1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "llvm/ADT/IntervalMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/MC/MCStreamer.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/ELF.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/TargetRegistry.h"
27
28 using namespace llvm;
29 using namespace llvm::object;
30
31 #define DEBUG_TYPE "dyld"
32
check(std::error_code Err)33 static inline std::error_code check(std::error_code Err) {
34 if (Err) {
35 report_fatal_error(Err.message());
36 }
37 return Err;
38 }
39
40 namespace {
41
42 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
43 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
44
45 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
46 typedef Elf_Sym_Impl<ELFT> Elf_Sym;
47 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
48 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
49
50 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
51
52 typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
53
54 public:
55 DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
56
57 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
58
59 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
60
61 // Methods for type inquiry through isa, cast and dyn_cast
classof(const Binary * v)62 static inline bool classof(const Binary *v) {
63 return (isa<ELFObjectFile<ELFT>>(v) &&
64 classof(cast<ELFObjectFile<ELFT>>(v)));
65 }
classof(const ELFObjectFile<ELFT> * v)66 static inline bool classof(const ELFObjectFile<ELFT> *v) {
67 return v->isDyldType();
68 }
69
70 };
71
72
73
74 // The MemoryBuffer passed into this constructor is just a wrapper around the
75 // actual memory. Ultimately, the Binary parent class will take ownership of
76 // this MemoryBuffer object but not the underlying memory.
77 template <class ELFT>
DyldELFObject(MemoryBufferRef Wrapper,std::error_code & EC)78 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
79 : ELFObjectFile<ELFT>(Wrapper, EC) {
80 this->isDyldELFObject = true;
81 }
82
83 template <class ELFT>
updateSectionAddress(const SectionRef & Sec,uint64_t Addr)84 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
85 uint64_t Addr) {
86 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
87 Elf_Shdr *shdr =
88 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
89
90 // This assumes the address passed in matches the target address bitness
91 // The template-based type cast handles everything else.
92 shdr->sh_addr = static_cast<addr_type>(Addr);
93 }
94
95 template <class ELFT>
updateSymbolAddress(const SymbolRef & SymRef,uint64_t Addr)96 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
97 uint64_t Addr) {
98
99 Elf_Sym *sym = const_cast<Elf_Sym *>(
100 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
101
102 // This assumes the address passed in matches the target address bitness
103 // The template-based type cast handles everything else.
104 sym->st_value = static_cast<addr_type>(Addr);
105 }
106
107 class LoadedELFObjectInfo : public RuntimeDyld::LoadedObjectInfo {
108 public:
LoadedELFObjectInfo(RuntimeDyldImpl & RTDyld,unsigned BeginIdx,unsigned EndIdx)109 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
110 unsigned EndIdx)
111 : RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {}
112
113 OwningBinary<ObjectFile>
114 getObjectForDebug(const ObjectFile &Obj) const override;
115 };
116
117 template <typename ELFT>
118 std::unique_ptr<DyldELFObject<ELFT>>
createRTDyldELFObject(MemoryBufferRef Buffer,const LoadedELFObjectInfo & L,std::error_code & ec)119 createRTDyldELFObject(MemoryBufferRef Buffer,
120 const LoadedELFObjectInfo &L,
121 std::error_code &ec) {
122 typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
123 typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
124
125 std::unique_ptr<DyldELFObject<ELFT>> Obj =
126 llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
127
128 // Iterate over all sections in the object.
129 for (const auto &Sec : Obj->sections()) {
130 StringRef SectionName;
131 Sec.getName(SectionName);
132 if (SectionName != "") {
133 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
134 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
135 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
136
137 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) {
138 // This assumes that the address passed in matches the target address
139 // bitness. The template-based type cast handles everything else.
140 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
141 }
142 }
143 }
144
145 return Obj;
146 }
147
createELFDebugObject(const ObjectFile & Obj,const LoadedELFObjectInfo & L)148 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
149 const LoadedELFObjectInfo &L) {
150 assert(Obj.isELF() && "Not an ELF object file.");
151
152 std::unique_ptr<MemoryBuffer> Buffer =
153 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
154
155 std::error_code ec;
156
157 std::unique_ptr<ObjectFile> DebugObj;
158 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
159 typedef ELFType<support::little, 2, false> ELF32LE;
160 DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec);
161 } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
162 typedef ELFType<support::big, 2, false> ELF32BE;
163 DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec);
164 } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
165 typedef ELFType<support::big, 2, true> ELF64BE;
166 DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec);
167 } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
168 typedef ELFType<support::little, 2, true> ELF64LE;
169 DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec);
170 } else
171 llvm_unreachable("Unexpected ELF format");
172
173 assert(!ec && "Could not construct copy ELF object file");
174
175 return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
176 }
177
178 OwningBinary<ObjectFile>
getObjectForDebug(const ObjectFile & Obj) const179 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
180 return createELFDebugObject(Obj, *this);
181 }
182
183 } // namespace
184
185 namespace llvm {
186
RuntimeDyldELF(RuntimeDyld::MemoryManager & MemMgr,RuntimeDyld::SymbolResolver & Resolver)187 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
188 RuntimeDyld::SymbolResolver &Resolver)
189 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
~RuntimeDyldELF()190 RuntimeDyldELF::~RuntimeDyldELF() {}
191
registerEHFrames()192 void RuntimeDyldELF::registerEHFrames() {
193 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
194 SID EHFrameSID = UnregisteredEHFrameSections[i];
195 uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
196 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
197 size_t EHFrameSize = Sections[EHFrameSID].Size;
198 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
199 RegisteredEHFrameSections.push_back(EHFrameSID);
200 }
201 UnregisteredEHFrameSections.clear();
202 }
203
deregisterEHFrames()204 void RuntimeDyldELF::deregisterEHFrames() {
205 for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
206 SID EHFrameSID = RegisteredEHFrameSections[i];
207 uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
208 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
209 size_t EHFrameSize = Sections[EHFrameSID].Size;
210 MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
211 }
212 RegisteredEHFrameSections.clear();
213 }
214
215 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const object::ObjectFile & O)216 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
217 unsigned SectionStartIdx, SectionEndIdx;
218 std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
219 return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx,
220 SectionEndIdx);
221 }
222
resolveX86_64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend,uint64_t SymOffset)223 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
