1 //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a semantic tree transformation that takes a given
10 // AST and rebuilds it, possibly transforming some nodes in the process.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
15 #define LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
16
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/Stmt.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/AST/StmtOpenMP.h"
28 #include "clang/Sema/Designator.h"
29 #include "clang/Sema/Lookup.h"
30 #include "clang/Sema/Ownership.h"
31 #include "clang/Sema/ParsedTemplate.h"
32 #include "clang/Sema/ScopeInfo.h"
33 #include "clang/Sema/SemaDiagnostic.h"
34 #include "clang/Sema/SemaInternal.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include <algorithm>
38
39 namespace clang {
40 using namespace sema;
41
42 /// \brief A semantic tree transformation that allows one to transform one
43 /// abstract syntax tree into another.
44 ///
45 /// A new tree transformation is defined by creating a new subclass \c X of
46 /// \c TreeTransform<X> and then overriding certain operations to provide
47 /// behavior specific to that transformation. For example, template
48 /// instantiation is implemented as a tree transformation where the
49 /// transformation of TemplateTypeParmType nodes involves substituting the
50 /// template arguments for their corresponding template parameters; a similar
51 /// transformation is performed for non-type template parameters and
52 /// template template parameters.
53 ///
54 /// This tree-transformation template uses static polymorphism to allow
55 /// subclasses to customize any of its operations. Thus, a subclass can
56 /// override any of the transformation or rebuild operators by providing an
57 /// operation with the same signature as the default implementation. The
58 /// overridding function should not be virtual.
59 ///
60 /// Semantic tree transformations are split into two stages, either of which
61 /// can be replaced by a subclass. The "transform" step transforms an AST node
62 /// or the parts of an AST node using the various transformation functions,
63 /// then passes the pieces on to the "rebuild" step, which constructs a new AST
64 /// node of the appropriate kind from the pieces. The default transformation
65 /// routines recursively transform the operands to composite AST nodes (e.g.,
66 /// the pointee type of a PointerType node) and, if any of those operand nodes
67 /// were changed by the transformation, invokes the rebuild operation to create
68 /// a new AST node.
69 ///
70 /// Subclasses can customize the transformation at various levels. The
71 /// most coarse-grained transformations involve replacing TransformType(),
72 /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
73 /// TransformTemplateName(), or TransformTemplateArgument() with entirely
74 /// new implementations.
75 ///
76 /// For more fine-grained transformations, subclasses can replace any of the
77 /// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
78 /// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
79 /// replacing TransformTemplateTypeParmType() allows template instantiation
80 /// to substitute template arguments for their corresponding template
81 /// parameters. Additionally, subclasses can override the \c RebuildXXX
82 /// functions to control how AST nodes are rebuilt when their operands change.
83 /// By default, \c TreeTransform will invoke semantic analysis to rebuild
84 /// AST nodes. However, certain other tree transformations (e.g, cloning) may
85 /// be able to use more efficient rebuild steps.
86 ///
87 /// There are a handful of other functions that can be overridden, allowing one
88 /// to avoid traversing nodes that don't need any transformation
89 /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
90 /// operands have not changed (\c AlwaysRebuild()), and customize the
91 /// default locations and entity names used for type-checking
92 /// (\c getBaseLocation(), \c getBaseEntity()).
93 template<typename Derived>
94 class TreeTransform {
95 /// \brief Private RAII object that helps us forget and then re-remember
96 /// the template argument corresponding to a partially-substituted parameter
97 /// pack.
98 class ForgetPartiallySubstitutedPackRAII {
99 Derived &Self;
100 TemplateArgument Old;
101
102 public:
ForgetPartiallySubstitutedPackRAII(Derived & Self)103 ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) {
104 Old = Self.ForgetPartiallySubstitutedPack();
105 }
106
~ForgetPartiallySubstitutedPackRAII()107 ~ForgetPartiallySubstitutedPackRAII() {
108 Self.RememberPartiallySubstitutedPack(Old);
109 }
110 };
111
112 protected:
113 Sema &SemaRef;
114
115 /// \brief The set of local declarations that have been transformed, for
116 /// cases where we are forced to build new declarations within the transformer
117 /// rather than in the subclass (e.g., lambda closure types).
118 llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls;
119
120 public:
121 /// \brief Initializes a new tree transformer.
TreeTransform(Sema & SemaRef)122 TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
123
124 /// \brief Retrieves a reference to the derived class.
getDerived()125 Derived &getDerived() { return static_cast<Derived&>(*this); }
126
127 /// \brief Retrieves a reference to the derived class.
getDerived()128 const Derived &getDerived() const {
129 return static_cast<const Derived&>(*this);
130 }
131
Owned(Expr * E)132 static inline ExprResult Owned(Expr *E) { return E; }
Owned(Stmt * S)133 static inline StmtResult Owned(Stmt *S) { return S; }
134
135 /// \brief Retrieves a reference to the semantic analysis object used for
136 /// this tree transform.
getSema()137 Sema &getSema() const { return SemaRef; }
138
139 /// \brief Whether the transformation should always rebuild AST nodes, even
140 /// if none of the children have changed.
