84   ind->addIncoming(ConstantInt::get(indType, 0), origBB);
85 
86   // load from srcAddr+ind
87   Value *val = loop.CreateLoad(loop.CreateGEP(loop.getInt8Ty(), srcAddr, ind),
88                                srcVolatile);
89   // store at dstAddr+ind
90   loop.CreateStore(val, loop.CreateGEP(loop.getInt8Ty(), dstAddr, ind),
91                    dstVolatile);
92 
93   // The value for ind coming from backedge is (ind + 1)
94   Value *newind = loop.CreateAdd(ind, ConstantInt::get(indType, 1));
95   ind->addIncoming(newind, loopBB);
96 
97   loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB);
98 }
99 
100 // Lower MemSetInst to loop
convertMemSetToLoop(Instruction * splitAt,Value * dstAddr,Value * len,Value * val,LLVMContext & Context,Function & F)101 static void convertMemSetToLoop(Instruction *splitAt, Value *dstAddr,
102                                 Value *len, Value *val, LLVMContext &Context,
103                                 Function &F) {
104   BasicBlock *origBB = splitAt->getParent();
105   BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split");
106   BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB);
107 
108   origBB->getTerminator()->setSuccessor(0, loopBB);
109   IRBuilder<> builder(origBB, origBB->getTerminator());
110 
111   unsigned dstAS = cast<PointerType>(dstAddr->getType())->getAddressSpace();
112 
113   // Cast pointer to the type of value getting stored
114   dstAddr =
115       builder.CreateBitCast(dstAddr, PointerType::get(val->getType(), dstAS));
116 
117   IRBuilder<> loop(loopBB);
118   PHINode *ind = loop.CreatePHI(len->getType(), 0);
119   ind->addIncoming(ConstantInt::get(len->getType(), 0), origBB);
120 
121   loop.CreateStore(val, loop.CreateGEP(val->getType(), dstAddr, ind), false);
122 
123   Value *newind = loop.CreateAdd(ind, ConstantInt::get(len->getType(), 1));
124   ind->addIncoming(newind, loopBB);
125 
126   loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB);
127 }
128 
runOnFunction(Function & F)129 bool NVPTXLowerAggrCopies::runOnFunction(Function &F) {
130   SmallVector<LoadInst *, 4> aggrLoads;
131   SmallVector<MemTransferInst *, 4> aggrMemcpys;
132   SmallVector<MemSetInst *, 4> aggrMemsets;
133 
134   const DataLayout &DL = F.getParent()->getDataLayout();
135   LLVMContext &Context = F.getParent()->getContext();
136 
137   //
138   // Collect all the aggrLoads, aggrMemcpys and addrMemsets.
139   //
140   //const BasicBlock *firstBB = &F.front();  // first BB in F
141   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
142     //BasicBlock *bb = BI;
143     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
144          ++II) {
145       if (LoadInst *load = dyn_cast<LoadInst>(II)) {
146 
147         if (!load->hasOneUse())
148           continue;
149 
150         if (DL.getTypeStoreSize(load->getType()) < MaxAggrCopySize)
151           continue;
152 
153         User *use = load->user_back();
154         if (StoreInst *store = dyn_cast<StoreInst>(use)) {
155           if (store->getOperand(0) != load) //getValueOperand
156             continue;
157           aggrLoads.push_back(load);
158         }
159       } else if (MemTransferInst *intr = dyn_cast<MemTransferInst>(II)) {
160         Value *len = intr->getLength();
161         // If the number of elements being copied is greater
162         // than MaxAggrCopySize, lower it to a loop
163         if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) {
164           if (len_int->getZExtValue() >= MaxAggrCopySize) {
165             aggrMemcpys.push_back(intr);
166           }
167         } else {
168           // turn variable length memcpy/memmov into loop
169           aggrMemcpys.push_back(intr);
170         }
171       } else if (MemSetInst *memsetintr = dyn_cast<MemSetInst>(II)) {
172         Value *len = memsetintr->getLength();
173         if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) {
174           if (len_int->getZExtValue() >= MaxAggrCopySize) {
175             aggrMemsets.push_back(memsetintr);
176           }
177         } else {
178           // turn variable length memset into loop
179           aggrMemsets.push_back(memsetintr);
180         }
181       }
182     }
183   }
184   if ((aggrLoads.size() == 0) && (aggrMemcpys.size() == 0) &&
185       (aggrMemsets.size() == 0))
186     return false;
187 
188   //
189   // Do the transformation of an aggr load/copy/set to a loop
190   //
191   for (unsigned i = 0, e = aggrLoads.size(); i != e; ++i) {
192     LoadInst *load = aggrLoads[i];
193     StoreInst *store = dyn_cast<StoreInst>(*load->user_begin());
194     Value *srcAddr = load->getOperand(0);
195     Value *dstAddr = store->getOperand(1);
196     unsigned numLoads = DL.getTypeStoreSize(load->getType());
197     Value *len = ConstantInt::get(Type::getInt32Ty(Context), numLoads);
198 
199     convertTransferToLoop(store, srcAddr, dstAddr, len, load->isVolatile(),
200                           store->isVolatile(), Context, F);
201 
202     store->eraseFromParent();
203     load->eraseFromParent();
204   }
205 
206   for (unsigned i = 0, e = aggrMemcpys.size(); i != e; ++i) {
207     MemTransferInst *cpy = aggrMemcpys[i];
208     Value *len = cpy->getLength();
209     // llvm 2.7 version of memcpy does not have volatile
210     // operand yet. So always making it non-volatile
211     // optimistically, so that we don't see unnecessary
212     // st.volatile in ptx
213     convertTransferToLoop(cpy, cpy->getSource(), cpy->getDest(), len, false,
214                           false, Context, F);
215     cpy->eraseFromParent();
216   }
217 
218   for (unsigned i = 0, e = aggrMemsets.size(); i != e; ++i) {
219     MemSetInst *memsetinst = aggrMemsets[i];
220     Value *len = memsetinst->getLength();
221     Value *val = memsetinst->getValue();
222     convertMemSetToLoop(memsetinst, memsetinst->getDest(), len, val, Context,
223                         F);
224     memsetinst->eraseFromParent();
225   }
226 
227   return true;
228 }
229 
createLowerAggrCopies()230 FunctionPass *llvm::createLowerAggrCopies() {
231   return new NVPTXLowerAggrCopies();
232 }
233