224 uint64_t Offset, uint64_t Value,
225 uint32_t Type, int64_t Addend,
226 uint64_t SymOffset) {
227 switch (Type) {
228 default:
229 llvm_unreachable("Relocation type not implemented yet!");
230 break;
231 case ELF::R_X86_64_64: {
232 support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
233 DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
234 << format("%p\n", Section.Address + Offset));
235 break;
236 }
237 case ELF::R_X86_64_32:
238 case ELF::R_X86_64_32S: {
239 Value += Addend;
240 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
241 (Type == ELF::R_X86_64_32S &&
242 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
243 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
244 support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
245 DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
246 << format("%p\n", Section.Address + Offset));
247 break;
248 }
249 case ELF::R_X86_64_PC32: {
250 // Get the placeholder value from the generated object since
251 // a previous relocation attempt may have overwritten the loaded version
252 support::ulittle32_t::ref Placeholder(
253 (void *)(Section.ObjAddress + Offset));
254 uint64_t FinalAddress = Section.LoadAddress + Offset;
255 int64_t RealOffset = Value + Addend - FinalAddress;
256 // Don't add the placeholder if this is a stub
257 if (Offset < Section.Size)
258 RealOffset += Placeholder;
259 assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
260 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
261 support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
262 break;
263 }
264 case ELF::R_X86_64_PC64: {
265 // Get the placeholder value from the generated object since
266 // a previous relocation attempt may have overwritten the loaded version
267 support::ulittle64_t::ref Placeholder(
268 (void *)(Section.ObjAddress + Offset));
269 uint64_t FinalAddress = Section.LoadAddress + Offset;
270 int64_t RealOffset = Value + Addend - FinalAddress;
271 if (Offset < Section.Size)
272 RealOffset += Placeholder;
273 support::ulittle64_t::ref(Section.Address + Offset) = RealOffset;
274 break;
275 }
276 }
277 }
278
resolveX86Relocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)279 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
280 uint64_t Offset, uint32_t Value,
281 uint32_t Type, int32_t Addend) {
282 switch (Type) {
283 case ELF::R_386_32: {
284 // Get the placeholder value from the generated object since
285 // a previous relocation attempt may have overwritten the loaded version
286 support::ulittle32_t::ref Placeholder(
287 (void *)(Section.ObjAddress + Offset));
288 support::ulittle32_t::ref(Section.Address + Offset) =
289 Placeholder + Value + Addend;
290 break;
291 }
292 case ELF::R_386_PC32: {
293 // Get the placeholder value from the generated object since
294 // a previous relocation attempt may have overwritten the loaded version
295 support::ulittle32_t::ref Placeholder(
296 (void *)(Section.ObjAddress + Offset));
297 uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
298 uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress;
299 support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
300 break;
301 }
302 default:
303 // There are other relocation types, but it appears these are the
304 // only ones currently used by the LLVM ELF object writer
305 llvm_unreachable("Relocation type not implemented yet!");
306 break;
307 }
308 }
309
resolveAArch64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)310 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
311 uint64_t Offset, uint64_t Value,
312 uint32_t Type, int64_t Addend) {
313 uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
314 uint64_t FinalAddress = Section.LoadAddress + Offset;
315
316 DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
317 << format("%llx", Section.Address + Offset)
318 << " FinalAddress: 0x" << format("%llx", FinalAddress)
319 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
320 << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
321 << "\n");
322
323 switch (Type) {
324 default:
325 llvm_unreachable("Relocation type not implemented yet!");
326 break;
327 case ELF::R_AARCH64_ABS64: {
328 uint64_t *TargetPtr =
329 reinterpret_cast<uint64_t *>(Section.Address + Offset);
330 *TargetPtr = Value + Addend;
331 break;
332 }
333 case ELF::R_AARCH64_PREL32: {
334 uint64_t Result = Value + Addend - FinalAddress;
335 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
336 static_cast<int64_t>(Result) <= UINT32_MAX);
337 *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
338 break;
339 }
340 case ELF::R_AARCH64_CALL26: // fallthrough
341 case ELF::R_AARCH64_JUMP26: {
342 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
343 // calculation.
344 uint64_t BranchImm = Value + Addend - FinalAddress;
345
346 // "Check that -2^27 <= result < 2^27".
347 assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
348 static_cast<int64_t>(BranchImm) < (1LL << 27));
349
350 // AArch64 code is emitted with .rela relocations. The data already in any
351 // bits affected by the relocation on entry is garbage.
352 *TargetPtr &= 0xfc000000U;
353 // Immediate goes in bits 25:0 of B and BL.
354 *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
355 break;
356 }
357 case ELF::R_AARCH64_MOVW_UABS_G3: {
358 uint64_t Result = Value + Addend;
359
360 // AArch64 code is emitted with .rela relocations. The data already in any
361 // bits affected by the relocation on entry is garbage.
362 *TargetPtr &= 0xffe0001fU;
363 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
364 *TargetPtr |= Result >> (48 - 5);
365 // Shift must be "lsl #48", in bits 22:21
366 assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
367 break;
368 }
369 case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
370 uint64_t Result = Value + Addend;
371
372 // AArch64 code is emitted with .rela relocations. The data already in any
373 // bits affected by the relocation on entry is garbage.
374 *TargetPtr &= 0xffe0001fU;
375 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
376 *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
377 // Shift must be "lsl #32", in bits 22:21
378 assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
379 break;
380 }
381 case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
382 uint64_t Result = Value + Addend;
383
384 // AArch64 code is emitted with .rela relocations. The data already in any
385 // bits affected by the relocation on entry is garbage.
386 *TargetPtr &= 0xffe0001fU;
387 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
388 *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
389 // Shift must be "lsl #16", in bits 22:2
390 assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
391 break;
392 }
393 case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
394 uint64_t Result = Value + Addend;
395
396 // AArch64 code is emitted with .rela relocations. The data already in any
397 // bits affected by the relocation on entry is garbage.
398 *TargetPtr &= 0xffe0001fU;
399 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
400 *TargetPtr |= ((Result & 0xffffU) << 5);
401 // Shift must be "lsl #0", in bits 22:21.
402 assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
403 break;
404 }
405 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
406 // Operation: Page(S+A) - Page(P)
407 uint64_t Result =
408 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
409
410 // Check that -2^32 <= X < 2^32
411 assert(static_cast<int64_t>(Result) >= (-1LL << 32) &&
412 static_cast<int64_t>(Result) < (1LL << 32) &&
413 "overflow check failed for relocation");
414
415 // AArch64 code is emitted with .rela relocations. The data already in any
416 // bits affected by the relocation on entry is garbage.