141 ///
142 /// Subclasses may override this function to specify when the transformation
143 /// should rebuild all AST nodes.
144 ///
145 /// We must always rebuild all AST nodes when performing variadic template
146 /// pack expansion, in order to avoid violating the AST invariant that each
147 /// statement node appears at most once in its containing declaration.
AlwaysRebuild()148 bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; }
149
150 /// \brief Returns the location of the entity being transformed, if that
151 /// information was not available elsewhere in the AST.
152 ///
153 /// By default, returns no source-location information. Subclasses can
154 /// provide an alternative implementation that provides better location
155 /// information.
getBaseLocation()156 SourceLocation getBaseLocation() { return SourceLocation(); }
157
158 /// \brief Returns the name of the entity being transformed, if that
159 /// information was not available elsewhere in the AST.
160 ///
161 /// By default, returns an empty name. Subclasses can provide an alternative
162 /// implementation with a more precise name.
getBaseEntity()163 DeclarationName getBaseEntity() { return DeclarationName(); }
164
165 /// \brief Sets the "base" location and entity when that
166 /// information is known based on another transformation.
167 ///
168 /// By default, the source location and entity are ignored. Subclasses can
169 /// override this function to provide a customized implementation.
setBase(SourceLocation Loc,DeclarationName Entity)170 void setBase(SourceLocation Loc, DeclarationName Entity) { }
171
172 /// \brief RAII object that temporarily sets the base location and entity
173 /// used for reporting diagnostics in types.
174 class TemporaryBase {
175 TreeTransform &Self;
176 SourceLocation OldLocation;
177 DeclarationName OldEntity;
178
179 public:
TemporaryBase(TreeTransform & Self,SourceLocation Location,DeclarationName Entity)180 TemporaryBase(TreeTransform &Self, SourceLocation Location,
181 DeclarationName Entity) : Self(Self) {
182 OldLocation = Self.getDerived().getBaseLocation();
183 OldEntity = Self.getDerived().getBaseEntity();
184
185 if (Location.isValid())
186 Self.getDerived().setBase(Location, Entity);
187 }
188
~TemporaryBase()189 ~TemporaryBase() {
190 Self.getDerived().setBase(OldLocation, OldEntity);
191 }
192 };
193
194 /// \brief Determine whether the given type \p T has already been
195 /// transformed.
196 ///
197 /// Subclasses can provide an alternative implementation of this routine
198 /// to short-circuit evaluation when it is known that a given type will
199 /// not change. For example, template instantiation need not traverse
200 /// non-dependent types.
AlreadyTransformed(QualType T)201 bool AlreadyTransformed(QualType T) {
202 return T.isNull();
203 }
204
205 /// \brief Determine whether the given call argument should be dropped, e.g.,
206 /// because it is a default argument.
207 ///
208 /// Subclasses can provide an alternative implementation of this routine to
209 /// determine which kinds of call arguments get dropped. By default,
210 /// CXXDefaultArgument nodes are dropped (prior to transformation).
DropCallArgument(Expr * E)211 bool DropCallArgument(Expr *E) {
212 return E->isDefaultArgument();
213 }
214
215 /// \brief Determine whether we should expand a pack expansion with the
216 /// given set of parameter packs into separate arguments by repeatedly
217 /// transforming the pattern.
218 ///
219 /// By default, the transformer never tries to expand pack expansions.
220 /// Subclasses can override this routine to provide different behavior.
221 ///
222 /// \param EllipsisLoc The location of the ellipsis that identifies the
223 /// pack expansion.
224 ///
225 /// \param PatternRange The source range that covers the entire pattern of
226 /// the pack expansion.
227 ///
228 /// \param Unexpanded The set of unexpanded parameter packs within the
229 /// pattern.
230 ///
231 /// \param ShouldExpand Will be set to \c true if the transformer should
232 /// expand the corresponding pack expansions into separate arguments. When
233 /// set, \c NumExpansions must also be set.
234 ///
235 /// \param RetainExpansion Whether the caller should add an unexpanded
236 /// pack expansion after all of the expanded arguments. This is used
237 /// when extending explicitly-specified template argument packs per
238 /// C++0x [temp.arg.explicit]p9.
239 ///
240 /// \param NumExpansions The number of separate arguments that will be in
241 /// the expanded form of the corresponding pack expansion. This is both an
242 /// input and an output parameter, which can be set by the caller if the
243 /// number of expansions is known a priori (e.g., due to a prior substitution)
244 /// and will be set by the callee when the number of expansions is known.
245 /// The callee must set this value when \c ShouldExpand is \c true; it may
246 /// set this value in other cases.
247 ///
248 /// \returns true if an error occurred (e.g., because the parameter packs
249 /// are to be instantiated with arguments of different lengths), false
250 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
251 /// must be set.
