1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "llvm/ADT/IntervalMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/MC/MCStreamer.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/ELF.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/TargetRegistry.h"
27 
28 using namespace llvm;
29 using namespace llvm::object;
30 
31 #define DEBUG_TYPE "dyld"
32 
check(std::error_code Err)33 static inline std::error_code check(std::error_code Err) {
34   if (Err) {
35     report_fatal_error(Err.message());
36   }
37   return Err;
38 }
39 
40 namespace {
41 
42 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
43   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
44 
45   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
46   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
47   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
48   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
49 
50   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
51 
52   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
53 
54 public:
55   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
56 
57   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
58 
59   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
60 
61   // Methods for type inquiry through isa, cast and dyn_cast
classof(const Binary * v)62   static inline bool classof(const Binary *v) {
63     return (isa<ELFObjectFile<ELFT>>(v) &&
64             classof(cast<ELFObjectFile<ELFT>>(v)));
65   }
classof(const ELFObjectFile<ELFT> * v)66   static inline bool classof(const ELFObjectFile<ELFT> *v) {
67     return v->isDyldType();
68   }
69 
70 };
71 
72 
73 
74 // The MemoryBuffer passed into this constructor is just a wrapper around the
75 // actual memory.  Ultimately, the Binary parent class will take ownership of
76 // this MemoryBuffer object but not the underlying memory.
77 template <class ELFT>
DyldELFObject(MemoryBufferRef Wrapper,std::error_code & EC)78 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
79     : ELFObjectFile<ELFT>(Wrapper, EC) {
80   this->isDyldELFObject = true;
81 }
82 
83 template <class ELFT>
updateSectionAddress(const SectionRef & Sec,uint64_t Addr)84 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
85                                                uint64_t Addr) {
86   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
87   Elf_Shdr *shdr =
88       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
89 
90   // This assumes the address passed in matches the target address bitness
91   // The template-based type cast handles everything else.
92   shdr->sh_addr = static_cast<addr_type>(Addr);
93 }
94 
95 template <class ELFT>
updateSymbolAddress(const SymbolRef & SymRef,uint64_t Addr)96 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
97                                               uint64_t Addr) {
98 
99   Elf_Sym *sym = const_cast<Elf_Sym *>(
100       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
101 
102   // This assumes the address passed in matches the target address bitness
103   // The template-based type cast handles everything else.
104   sym->st_value = static_cast<addr_type>(Addr);
105 }
106 
107 class LoadedELFObjectInfo : public RuntimeDyld::LoadedObjectInfo {
108 public:
LoadedELFObjectInfo(RuntimeDyldImpl & RTDyld,unsigned BeginIdx,unsigned EndIdx)109   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
110                       unsigned EndIdx)
111     : RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {}
112 
113   OwningBinary<ObjectFile>
114   getObjectForDebug(const ObjectFile &Obj) const override;
115 };
116 
117 template <typename ELFT>
118 std::unique_ptr<DyldELFObject<ELFT>>
createRTDyldELFObject(MemoryBufferRef Buffer,const LoadedELFObjectInfo & L,std::error_code & ec)119 createRTDyldELFObject(MemoryBufferRef Buffer,
120                       const LoadedELFObjectInfo &L,
121                       std::error_code &ec) {
122   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
123   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
124 
125   std::unique_ptr<DyldELFObject<ELFT>> Obj =
126     llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
127 
128   // Iterate over all sections in the object.
129   for (const auto &Sec : Obj->sections()) {
130     StringRef SectionName;
131     Sec.getName(SectionName);
132     if (SectionName != "") {
133       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
134       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
135           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
136 
137       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) {
138         // This assumes that the address passed in matches the target address
139         // bitness. The template-based type cast handles everything else.
140         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
141       }
142     }
143   }
144 
145   return Obj;
146 }
147 
createELFDebugObject(const ObjectFile & Obj,const LoadedELFObjectInfo & L)148 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
149                                               const LoadedELFObjectInfo &L) {
150   assert(Obj.isELF() && "Not an ELF object file.");
151 
152   std::unique_ptr<MemoryBuffer> Buffer =
153     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
154 
155   std::error_code ec;
156 
157   std::unique_ptr<ObjectFile> DebugObj;
158   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
159     typedef ELFType<support::little, 2, false> ELF32LE;
160     DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec);
161   } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
162     typedef ELFType<support::big, 2, false> ELF32BE;
163     DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec);
164   } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
165     typedef ELFType<support::big, 2, true> ELF64BE;
166     DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec);
167   } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
168     typedef ELFType<support::little, 2, true> ELF64LE;
169     DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec);
170   } else
171     llvm_unreachable("Unexpected ELF format");
172 
173   assert(!ec && "Could not construct copy ELF object file");
174 
175   return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
176 }
177 
178 OwningBinary<ObjectFile>
getObjectForDebug(const ObjectFile & Obj) const179 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
180   return createELFDebugObject(Obj, *this);
181 }
182 
183 } // namespace
184 
185 namespace llvm {
186 
RuntimeDyldELF(RuntimeDyld::MemoryManager & MemMgr,RuntimeDyld::SymbolResolver & Resolver)187 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
188                                RuntimeDyld::SymbolResolver &Resolver)
189     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
~RuntimeDyldELF()190 RuntimeDyldELF::~RuntimeDyldELF() {}
191 
registerEHFrames()192 void RuntimeDyldELF::registerEHFrames() {
193   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
194     SID EHFrameSID = UnregisteredEHFrameSections[i];
195     uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
196     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
197     size_t EHFrameSize = Sections[EHFrameSID].Size;
198     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
199     RegisteredEHFrameSections.push_back(EHFrameSID);
200   }
201   UnregisteredEHFrameSections.clear();
202 }
203 
deregisterEHFrames()204 void RuntimeDyldELF::deregisterEHFrames() {
205   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
206     SID EHFrameSID = RegisteredEHFrameSections[i];
207     uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
208     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
209     size_t EHFrameSize = Sections[EHFrameSID].Size;
210     MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
211   }
212   RegisteredEHFrameSections.clear();
213 }
214 
215 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const object::ObjectFile & O)216 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
217   unsigned SectionStartIdx, SectionEndIdx;
218   std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
219   return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx,
220                                                 SectionEndIdx);
221 }
222 
resolveX86_64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend,uint64_t SymOffset)223 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
224                                              uint64_t Offset, uint64_t Value,
225                                              uint32_t Type, int64_t Addend,