417 *TargetPtr &= 0x9f00001fU;
418 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
419 // from bits 32:12 of X.
420 *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
421 *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
422 break;
423 }
424 case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
425 // Operation: S + A
426 uint64_t Result = Value + Addend;
427
428 // AArch64 code is emitted with .rela relocations. The data already in any
429 // bits affected by the relocation on entry is garbage.
430 *TargetPtr &= 0xffc003ffU;
431 // Immediate goes in bits 21:10 of LD/ST instruction, taken
432 // from bits 11:2 of X
433 *TargetPtr |= ((Result & 0xffc) << (10 - 2));
434 break;
435 }
436 case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
437 // Operation: S + A
438 uint64_t Result = Value + Addend;
439
440 // AArch64 code is emitted with .rela relocations. The data already in any
441 // bits affected by the relocation on entry is garbage.
442 *TargetPtr &= 0xffc003ffU;
443 // Immediate goes in bits 21:10 of LD/ST instruction, taken
444 // from bits 11:3 of X
445 *TargetPtr |= ((Result & 0xff8) << (10 - 3));
446 break;
447 }
448 }
449 }
450
resolveARMRelocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)451 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
452 uint64_t Offset, uint32_t Value,
453 uint32_t Type, int32_t Addend) {
454 // TODO: Add Thumb relocations.
455 uint32_t *Placeholder =
456 reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
457 uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
458 uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
459 Value += Addend;
460
461 DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
462 << Section.Address + Offset
463 << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
464 << format("%x", Value) << " Type: " << format("%x", Type)
465 << " Addend: " << format("%x", Addend) << "\n");
466
467 switch (Type) {
468 default:
469 llvm_unreachable("Not implemented relocation type!");
470
471 case ELF::R_ARM_NONE:
472 break;
473 // Write a 32bit value to relocation address, taking into account the
474 // implicit addend encoded in the target.
475 case ELF::R_ARM_PREL31:
476 case ELF::R_ARM_TARGET1:
477 case ELF::R_ARM_ABS32:
478 *TargetPtr = *Placeholder + Value;
479 break;
480 // Write first 16 bit of 32 bit value to the mov instruction.
481 // Last 4 bit should be shifted.
482 case ELF::R_ARM_MOVW_ABS_NC:
483 // We are not expecting any other addend in the relocation address.
484 // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
485 // non-contiguous fields.
486 assert((*Placeholder & 0x000F0FFF) == 0);
487 Value = Value & 0xFFFF;
488 *TargetPtr = *Placeholder | (Value & 0xFFF);
489 *TargetPtr |= ((Value >> 12) & 0xF) << 16;
490 break;
491 // Write last 16 bit of 32 bit value to the mov instruction.
492 // Last 4 bit should be shifted.
493 case ELF::R_ARM_MOVT_ABS:
494 // We are not expecting any other addend in the relocation address.
495 // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
496 assert((*Placeholder & 0x000F0FFF) == 0);
497
498 Value = (Value >> 16) & 0xFFFF;
499 *TargetPtr = *Placeholder | (Value & 0xFFF);
500 *TargetPtr |= ((Value >> 12) & 0xF) << 16;
501 break;
502 // Write 24 bit relative value to the branch instruction.
503 case ELF::R_ARM_PC24: // Fall through.
504 case ELF::R_ARM_CALL: // Fall through.
505 case ELF::R_ARM_JUMP24: {
506 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
507 RelValue = (RelValue & 0x03FFFFFC) >> 2;
508 assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
509 *TargetPtr &= 0xFF000000;
510 *TargetPtr |= RelValue;
511 break;
512 }
513 case ELF::R_ARM_PRIVATE_0:
514 // This relocation is reserved by the ARM ELF ABI for internal use. We
515 // appropriate it here to act as an R_ARM_ABS32 without any addend for use
516 // in the stubs created during JIT (which can't put an addend into the
517 // original object file).
518 *TargetPtr = Value;
519 break;
520 }
521 }
522
resolveMIPSRelocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)523 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
524 uint64_t Offset, uint32_t Value,
525 uint32_t Type, int32_t Addend) {
526 uint32_t *Placeholder =
527 reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
528 uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
529 Value += Addend;
530
531 DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
532 << Section.Address + Offset << " FinalAddress: "
533 << format("%p", Section.LoadAddress + Offset) << " Value: "
534 << format("%x", Value) << " Type: " << format("%x", Type)
535 << " Addend: " << format("%x", Addend) << "\n");
536
537 switch (Type) {
538 default:
539 llvm_unreachable("Not implemented relocation type!");
540 break;
541 case ELF::R_MIPS_32:
542 *TargetPtr = Value + (*Placeholder);
543 break;
544 case ELF::R_MIPS_26:
545 *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2);
546 break;
547 case ELF::R_MIPS_HI16:
548 // Get the higher 16-bits. Also add 1 if bit 15 is 1.
549 Value += ((*Placeholder) & 0x0000ffff) << 16;
550 *TargetPtr =
551 ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
552 break;
553 case ELF::R_MIPS_LO16:
554 Value += ((*Placeholder) & 0x0000ffff);
555 *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
556 break;
557 case ELF::R_MIPS_UNUSED1:
558 // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
559 // are used for internal JIT purpose. These relocations are similar to
560 // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
561 // account.
562 *TargetPtr =
563 ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
564 break;
565 case ELF::R_MIPS_UNUSED2:
566 *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
567 break;
568 }
569 }
570
571 // Return the .TOC. section and offset.
findPPC64TOCSection(const ObjectFile & Obj,ObjSectionToIDMap & LocalSections,RelocationValueRef & Rel)572 void RuntimeDyldELF::findPPC64TOCSection(const ObjectFile &Obj,
573 ObjSectionToIDMap &LocalSections,
574 RelocationValueRef &Rel) {
575 // Set a default SectionID in case we do not find a TOC section below.
576 // This may happen for references to TOC base base (sym@toc, .odp
577 // relocation) without a .toc directive. In this case just use the
578 // first section (which is usually the .odp) since the code won't
579 // reference the .toc base directly.
580 Rel.SymbolName = NULL;
581 Rel.SectionID = 0;
582
583 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
584 // order. The TOC starts where the first of these sections starts.
585 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
586 si != se; ++si) {
587
588 StringRef SectionName;
589 check(si->getName(SectionName));
590
591 if (SectionName == ".got"
592 || SectionName == ".toc"
593 || SectionName == ".tocbss"
594 || SectionName == ".plt") {
595 Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections);
596 break;
597 }
598 }
599
600 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
601 // thus permitting a full 64 Kbytes segment.