TryExpandParameterPacks(SourceLocation EllipsisLoc,SourceRange PatternRange,ArrayRef<UnexpandedParameterPack> Unexpanded,bool & ShouldExpand,bool & RetainExpansion,Optional<unsigned> & NumExpansions)252 bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
253 SourceRange PatternRange,
254 ArrayRef<UnexpandedParameterPack> Unexpanded,
255 bool &ShouldExpand,
256 bool &RetainExpansion,
257 Optional<unsigned> &NumExpansions) {
258 ShouldExpand = false;
259 return false;
260 }
261
262 /// \brief "Forget" about the partially-substituted pack template argument,
263 /// when performing an instantiation that must preserve the parameter pack
264 /// use.
265 ///
266 /// This routine is meant to be overridden by the template instantiator.
ForgetPartiallySubstitutedPack()267 TemplateArgument ForgetPartiallySubstitutedPack() {
268 return TemplateArgument();
269 }
270
271 /// \brief "Remember" the partially-substituted pack template argument
272 /// after performing an instantiation that must preserve the parameter pack
273 /// use.
274 ///
275 /// This routine is meant to be overridden by the template instantiator.
RememberPartiallySubstitutedPack(TemplateArgument Arg)276 void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
277
278 /// \brief Note to the derived class when a function parameter pack is
279 /// being expanded.
ExpandingFunctionParameterPack(ParmVarDecl * Pack)280 void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
281
282 /// \brief Transforms the given type into another type.
283 ///
284 /// By default, this routine transforms a type by creating a
285 /// TypeSourceInfo for it and delegating to the appropriate
286 /// function. This is expensive, but we don't mind, because
287 /// this method is deprecated anyway; all users should be
288 /// switched to storing TypeSourceInfos.
289 ///
290 /// \returns the transformed type.
291 QualType TransformType(QualType T);
292
293 /// \brief Transforms the given type-with-location into a new
294 /// type-with-location.
295 ///
296 /// By default, this routine transforms a type by delegating to the
297 /// appropriate TransformXXXType to build a new type. Subclasses
298 /// may override this function (to take over all type
299 /// transformations) or some set of the TransformXXXType functions
300 /// to alter the transformation.
301 TypeSourceInfo *TransformType(TypeSourceInfo *DI);
302
303 /// \brief Transform the given type-with-location into a new
304 /// type, collecting location information in the given builder
305 /// as necessary.
306 ///
307 QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
308
309 /// \brief Transform the given statement.
310 ///
311 /// By default, this routine transforms a statement by delegating to the
312 /// appropriate TransformXXXStmt function to transform a specific kind of
313 /// statement or the TransformExpr() function to transform an expression.
314 /// Subclasses may override this function to transform statements using some
315 /// other mechanism.
316 ///
317 /// \returns the transformed statement.
318 StmtResult TransformStmt(Stmt *S);
319
320 /// \brief Transform the given statement.
321 ///
322 /// By default, this routine transforms a statement by delegating to the
323 /// appropriate TransformOMPXXXClause function to transform a specific kind
324 /// of clause. Subclasses may override this function to transform statements
325 /// using some other mechanism.
326 ///
327 /// \returns the transformed OpenMP clause.
328 OMPClause *TransformOMPClause(OMPClause *S);
329
330 /// \brief Transform the given attribute.
331 ///
332 /// By default, this routine transforms a statement by delegating to the
333 /// appropriate TransformXXXAttr function to transform a specific kind
334 /// of attribute. Subclasses may override this function to transform
335 /// attributed statements using some other mechanism.
336 ///
337 /// \returns the transformed attribute
338 const Attr *TransformAttr(const Attr *S);
339
340 /// \brief Transform the specified attribute.
341 ///
342 /// Subclasses should override the transformation of attributes with a pragma
343 /// spelling to transform expressions stored within the attribute.
344 ///
345 /// \returns the transformed attribute.
346 #define ATTR(X)
347 #define PRAGMA_SPELLING_ATTR(X) \
348 const X##Attr *Transform##X##Attr(const X##Attr *R) { return R; }
349 #include "clang/Basic/AttrList.inc"
350
351 /// \brief Transform the given expression.
352 ///
353 /// By default, this routine transforms an expression by delegating to the
354 /// appropriate TransformXXXExpr function to build a new expression.
355 /// Subclasses may override this function to transform expressions using some
356 /// other mechanism.
357 ///
358 /// \returns the transformed expression.
359 ExprResult TransformExpr(Expr *E);
360
361 /// \brief Transform the given initializer.
362 ///
363 /// By default, this routine transforms an initializer by stripping off the
364 /// semantic nodes added by initialization, then passing the result to
365 /// TransformExpr or TransformExprs.
366 ///
367 /// \returns the transformed initializer.
368 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit);
369
370 /// \brief Transform the given list of expressions.
371 ///
372 /// This routine transforms a list of expressions by invoking
373 /// \c TransformExpr() for each subexpression. However, it also provides
374 /// support for variadic templates by expanding any pack expansions (if the
375 /// derived class permits such expansion) along the way. When pack expansions
376 /// are present, the number of outputs may not equal the number of inputs.