226                                              uint64_t SymOffset) {
227   switch (Type) {
228   default:
229     llvm_unreachable("Relocation type not implemented yet!");
230     break;
231   case ELF::R_X86_64_64: {
232     support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
233     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
234                  << format("%p\n", Section.Address + Offset));
235     break;
236   }
237   case ELF::R_X86_64_32:
238   case ELF::R_X86_64_32S: {
239     Value += Addend;
240     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
241            (Type == ELF::R_X86_64_32S &&
242             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
243     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
244     support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
245     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
246                  << format("%p\n", Section.Address + Offset));
247     break;
248   }
249   case ELF::R_X86_64_PC32: {
250     // Get the placeholder value from the generated object since
251     // a previous relocation attempt may have overwritten the loaded version
252     support::ulittle32_t::ref Placeholder(
253         (void *)(Section.ObjAddress + Offset));
254     uint64_t FinalAddress = Section.LoadAddress + Offset;
255     int64_t RealOffset = Value + Addend - FinalAddress;
256     // Don't add the placeholder if this is a stub
257     if (Offset < Section.Size)
258       RealOffset += Placeholder;
259     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
260     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
261     support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
262     break;
263   }
264   case ELF::R_X86_64_PC64: {
265     // Get the placeholder value from the generated object since
266     // a previous relocation attempt may have overwritten the loaded version
267     support::ulittle64_t::ref Placeholder(
268         (void *)(Section.ObjAddress + Offset));
269     uint64_t FinalAddress = Section.LoadAddress + Offset;
270     int64_t RealOffset = Value + Addend - FinalAddress;
271     if (Offset < Section.Size)
272       RealOffset += Placeholder;
273     support::ulittle64_t::ref(Section.Address + Offset) = RealOffset;
274     break;
275   }
276   }
277 }
278 
resolveX86Relocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)279 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
280                                           uint64_t Offset, uint32_t Value,
281                                           uint32_t Type, int32_t Addend) {
282   switch (Type) {
283   case ELF::R_386_32: {
284     // Get the placeholder value from the generated object since
285     // a previous relocation attempt may have overwritten the loaded version
286     support::ulittle32_t::ref Placeholder(
287         (void *)(Section.ObjAddress + Offset));
288     support::ulittle32_t::ref(Section.Address + Offset) =
289         Placeholder + Value + Addend;
290     break;
291   }
292   case ELF::R_386_PC32: {
293     // Get the placeholder value from the generated object since
294     // a previous relocation attempt may have overwritten the loaded version
295     support::ulittle32_t::ref Placeholder(
296         (void *)(Section.ObjAddress + Offset));
297     uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
298     uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress;
299     support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
300     break;
301   }
302   default:
303     // There are other relocation types, but it appears these are the
304     // only ones currently used by the LLVM ELF object writer
305     llvm_unreachable("Relocation type not implemented yet!");
306     break;
307   }
308 }
309 
resolveAArch64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)310 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
311                                               uint64_t Offset, uint64_t Value,
312                                               uint32_t Type, int64_t Addend) {
313   uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
314   uint64_t FinalAddress = Section.LoadAddress + Offset;
315 
316   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
317                << format("%llx", Section.Address + Offset)
318                << " FinalAddress: 0x" << format("%llx", FinalAddress)
319                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
320                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
321                << "\n");
322 
323   switch (Type) {
324   default:
325     llvm_unreachable("Relocation type not implemented yet!");
326     break;
327   case ELF::R_AARCH64_ABS64: {
328     uint64_t *TargetPtr =
329         reinterpret_cast<uint64_t *>(Section.Address + Offset);
330     *TargetPtr = Value + Addend;
331     break;
332   }
333   case ELF::R_AARCH64_PREL32: {
334     uint64_t Result = Value + Addend - FinalAddress;
335     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
336            static_cast<int64_t>(Result) <= UINT32_MAX);
337     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
338     break;
339   }
340   case ELF::R_AARCH64_CALL26: // fallthrough
341   case ELF::R_AARCH64_JUMP26: {
342     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
343     // calculation.
344     uint64_t BranchImm = Value + Addend - FinalAddress;
345 
346     // "Check that -2^27 <= result < 2^27".
347     assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
348            static_cast<int64_t>(BranchImm) < (1LL << 27));
349 
350     // AArch64 code is emitted with .rela relocations. The data already in any
351     // bits affected by the relocation on entry is garbage.
352     *TargetPtr &= 0xfc000000U;
353     // Immediate goes in bits 25:0 of B and BL.
354     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
355     break;
356   }
357   case ELF::R_AARCH64_MOVW_UABS_G3: {
358     uint64_t Result = Value + Addend;
359 
360     // AArch64 code is emitted with .rela relocations. The data already in any
361     // bits affected by the relocation on entry is garbage.
362     *TargetPtr &= 0xffe0001fU;
363     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
364     *TargetPtr |= Result >> (48 - 5);
365     // Shift must be "lsl #48", in bits 22:21
366     assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
367     break;
368   }
369   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
370     uint64_t Result = Value + Addend;
371 
372     // AArch64 code is emitted with .rela relocations. The data already in any
373     // bits affected by the relocation on entry is garbage.
374     *TargetPtr &= 0xffe0001fU;
375     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
376     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
377     // Shift must be "lsl #32", in bits 22:21
378     assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
379     break;
380   }
381   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
382     uint64_t Result = Value + Addend;
383 
384     // AArch64 code is emitted with .rela relocations. The data already in any
385     // bits affected by the relocation on entry is garbage.
386     *TargetPtr &= 0xffe0001fU;
387     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
388     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
389     // Shift must be "lsl #16", in bits 22:2
390     assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
391     break;
392   }
393   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
394     uint64_t Result = Value + Addend;
395 
396     // AArch64 code is emitted with .rela relocations. The data already in any
397     // bits affected by the relocation on entry is garbage.
398     *TargetPtr &= 0xffe0001fU;
399     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
400     *TargetPtr |= ((Result & 0xffffU) << 5);
401     // Shift must be "lsl #0", in bits 22:21.
402     assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
403     break;
404   }
405   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
406     // Operation: Page(S+A) - Page(P)
407     uint64_t Result =
408         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
409 
410     // Check that -2^32 <= X < 2^32
411     assert(static_cast<int64_t>(Result) >= (-1LL << 32) &&
412            static_cast<int64_t>(Result) < (1LL << 32) &&
413            "overflow check failed for relocation");
414 
415     // AArch64 code is emitted with .rela relocations. The data already in any
416     // bits affected by the relocation on entry is garbage.