602 Rel.Addend = 0x8000;
603 }
604
605 // Returns the sections and offset associated with the ODP entry referenced
606 // by Symbol.
findOPDEntrySection(const ObjectFile & Obj,ObjSectionToIDMap & LocalSections,RelocationValueRef & Rel)607 void RuntimeDyldELF::findOPDEntrySection(const ObjectFile &Obj,
608 ObjSectionToIDMap &LocalSections,
609 RelocationValueRef &Rel) {
610 // Get the ELF symbol value (st_value) to compare with Relocation offset in
611 // .opd entries
612 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
613 si != se; ++si) {
614 section_iterator RelSecI = si->getRelocatedSection();
615 if (RelSecI == Obj.section_end())
616 continue;
617
618 StringRef RelSectionName;
619 check(RelSecI->getName(RelSectionName));
620 if (RelSectionName != ".opd")
621 continue;
622
623 for (relocation_iterator i = si->relocation_begin(),
624 e = si->relocation_end();
625 i != e;) {
626 // The R_PPC64_ADDR64 relocation indicates the first field
627 // of a .opd entry
628 uint64_t TypeFunc;
629 check(i->getType(TypeFunc));
630 if (TypeFunc != ELF::R_PPC64_ADDR64) {
631 ++i;
632 continue;
633 }
634
635 uint64_t TargetSymbolOffset;
636 symbol_iterator TargetSymbol = i->getSymbol();
637 check(i->getOffset(TargetSymbolOffset));
638 int64_t Addend;
639 check(getELFRelocationAddend(*i, Addend));
640
641 ++i;
642 if (i == e)
643 break;
644
645 // Just check if following relocation is a R_PPC64_TOC
646 uint64_t TypeTOC;
647 check(i->getType(TypeTOC));
648 if (TypeTOC != ELF::R_PPC64_TOC)
649 continue;
650
651 // Finally compares the Symbol value and the target symbol offset
652 // to check if this .opd entry refers to the symbol the relocation
653 // points to.
654 if (Rel.Addend != (int64_t)TargetSymbolOffset)
655 continue;
656
657 section_iterator tsi(Obj.section_end());
658 check(TargetSymbol->getSection(tsi));
659 bool IsCode = tsi->isText();
660 Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
661 Rel.Addend = (intptr_t)Addend;
662 return;
663 }
664 }
665 llvm_unreachable("Attempting to get address of ODP entry!");
666 }
667
668 // Relocation masks following the #lo(value), #hi(value), #ha(value),
669 // #higher(value), #highera(value), #highest(value), and #highesta(value)
670 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
671 // document.
672
applyPPClo(uint64_t value)673 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
674
applyPPChi(uint64_t value)675 static inline uint16_t applyPPChi(uint64_t value) {
676 return (value >> 16) & 0xffff;
677 }
678
applyPPCha(uint64_t value)679 static inline uint16_t applyPPCha (uint64_t value) {
680 return ((value + 0x8000) >> 16) & 0xffff;
681 }
682
applyPPChigher(uint64_t value)683 static inline uint16_t applyPPChigher(uint64_t value) {
684 return (value >> 32) & 0xffff;
685 }
686
applyPPChighera(uint64_t value)687 static inline uint16_t applyPPChighera (uint64_t value) {
688 return ((value + 0x8000) >> 32) & 0xffff;
689 }
690
applyPPChighest(uint64_t value)691 static inline uint16_t applyPPChighest(uint64_t value) {
692 return (value >> 48) & 0xffff;
693 }
694
applyPPChighesta(uint64_t value)695 static inline uint16_t applyPPChighesta (uint64_t value) {
696 return ((value + 0x8000) >> 48) & 0xffff;
697 }
698
resolvePPC64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)699 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
700 uint64_t Offset, uint64_t Value,
701 uint32_t Type, int64_t Addend) {
702 uint8_t *LocalAddress = Section.Address + Offset;
703 switch (Type) {
704 default:
705 llvm_unreachable("Relocation type not implemented yet!");
706 break;
707 case ELF::R_PPC64_ADDR16:
708 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
709 break;
710 case ELF::R_PPC64_ADDR16_DS:
711 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
712 break;
713 case ELF::R_PPC64_ADDR16_LO:
714 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
715 break;
716 case ELF::R_PPC64_ADDR16_LO_DS:
717 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
718 break;
719 case ELF::R_PPC64_ADDR16_HI:
720 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
721 break;
722 case ELF::R_PPC64_ADDR16_HA:
723 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
724 break;
725 case ELF::R_PPC64_ADDR16_HIGHER:
726 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
727 break;
728 case ELF::R_PPC64_ADDR16_HIGHERA:
729 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
730 break;
731 case ELF::R_PPC64_ADDR16_HIGHEST:
732 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
733 break;
734 case ELF::R_PPC64_ADDR16_HIGHESTA:
735 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
736 break;
737 case ELF::R_PPC64_ADDR14: {
738 assert(((Value + Addend) & 3) == 0);
739 // Preserve the AA/LK bits in the branch instruction
740 uint8_t aalk = *(LocalAddress + 3);
741 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
742 } break;
743 case ELF::R_PPC64_REL16_LO: {
744 uint64_t FinalAddress = (Section.LoadAddress + Offset);
745 uint64_t Delta = Value - FinalAddress + Addend;
746 writeInt16BE(LocalAddress, applyPPClo(Delta));
747 } break;
748 case ELF::R_PPC64_REL16_HI: {
749 uint64_t FinalAddress = (Section.LoadAddress + Offset);
750 uint64_t Delta = Value - FinalAddress + Addend;
751 writeInt16BE(LocalAddress, applyPPChi(Delta));
752 } break;
753 case ELF::R_PPC64_REL16_HA: {
754 uint64_t FinalAddress = (Section.LoadAddress + Offset);
755 uint64_t Delta = Value - FinalAddress + Addend;
756 writeInt16BE(LocalAddress, applyPPCha(Delta));
757 } break;
758 case ELF::R_PPC64_ADDR32: {
759 int32_t Result = static_cast<int32_t>(Value + Addend);
760 if (SignExtend32<32>(Result) != Result)
761 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
762 writeInt32BE(LocalAddress, Result);
763 } break;
764 case ELF::R_PPC64_REL24: {
765 uint64_t FinalAddress = (Section.LoadAddress + Offset);
766 int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
767 if (SignExtend32<24>(delta) != delta)
768 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
769 // Generates a 'bl <address>' instruction
770 writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
771 } break;
772 case ELF::R_PPC64_REL32: {
773 uint64_t FinalAddress = (Section.LoadAddress + Offset);
774 int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
775 if (SignExtend32<32>(delta) != delta)
776 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
777 writeInt32BE(LocalAddress, delta);
778 } break;
779 case ELF::R_PPC64_REL64: {
780 uint64_t FinalAddress = (Section.LoadAddress + Offset);