377 ///
378 /// \param Inputs The set of expressions to be transformed.
379 ///
380 /// \param NumInputs The number of expressions in \c Inputs.
381 ///
382 /// \param IsCall If \c true, then this transform is being performed on
383 /// function-call arguments, and any arguments that should be dropped, will
384 /// be.
385 ///
386 /// \param Outputs The transformed input expressions will be added to this
387 /// vector.
388 ///
389 /// \param ArgChanged If non-NULL, will be set \c true if any argument changed
390 /// due to transformation.
391 ///
392 /// \returns true if an error occurred, false otherwise.
393 bool TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall,
394 SmallVectorImpl<Expr *> &Outputs,
395 bool *ArgChanged = nullptr);
396
397 /// \brief Transform the given declaration, which is referenced from a type
398 /// or expression.
399 ///
400 /// By default, acts as the identity function on declarations, unless the
401 /// transformer has had to transform the declaration itself. Subclasses
402 /// may override this function to provide alternate behavior.
TransformDecl(SourceLocation Loc,Decl * D)403 Decl *TransformDecl(SourceLocation Loc, Decl *D) {
404 llvm::DenseMap<Decl *, Decl *>::iterator Known
405 = TransformedLocalDecls.find(D);
406 if (Known != TransformedLocalDecls.end())
407 return Known->second;
408
409 return D;
410 }
411
412 /// \brief Transform the attributes associated with the given declaration and
413 /// place them on the new declaration.
414 ///
415 /// By default, this operation does nothing. Subclasses may override this
416 /// behavior to transform attributes.
transformAttrs(Decl * Old,Decl * New)417 void transformAttrs(Decl *Old, Decl *New) { }
418
419 /// \brief Note that a local declaration has been transformed by this
420 /// transformer.
421 ///
422 /// Local declarations are typically transformed via a call to
423 /// TransformDefinition. However, in some cases (e.g., lambda expressions),
424 /// the transformer itself has to transform the declarations. This routine
425 /// can be overridden by a subclass that keeps track of such mappings.
transformedLocalDecl(Decl * Old,Decl * New)426 void transformedLocalDecl(Decl *Old, Decl *New) {
427 TransformedLocalDecls[Old] = New;
428 }
429
430 /// \brief Transform the definition of the given declaration.
431 ///
432 /// By default, invokes TransformDecl() to transform the declaration.
433 /// Subclasses may override this function to provide alternate behavior.
TransformDefinition(SourceLocation Loc,Decl * D)434 Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
435 return getDerived().TransformDecl(Loc, D);
436 }
437
438 /// \brief Transform the given declaration, which was the first part of a
439 /// nested-name-specifier in a member access expression.
440 ///
441 /// This specific declaration transformation only applies to the first
442 /// identifier in a nested-name-specifier of a member access expression, e.g.,
443 /// the \c T in \c x->T::member
444 ///
445 /// By default, invokes TransformDecl() to transform the declaration.
446 /// Subclasses may override this function to provide alternate behavior.
TransformFirstQualifierInScope(NamedDecl * D,SourceLocation Loc)447 NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
448 return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
449 }
450
451 /// \brief Transform the given nested-name-specifier with source-location
452 /// information.
453 ///
454 /// By default, transforms all of the types and declarations within the
455 /// nested-name-specifier. Subclasses may override this function to provide
456 /// alternate behavior.
457 NestedNameSpecifierLoc
458 TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
459 QualType ObjectType = QualType(),
460 NamedDecl *FirstQualifierInScope = nullptr);
461
462 /// \brief Transform the given declaration name.
463 ///
464 /// By default, transforms the types of conversion function, constructor,
465 /// and destructor names and then (if needed) rebuilds the declaration name.
466 /// Identifiers and selectors are returned unmodified. Sublcasses may
467 /// override this function to provide alternate behavior.
468 DeclarationNameInfo
469 TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
470
471 /// \brief Transform the given template name.
472 ///
473 /// \param SS The nested-name-specifier that qualifies the template
474 /// name. This nested-name-specifier must already have been transformed.
475 ///
476 /// \param Name The template name to transform.
477 ///
478 /// \param NameLoc The source location of the template name.
479 ///
480 /// \param ObjectType If we're translating a template name within a member
481 /// access expression, this is the type of the object whose member template
482 /// is being referenced.
483 ///
484 /// \param FirstQualifierInScope If the first part of a nested-name-specifier
485 /// also refers to a name within the current (lexical) scope, this is the
486 /// declaration it refers to.
487 ///
488 /// By default, transforms the template name by transforming the declarations
489 /// and nested-name-specifiers that occur within the template name.
490 /// Subclasses may override this function to provide alternate behavior.