417     *TargetPtr &= 0x9f00001fU;
418     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
419     // from bits 32:12 of X.
420     *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
421     *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
422     break;
423   }
424   case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
425     // Operation: S + A
426     uint64_t Result = Value + Addend;
427 
428     // AArch64 code is emitted with .rela relocations. The data already in any
429     // bits affected by the relocation on entry is garbage.
430     *TargetPtr &= 0xffc003ffU;
431     // Immediate goes in bits 21:10 of LD/ST instruction, taken
432     // from bits 11:2 of X
433     *TargetPtr |= ((Result & 0xffc) << (10 - 2));
434     break;
435   }
436   case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
437     // Operation: S + A
438     uint64_t Result = Value + Addend;
439 
440     // AArch64 code is emitted with .rela relocations. The data already in any
441     // bits affected by the relocation on entry is garbage.
442     *TargetPtr &= 0xffc003ffU;
443     // Immediate goes in bits 21:10 of LD/ST instruction, taken
444     // from bits 11:3 of X
445     *TargetPtr |= ((Result & 0xff8) << (10 - 3));
446     break;
447   }
448   }
449 }
450 
resolveARMRelocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)451 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
452                                           uint64_t Offset, uint32_t Value,
453                                           uint32_t Type, int32_t Addend) {
454   // TODO: Add Thumb relocations.
455   uint32_t *Placeholder =
456       reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
457   uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
458   uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
459   Value += Addend;
460 
461   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
462                << Section.Address + Offset
463                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
464                << format("%x", Value) << " Type: " << format("%x", Type)
465                << " Addend: " << format("%x", Addend) << "\n");
466 
467   switch (Type) {
468   default:
469     llvm_unreachable("Not implemented relocation type!");
470 
471   case ELF::R_ARM_NONE:
472     break;
473   // Write a 32bit value to relocation address, taking into account the
474   // implicit addend encoded in the target.
475   case ELF::R_ARM_PREL31:
476   case ELF::R_ARM_TARGET1:
477   case ELF::R_ARM_ABS32:
478     *TargetPtr = *Placeholder + Value;
479     break;
480   // Write first 16 bit of 32 bit value to the mov instruction.
481   // Last 4 bit should be shifted.
482   case ELF::R_ARM_MOVW_ABS_NC:
483     // We are not expecting any other addend in the relocation address.
484     // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
485     // non-contiguous fields.
486     assert((*Placeholder & 0x000F0FFF) == 0);
487     Value = Value & 0xFFFF;
488     *TargetPtr = *Placeholder | (Value & 0xFFF);
489     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
490     break;
491   // Write last 16 bit of 32 bit value to the mov instruction.
492   // Last 4 bit should be shifted.
493   case ELF::R_ARM_MOVT_ABS:
494     // We are not expecting any other addend in the relocation address.
495     // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
496     assert((*Placeholder & 0x000F0FFF) == 0);
497 
498     Value = (Value >> 16) & 0xFFFF;
499     *TargetPtr = *Placeholder | (Value & 0xFFF);
500     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
501     break;
502   // Write 24 bit relative value to the branch instruction.
503   case ELF::R_ARM_PC24: // Fall through.
504   case ELF::R_ARM_CALL: // Fall through.
505   case ELF::R_ARM_JUMP24: {
506     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
507     RelValue = (RelValue & 0x03FFFFFC) >> 2;
508     assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
509     *TargetPtr &= 0xFF000000;
510     *TargetPtr |= RelValue;
511     break;
512   }
513   case ELF::R_ARM_PRIVATE_0:
514     // This relocation is reserved by the ARM ELF ABI for internal use. We
515     // appropriate it here to act as an R_ARM_ABS32 without any addend for use
516     // in the stubs created during JIT (which can't put an addend into the
517     // original object file).
518     *TargetPtr = Value;
519     break;
520   }
521 }
522 
resolveMIPSRelocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)523 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
524                                            uint64_t Offset, uint32_t Value,
525                                            uint32_t Type, int32_t Addend) {
526   uint32_t *Placeholder =
527       reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
528   uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
529   Value += Addend;
530 
531   DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
532                << Section.Address + Offset << " FinalAddress: "
533                << format("%p", Section.LoadAddress + Offset) << " Value: "
534                << format("%x", Value) << " Type: " << format("%x", Type)
535                << " Addend: " << format("%x", Addend) << "\n");
536 
537   switch (Type) {
538   default:
539     llvm_unreachable("Not implemented relocation type!");
540     break;
541   case ELF::R_MIPS_32:
542     *TargetPtr = Value + (*Placeholder);
543     break;
544   case ELF::R_MIPS_26:
545     *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2);
546     break;
547   case ELF::R_MIPS_HI16:
548     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
549     Value += ((*Placeholder) & 0x0000ffff) << 16;
550     *TargetPtr =
551         ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
552     break;
553   case ELF::R_MIPS_LO16:
554     Value += ((*Placeholder) & 0x0000ffff);
555     *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
556     break;
557   case ELF::R_MIPS_UNUSED1:
558     // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
559     // are used for internal JIT purpose. These relocations are similar to
560     // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
561     // account.
562     *TargetPtr =
563         ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
564     break;
565   case ELF::R_MIPS_UNUSED2:
566     *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
567     break;
568   }
569 }
570 
571 // Return the .TOC. section and offset.
findPPC64TOCSection(const ObjectFile & Obj,ObjSectionToIDMap & LocalSections,RelocationValueRef & Rel)572 void RuntimeDyldELF::findPPC64TOCSection(const ObjectFile &Obj,
573                                          ObjSectionToIDMap &LocalSections,
574                                          RelocationValueRef &Rel) {
575   // Set a default SectionID in case we do not find a TOC section below.
576   // This may happen for references to TOC base base (sym@toc, .odp
577   // relocation) without a .toc directive.  In this case just use the
578   // first section (which is usually the .odp) since the code won't
579   // reference the .toc base directly.
580   Rel.SymbolName = NULL;
581   Rel.SectionID = 0;
582 
583   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
584   // order. The TOC starts where the first of these sections starts.
585   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
586        si != se; ++si) {
587 
588     StringRef SectionName;
589     check(si->getName(SectionName));
590 
591     if (SectionName == ".got"
592         || SectionName == ".toc"
593         || SectionName == ".tocbss"
594         || SectionName == ".plt") {
595       Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections);
596       break;
597     }
598   }
599 
600   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
601   // thus permitting a full 64 Kbytes segment.