781 uint64_t Delta = Value - FinalAddress + Addend;
782 writeInt64BE(LocalAddress, Delta);
783 } break;
784 case ELF::R_PPC64_ADDR64:
785 writeInt64BE(LocalAddress, Value + Addend);
786 break;
787 }
788 }
789
resolveSystemZRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)790 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
791 uint64_t Offset, uint64_t Value,
792 uint32_t Type, int64_t Addend) {
793 uint8_t *LocalAddress = Section.Address + Offset;
794 switch (Type) {
795 default:
796 llvm_unreachable("Relocation type not implemented yet!");
797 break;
798 case ELF::R_390_PC16DBL:
799 case ELF::R_390_PLT16DBL: {
800 int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
801 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
802 writeInt16BE(LocalAddress, Delta / 2);
803 break;
804 }
805 case ELF::R_390_PC32DBL:
806 case ELF::R_390_PLT32DBL: {
807 int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
808 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
809 writeInt32BE(LocalAddress, Delta / 2);
810 break;
811 }
812 case ELF::R_390_PC32: {
813 int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
814 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
815 writeInt32BE(LocalAddress, Delta);
816 break;
817 }
818 case ELF::R_390_64:
819 writeInt64BE(LocalAddress, Value + Addend);
820 break;
821 }
822 }
823
824 // The target location for the relocation is described by RE.SectionID and
825 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
826 // SectionEntry has three members describing its location.
827 // SectionEntry::Address is the address at which the section has been loaded
828 // into memory in the current (host) process. SectionEntry::LoadAddress is the
829 // address that the section will have in the target process.
830 // SectionEntry::ObjAddress is the address of the bits for this section in the
831 // original emitted object image (also in the current address space).
832 //
833 // Relocations will be applied as if the section were loaded at
834 // SectionEntry::LoadAddress, but they will be applied at an address based
835 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
836 // Target memory contents if they are required for value calculations.
837 //
838 // The Value parameter here is the load address of the symbol for the
839 // relocation to be applied. For relocations which refer to symbols in the
840 // current object Value will be the LoadAddress of the section in which
841 // the symbol resides (RE.Addend provides additional information about the
842 // symbol location). For external symbols, Value will be the address of the
843 // symbol in the target address space.
resolveRelocation(const RelocationEntry & RE,uint64_t Value)844 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
845 uint64_t Value) {
846 const SectionEntry &Section = Sections[RE.SectionID];
847 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
848 RE.SymOffset);
849 }
850
resolveRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend,uint64_t SymOffset)851 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
852 uint64_t Offset, uint64_t Value,
853 uint32_t Type, int64_t Addend,
854 uint64_t SymOffset) {
855 switch (Arch) {
856 case Triple::x86_64:
857 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
858 break;
859 case Triple::x86:
860 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
861 (uint32_t)(Addend & 0xffffffffL));
862 break;
863 case Triple::aarch64:
864 case Triple::aarch64_be:
865 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
866 break;
867 case Triple::arm: // Fall through.
868 case Triple::armeb:
869 case Triple::thumb:
870 case Triple::thumbeb:
871 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
872 (uint32_t)(Addend & 0xffffffffL));
873 break;
874 case Triple::mips: // Fall through.
875 case Triple::mipsel:
876 resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
877 Type, (uint32_t)(Addend & 0xffffffffL));
878 break;
879 case Triple::ppc64: // Fall through.
880 case Triple::ppc64le:
881 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
882 break;
883 case Triple::systemz:
884 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
885 break;
886 default:
887 llvm_unreachable("Unsupported CPU type!");
888 }
889 }
890
processRelocationRef(unsigned SectionID,relocation_iterator RelI,const ObjectFile & Obj,ObjSectionToIDMap & ObjSectionToID,StubMap & Stubs)891 relocation_iterator RuntimeDyldELF::processRelocationRef(
892 unsigned SectionID, relocation_iterator RelI,
893 const ObjectFile &Obj,
894 ObjSectionToIDMap &ObjSectionToID,
895 StubMap &Stubs) {
896 uint64_t RelType;
897 Check(RelI->getType(RelType));
898 int64_t Addend;
899 Check(getELFRelocationAddend(*RelI, Addend));
900 symbol_iterator Symbol = RelI->getSymbol();
901
902 // Obtain the symbol name which is referenced in the relocation
903 StringRef TargetName;
904 if (Symbol != Obj.symbol_end())
905 Symbol->getName(TargetName);
906 DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
907 << " TargetName: " << TargetName << "\n");
908 RelocationValueRef Value;
909 // First search for the symbol in the local symbol table
910 SymbolRef::Type SymType = SymbolRef::ST_Unknown;
911
912 // Search for the symbol in the global symbol table
913 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
914 if (Symbol != Obj.symbol_end()) {
915 gsi = GlobalSymbolTable.find(TargetName.data());
916 Symbol->getType(SymType);
917 }
918 if (gsi != GlobalSymbolTable.end()) {
919 const auto &SymInfo = gsi->second;
920 Value.SectionID = SymInfo.getSectionID();
921 Value.Offset = SymInfo.getOffset();
922 Value.Addend = SymInfo.getOffset() + Addend;
923 } else {
924 switch (SymType) {
925 case SymbolRef::ST_Debug: {
926 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
927 // and can be changed by another developers. Maybe best way is add
928 // a new symbol type ST_Section to SymbolRef and use it.
929 section_iterator si(Obj.section_end());
930 Symbol->getSection(si);
931 if (si == Obj.section_end())
932 llvm_unreachable("Symbol section not found, bad object file format!");
933 DEBUG(dbgs() << "\t\tThis is section symbol\n");
934 bool isCode = si->isText();
935 Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
936 Value.Addend = Addend;
937 break;
938 }
939 case SymbolRef::ST_Data:
940 case SymbolRef::ST_Unknown: {
941 Value.SymbolName = TargetName.data();
942 Value.Addend = Addend;
943
944 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
945 // will manifest here as a NULL symbol name.