491 TemplateName
492 TransformTemplateName(CXXScopeSpec &SS, TemplateName Name,
493 SourceLocation NameLoc,
494 QualType ObjectType = QualType(),
495 NamedDecl *FirstQualifierInScope = nullptr);
496
497 /// \brief Transform the given template argument.
498 ///
499 /// By default, this operation transforms the type, expression, or
500 /// declaration stored within the template argument and constructs a
501 /// new template argument from the transformed result. Subclasses may
502 /// override this function to provide alternate behavior.
503 ///
504 /// Returns true if there was an error.
505 bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
506 TemplateArgumentLoc &Output);
507
508 /// \brief Transform the given set of template arguments.
509 ///
510 /// By default, this operation transforms all of the template arguments
511 /// in the input set using \c TransformTemplateArgument(), and appends
512 /// the transformed arguments to the output list.
513 ///
514 /// Note that this overload of \c TransformTemplateArguments() is merely
515 /// a convenience function. Subclasses that wish to override this behavior
516 /// should override the iterator-based member template version.
517 ///
518 /// \param Inputs The set of template arguments to be transformed.
519 ///
520 /// \param NumInputs The number of template arguments in \p Inputs.
521 ///
522 /// \param Outputs The set of transformed template arguments output by this
523 /// routine.
524 ///
525 /// Returns true if an error occurred.
TransformTemplateArguments(const TemplateArgumentLoc * Inputs,unsigned NumInputs,TemplateArgumentListInfo & Outputs)526 bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
527 unsigned NumInputs,
528 TemplateArgumentListInfo &Outputs) {
529 return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs);
530 }
531
532 /// \brief Transform the given set of template arguments.
533 ///
534 /// By default, this operation transforms all of the template arguments
535 /// in the input set using \c TransformTemplateArgument(), and appends
536 /// the transformed arguments to the output list.
537 ///
538 /// \param First An iterator to the first template argument.
539 ///
540 /// \param Last An iterator one step past the last template argument.
541 ///
542 /// \param Outputs The set of transformed template arguments output by this
543 /// routine.
544 ///
545 /// Returns true if an error occurred.
546 template<typename InputIterator>
547 bool TransformTemplateArguments(InputIterator First,
548 InputIterator Last,
549 TemplateArgumentListInfo &Outputs);
550
551 /// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument.
552 void InventTemplateArgumentLoc(const TemplateArgument &Arg,
553 TemplateArgumentLoc &ArgLoc);
554
555 /// \brief Fakes up a TypeSourceInfo for a type.
InventTypeSourceInfo(QualType T)556 TypeSourceInfo *InventTypeSourceInfo(QualType T) {
557 return SemaRef.Context.getTrivialTypeSourceInfo(T,
558 getDerived().getBaseLocation());
559 }
560
561 #define ABSTRACT_TYPELOC(CLASS, PARENT)
562 #define TYPELOC(CLASS, PARENT) \
563 QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
564 #include "clang/AST/TypeLocNodes.def"
565
566 template<typename Fn>
567 QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
568 FunctionProtoTypeLoc TL,
569 CXXRecordDecl *ThisContext,
570 unsigned ThisTypeQuals,
571 Fn TransformExceptionSpec);
572
573 bool TransformExceptionSpec(SourceLocation Loc,
574 FunctionProtoType::ExceptionSpecInfo &ESI,
575 SmallVectorImpl<QualType> &Exceptions,
576 bool &Changed);
577
578 StmtResult TransformSEHHandler(Stmt *Handler);
579
580 QualType
581 TransformTemplateSpecializationType(TypeLocBuilder &TLB,
582 TemplateSpecializationTypeLoc TL,
583 TemplateName Template);
584
585 QualType
586 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
587 DependentTemplateSpecializationTypeLoc TL,
588 TemplateName Template,
589 CXXScopeSpec &SS);
590
591 QualType TransformDependentTemplateSpecializationType(
592 TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL,
593 NestedNameSpecifierLoc QualifierLoc);
594
595 /// \brief Transforms the parameters of a function type into the
596 /// given vectors.
597 ///
598 /// The result vectors should be kept in sync; null entries in the
599 /// variables vector are acceptable.
600 ///
601 /// Return true on error.
602 bool TransformFunctionTypeParams(SourceLocation Loc,
603 ParmVarDecl **Params, unsigned NumParams,
604 const QualType *ParamTypes,
605 SmallVectorImpl<QualType> &PTypes,
606 SmallVectorImpl<ParmVarDecl*> *PVars);
607
608 /// \brief Transforms a single function-type parameter. Return null
609 /// on error.
610 ///
611 /// \param indexAdjustment - A number to add to the parameter's
612 /// scope index; can be negative
613 ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
614 int indexAdjustment,
615 Optional<unsigned> NumExpansions,
616 bool ExpectParameterPack);
617
618 QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
619
620 StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
621 ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
622
623 typedef std::pair<ExprResult, QualType> InitCaptureInfoTy;
624 /// \brief Transform the captures and body of a lambda expression.
