1//===- PPCCallingConv.td - Calling Conventions for PowerPC -*- tablegen -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This describes the calling conventions for the PowerPC 32- and 64-bit 11// architectures. 12// 13//===----------------------------------------------------------------------===// 14 15/// CCIfSubtarget - Match if the current subtarget has a feature F. 16class CCIfSubtarget<string F, CCAction A> 17 : CCIf<!strconcat("static_cast<const PPCSubtarget&>" 18 "(State.getMachineFunction().getSubtarget()).", 19 F), 20 A>; 21class CCIfNotSubtarget<string F, CCAction A> 22 : CCIf<!strconcat("!static_cast<const PPCSubtarget&>" 23 "(State.getMachineFunction().getSubtarget()).", 24 F), 25 A>; 26 27//===----------------------------------------------------------------------===// 28// Return Value Calling Convention 29//===----------------------------------------------------------------------===// 30 31// PPC64 AnyReg return-value convention. No explicit register is specified for 32// the return-value. The register allocator is allowed and expected to choose 33// any free register. 34// 35// This calling convention is currently only supported by the stackmap and 36// patchpoint intrinsics. All other uses will result in an assert on Debug 37// builds. On Release builds we fallback to the PPC C calling convention. 38def RetCC_PPC64_AnyReg : CallingConv<[ 39 CCCustom<"CC_PPC_AnyReg_Error"> 40]>; 41 42// Return-value convention for PowerPC 43def RetCC_PPC : CallingConv<[ 44 CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>, 45 46 // On PPC64, integer return values are always promoted to i64 47 CCIfType<[i32, i1], CCIfSubtarget<"isPPC64()", CCPromoteToType<i64>>>, 48 CCIfType<[i1], CCIfNotSubtarget<"isPPC64()", CCPromoteToType<i32>>>, 49 50 CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>, 51 CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6]>>, 52 CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>, 53 54 // Floating point types returned as "direct" go into F1 .. F8; note that 55 // only the ELFv2 ABI fully utilizes all these registers. 56 CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>, 57 CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>, 58 59 // QPX vectors are returned in QF1 and QF2. 60 CCIfType<[v4f64, v4f32, v4i1], 61 CCIfSubtarget<"hasQPX()", CCAssignToReg<[QF1, QF2]>>>, 62 63 // Vector types returned as "direct" go into V2 .. V9; note that only the 64 // ELFv2 ABI fully utilizes all these registers. 65 CCIfType<[v16i8, v8i16, v4i32, v4f32], CCIfSubtarget<"hasAltivec()", 66 CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>, 67 CCIfType<[v2f64, v2i64], CCIfSubtarget<"hasVSX()", 68 CCAssignToReg<[VSH2, VSH3, VSH4, VSH5, VSH6, VSH7, VSH8, VSH9]>>> 69]>; 70 71// No explicit register is specified for the AnyReg calling convention. The 72// register allocator may assign the arguments to any free register. 73// 74// This calling convention is currently only supported by the stackmap and 75// patchpoint intrinsics. All other uses will result in an assert on Debug 76// builds. On Release builds we fallback to the PPC C calling convention. 77def CC_PPC64_AnyReg : CallingConv<[ 78 CCCustom<"CC_PPC_AnyReg_Error"> 79]>; 80 81// Note that we don't currently have calling conventions for 64-bit 82// PowerPC, but handle all the complexities of the ABI in the lowering 83// logic. FIXME: See if the logic can be simplified with use of CCs. 84// This may require some extensions to current table generation. 85 86// Simple calling convention for 64-bit ELF PowerPC fast isel. 87// Only handle ints and floats. All ints are promoted to i64. 88// Vector types and quadword ints are not handled. 