1 //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
15 #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
16 
17 #include "PPC.h"
18 #include "PPCRegisterInfo.h"
19 #include "llvm/Target/TargetInstrInfo.h"
20 
21 #define GET_INSTRINFO_HEADER
22 #include "PPCGenInstrInfo.inc"
23 
24 namespace llvm {
25 
26 /// PPCII - This namespace holds all of the PowerPC target-specific
27 /// per-instruction flags.  These must match the corresponding definitions in
28 /// PPC.td and PPCInstrFormats.td.
29 namespace PPCII {
30 enum {
31   // PPC970 Instruction Flags.  These flags describe the characteristics of the
32   // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
33   // raw machine instructions.
34 
35   /// PPC970_First - This instruction starts a new dispatch group, so it will
36   /// always be the first one in the group.
37   PPC970_First = 0x1,
38 
39   /// PPC970_Single - This instruction starts a new dispatch group and
40   /// terminates it, so it will be the sole instruction in the group.
41   PPC970_Single = 0x2,
42 
43   /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
44   /// two dispatch pipes to be available to issue.
45   PPC970_Cracked = 0x4,
46 
47   /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
48   /// an instruction is issued to.
49   PPC970_Shift = 3,
50   PPC970_Mask = 0x07 << PPC970_Shift
51 };
52 enum PPC970_Unit {
53   /// These are the various PPC970 execution unit pipelines.  Each instruction
54   /// is one of these.
55   PPC970_Pseudo = 0 << PPC970_Shift,   // Pseudo instruction
56   PPC970_FXU    = 1 << PPC970_Shift,   // Fixed Point (aka Integer/ALU) Unit
57   PPC970_LSU    = 2 << PPC970_Shift,   // Load Store Unit
58   PPC970_FPU    = 3 << PPC970_Shift,   // Floating Point Unit
59   PPC970_CRU    = 4 << PPC970_Shift,   // Control Register Unit
60   PPC970_VALU   = 5 << PPC970_Shift,   // Vector ALU
61   PPC970_VPERM  = 6 << PPC970_Shift,   // Vector Permute Unit
62   PPC970_BRU    = 7 << PPC970_Shift    // Branch Unit
63 };
64 } // end namespace PPCII
65 
66 class PPCSubtarget;
67 class PPCInstrInfo : public PPCGenInstrInfo {
68   PPCSubtarget &Subtarget;
69   const PPCRegisterInfo RI;
70 
71   bool StoreRegToStackSlot(MachineFunction &MF,
72                            unsigned SrcReg, bool isKill, int FrameIdx,
73                            const TargetRegisterClass *RC,
74                            SmallVectorImpl<MachineInstr*> &NewMIs,
75                            bool &NonRI, bool &SpillsVRS) const;
76   bool LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
77                             unsigned DestReg, int FrameIdx,
78                             const TargetRegisterClass *RC,
79                             SmallVectorImpl<MachineInstr*> &NewMIs,
80                             bool &NonRI, bool &SpillsVRS) const;
81   virtual void anchor();
82 public:
83   explicit PPCInstrInfo(PPCSubtarget &STI);
84 
85   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
86   /// such, whenever a client has an instance of instruction info, it should
87   /// always be able to get register info as well (through this method).
88   ///
getRegisterInfo()89   const PPCRegisterInfo &getRegisterInfo() const { return RI; }
90 
91   ScheduleHazardRecognizer *
92   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
93                                const ScheduleDAG *DAG) const override;
94   ScheduleHazardRecognizer *
95   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
96                                      const ScheduleDAG *DAG) const override;
97 
98   int getOperandLatency(const InstrItineraryData *ItinData,
99                         const MachineInstr *DefMI, unsigned DefIdx,
100                         const MachineInstr *UseMI,
101                         unsigned UseIdx) const override;
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx)102   int getOperandLatency(const InstrItineraryData *ItinData,
103                         SDNode *DefNode, unsigned DefIdx,
104                         SDNode *UseNode, unsigned UseIdx) const override {
105     return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
106                                               UseNode, UseIdx);
107   }
108 
hasLowDefLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx)109   bool hasLowDefLatency(const InstrItineraryData *ItinData,
110                         const MachineInstr *DefMI,
111                         unsigned DefIdx) const override {
112     // Machine LICM should hoist all instructions in low-register-pressure
113     // situations; none are sufficiently free to justify leaving in a loop
114     // body.
115     return false;
116   }
117 
118   bool isCoalescableExtInstr(const MachineInstr &MI,
119                              unsigned &SrcReg, unsigned &DstReg,
120                              unsigned &SubIdx) const override;
121   unsigned isLoadFromStackSlot(const MachineInstr *MI,
122                                int &FrameIndex) const override;
123   unsigned isStoreToStackSlot(const MachineInstr *MI,
124                               int &FrameIndex) const override;
125 
126   // commuteInstruction - We can commute rlwimi instructions, but only if the
127   // rotate amt is zero.  We also have to munge the immediates a bit.
