1 //===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This pass implements instructions packetization for R600. It unsets isLast
12 /// bit of instructions inside a bundle and substitutes src register with
13 /// PreviousVector when applicable.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Support/Debug.h"
18 #include "AMDGPU.h"
19 #include "AMDGPUSubtarget.h"
20 #include "R600InstrInfo.h"
21 #include "llvm/CodeGen/DFAPacketizer.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/ScheduleDAG.h"
27 #include "llvm/Support/raw_ostream.h"
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "packets"
32
33 namespace {
34
35 class R600Packetizer : public MachineFunctionPass {
36
37 public:
38 static char ID;
R600Packetizer(const TargetMachine & TM)39 R600Packetizer(const TargetMachine &TM) : MachineFunctionPass(ID) {}
40
getAnalysisUsage(AnalysisUsage & AU) const41 void getAnalysisUsage(AnalysisUsage &AU) const override {
42 AU.setPreservesCFG();
43 AU.addRequired<MachineDominatorTree>();
44 AU.addPreserved<MachineDominatorTree>();
45 AU.addRequired<MachineLoopInfo>();
46 AU.addPreserved<MachineLoopInfo>();
47 MachineFunctionPass::getAnalysisUsage(AU);
48 }
49
getPassName() const50 const char *getPassName() const override {
51 return "R600 Packetizer";
52 }
53
54 bool runOnMachineFunction(MachineFunction &Fn) override;
55 };
56 char R600Packetizer::ID = 0;
57
58 class R600PacketizerList : public VLIWPacketizerList {
59
60 private:
61 const R600InstrInfo *TII;
62 const R600RegisterInfo &TRI;
63 bool VLIW5;
64 bool ConsideredInstUsesAlreadyWrittenVectorElement;
65
getSlot(const MachineInstr * MI) const66 unsigned getSlot(const MachineInstr *MI) const {
67 return TRI.getHWRegChan(MI->getOperand(0).getReg());
68 }
69
70 /// \returns register to PV chan mapping for bundle/single instructions that
71 /// immediately precedes I.
getPreviousVector(MachineBasicBlock::iterator I) const72 DenseMap<unsigned, unsigned> getPreviousVector(MachineBasicBlock::iterator I)
73 const {
74 DenseMap<unsigned, unsigned> Result;
75 I--;
76 if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle())
77 return Result;
78 MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
79 if (I->isBundle())
80 BI++;
81 int LastDstChan = -1;
82 do {
83 bool isTrans = false;
84 int BISlot = getSlot(BI);
85 if (LastDstChan >= BISlot)
86 isTrans = true;
87 LastDstChan = BISlot;
88 if (TII->isPredicated(BI))
89 continue;
90 int OperandIdx = TII->getOperandIdx(BI->getOpcode(), AMDGPU::OpName::write);
91 if (OperandIdx > -1 && BI->getOperand(OperandIdx).getImm() == 0)
92 continue;
93 int DstIdx = TII->getOperandIdx(BI->getOpcode(), AMDGPU::OpName::dst);
94 if (DstIdx == -1) {
95 continue;
96 }
97 unsigned Dst = BI->getOperand(DstIdx).getReg();
98 if (isTrans || TII->isTransOnly(BI)) {
99 Result[Dst] = AMDGPU::PS;
100 continue;
101 }
102 if (BI->getOpcode() == AMDGPU::DOT4_r600 ||
103 BI->getOpcode() == AMDGPU::DOT4_eg) {
104 Result[Dst] = AMDGPU::PV_X;
105 continue;
106 }
107 if (Dst == AMDGPU::OQAP) {
108 continue;
109 }
110 unsigned PVReg = 0;
111 switch (TRI.getHWRegChan(Dst)) {
112 case 0:
113 PVReg = AMDGPU::PV_X;
114 break;
115 case 1:
116 PVReg = AMDGPU::PV_Y;
117 break;
118 case 2:
119 PVReg = AMDGPU::PV_Z;
120 break;
121 case 3:
122 PVReg = AMDGPU::PV_W;
123 break;
124 default:
125 llvm_unreachable("Invalid Chan");
126 }
127 Result[Dst] = PVReg;
128 } while ((++BI)->isBundledWithPred());
129 return Result;
130 }
131