89def CC_PPC64_ELF_FIS : CallingConv<[ 90 CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_PPC64_AnyReg>>, 91 92 CCIfType<[i1], CCPromoteToType<i64>>, 93 CCIfType<[i8], CCPromoteToType<i64>>, 94 CCIfType<[i16], CCPromoteToType<i64>>, 95 CCIfType<[i32], CCPromoteToType<i64>>, 96 CCIfType<[i64], CCAssignToReg<[X3, X4, X5, X6, X7, X8, X9, X10]>>, 97 CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>> 98]>; 99 100// Simple return-value convention for 64-bit ELF PowerPC fast isel. 101// All small ints are promoted to i64. Vector types, quadword ints, 102// and multiple register returns are "supported" to avoid compile 103// errors, but none are handled by the fast selector. 104def RetCC_PPC64_ELF_FIS : CallingConv<[ 105 CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_PPC64_AnyReg>>, 106 107 CCIfType<[i1], CCPromoteToType<i64>>, 108 CCIfType<[i8], CCPromoteToType<i64>>, 109 CCIfType<[i16], CCPromoteToType<i64>>, 110 CCIfType<[i32], CCPromoteToType<i64>>, 111 CCIfType<[i64], CCAssignToReg<[X3, X4]>>, 112 CCIfType<[i128], CCAssignToReg<[X3, X4, X5, X6]>>, 113 CCIfType<[f32], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>, 114 CCIfType<[f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>, 115 CCIfType<[v4f64, v4f32, v4i1], 116 CCIfSubtarget<"hasQPX()", CCAssignToReg<[QF1, QF2]>>>, 117 CCIfType<[v16i8, v8i16, v4i32, v4f32], CCIfSubtarget<"hasAltivec()", 118 CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9]>>>, 119 CCIfType<[v2f64, v2i64], CCIfSubtarget<"hasVSX()", 120 CCAssignToReg<[VSH2, VSH3, VSH4, VSH5, VSH6, VSH7, VSH8, VSH9]>>> 121]>; 122 123//===----------------------------------------------------------------------===// 124// PowerPC System V Release 4 32-bit ABI 125//===----------------------------------------------------------------------===// 126 127def CC_PPC32_SVR4_Common : CallingConv<[ 128 CCIfType<[i1], CCPromoteToType<i32>>, 129 130 // The ABI requires i64 to be passed in two adjacent registers with the first 131 // register having an odd register number. 132 CCIfType<[i32], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignArgRegs">>>, 133 134 // The first 8 integer arguments are passed in integer registers. 135 CCIfType<[i32], CCAssignToReg<[R3, R4, R5, R6, R7, R8, R9, R10]>>, 136 137 // Make sure the i64 words from a long double are either both passed in 138 // registers or both passed on the stack. 139 CCIfType<[f64], CCIfSplit<CCCustom<"CC_PPC32_SVR4_Custom_AlignFPArgRegs">>>, 140 141 // FP values are passed in F1 - F8. 142 CCIfType<[f32, f64], CCAssignToReg<[F1, F2, F3, F4, F5, F6, F7, F8]>>, 143 144 // Split arguments have an alignment of 8 bytes on the stack. 145 CCIfType<[i32], CCIfSplit<CCAssignToStack<4, 8>>>, 146 147 CCIfType<[i32], CCAssignToStack<4, 4>>, 148 149 // Floats are stored in double precision format, thus they have the same 150 // alignment and size as doubles. 151 CCIfType<[f32,f64], CCAssignToStack<8, 8>>, 152 153 // QPX vectors that are stored in double precision need 32-byte alignment. 154 CCIfType<[v4f64, v4i1], CCAssignToStack<32, 32>>, 155 156 // Vectors get 16-byte stack slots that are 16-byte aligned. 157 CCIfType<[v16i8, v8i16, v4i32, v4f32, v2f64, v2i64], CCAssignToStack<16, 16>> 158]>; 159 160// This calling convention puts vector arguments always on the stack. It is used 161// to assign vector arguments which belong to the variable portion of the 162// parameter list of a variable argument function. 163def CC_PPC32_SVR4_VarArg : CallingConv<[ 164 CCDelegateTo<CC_PPC32_SVR4_Common> 165]>; 166 167// In contrast to CC_PPC32_SVR4_VarArg, this calling convention first tries to 168// put vector arguments in vector registers before putting them on the stack. 