128   MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const override;
129 
130   bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
131                              unsigned &SrcOpIdx2) const override;
132 
133   void insertNoop(MachineBasicBlock &MBB,
134                   MachineBasicBlock::iterator MI) const override;
135 
136 
137   // Branch analysis.
138   bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
139                      MachineBasicBlock *&FBB,
140                      SmallVectorImpl<MachineOperand> &Cond,
141                      bool AllowModify) const override;
142   unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
143   unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
144                         MachineBasicBlock *FBB,
145                         const SmallVectorImpl<MachineOperand> &Cond,
146                         DebugLoc DL) const override;
147 
148   // Select analysis.
149   bool canInsertSelect(const MachineBasicBlock&,
150                        const SmallVectorImpl<MachineOperand> &Cond,
151                        unsigned, unsigned, int&, int&, int&) const override;
152   void insertSelect(MachineBasicBlock &MBB,
153                     MachineBasicBlock::iterator MI, DebugLoc DL,
154                     unsigned DstReg,
155                     const SmallVectorImpl<MachineOperand> &Cond,
156                     unsigned TrueReg, unsigned FalseReg) const override;
157 
158   void copyPhysReg(MachineBasicBlock &MBB,
159                    MachineBasicBlock::iterator I, DebugLoc DL,
160                    unsigned DestReg, unsigned SrcReg,
161                    bool KillSrc) const override;
162 
163   void storeRegToStackSlot(MachineBasicBlock &MBB,
164                            MachineBasicBlock::iterator MBBI,
165                            unsigned SrcReg, bool isKill, int FrameIndex,
166                            const TargetRegisterClass *RC,
167                            const TargetRegisterInfo *TRI) const override;
168 
169   void loadRegFromStackSlot(MachineBasicBlock &MBB,
170                             MachineBasicBlock::iterator MBBI,
171                             unsigned DestReg, int FrameIndex,
172                             const TargetRegisterClass *RC,
173                             const TargetRegisterInfo *TRI) const override;
174 
175   bool
176   ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
177 
178   bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
179                      unsigned Reg, MachineRegisterInfo *MRI) const override;
180 
181   // If conversion by predication (only supported by some branch instructions).
182   // All of the profitability checks always return true; it is always
183   // profitable to use the predicated branches.
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,const BranchProbability & Probability)184   bool isProfitableToIfCvt(MachineBasicBlock &MBB,
185                           unsigned NumCycles, unsigned ExtraPredCycles,
186                           const BranchProbability &Probability) const override {
187     return true;
188   }
189 
190   bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
191                            unsigned NumT, unsigned ExtraT,
192                            MachineBasicBlock &FMBB,
193                            unsigned NumF, unsigned ExtraF,
194                            const BranchProbability &Probability) const override;
195 
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,const BranchProbability & Probability)196   bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
197                                  unsigned NumCycles,
198                                  const BranchProbability
199                                  &Probability) const override {
200     return true;
201   }
202 
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)203   bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
204                                  MachineBasicBlock &FMBB) const override {
205     return false;
206   }
207 
208   // Predication support.
209   bool isPredicated(const MachineInstr *MI) const override;
210 
211   bool isUnpredicatedTerminator(const MachineInstr *MI) const override;
212 
213   bool PredicateInstruction(MachineInstr *MI,
214                     const SmallVectorImpl<MachineOperand> &Pred) const override;
215 
216   bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
217                    const SmallVectorImpl<MachineOperand> &Pred2) const override;
218 
219   bool DefinesPredicate(MachineInstr *MI,
220                         std::vector<MachineOperand> &Pred) const override;
221 
222   bool isPredicable(MachineInstr *MI) const override;
223 
224   // Comparison optimization.
225 
226 
227   bool analyzeCompare(const MachineInstr *MI,
228                       unsigned &SrcReg, unsigned &SrcReg2,
229                       int &Mask, int &Value) const override;
230 
231   bool optimizeCompareInstr(MachineInstr *CmpInstr,
232                             unsigned SrcReg, unsigned SrcReg2,
233                             int Mask, int Value,
234                             const MachineRegisterInfo *MRI) const override;
235 
236   /// GetInstSize - Return the number of bytes of code the specified
237   /// instruction may be.  This returns the maximum number of bytes.
238   ///
239   unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
240 
241   void getNoopForMachoTarget(MCInst &NopInst) const override;
242 };
243 
244 }
245 
246 #endif
247