substitutePV(MachineInstr * MI,const DenseMap<unsigned,unsigned> & PVs) const132 void substitutePV(MachineInstr *MI, const DenseMap<unsigned, unsigned> &PVs)
133 const {
134 unsigned Ops[] = {
135 AMDGPU::OpName::src0,
136 AMDGPU::OpName::src1,
137 AMDGPU::OpName::src2
138 };
139 for (unsigned i = 0; i < 3; i++) {
140 int OperandIdx = TII->getOperandIdx(MI->getOpcode(), Ops[i]);
141 if (OperandIdx < 0)
142 continue;
143 unsigned Src = MI->getOperand(OperandIdx).getReg();
144 const DenseMap<unsigned, unsigned>::const_iterator It = PVs.find(Src);
145 if (It != PVs.end())
146 MI->getOperand(OperandIdx).setReg(It->second);
147 }
148 }
149 public:
150 // Ctor.
R600PacketizerList(MachineFunction & MF,MachineLoopInfo & MLI)151 R600PacketizerList(MachineFunction &MF, MachineLoopInfo &MLI)
152 : VLIWPacketizerList(MF, MLI, true),
153 TII(static_cast<const R600InstrInfo *>(
154 MF.getSubtarget().getInstrInfo())),
155 TRI(TII->getRegisterInfo()) {
156 VLIW5 = !MF.getSubtarget<AMDGPUSubtarget>().hasCaymanISA();
157 }
158
159 // initPacketizerState - initialize some internal flags.
initPacketizerState()160 void initPacketizerState() override {
161 ConsideredInstUsesAlreadyWrittenVectorElement = false;
162 }
163
164 // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
ignorePseudoInstruction(MachineInstr * MI,MachineBasicBlock * MBB)165 bool ignorePseudoInstruction(MachineInstr *MI,
166 MachineBasicBlock *MBB) override {
167 return false;
168 }
169
170 // isSoloInstruction - return true if instruction MI can not be packetized
171 // with any other instruction, which means that MI itself is a packet.
isSoloInstruction(MachineInstr * MI)172 bool isSoloInstruction(MachineInstr *MI) override {
173 if (TII->isVector(*MI))
174 return true;
175 if (!TII->isALUInstr(MI->getOpcode()))
176 return true;
177 if (MI->getOpcode() == AMDGPU::GROUP_BARRIER)
178 return true;
179 // XXX: This can be removed once the packetizer properly handles all the
180 // LDS instruction group restrictions.
181 if (TII->isLDSInstr(MI->getOpcode()))
182 return true;
183 return false;
184 }
185
186 // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
187 // together.
isLegalToPacketizeTogether(SUnit * SUI,SUnit * SUJ)188 bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override {
189 MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr();
190 if (getSlot(MII) == getSlot(MIJ))
191 ConsideredInstUsesAlreadyWrittenVectorElement = true;
192 // Does MII and MIJ share the same pred_sel ?
193 int OpI = TII->getOperandIdx(MII->getOpcode(), AMDGPU::OpName::pred_sel),
194 OpJ = TII->getOperandIdx(MIJ->getOpcode(), AMDGPU::OpName::pred_sel);
195 unsigned PredI = (OpI > -1)?MII->getOperand(OpI).getReg():0,
196 PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg():0;
197 if (PredI != PredJ)
198 return false;
199 if (SUJ->isSucc(SUI)) {
200 for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) {
201 const SDep &Dep = SUJ->Succs[i];
202 if (Dep.getSUnit() != SUI)
203 continue;
204 if (Dep.getKind() == SDep::Anti)
205 continue;
206 if (Dep.getKind() == SDep::Output)
207 if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg())
208 continue;
209 return false;
210 }
211 }
212
213 bool ARDef = TII->definesAddressRegister(MII) ||
214 TII->definesAddressRegister(MIJ);
215 bool ARUse = TII->usesAddressRegister(MII) ||
216 TII->usesAddressRegister(MIJ);
217 if (ARDef && ARUse)
218 return false;
219
220 return true;
221 }
222
223 // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
224 // and SUJ.