602   Rel.Addend = 0x8000;
603 }
604 
605 // Returns the sections and offset associated with the ODP entry referenced
606 // by Symbol.
findOPDEntrySection(const ObjectFile & Obj,ObjSectionToIDMap & LocalSections,RelocationValueRef & Rel)607 void RuntimeDyldELF::findOPDEntrySection(const ObjectFile &Obj,
608                                          ObjSectionToIDMap &LocalSections,
609                                          RelocationValueRef &Rel) {
610   // Get the ELF symbol value (st_value) to compare with Relocation offset in
611   // .opd entries
612   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
613        si != se; ++si) {
614     section_iterator RelSecI = si->getRelocatedSection();
615     if (RelSecI == Obj.section_end())
616       continue;
617 
618     StringRef RelSectionName;
619     check(RelSecI->getName(RelSectionName));
620     if (RelSectionName != ".opd")
621       continue;
622 
623     for (relocation_iterator i = si->relocation_begin(),
624                              e = si->relocation_end();
625          i != e;) {
626       // The R_PPC64_ADDR64 relocation indicates the first field
627       // of a .opd entry
628       uint64_t TypeFunc;
629       check(i->getType(TypeFunc));
630       if (TypeFunc != ELF::R_PPC64_ADDR64) {
631         ++i;
632         continue;
633       }
634 
635       uint64_t TargetSymbolOffset;
636       symbol_iterator TargetSymbol = i->getSymbol();
637       check(i->getOffset(TargetSymbolOffset));
638       int64_t Addend;
639       check(getELFRelocationAddend(*i, Addend));
640 
641       ++i;
642       if (i == e)
643         break;
644 
645       // Just check if following relocation is a R_PPC64_TOC
646       uint64_t TypeTOC;
647       check(i->getType(TypeTOC));
648       if (TypeTOC != ELF::R_PPC64_TOC)
649         continue;
650 
651       // Finally compares the Symbol value and the target symbol offset
652       // to check if this .opd entry refers to the symbol the relocation
653       // points to.
654       if (Rel.Addend != (int64_t)TargetSymbolOffset)
655         continue;
656 
657       section_iterator tsi(Obj.section_end());
658       check(TargetSymbol->getSection(tsi));
659       bool IsCode = tsi->isText();
660       Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
661       Rel.Addend = (intptr_t)Addend;
662       return;
663     }
664   }
665   llvm_unreachable("Attempting to get address of ODP entry!");
666 }
667 
668 // Relocation masks following the #lo(value), #hi(value), #ha(value),
669 // #higher(value), #highera(value), #highest(value), and #highesta(value)
670 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
671 // document.
672 
applyPPClo(uint64_t value)673 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
674 
applyPPChi(uint64_t value)675 static inline uint16_t applyPPChi(uint64_t value) {
676   return (value >> 16) & 0xffff;
677 }
678 
applyPPCha(uint64_t value)679 static inline uint16_t applyPPCha (uint64_t value) {
680   return ((value + 0x8000) >> 16) & 0xffff;
681 }
682 
applyPPChigher(uint64_t value)683 static inline uint16_t applyPPChigher(uint64_t value) {
684   return (value >> 32) & 0xffff;
685 }
686 
applyPPChighera(uint64_t value)687 static inline uint16_t applyPPChighera (uint64_t value) {
688   return ((value + 0x8000) >> 32) & 0xffff;
689 }
690 
applyPPChighest(uint64_t value)691 static inline uint16_t applyPPChighest(uint64_t value) {
692   return (value >> 48) & 0xffff;
693 }
694 
applyPPChighesta(uint64_t value)695 static inline uint16_t applyPPChighesta (uint64_t value) {
696   return ((value + 0x8000) >> 48) & 0xffff;
697 }
698 
resolvePPC64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)699 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
700                                             uint64_t Offset, uint64_t Value,
701                                             uint32_t Type, int64_t Addend) {
702   uint8_t *LocalAddress = Section.Address + Offset;
703   switch (Type) {
704   default:
705     llvm_unreachable("Relocation type not implemented yet!");
706     break;
707   case ELF::R_PPC64_ADDR16:
708     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
709     break;
710   case ELF::R_PPC64_ADDR16_DS:
711     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
712     break;
713   case ELF::R_PPC64_ADDR16_LO:
714     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
715     break;
716   case ELF::R_PPC64_ADDR16_LO_DS:
717     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
718     break;
719   case ELF::R_PPC64_ADDR16_HI:
720     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
721     break;
722   case ELF::R_PPC64_ADDR16_HA:
723     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
724     break;
725   case ELF::R_PPC64_ADDR16_HIGHER:
726     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
727     break;
728   case ELF::R_PPC64_ADDR16_HIGHERA:
729     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
730     break;
731   case ELF::R_PPC64_ADDR16_HIGHEST:
732     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
733     break;
734   case ELF::R_PPC64_ADDR16_HIGHESTA:
735     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
736     break;
737   case ELF::R_PPC64_ADDR14: {
738     assert(((Value + Addend) & 3) == 0);
739     // Preserve the AA/LK bits in the branch instruction
740     uint8_t aalk = *(LocalAddress + 3);
741     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
742   } break;
743   case ELF::R_PPC64_REL16_LO: {
744     uint64_t FinalAddress = (Section.LoadAddress + Offset);
745     uint64_t Delta = Value - FinalAddress + Addend;
746     writeInt16BE(LocalAddress, applyPPClo(Delta));
747   } break;
748   case ELF::R_PPC64_REL16_HI: {
749     uint64_t FinalAddress = (Section.LoadAddress + Offset);
750     uint64_t Delta = Value - FinalAddress + Addend;
751     writeInt16BE(LocalAddress, applyPPChi(Delta));
752   } break;
753   case ELF::R_PPC64_REL16_HA: {
754     uint64_t FinalAddress = (Section.LoadAddress + Offset);
755     uint64_t Delta = Value - FinalAddress + Addend;
756     writeInt16BE(LocalAddress, applyPPCha(Delta));
757   } break;
758   case ELF::R_PPC64_ADDR32: {
759     int32_t Result = static_cast<int32_t>(Value + Addend);
760     if (SignExtend32<32>(Result) != Result)
761       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
762     writeInt32BE(LocalAddress, Result);
763   } break;
764   case ELF::R_PPC64_REL24: {
765     uint64_t FinalAddress = (Section.LoadAddress + Offset);
766     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
767     if (SignExtend32<24>(delta) != delta)
768       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
769     // Generates a 'bl <address>' instruction
770     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
771   } break;
772   case ELF::R_PPC64_REL32: {
773     uint64_t FinalAddress = (Section.LoadAddress + Offset);
774     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
775     if (SignExtend32<32>(delta) != delta)
776       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
777     writeInt32BE(LocalAddress, delta);
778   } break;
779   case ELF::R_PPC64_REL64: {
780     uint64_t FinalAddress = (Section.LoadAddress + Offset);