169def CC_PPC32_SVR4 : CallingConv<[ 170 // QPX vectors mirror the scalar FP convention. 171 CCIfType<[v4f64, v4f32, v4i1], CCIfSubtarget<"hasQPX()", 172 CCAssignToReg<[QF1, QF2, QF3, QF4, QF5, QF6, QF7, QF8]>>>, 173 174 // The first 12 Vector arguments are passed in AltiVec registers. 175 CCIfType<[v16i8, v8i16, v4i32, v4f32], CCIfSubtarget<"hasAltivec()", 176 CCAssignToReg<[V2, V3, V4, V5, V6, V7, V8, V9, 177 V10, V11, V12, V13]>>>, 178 CCIfType<[v2f64, v2i64], CCIfSubtarget<"hasVSX()", 179 CCAssignToReg<[VSH2, VSH3, VSH4, VSH5, VSH6, VSH7, VSH8, VSH9, 180 VSH10, VSH11, VSH12, VSH13]>>>, 181 182 CCDelegateTo<CC_PPC32_SVR4_Common> 183]>; 184 185// Helper "calling convention" to handle aggregate by value arguments. 186// Aggregate by value arguments are always placed in the local variable space 187// of the caller. This calling convention is only used to assign those stack 188// offsets in the callers stack frame. 189// 190// Still, the address of the aggregate copy in the callers stack frame is passed 191// in a GPR (or in the parameter list area if all GPRs are allocated) from the 192// caller to the callee. The location for the address argument is assigned by 193// the CC_PPC32_SVR4 calling convention. 194// 195// The only purpose of CC_PPC32_SVR4_Custom_Dummy is to skip arguments which are 196// not passed by value. 197 198def CC_PPC32_SVR4_ByVal : CallingConv<[ 199 CCIfByVal<CCPassByVal<4, 4>>, 200 201 CCCustom<"CC_PPC32_SVR4_Custom_Dummy"> 202]>; 203 204def CSR_Altivec : CalleeSavedRegs<(add V20, V21, V22, V23, V24, V25, V26, V27, 205 V28, V29, V30, V31)>; 206 207def CSR_Darwin32 : CalleeSavedRegs<(add R13, R14, R15, R16, R17, R18, R19, R20, 208 R21, R22, R23, R24, R25, R26, R27, R28, 209 R29, R30, R31, F14, F15, F16, F17, F18, 210 F19, F20, F21, F22, F23, F24, F25, F26, 211 F27, F28, F29, F30, F31, CR2, CR3, CR4 212 )>; 213 214def CSR_Darwin32_Altivec : CalleeSavedRegs<(add CSR_Darwin32, CSR_Altivec)>; 215 216def CSR_SVR432 : CalleeSavedRegs<(add R14, R15, R16, R17, R18, R19, R20, 217 R21, R22, R23, R24, R25, R26, R27, R28, 218 R29, R30, R31, F14, F15, F16, F17, F18, 219 F19, F20, F21, F22, F23, F24, F25, F26, 220 F27, F28, F29, F30, F31, CR2, CR3, CR4 221 )>; 222 223def CSR_SVR432_Altivec : CalleeSavedRegs<(add CSR_SVR432, CSR_Altivec)>; 224 225def CSR_Darwin64 : CalleeSavedRegs<(add X13, X14, X15, X16, X17, X18, X19, X20, 226 X21, X22, X23, X24, X25, X26, X27, X28, 227 X29, X30, X31, F14, F15, F16, F17, F18, 228 F19, F20, F21, F22, F23, F24, F25, F26, 229 F27, F28, F29, F30, F31, CR2, CR3, CR4 230 )>; 231 232def CSR_Darwin64_Altivec : CalleeSavedRegs<(add CSR_Darwin64, CSR_Altivec)>; 233 234def CSR_SVR464 : CalleeSavedRegs<(add X14, X15, X16, X17, X18, X19, X20, 235 X21, X22, X23, X24, X25, X26, X27, X28, 236 X29, X30, X31, F14, F15, F16, F17, F18, 237 F19, F20, F21, F22, F23, F24, F25, F26, 238 F27, F28, F29, F30, F31, CR2, CR3, CR4 239 )>; 240 241def CSR_SVR464_Altivec : CalleeSavedRegs<(add CSR_SVR464, CSR_Altivec)>; 242 243def CSR_SVR464_R2 : CalleeSavedRegs<(add CSR_SVR464, X2)>; 244 245def CSR_SVR464_R2_Altivec : CalleeSavedRegs<(add CSR_SVR464_Altivec, X2)>; 246 247def CSR_NoRegs : CalleeSavedRegs<(add)>; 248 249def CSR_64_AllRegs: CalleeSavedRegs<(add X0, (sequence "X%u", 3, 10), 250 (sequence "X%u", 14, 31), 251 (sequence "F%u", 0, 31), 252 (sequence "CR%u", 0, 7))>; 253 254def CSR_64_AllRegs_Altivec : CalleeSavedRegs<(add CSR_64_AllRegs, 255 (sequence "V%u", 0, 31))>; 256 257def CSR_64_AllRegs_VSX : CalleeSavedRegs<(add CSR_64_AllRegs_Altivec, 258 (sequence "VSL%u", 0, 31), 259 (sequence "VSH%u", 0, 31))>; 260 261