946 // We can set this as a valid (but empty) symbol name, and rely
947 // on addRelocationForSymbol to handle this.
948 if (!Value.SymbolName)
949 Value.SymbolName = "";
950 break;
951 }
952 default:
953 llvm_unreachable("Unresolved symbol type!");
954 break;
955 }
956 }
957
958 uint64_t Offset;
959 Check(RelI->getOffset(Offset));
960
961 DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
962 << "\n");
963 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
964 (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
965 // This is an AArch64 branch relocation, need to use a stub function.
966 DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
967 SectionEntry &Section = Sections[SectionID];
968
969 // Look for an existing stub.
970 StubMap::const_iterator i = Stubs.find(Value);
971 if (i != Stubs.end()) {
972 resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
973 RelType, 0);
974 DEBUG(dbgs() << " Stub function found\n");
975 } else {
976 // Create a new stub function.
977 DEBUG(dbgs() << " Create a new stub function\n");
978 Stubs[Value] = Section.StubOffset;
979 uint8_t *StubTargetAddr =
980 createStubFunction(Section.Address + Section.StubOffset);
981
982 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
983 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
984 RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
985 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
986 RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
987 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
988 RelocationEntry REmovk_g0(SectionID,
989 StubTargetAddr - Section.Address + 12,
990 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
991
992 if (Value.SymbolName) {
993 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
994 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
995 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
996 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
997 } else {
998 addRelocationForSection(REmovz_g3, Value.SectionID);
999 addRelocationForSection(REmovk_g2, Value.SectionID);
1000 addRelocationForSection(REmovk_g1, Value.SectionID);
1001 addRelocationForSection(REmovk_g0, Value.SectionID);
1002 }
1003 resolveRelocation(Section, Offset,
1004 (uint64_t)Section.Address + Section.StubOffset, RelType,
1005 0);
1006 Section.StubOffset += getMaxStubSize();
1007 }
1008 } else if (Arch == Triple::arm &&
1009 (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1010 RelType == ELF::R_ARM_JUMP24)) {
1011 // This is an ARM branch relocation, need to use a stub function.
1012 DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
1013 SectionEntry &Section = Sections[SectionID];
1014
1015 // Look for an existing stub.
1016 StubMap::const_iterator i = Stubs.find(Value);
1017 if (i != Stubs.end()) {
1018 resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
1019 RelType, 0);
1020 DEBUG(dbgs() << " Stub function found\n");
1021 } else {
1022 // Create a new stub function.
1023 DEBUG(dbgs() << " Create a new stub function\n");
1024 Stubs[Value] = Section.StubOffset;
1025 uint8_t *StubTargetAddr =
1026 createStubFunction(Section.Address + Section.StubOffset);
1027 RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
1028 ELF::R_ARM_PRIVATE_0, Value.Addend);
1029 if (Value.SymbolName)
1030 addRelocationForSymbol(RE, Value.SymbolName);
1031 else
1032 addRelocationForSection(RE, Value.SectionID);
1033
1034 resolveRelocation(Section, Offset,
1035 (uint64_t)Section.Address + Section.StubOffset, RelType,
1036 0);
1037 Section.StubOffset += getMaxStubSize();
1038 }
1039 } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
1040 RelType == ELF::R_MIPS_26) {
1041 // This is an Mips branch relocation, need to use a stub function.
1042 DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1043 SectionEntry &Section = Sections[SectionID];
1044 uint8_t *Target = Section.Address + Offset;
1045 uint32_t *TargetAddress = (uint32_t *)Target;
1046
1047 // Extract the addend from the instruction.
1048 uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
1049
1050 Value.Addend += Addend;
1051
1052 // Look up for existing stub.
1053 StubMap::const_iterator i = Stubs.find(Value);
1054 if (i != Stubs.end()) {
1055 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1056 addRelocationForSection(RE, SectionID);
1057 DEBUG(dbgs() << " Stub function found\n");
1058 } else {
1059 // Create a new stub function.
1060 DEBUG(dbgs() << " Create a new stub function\n");
1061 Stubs[Value] = Section.StubOffset;
1062 uint8_t *StubTargetAddr =
1063 createStubFunction(Section.Address + Section.StubOffset);
1064
1065 // Creating Hi and Lo relocations for the filled stub instructions.
1066 RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
1067 ELF::R_MIPS_UNUSED1, Value.Addend);
1068 RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
1069 ELF::R_MIPS_UNUSED2, Value.Addend);
1070
1071 if (Value.SymbolName) {
1072 addRelocationForSymbol(REHi, Value.SymbolName);
1073 addRelocationForSymbol(RELo, Value.SymbolName);
1074 } else {
1075 addRelocationForSection(REHi, Value.SectionID);
1076 addRelocationForSection(RELo, Value.SectionID);
1077 }
1078
1079 RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
1080 addRelocationForSection(RE, SectionID);
1081 Section.StubOffset += getMaxStubSize();
1082 }
1083 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1084 if (RelType == ELF::R_PPC64_REL24) {
1085 // Determine ABI variant in use for this object.
1086 unsigned AbiVariant;
1087 Obj.getPlatformFlags(AbiVariant);
1088 AbiVariant &= ELF::EF_PPC64_ABI;
1089 // A PPC branch relocation will need a stub function if the target is
1090 // an external symbol (Symbol::ST_Unknown) or if the target address
1091 // is not within the signed 24-bits branch address.
1092 SectionEntry &Section = Sections[SectionID];
1093 uint8_t *Target = Section.Address + Offset;
1094 bool RangeOverflow = false;
1095 if (SymType != SymbolRef::ST_Unknown) {
1096 if (AbiVariant != 2) {
1097 // In the ELFv1 ABI, a function call may point to the .opd entry,
1098 // so the final symbol value is calculated based on the relocation
1099 // values in the .opd section.
1100 findOPDEntrySection(Obj, ObjSectionToID, Value);
1101 } else {
1102 // In the ELFv2 ABI, a function symbol may provide a local entry
1103 // point, which must be used for direct calls.