781     uint64_t Delta = Value - FinalAddress + Addend;
782     writeInt64BE(LocalAddress, Delta);
783   } break;
784   case ELF::R_PPC64_ADDR64:
785     writeInt64BE(LocalAddress, Value + Addend);
786     break;
787   }
788 }
789 
resolveSystemZRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)790 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
791                                               uint64_t Offset, uint64_t Value,
792                                               uint32_t Type, int64_t Addend) {
793   uint8_t *LocalAddress = Section.Address + Offset;
794   switch (Type) {
795   default:
796     llvm_unreachable("Relocation type not implemented yet!");
797     break;
798   case ELF::R_390_PC16DBL:
799   case ELF::R_390_PLT16DBL: {
800     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
801     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
802     writeInt16BE(LocalAddress, Delta / 2);
803     break;
804   }
805   case ELF::R_390_PC32DBL:
806   case ELF::R_390_PLT32DBL: {
807     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
808     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
809     writeInt32BE(LocalAddress, Delta / 2);
810     break;
811   }
812   case ELF::R_390_PC32: {
813     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
814     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
815     writeInt32BE(LocalAddress, Delta);
816     break;
817   }
818   case ELF::R_390_64:
819     writeInt64BE(LocalAddress, Value + Addend);
820     break;
821   }
822 }
823 
824 // The target location for the relocation is described by RE.SectionID and
825 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
826 // SectionEntry has three members describing its location.
827 // SectionEntry::Address is the address at which the section has been loaded
828 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
829 // address that the section will have in the target process.
830 // SectionEntry::ObjAddress is the address of the bits for this section in the
831 // original emitted object image (also in the current address space).
832 //
833 // Relocations will be applied as if the section were loaded at
834 // SectionEntry::LoadAddress, but they will be applied at an address based
835 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
836 // Target memory contents if they are required for value calculations.
837 //
838 // The Value parameter here is the load address of the symbol for the
839 // relocation to be applied.  For relocations which refer to symbols in the
840 // current object Value will be the LoadAddress of the section in which
841 // the symbol resides (RE.Addend provides additional information about the
842 // symbol location).  For external symbols, Value will be the address of the
843 // symbol in the target address space.
resolveRelocation(const RelocationEntry & RE,uint64_t Value)844 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
845                                        uint64_t Value) {
846   const SectionEntry &Section = Sections[RE.SectionID];
847   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
848                            RE.SymOffset);
849 }
850 
resolveRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend,uint64_t SymOffset)851 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
852                                        uint64_t Offset, uint64_t Value,
853                                        uint32_t Type, int64_t Addend,
854                                        uint64_t SymOffset) {
855   switch (Arch) {
856   case Triple::x86_64:
857     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
858     break;
859   case Triple::x86:
860     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
861                          (uint32_t)(Addend & 0xffffffffL));
862     break;
863   case Triple::aarch64:
864   case Triple::aarch64_be:
865     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
866     break;
867   case Triple::arm: // Fall through.
868   case Triple::armeb:
869   case Triple::thumb:
870   case Triple::thumbeb:
871     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
872                          (uint32_t)(Addend & 0xffffffffL));
873     break;
874   case Triple::mips: // Fall through.
875   case Triple::mipsel:
876     resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
877                           Type, (uint32_t)(Addend & 0xffffffffL));
878     break;
879   case Triple::ppc64: // Fall through.
880   case Triple::ppc64le:
881     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
882     break;
883   case Triple::systemz:
884     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
885     break;
886   default:
887     llvm_unreachable("Unsupported CPU type!");
888   }
889 }
890 
processRelocationRef(unsigned SectionID,relocation_iterator RelI,const ObjectFile & Obj,ObjSectionToIDMap & ObjSectionToID,StubMap & Stubs)891 relocation_iterator RuntimeDyldELF::processRelocationRef(
892     unsigned SectionID, relocation_iterator RelI,
893     const ObjectFile &Obj,
894     ObjSectionToIDMap &ObjSectionToID,
895     StubMap &Stubs) {
896   uint64_t RelType;
897   Check(RelI->getType(RelType));
898   int64_t Addend;
899   Check(getELFRelocationAddend(*RelI, Addend));
900   symbol_iterator Symbol = RelI->getSymbol();
901 
902   // Obtain the symbol name which is referenced in the relocation
903   StringRef TargetName;
904   if (Symbol != Obj.symbol_end())
905     Symbol->getName(TargetName);
906   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
907                << " TargetName: " << TargetName << "\n");
908   RelocationValueRef Value;
909   // First search for the symbol in the local symbol table
910   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
911 
912   // Search for the symbol in the global symbol table
913   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
914   if (Symbol != Obj.symbol_end()) {
915     gsi = GlobalSymbolTable.find(TargetName.data());
916     Symbol->getType(SymType);
917   }
918   if (gsi != GlobalSymbolTable.end()) {
919     const auto &SymInfo = gsi->second;
920     Value.SectionID = SymInfo.getSectionID();
921     Value.Offset = SymInfo.getOffset();
922     Value.Addend = SymInfo.getOffset() + Addend;
923   } else {
924     switch (SymType) {
925     case SymbolRef::ST_Debug: {
926       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
927       // and can be changed by another developers. Maybe best way is add
928       // a new symbol type ST_Section to SymbolRef and use it.
929       section_iterator si(Obj.section_end());
930       Symbol->getSection(si);
931       if (si == Obj.section_end())
932         llvm_unreachable("Symbol section not found, bad object file format!");
933       DEBUG(dbgs() << "\t\tThis is section symbol\n");
934       bool isCode = si->isText();
935       Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
936       Value.Addend = Addend;
937       break;
938     }
939     case SymbolRef::ST_Data:
940     case SymbolRef::ST_Unknown: {
941       Value.SymbolName = TargetName.data();
942       Value.Addend = Addend;
943 
944       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
945       // will manifest here as a NULL symbol name.