isLegalToPruneDependencies(SUnit * SUI,SUnit * SUJ)225 bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override {
226 return false;
227 }
228
setIsLastBit(MachineInstr * MI,unsigned Bit) const229 void setIsLastBit(MachineInstr *MI, unsigned Bit) const {
230 unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::last);
231 MI->getOperand(LastOp).setImm(Bit);
232 }
233
isBundlableWithCurrentPMI(MachineInstr * MI,const DenseMap<unsigned,unsigned> & PV,std::vector<R600InstrInfo::BankSwizzle> & BS,bool & isTransSlot)234 bool isBundlableWithCurrentPMI(MachineInstr *MI,
235 const DenseMap<unsigned, unsigned> &PV,
236 std::vector<R600InstrInfo::BankSwizzle> &BS,
237 bool &isTransSlot) {
238 isTransSlot = TII->isTransOnly(MI);
239 assert (!isTransSlot || VLIW5);
240
241 // Is the dst reg sequence legal ?
242 if (!isTransSlot && !CurrentPacketMIs.empty()) {
243 if (getSlot(MI) <= getSlot(CurrentPacketMIs.back())) {
244 if (ConsideredInstUsesAlreadyWrittenVectorElement &&
245 !TII->isVectorOnly(MI) && VLIW5) {
246 isTransSlot = true;
247 DEBUG(dbgs() << "Considering as Trans Inst :"; MI->dump(););
248 }
249 else
250 return false;
251 }
252 }
253
254 // Are the Constants limitations met ?
255 CurrentPacketMIs.push_back(MI);
256 if (!TII->fitsConstReadLimitations(CurrentPacketMIs)) {
257 DEBUG(
258 dbgs() << "Couldn't pack :\n";
259 MI->dump();
260 dbgs() << "with the following packets :\n";
261 for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
262 CurrentPacketMIs[i]->dump();
263 dbgs() << "\n";
264 }
265 dbgs() << "because of Consts read limitations\n";
266 );
267 CurrentPacketMIs.pop_back();
268 return false;
269 }
270
271 // Is there a BankSwizzle set that meet Read Port limitations ?
272 if (!TII->fitsReadPortLimitations(CurrentPacketMIs,
273 PV, BS, isTransSlot)) {
274 DEBUG(
275 dbgs() << "Couldn't pack :\n";
276 MI->dump();
277 dbgs() << "with the following packets :\n";
278 for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
279 CurrentPacketMIs[i]->dump();
280 dbgs() << "\n";
281 }
282 dbgs() << "because of Read port limitations\n";
283 );
284 CurrentPacketMIs.pop_back();
285 return false;
286 }
287
288 // We cannot read LDS source registrs from the Trans slot.