1104 uint8_t SymOther;
1105 Symbol->getOther(SymOther);
1106 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1107 }
1108 uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
1109 int32_t delta = static_cast<int32_t>(Target - RelocTarget);
1110 // If it is within 24-bits branch range, just set the branch target
1111 if (SignExtend32<24>(delta) == delta) {
1112 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1113 if (Value.SymbolName)
1114 addRelocationForSymbol(RE, Value.SymbolName);
1115 else
1116 addRelocationForSection(RE, Value.SectionID);
1117 } else {
1118 RangeOverflow = true;
1119 }
1120 }
1121 if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
1122 // It is an external symbol (SymbolRef::ST_Unknown) or within a range
1123 // larger than 24-bits.
1124 StubMap::const_iterator i = Stubs.find(Value);
1125 if (i != Stubs.end()) {
1126 // Symbol function stub already created, just relocate to it
1127 resolveRelocation(Section, Offset,
1128 (uint64_t)Section.Address + i->second, RelType, 0);
1129 DEBUG(dbgs() << " Stub function found\n");
1130 } else {
1131 // Create a new stub function.
1132 DEBUG(dbgs() << " Create a new stub function\n");
1133 Stubs[Value] = Section.StubOffset;
1134 uint8_t *StubTargetAddr =
1135 createStubFunction(Section.Address + Section.StubOffset,
1136 AbiVariant);
1137 RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
1138 ELF::R_PPC64_ADDR64, Value.Addend);
1139
1140 // Generates the 64-bits address loads as exemplified in section
1141 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1142 // apply to the low part of the instructions, so we have to update
1143 // the offset according to the target endianness.
1144 uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
1145 if (!IsTargetLittleEndian)
1146 StubRelocOffset += 2;
1147
1148 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1149 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1150 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1151 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1152 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1153 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1154 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1155 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1156
1157 if (Value.SymbolName) {
1158 addRelocationForSymbol(REhst, Value.SymbolName);
1159 addRelocationForSymbol(REhr, Value.SymbolName);
1160 addRelocationForSymbol(REh, Value.SymbolName);
1161 addRelocationForSymbol(REl, Value.SymbolName);
1162 } else {
1163 addRelocationForSection(REhst, Value.SectionID);
1164 addRelocationForSection(REhr, Value.SectionID);
1165 addRelocationForSection(REh, Value.SectionID);
1166 addRelocationForSection(REl, Value.SectionID);
1167 }
1168
1169 resolveRelocation(Section, Offset,
1170 (uint64_t)Section.Address + Section.StubOffset,
1171 RelType, 0);
1172 Section.StubOffset += getMaxStubSize();
1173 }
1174 if (SymType == SymbolRef::ST_Unknown) {
1175 // Restore the TOC for external calls
1176 if (AbiVariant == 2)
1177 writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
1178 else
1179 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1180 }
1181 }
1182 } else if (RelType == ELF::R_PPC64_TOC16 ||
1183 RelType == ELF::R_PPC64_TOC16_DS ||
1184 RelType == ELF::R_PPC64_TOC16_LO ||
1185 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1186 RelType == ELF::R_PPC64_TOC16_HI ||
1187 RelType == ELF::R_PPC64_TOC16_HA) {
1188 // These relocations are supposed to subtract the TOC address from
1189 // the final value. This does not fit cleanly into the RuntimeDyld
1190 // scheme, since there may be *two* sections involved in determining
1191 // the relocation value (the section of the symbol refered to by the
1192 // relocation, and the TOC section associated with the current module).
1193 //
1194 // Fortunately, these relocations are currently only ever generated
1195 // refering to symbols that themselves reside in the TOC, which means
1196 // that the two sections are actually the same. Thus they cancel out
1197 // and we can immediately resolve the relocation right now.
1198 switch (RelType) {
1199 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1200 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1201 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1202 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1203 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1204 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1205 default: llvm_unreachable("Wrong relocation type.");
1206 }
1207
1208 RelocationValueRef TOCValue;
1209 findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
1210 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1211 llvm_unreachable("Unsupported TOC relocation.");
1212 Value.Addend -= TOCValue.Addend;
1213 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1214 } else {
1215 // There are two ways to refer to the TOC address directly: either
1216 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1217 // ignored), or via any relocation that refers to the magic ".TOC."
1218 // symbols (in which case the addend is respected).
1219 if (RelType == ELF::R_PPC64_TOC) {
1220 RelType = ELF::R_PPC64_ADDR64;
1221 findPPC64TOCSection(Obj, ObjSectionToID, Value);
1222 } else if (TargetName == ".TOC.") {
1223 findPPC64TOCSection(Obj, ObjSectionToID, Value);
1224 Value.Addend += Addend;
1225 }
1226
1227 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1228
1229 if (Value.SymbolName)
1230 addRelocationForSymbol(RE, Value.SymbolName);
1231 else
1232 addRelocationForSection(RE, Value.SectionID);
1233 }
1234 } else if (Arch == Triple::systemz &&
1235 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1236 // Create function stubs for both PLT and GOT references, regardless of
1237 // whether the GOT reference is to data or code. The stub contains the
1238 // full address of the symbol, as needed by GOT references, and the
1239 // executable part only adds an overhead of 8 bytes.
1240 //
1241 // We could try to conserve space by allocating the code and data
1242 // parts of the stub separately. However, as things stand, we allocate
1243 // a stub for every relocation, so using a GOT in JIT code should be
1244 // no less space efficient than using an explicit constant pool.
1245 DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1246 SectionEntry &Section = Sections[SectionID];
1247
1248 // Look for an existing stub.
1249 StubMap::const_iterator i = Stubs.find(Value);
1250 uintptr_t StubAddress;
1251 if (i != Stubs.end()) {
1252 StubAddress = uintptr_t(Section.Address) + i->second;
1253 DEBUG(dbgs() << " Stub function found\n");
1254 } else {
1255 // Create a new stub function.
1256 DEBUG(dbgs() << " Create a new stub function\n");
1257
1258 uintptr_t BaseAddress = uintptr_t(Section.Address);
1259 uintptr_t StubAlignment = getStubAlignment();
1260 StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
1261 -StubAlignment;
1262 unsigned StubOffset = StubAddress - BaseAddress;
1263
1264 Stubs[Value] = StubOffset;
1265 createStubFunction((uint8_t *)StubAddress);
1266 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1267 Value.Offset);
1268 if (Value.SymbolName)
1269 addRelocationForSymbol(RE, Value.SymbolName);
1270 else
1271 addRelocationForSection(RE, Value.SectionID);
1272 Section.StubOffset = StubOffset + getMaxStubSize();
1273 }
1274
1275 if (RelType == ELF::R_390_GOTENT)
1276 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1277 Addend);
1278 else
1279 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1280 } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
1281 // The way the PLT relocations normally work is that the linker allocates
1282 // the
1283 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1284 // entry will then jump to an address provided by the GOT. On first call,
1285 // the
1286 // GOT address will point back into PLT code that resolves the symbol. After
1287 // the first call, the GOT entry points to the actual function.