625 ExprResult TransformLambdaScope(LambdaExpr *E, CXXMethodDecl *CallOperator,
626 ArrayRef<InitCaptureInfoTy> InitCaptureExprsAndTypes);
627
TransformTemplateParameterList(TemplateParameterList * TPL)628 TemplateParameterList *TransformTemplateParameterList(
629 TemplateParameterList *TPL) {
630 return TPL;
631 }
632
633 ExprResult TransformAddressOfOperand(Expr *E);
634
635 ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
636 bool IsAddressOfOperand,
637 TypeSourceInfo **RecoveryTSI);
638
639 ExprResult TransformParenDependentScopeDeclRefExpr(
640 ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand,
641 TypeSourceInfo **RecoveryTSI);
642
643 StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S);
644
645 // FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous
646 // amount of stack usage with clang.
647 #define STMT(Node, Parent) \
648 LLVM_ATTRIBUTE_NOINLINE \
649 StmtResult Transform##Node(Node *S);
650 #define EXPR(Node, Parent) \
651 LLVM_ATTRIBUTE_NOINLINE \
652 ExprResult Transform##Node(Node *E);
653 #define ABSTRACT_STMT(Stmt)
654 #include "clang/AST/StmtNodes.inc"
655
656 #define OPENMP_CLAUSE(Name, Class) \
657 LLVM_ATTRIBUTE_NOINLINE \
658 OMPClause *Transform ## Class(Class *S);
659 #include "clang/Basic/OpenMPKinds.def"
660
661 /// \brief Build a new pointer type given its pointee type.
662 ///
663 /// By default, performs semantic analysis when building the pointer type.
664 /// Subclasses may override this routine to provide different behavior.
665 QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
666
667 /// \brief Build a new block pointer type given its pointee type.
668 ///
669 /// By default, performs semantic analysis when building the block pointer
670 /// type. Subclasses may override this routine to provide different behavior.
671 QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
672
673 /// \brief Build a new reference type given the type it references.
674 ///
675 /// By default, performs semantic analysis when building the
676 /// reference type. Subclasses may override this routine to provide
677 /// different behavior.
678 ///
679 /// \param LValue whether the type was written with an lvalue sigil
680 /// or an rvalue sigil.
681 QualType RebuildReferenceType(QualType ReferentType,
682 bool LValue,
683 SourceLocation Sigil);
684
685 /// \brief Build a new member pointer type given the pointee type and the
686 /// class type it refers into.
687 ///
688 /// By default, performs semantic analysis when building the member pointer
689 /// type. Subclasses may override this routine to provide different behavior.
690 QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
691 SourceLocation Sigil);
692
693 /// \brief Build a new array type given the element type, size
694 /// modifier, size of the array (if known), size expression, and index type
695 /// qualifiers.
696 ///
697 /// By default, performs semantic analysis when building the array type.
698 /// Subclasses may override this routine to provide different behavior.
699 /// Also by default, all of the other Rebuild*Array
700 QualType RebuildArrayType(QualType ElementType,
701 ArrayType::ArraySizeModifier SizeMod,
702 const llvm::APInt *Size,
703 Expr *SizeExpr,
704 unsigned IndexTypeQuals,
705 SourceRange BracketsRange);
706
707 /// \brief Build a new constant array type given the element type, size
708 /// modifier, (known) size of the array, and index type qualifiers.
709 ///
710 /// By default, performs semantic analysis when building the array type.
711 /// Subclasses may override this routine to provide different behavior.
712 QualType RebuildConstantArrayType(QualType ElementType,
713 ArrayType::ArraySizeModifier SizeMod,
714 const llvm::APInt &Size,
715 unsigned IndexTypeQuals,
716 SourceRange BracketsRange);
717
718 /// \brief Build a new incomplete array type given the element type, size
719 /// modifier, and index type qualifiers.
720 ///
721 /// By default, performs semantic analysis when building the array type.
722 /// Subclasses may override this routine to provide different behavior.
723 QualType RebuildIncompleteArrayType(QualType ElementType,
724 ArrayType::ArraySizeModifier SizeMod,
725 unsigned IndexTypeQuals,
726 SourceRange BracketsRange);
727
728 /// \brief Build a new variable-length array type given the element type,
729 /// size modifier, size expression, and index type qualifiers.
730 ///
731 /// By default, performs semantic analysis when building the array type.
732 /// Subclasses may override this routine to provide different behavior.
733 QualType RebuildVariableArrayType(QualType ElementType,
734 ArrayType::ArraySizeModifier SizeMod,
735 Expr *SizeExpr,
736 unsigned IndexTypeQuals,
737 SourceRange BracketsRange);
738
739 /// \brief Build a new dependent-sized array type given the element type,
740 /// size modifier, size expression, and index type qualifiers.
741 ///
742 /// By default, performs semantic analysis when building the array type.
743 /// Subclasses may override this routine to provide different behavior.