289 if (isTransSlot && TII->readsLDSSrcReg(MI))
290 return false;
291
292 CurrentPacketMIs.pop_back();
293 return true;
294 }
295
addToPacket(MachineInstr * MI)296 MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override {
297 MachineBasicBlock::iterator FirstInBundle =
298 CurrentPacketMIs.empty() ? MI : CurrentPacketMIs.front();
299 const DenseMap<unsigned, unsigned> &PV =
300 getPreviousVector(FirstInBundle);
301 std::vector<R600InstrInfo::BankSwizzle> BS;
302 bool isTransSlot;
303
304 if (isBundlableWithCurrentPMI(MI, PV, BS, isTransSlot)) {
305 for (unsigned i = 0, e = CurrentPacketMIs.size(); i < e; i++) {
306 MachineInstr *MI = CurrentPacketMIs[i];
307 unsigned Op = TII->getOperandIdx(MI->getOpcode(),
308 AMDGPU::OpName::bank_swizzle);
309 MI->getOperand(Op).setImm(BS[i]);
310 }
311 unsigned Op = TII->getOperandIdx(MI->getOpcode(),
312 AMDGPU::OpName::bank_swizzle);
313 MI->getOperand(Op).setImm(BS.back());
314 if (!CurrentPacketMIs.empty())
315 setIsLastBit(CurrentPacketMIs.back(), 0);
316 substitutePV(MI, PV);
317 MachineBasicBlock::iterator It = VLIWPacketizerList::addToPacket(MI);
318 if (isTransSlot) {
319 endPacket(std::next(It)->getParent(), std::next(It));
320 }
321 return It;
322 }
323 endPacket(MI->getParent(), MI);
324 if (TII->isTransOnly(MI))
325 return MI;
326 return VLIWPacketizerList::addToPacket(MI);
327 }
328 };
329
runOnMachineFunction(MachineFunction & Fn)330 bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) {
331 const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
332 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
333
334 // Instantiate the packetizer.
335 R600PacketizerList Packetizer(Fn, MLI);
336
337 // DFA state table should not be empty.
338 assert(Packetizer.getResourceTracker() && "Empty DFA table!");
339
340 //
341 // Loop over all basic blocks and remove KILL pseudo-instructions
342 // These instructions confuse the dependence analysis. Consider:
343 // D0 = ... (Insn 0)
344 // R0 = KILL R0, D0 (Insn 1)
345 // R0 = ... (Insn 2)
346 // Here, Insn 1 will result in the dependence graph not emitting an output
347 // dependence between Insn 0 and Insn 2. This can lead to incorrect
348 // packetization
349 //
350 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
351 MBB != MBBe; ++MBB) {
352 MachineBasicBlock::iterator End = MBB->end();
353 MachineBasicBlock::iterator MI = MBB->begin();
354 while (MI != End) {
355 if (MI->isKill() || MI->getOpcode() == AMDGPU::IMPLICIT_DEF ||
356 (MI->getOpcode() == AMDGPU::CF_ALU && !MI->getOperand(8).getImm())) {
357 MachineBasicBlock::iterator DeleteMI = MI;
358 ++MI;
359 MBB->erase(DeleteMI);
360 End = MBB->end();
361 continue;
362 }
363 ++MI;
364 }
365 }
366
367 // Loop over all of the basic blocks.
368 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
369 MBB != MBBe; ++MBB) {
370 // Find scheduling regions and schedule / packetize each region.
371 unsigned RemainingCount = MBB->size();
372 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
373 RegionEnd != MBB->begin();) {
374 // The next region starts above the previous region. Look backward in the
375 // instruction stream until we find the nearest boundary.
376 MachineBasicBlock::iterator I = RegionEnd;
377 for(;I != MBB->begin(); --I, --RemainingCount) {
378 if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
379 break;
380 }
381 I = MBB->begin();
382
383 // Skip empty scheduling regions.
384 if (I == RegionEnd) {
385 RegionEnd = std::prev(RegionEnd);
386 --RemainingCount;
387 continue;
388 }
389 // Skip regions with one instruction.
390 if (I == std::prev(RegionEnd)) {
391 RegionEnd = std::prev(RegionEnd);
392 continue;
393 }
394
395 Packetizer.PacketizeMIs(MBB, I, RegionEnd);
396 RegionEnd = I;
397 }
398 }
399
400 return true;
401
402 }
403
404 } // end anonymous namespace
405
createR600Packetizer(TargetMachine & tm)406 llvm::FunctionPass *llvm::createR600Packetizer(TargetMachine &tm) {
407 return new R600Packetizer(tm);
408 }
409