1288 //
1289 // For local functions we're ignoring all of that here and just replacing
1290 // the PLT32 relocation type with PC32, which will translate the relocation
1291 // into a PC-relative call directly to the function. For external symbols we
1292 // can't be sure the function will be within 2^32 bytes of the call site, so
1293 // we need to create a stub, which calls into the GOT. This case is
1294 // equivalent to the usual PLT implementation except that we use the stub
1295 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1296 // rather than allocating a PLT section.
1297 if (Value.SymbolName) {
1298 // This is a call to an external function.
1299 // Look for an existing stub.
1300 SectionEntry &Section = Sections[SectionID];
1301 StubMap::const_iterator i = Stubs.find(Value);
1302 uintptr_t StubAddress;
1303 if (i != Stubs.end()) {
1304 StubAddress = uintptr_t(Section.Address) + i->second;
1305 DEBUG(dbgs() << " Stub function found\n");
1306 } else {
1307 // Create a new stub function (equivalent to a PLT entry).
1308 DEBUG(dbgs() << " Create a new stub function\n");
1309
1310 uintptr_t BaseAddress = uintptr_t(Section.Address);
1311 uintptr_t StubAlignment = getStubAlignment();
1312 StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
1313 -StubAlignment;
1314 unsigned StubOffset = StubAddress - BaseAddress;
1315 Stubs[Value] = StubOffset;
1316 createStubFunction((uint8_t *)StubAddress);
1317
1318 // Bump our stub offset counter
1319 Section.StubOffset = StubOffset + getMaxStubSize();
1320
1321 // Allocate a GOT Entry
1322 uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1323
1324 // The load of the GOT address has an addend of -4
1325 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
1326
1327 // Fill in the value of the symbol we're targeting into the GOT
1328 addRelocationForSymbol(computeGOTOffsetRE(SectionID,GOTOffset,0,ELF::R_X86_64_64),
1329 Value.SymbolName);
1330 }
1331
1332 // Make the target call a call into the stub table.
1333 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1334 Addend);
1335 } else {
1336 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1337 Value.Offset);
1338 addRelocationForSection(RE, Value.SectionID);
1339 }
1340 } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) {
1341 uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1342 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
1343
1344 // Fill in the value of the symbol we're targeting into the GOT
1345 RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
1346 if (Value.SymbolName)
1347 addRelocationForSymbol(RE, Value.SymbolName);
1348 else
1349 addRelocationForSection(RE, Value.SectionID);
1350 } else {
1351 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1352 if (Value.SymbolName)
1353 addRelocationForSymbol(RE, Value.SymbolName);
1354 else
1355 addRelocationForSection(RE, Value.SectionID);
1356 }
1357 return ++RelI;
1358 }
1359
getGOTEntrySize()1360 size_t RuntimeDyldELF::getGOTEntrySize() {
1361 // We don't use the GOT in all of these cases, but it's essentially free
1362 // to put them all here.
1363 size_t Result = 0;
1364 switch (Arch) {
1365 case Triple::x86_64:
1366 case Triple::aarch64:
1367 case Triple::aarch64_be:
1368 case Triple::ppc64:
1369 case Triple::ppc64le:
1370 case Triple::systemz:
1371 Result = sizeof(uint64_t);
1372 break;
1373 case Triple::x86:
1374 case Triple::arm:
1375 case Triple::thumb:
1376 case Triple::mips:
1377 case Triple::mipsel:
1378 Result = sizeof(uint32_t);
1379 break;
1380 default:
1381 llvm_unreachable("Unsupported CPU type!");
1382 }
1383 return Result;
1384 }
1385
allocateGOTEntries(unsigned SectionID,unsigned no)1386 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
1387 {
1388 (void)SectionID; // The GOT Section is the same for all section in the object file
1389 if (GOTSectionID == 0) {
1390 GOTSectionID = Sections.size();
1391 // Reserve a section id. We'll allocate the section later
1392 // once we know the total size
1393 Sections.push_back(SectionEntry(".got", 0, 0, 0));
1394 }
1395 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1396 CurrentGOTIndex += no;
1397 return StartOffset;
1398 }
1399
resolveGOTOffsetRelocation(unsigned SectionID,uint64_t Offset,uint64_t GOTOffset)1400 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
1401 {
1402 // Fill in the relative address of the GOT Entry into the stub
1403 RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
1404 addRelocationForSection(GOTRE, GOTSectionID);
1405 }
1406
computeGOTOffsetRE(unsigned SectionID,uint64_t GOTOffset,uint64_t SymbolOffset,uint32_t Type)1407 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
1408 uint32_t Type)
1409 {
1410 (void)SectionID; // The GOT Section is the same for all section in the object file
1411 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1412 }
1413
finalizeLoad(const ObjectFile & Obj,ObjSectionToIDMap & SectionMap)1414 void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1415 ObjSectionToIDMap &SectionMap) {
1416 // If necessary, allocate the global offset table
1417 if (GOTSectionID != 0) {
1418 // Allocate memory for the section
1419 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1420 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1421 GOTSectionID, ".got", false);
1422 if (!Addr)
1423 report_fatal_error("Unable to allocate memory for GOT!");
1424
1425 Sections[GOTSectionID] = SectionEntry(".got", Addr, TotalSize, 0);
1426
1427 if (Checker)
1428 Checker->registerSection(Obj.getFileName(), GOTSectionID);
1429
1430 // For now, initialize all GOT entries to zero. We'll fill them in as
1431 // needed when GOT-based relocations are applied.
1432 memset(Addr, 0, TotalSize);
1433 }
1434
1435 // Look for and record the EH frame section.
1436 ObjSectionToIDMap::iterator i, e;
1437 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1438 const SectionRef &Section = i->first;
1439 StringRef Name;
1440 Section.getName(Name);
1441 if (Name == ".eh_frame") {
1442 UnregisteredEHFrameSections.push_back(i->second);
1443 break;
1444 }
1445 }
1446
1447 GOTSectionID = 0;
1448 CurrentGOTIndex = 0;
1449 }
1450
isCompatibleFile(const object::ObjectFile & Obj) const1451 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1452 return Obj.isELF();
1453 }
1454
1455 } // namespace llvm
1456