744 QualType RebuildDependentSizedArrayType(QualType ElementType,
745 ArrayType::ArraySizeModifier SizeMod,
746 Expr *SizeExpr,
747 unsigned IndexTypeQuals,
748 SourceRange BracketsRange);
749
750 /// \brief Build a new vector type given the element type and
751 /// number of elements.
752 ///
753 /// By default, performs semantic analysis when building the vector type.
754 /// Subclasses may override this routine to provide different behavior.
755 QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
756 VectorType::VectorKind VecKind);
757
758 /// \brief Build a new extended vector type given the element type and
759 /// number of elements.
760 ///
761 /// By default, performs semantic analysis when building the vector type.
762 /// Subclasses may override this routine to provide different behavior.
763 QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
764 SourceLocation AttributeLoc);
765
766 /// \brief Build a new potentially dependently-sized extended vector type
767 /// given the element type and number of elements.
768 ///
769 /// By default, performs semantic analysis when building the vector type.
770 /// Subclasses may override this routine to provide different behavior.
771 QualType RebuildDependentSizedExtVectorType(QualType ElementType,
772 Expr *SizeExpr,
773 SourceLocation AttributeLoc);
774
775 /// \brief Build a new function type.
776 ///
777 /// By default, performs semantic analysis when building the function type.
778 /// Subclasses may override this routine to provide different behavior.
779 QualType RebuildFunctionProtoType(QualType T,
780 MutableArrayRef<QualType> ParamTypes,
781 const FunctionProtoType::ExtProtoInfo &EPI);
782
783 /// \brief Build a new unprototyped function type.
784 QualType RebuildFunctionNoProtoType(QualType ResultType);
785
786 /// \brief Rebuild an unresolved typename type, given the decl that
787 /// the UnresolvedUsingTypenameDecl was transformed to.
788 QualType RebuildUnresolvedUsingType(Decl *D);
789
790 /// \brief Build a new typedef type.
RebuildTypedefType(TypedefNameDecl * Typedef)791 QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
792 return SemaRef.Context.getTypeDeclType(Typedef);
793 }
794
795 /// \brief Build a new class/struct/union type.
RebuildRecordType(RecordDecl * Record)796 QualType RebuildRecordType(RecordDecl *Record) {
797 return SemaRef.Context.getTypeDeclType(Record);
798 }
799
800 /// \brief Build a new Enum type.
RebuildEnumType(EnumDecl * Enum)801 QualType RebuildEnumType(EnumDecl *Enum) {
802 return SemaRef.Context.getTypeDeclType(Enum);
803 }
804
805 /// \brief Build a new typeof(expr) type.
806 ///
807 /// By default, performs semantic analysis when building the typeof type.
808 /// Subclasses may override this routine to provide different behavior.
809 QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
810
811 /// \brief Build a new typeof(type) type.
812 ///
813 /// By default, builds a new TypeOfType with the given underlying type.
814 QualType RebuildTypeOfType(QualType Underlying);
815
816 /// \brief Build a new unary transform type.
817 QualType RebuildUnaryTransformType(QualType BaseType,
818 UnaryTransformType::UTTKind UKind,
819 SourceLocation Loc);
820
821 /// \brief Build a new C++11 decltype type.
822 ///
823 /// By default, performs semantic analysis when building the decltype type.
824 /// Subclasses may override this routine to provide different behavior.
825 QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
826
827 /// \brief Build a new C++11 auto type.
828 ///
829 /// By default, builds a new AutoType with the given deduced type.
RebuildAutoType(QualType Deduced,bool IsDecltypeAuto)830 QualType RebuildAutoType(QualType Deduced, bool IsDecltypeAuto) {
831 // Note, IsDependent is always false here: we implicitly convert an 'auto'
832 // which has been deduced to a dependent type into an undeduced 'auto', so
833 // that we'll retry deduction after the transformation.
834 return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto,
835 /*IsDependent*/ false);
836 }
837
838 /// \brief Build a new template specialization type.
839 ///
840 /// By default, performs semantic analysis when building the template
841 /// specialization type. Subclasses may override this routine to provide
842 /// different behavior.
843 QualType RebuildTemplateSpecializationType(TemplateName Template,
844 SourceLocation TemplateLoc,
845 TemplateArgumentListInfo &Args);
846
847 /// \brief Build a new parenthesized type.
848 ///
849 /// By default, builds a new ParenType type from the inner type.
850 /// Subclasses may override this routine to provide different behavior.
RebuildParenType(QualType InnerType)851 QualType RebuildParenType(QualType InnerType) {
852 return SemaRef.Context.getParenType(InnerType);
853 }
854
855 /// \brief Build a new qualified name type.
856 ///
857 /// By default, builds a new ElaboratedType type from the keyword,
858 /// the nested-name-specifier and the named type.
859 /// Subclasses may override this routine to provide different behavior.
RebuildElaboratedType(SourceLocation KeywordLoc,ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,QualType Named)860 QualType RebuildElaboratedType(SourceLocation KeywordLoc,
861 ElaboratedTypeKeyword Keyword,
862 NestedNameSpecifierLoc QualifierLoc,
863 QualType Named) {
864 return SemaRef.Context.getElaboratedType(Keyword,
865 QualifierLoc.getNestedNameSpecifier(),
866 Named);
867 }
868
869 /// \brief Build a new typename type that refers to a template-id.