946       // We can set this as a valid (but empty) symbol name, and rely
947       // on addRelocationForSymbol to handle this.
948       if (!Value.SymbolName)
949         Value.SymbolName = "";
950       break;
951     }
952     default:
953       llvm_unreachable("Unresolved symbol type!");
954       break;
955     }
956   }
957 
958   uint64_t Offset;
959   Check(RelI->getOffset(Offset));
960 
961   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
962                << "\n");
963   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
964       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
965     // This is an AArch64 branch relocation, need to use a stub function.
966     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
967     SectionEntry &Section = Sections[SectionID];
968 
969     // Look for an existing stub.
970     StubMap::const_iterator i = Stubs.find(Value);
971     if (i != Stubs.end()) {
972       resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
973                         RelType, 0);
974       DEBUG(dbgs() << " Stub function found\n");
975     } else {
976       // Create a new stub function.
977       DEBUG(dbgs() << " Create a new stub function\n");
978       Stubs[Value] = Section.StubOffset;
979       uint8_t *StubTargetAddr =
980           createStubFunction(Section.Address + Section.StubOffset);
981 
982       RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
983                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
984       RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
985                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
986       RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
987                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
988       RelocationEntry REmovk_g0(SectionID,
989                                 StubTargetAddr - Section.Address + 12,
990                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
991 
992       if (Value.SymbolName) {
993         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
994         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
995         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
996         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
997       } else {
998         addRelocationForSection(REmovz_g3, Value.SectionID);
999         addRelocationForSection(REmovk_g2, Value.SectionID);
1000         addRelocationForSection(REmovk_g1, Value.SectionID);
1001         addRelocationForSection(REmovk_g0, Value.SectionID);
1002       }
1003       resolveRelocation(Section, Offset,
1004                         (uint64_t)Section.Address + Section.StubOffset, RelType,
1005                         0);
1006       Section.StubOffset += getMaxStubSize();
1007     }
1008   } else if (Arch == Triple::arm &&
1009              (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1010               RelType == ELF::R_ARM_JUMP24)) {
1011     // This is an ARM branch relocation, need to use a stub function.
1012     DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
1013     SectionEntry &Section = Sections[SectionID];
1014 
1015     // Look for an existing stub.
1016     StubMap::const_iterator i = Stubs.find(Value);
1017     if (i != Stubs.end()) {
1018       resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
1019                         RelType, 0);
1020       DEBUG(dbgs() << " Stub function found\n");
1021     } else {
1022       // Create a new stub function.
1023       DEBUG(dbgs() << " Create a new stub function\n");
1024       Stubs[Value] = Section.StubOffset;
1025       uint8_t *StubTargetAddr =
1026           createStubFunction(Section.Address + Section.StubOffset);
1027       RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
1028                          ELF::R_ARM_PRIVATE_0, Value.Addend);
1029       if (Value.SymbolName)
1030         addRelocationForSymbol(RE, Value.SymbolName);
1031       else
1032         addRelocationForSection(RE, Value.SectionID);
1033 
1034       resolveRelocation(Section, Offset,
1035                         (uint64_t)Section.Address + Section.StubOffset, RelType,
1036                         0);
1037       Section.StubOffset += getMaxStubSize();
1038     }
1039   } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
1040              RelType == ELF::R_MIPS_26) {
1041     // This is an Mips branch relocation, need to use a stub function.
1042     DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1043     SectionEntry &Section = Sections[SectionID];
1044     uint8_t *Target = Section.Address + Offset;
1045     uint32_t *TargetAddress = (uint32_t *)Target;
1046 
1047     // Extract the addend from the instruction.
1048     uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
1049 
1050     Value.Addend += Addend;
1051 
1052     //  Look up for existing stub.
1053     StubMap::const_iterator i = Stubs.find(Value);
1054     if (i != Stubs.end()) {
1055       RelocationEntry RE(SectionID, Offset, RelType, i->second);
1056       addRelocationForSection(RE, SectionID);
1057       DEBUG(dbgs() << " Stub function found\n");
1058     } else {
1059       // Create a new stub function.
1060       DEBUG(dbgs() << " Create a new stub function\n");
1061       Stubs[Value] = Section.StubOffset;
1062       uint8_t *StubTargetAddr =
1063           createStubFunction(Section.Address + Section.StubOffset);
1064 
1065       // Creating Hi and Lo relocations for the filled stub instructions.
1066       RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
1067                            ELF::R_MIPS_UNUSED1, Value.Addend);
1068       RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
1069                            ELF::R_MIPS_UNUSED2, Value.Addend);
1070 
1071       if (Value.SymbolName) {
1072         addRelocationForSymbol(REHi, Value.SymbolName);
1073         addRelocationForSymbol(RELo, Value.SymbolName);
1074       } else {
1075         addRelocationForSection(REHi, Value.SectionID);
1076         addRelocationForSection(RELo, Value.SectionID);
1077       }
1078 
1079       RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
1080       addRelocationForSection(RE, SectionID);
1081       Section.StubOffset += getMaxStubSize();
1082     }
1083   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1084     if (RelType == ELF::R_PPC64_REL24) {
1085       // Determine ABI variant in use for this object.
1086       unsigned AbiVariant;
1087       Obj.getPlatformFlags(AbiVariant);
1088       AbiVariant &= ELF::EF_PPC64_ABI;
1089       // A PPC branch relocation will need a stub function if the target is
1090       // an external symbol (Symbol::ST_Unknown) or if the target address
1091       // is not within the signed 24-bits branch address.
1092       SectionEntry &Section = Sections[SectionID];
1093       uint8_t *Target = Section.Address + Offset;
1094       bool RangeOverflow = false;
1095       if (SymType != SymbolRef::ST_Unknown) {
1096         if (AbiVariant != 2) {
1097           // In the ELFv1 ABI, a function call may point to the .opd entry,
1098           // so the final symbol value is calculated based on the relocation
1099           // values in the .opd section.
1100           findOPDEntrySection(Obj, ObjSectionToID, Value);
1101         } else {
1102           // In the ELFv2 ABI, a function symbol may provide a local entry
1103           // point, which must be used for direct calls.
1104           uint8_t SymOther;
1105           Symbol->getOther(SymOther);
1106           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1107         }
1108         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
1109         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
1110         // If it is within 24-bits branch range, just set the branch target
1111         if (SignExtend32<24>(delta) == delta) {
1112           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1113           if (Value.SymbolName)
1114             addRelocationForSymbol(RE, Value.SymbolName);
1115           else
1116             addRelocationForSection(RE, Value.SectionID);
1117         } else {
1118           RangeOverflow = true;
1119         }
1120       }
1121       if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
1122         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
1123         // larger than 24-bits.
1124         StubMap::const_iterator i = Stubs.find(Value);
1125         if (i != Stubs.end()) {
1126           // Symbol function stub already created, just relocate to it
1127           resolveRelocation(Section, Offset,
1128                             (uint64_t)Section.Address + i->second, RelType, 0);
1129           DEBUG(dbgs() << " Stub function found\n");
1130         } else {
1131           // Create a new stub function.
1132           DEBUG(dbgs() << " Create a new stub function\n");
1133           Stubs[Value] = Section.StubOffset;
1134           uint8_t *StubTargetAddr =
1135               createStubFunction(Section.Address + Section.StubOffset,
1136                                  AbiVariant);
1137           RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
1138                              ELF::R_PPC64_ADDR64, Value.Addend);
1139 
1140           // Generates the 64-bits address loads as exemplified in section
1141           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1142           // apply to the low part of the instructions, so we have to update
1143           // the offset according to the target endianness.
1144           uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
1145           if (!IsTargetLittleEndian)
1146             StubRelocOffset += 2;
1147 
1148           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1149                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1150           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1151                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1152           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1153                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1154           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1155                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1156 
1157           if (Value.SymbolName) {
1158             addRelocationForSymbol(REhst, Value.SymbolName);
1159             addRelocationForSymbol(REhr, Value.SymbolName);
1160             addRelocationForSymbol(REh, Value.SymbolName);
1161             addRelocationForSymbol(REl, Value.SymbolName);
1162           } else {
1163             addRelocationForSection(REhst, Value.SectionID);
1164             addRelocationForSection(REhr, Value.SectionID);
1165             addRelocationForSection(REh, Value.SectionID);
1166             addRelocationForSection(REl, Value.SectionID);
1167           }
1168 
1169           resolveRelocation(Section, Offset,
1170                             (uint64_t)Section.Address + Section.StubOffset,
1171                             RelType, 0);
1172           Section.StubOffset += getMaxStubSize();
1173         }
1174         if (SymType == SymbolRef::ST_Unknown) {
1175           // Restore the TOC for external calls
1176           if (AbiVariant == 2)
1177             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
1178           else
1179             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1180         }
1181       }
1182     } else if (RelType == ELF::R_PPC64_TOC16 ||
1183                RelType == ELF::R_PPC64_TOC16_DS ||
1184                RelType == ELF::R_PPC64_TOC16_LO ||
1185                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1186                RelType == ELF::R_PPC64_TOC16_HI ||
1187                RelType == ELF::R_PPC64_TOC16_HA) {
1188       // These relocations are supposed to subtract the TOC address from
1189       // the final value.  This does not fit cleanly into the RuntimeDyld
1190       // scheme, since there may be *two* sections involved in determining
1191       // the relocation value (the section of the symbol refered to by the
1192       // relocation, and the TOC section associated with the current module).
1193       //
1194       // Fortunately, these relocations are currently only ever generated
1195       // refering to symbols that themselves reside in the TOC, which means
1196       // that the two sections are actually the same.  Thus they cancel out
1197       // and we can immediately resolve the relocation right now.
1198       switch (RelType) {
1199       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1200       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1201       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1202       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1203       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1204       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1205       default: llvm_unreachable("Wrong relocation type.");
1206       }
1207 
1208       RelocationValueRef TOCValue;
1209       findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
1210       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1211         llvm_unreachable("Unsupported TOC relocation.");
1212       Value.Addend -= TOCValue.Addend;
1213       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1214     } else {
1215       // There are two ways to refer to the TOC address directly: either
1216       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1217       // ignored), or via any relocation that refers to the magic ".TOC."
1218       // symbols (in which case the addend is respected).
1219       if (RelType == ELF::R_PPC64_TOC) {
1220         RelType = ELF::R_PPC64_ADDR64;
1221         findPPC64TOCSection(Obj, ObjSectionToID, Value);
1222       } else if (TargetName == ".TOC.") {
1223         findPPC64TOCSection(Obj, ObjSectionToID, Value);
1224         Value.Addend += Addend;
1225       }
1226 
1227       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1228 
1229       if (Value.SymbolName)
1230         addRelocationForSymbol(RE, Value.SymbolName);
1231       else
1232         addRelocationForSection(RE, Value.SectionID);
1233     }
1234   } else if (Arch == Triple::systemz &&
1235              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1236     // Create function stubs for both PLT and GOT references, regardless of
1237     // whether the GOT reference is to data or code.  The stub contains the
1238     // full address of the symbol, as needed by GOT references, and the
1239     // executable part only adds an overhead of 8 bytes.
1240     //
1241     // We could try to conserve space by allocating the code and data
1242     // parts of the stub separately.  However, as things stand, we allocate
1243     // a stub for every relocation, so using a GOT in JIT code should be
1244     // no less space efficient than using an explicit constant pool.
1245     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1246     SectionEntry &Section = Sections[SectionID];
1247 
1248     // Look for an existing stub.
1249     StubMap::const_iterator i = Stubs.find(Value);
1250     uintptr_t StubAddress;
1251     if (i != Stubs.end()) {
1252       StubAddress = uintptr_t(Section.Address) + i->second;
1253       DEBUG(dbgs() << " Stub function found\n");
1254     } else {
1255       // Create a new stub function.
1256       DEBUG(dbgs() << " Create a new stub function\n");
1257 
1258       uintptr_t BaseAddress = uintptr_t(Section.Address);
1259       uintptr_t StubAlignment = getStubAlignment();
1260       StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
1261                     -StubAlignment;
1262       unsigned StubOffset = StubAddress - BaseAddress;
1263 
1264       Stubs[Value] = StubOffset;
1265       createStubFunction((uint8_t *)StubAddress);
1266       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1267                          Value.Offset);
1268       if (Value.SymbolName)
1269         addRelocationForSymbol(RE, Value.SymbolName);
1270       else
1271         addRelocationForSection(RE, Value.SectionID);
1272       Section.StubOffset = StubOffset + getMaxStubSize();
1273     }
1274 
1275     if (RelType == ELF::R_390_GOTENT)
1276       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1277                         Addend);
1278     else
1279       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1280   } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
1281     // The way the PLT relocations normally work is that the linker allocates
1282     // the
1283     // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1284     // entry will then jump to an address provided by the GOT.  On first call,
1285     // the
1286     // GOT address will point back into PLT code that resolves the symbol. After
1287     // the first call, the GOT entry points to the actual function.
1288     //
1289     // For local functions we're ignoring all of that here and just replacing
1290     // the PLT32 relocation type with PC32, which will translate the relocation
1291     // into a PC-relative call directly to the function. For external symbols we
1292     // can't be sure the function will be within 2^32 bytes of the call site, so
1293     // we need to create a stub, which calls into the GOT.  This case is
1294     // equivalent to the usual PLT implementation except that we use the stub
1295     // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1296     // rather than allocating a PLT section.
1297     if (Value.SymbolName) {
1298       // This is a call to an external function.
1299       // Look for an existing stub.
1300       SectionEntry &Section = Sections[SectionID];
1301       StubMap::const_iterator i = Stubs.find(Value);
1302       uintptr_t StubAddress;
1303       if (i != Stubs.end()) {
1304         StubAddress = uintptr_t(Section.Address) + i->second;
1305         DEBUG(dbgs() << " Stub function found\n");
1306       } else {
1307         // Create a new stub function (equivalent to a PLT entry).
1308         DEBUG(dbgs() << " Create a new stub function\n");
1309 
1310         uintptr_t BaseAddress = uintptr_t(Section.Address);
1311         uintptr_t StubAlignment = getStubAlignment();
1312         StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
1313                       -StubAlignment;
1314         unsigned StubOffset = StubAddress - BaseAddress;
1315         Stubs[Value] = StubOffset;
1316         createStubFunction((uint8_t *)StubAddress);
1317 
1318         // Bump our stub offset counter
1319         Section.StubOffset = StubOffset + getMaxStubSize();
1320 
1321         // Allocate a GOT Entry
1322         uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1323 
1324         // The load of the GOT address has an addend of -4
1325         resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
1326 
1327         // Fill in the value of the symbol we're targeting into the GOT
1328         addRelocationForSymbol(computeGOTOffsetRE(SectionID,GOTOffset,0,ELF::R_X86_64_64),
1329             Value.SymbolName);
1330       }
1331 
1332       // Make the target call a call into the stub table.
1333       resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1334                         Addend);
1335     } else {
1336       RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1337                          Value.Offset);
1338       addRelocationForSection(RE, Value.SectionID);
1339     }
1340   } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) {
1341     uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1342     resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
1343 
1344     // Fill in the value of the symbol we're targeting into the GOT
1345     RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
1346     if (Value.SymbolName)
1347       addRelocationForSymbol(RE, Value.SymbolName);
1348     else
1349       addRelocationForSection(RE, Value.SectionID);
1350   } else {
1351     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1352     if (Value.SymbolName)
1353       addRelocationForSymbol(RE, Value.SymbolName);
1354     else
1355       addRelocationForSection(RE, Value.SectionID);
1356   }
1357   return ++RelI;
1358 }
1359 
getGOTEntrySize()1360 size_t RuntimeDyldELF::getGOTEntrySize() {
1361   // We don't use the GOT in all of these cases, but it's essentially free
1362   // to put them all here.
1363   size_t Result = 0;
1364   switch (Arch) {
1365   case Triple::x86_64:
1366   case Triple::aarch64:
1367   case Triple::aarch64_be:
1368   case Triple::ppc64:
1369   case Triple::ppc64le:
1370   case Triple::systemz:
1371     Result = sizeof(uint64_t);
1372     break;
1373   case Triple::x86:
1374   case Triple::arm:
1375   case Triple::thumb:
1376   case Triple::mips:
1377   case Triple::mipsel:
1378     Result = sizeof(uint32_t);
1379     break;
1380   default:
1381     llvm_unreachable("Unsupported CPU type!");
1382   }
1383   return Result;
1384 }
1385 
allocateGOTEntries(unsigned SectionID,unsigned no)1386 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
1387 {
1388   (void)SectionID; // The GOT Section is the same for all section in the object file
1389   if (GOTSectionID == 0) {
1390     GOTSectionID = Sections.size();
1391     // Reserve a section id. We'll allocate the section later
1392     // once we know the total size
1393     Sections.push_back(SectionEntry(".got", 0, 0, 0));
1394   }
1395   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1396   CurrentGOTIndex += no;
1397   return StartOffset;
1398 }
1399 
resolveGOTOffsetRelocation(unsigned SectionID,uint64_t Offset,uint64_t GOTOffset)1400 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
1401 {
1402   // Fill in the relative address of the GOT Entry into the stub
1403   RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
1404   addRelocationForSection(GOTRE, GOTSectionID);
1405 }
1406 
computeGOTOffsetRE(unsigned SectionID,uint64_t GOTOffset,uint64_t SymbolOffset,uint32_t Type)1407 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
1408                                                    uint32_t Type)
1409 {
1410   (void)SectionID; // The GOT Section is the same for all section in the object file
1411   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1412 }
1413 
finalizeLoad(const ObjectFile & Obj,ObjSectionToIDMap & SectionMap)1414 void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1415                                   ObjSectionToIDMap &SectionMap) {
1416   // If necessary, allocate the global offset table
1417   if (GOTSectionID != 0) {
1418     // Allocate memory for the section
1419     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1420     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1421                                                 GOTSectionID, ".got", false);
1422     if (!Addr)
1423       report_fatal_error("Unable to allocate memory for GOT!");
1424 
1425     Sections[GOTSectionID] = SectionEntry(".got", Addr, TotalSize, 0);
1426 
1427     if (Checker)
1428       Checker->registerSection(Obj.getFileName(), GOTSectionID);
1429 
1430     // For now, initialize all GOT entries to zero.  We'll fill them in as
1431     // needed when GOT-based relocations are applied.
1432     memset(Addr, 0, TotalSize);
1433   }
1434 
1435   // Look for and record the EH frame section.
1436   ObjSectionToIDMap::iterator i, e;
1437   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1438     const SectionRef &Section = i->first;
1439     StringRef Name;
1440     Section.getName(Name);
1441     if (Name == ".eh_frame") {
1442       UnregisteredEHFrameSections.push_back(i->second);
1443       break;
1444     }
1445   }
1446 
1447   GOTSectionID = 0;
1448   CurrentGOTIndex = 0;
1449 }
1450 
isCompatibleFile(const object::ObjectFile & Obj) const1451 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1452   return Obj.isELF();
1453 }
1454 
1455 } // namespace llvm
1456