870 ///
871 /// By default, builds a new DependentNameType type from the
872 /// nested-name-specifier and the given type. Subclasses may override
873 /// this routine to provide different behavior.
RebuildDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo * Name,SourceLocation NameLoc,TemplateArgumentListInfo & Args)874 QualType RebuildDependentTemplateSpecializationType(
875 ElaboratedTypeKeyword Keyword,
876 NestedNameSpecifierLoc QualifierLoc,
877 const IdentifierInfo *Name,
878 SourceLocation NameLoc,
879 TemplateArgumentListInfo &Args) {
880 // Rebuild the template name.
881 // TODO: avoid TemplateName abstraction
882 CXXScopeSpec SS;
883 SS.Adopt(QualifierLoc);
884 TemplateName InstName
885 = getDerived().RebuildTemplateName(SS, *Name, NameLoc, QualType(),
886 nullptr);
887
888 if (InstName.isNull())
889 return QualType();
890
891 // If it's still dependent, make a dependent specialization.
892 if (InstName.getAsDependentTemplateName())
893 return SemaRef.Context.getDependentTemplateSpecializationType(Keyword,
894 QualifierLoc.getNestedNameSpecifier(),
895 Name,
896 Args);
897
898 // Otherwise, make an elaborated type wrapping a non-dependent
899 // specialization.
900 QualType T =
901 getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
902 if (T.isNull()) return QualType();
903
904 if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == nullptr)
905 return T;
906
907 return SemaRef.Context.getElaboratedType(Keyword,
908 QualifierLoc.getNestedNameSpecifier(),
909 T);
910 }
911
912 /// \brief Build a new typename type that refers to an identifier.
913 ///
914 /// By default, performs semantic analysis when building the typename type
915 /// (or elaborated type). Subclasses may override this routine to provide
916 /// different behavior.
RebuildDependentNameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo * Id,SourceLocation IdLoc)917 QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
918 SourceLocation KeywordLoc,
919 NestedNameSpecifierLoc QualifierLoc,
920 const IdentifierInfo *Id,
921 SourceLocation IdLoc) {
922 CXXScopeSpec SS;
923 SS.Adopt(QualifierLoc);
924
925 if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
926 // If the name is still dependent, just build a new dependent name type.
927 if (!SemaRef.computeDeclContext(SS))
928 return SemaRef.Context.getDependentNameType(Keyword,
929 QualifierLoc.getNestedNameSpecifier(),
930 Id);
931 }
932
933 if (Keyword == ETK_None || Keyword == ETK_Typename)
934 return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
935 *Id, IdLoc);
936
937 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
938
939 // We had a dependent elaborated-type-specifier that has been transformed
940 // into a non-dependent elaborated-type-specifier. Find the tag we're
941 // referring to.
942 LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
943 DeclContext *DC = SemaRef.computeDeclContext(SS, false);
944 if (!DC)
945 return QualType();
946
947 if (SemaRef.RequireCompleteDeclContext(SS, DC))
948 return QualType();
949
950 TagDecl *Tag = nullptr;
951 SemaRef.LookupQualifiedName(Result, DC);
952 switch (Result.getResultKind()) {
953 case LookupResult::NotFound:
954 case LookupResult::NotFoundInCurrentInstantiation:
955 break;
956
957 case LookupResult::Found:
958 Tag = Result.getAsSingle<TagDecl>();
959 break;
960
961 case LookupResult::FoundOverloaded:
962 case LookupResult::FoundUnresolvedValue:
963 llvm_unreachable("Tag lookup cannot find non-tags");
964
965 case LookupResult::Ambiguous:
966 // Let the LookupResult structure handle ambiguities.
967 return QualType();
968 }
969
970 if (!Tag) {
971 // Check where the name exists but isn't a tag type and use that to emit
972 // better diagnostics.
973 LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
974 SemaRef.LookupQualifiedName(Result, DC);
975 switch (Result.getResultKind()) {
976 case LookupResult::Found:
977 case LookupResult::FoundOverloaded:
978 case LookupResult::FoundUnresolvedValue: {
979 NamedDecl *SomeDecl = Result.getRepresentativeDecl();
980 unsigned Kind = 0;
981 if (isa<TypedefDecl>(SomeDecl)) Kind = 1;
982 else if (isa<TypeAliasDecl>(SomeDecl)) Kind = 2;
983 else if (isa<ClassTemplateDecl>(SomeDecl)) Kind = 3;
984 SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << Kind;
985 SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
986 break;
987 }
988 default:
989 SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
990 << Kind << Id << DC << QualifierLoc.getSourceRange();
991 break;
992 }
993 return QualType();
994 }
995
996 if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
997 IdLoc, *Id)) {
998 SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
999 SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
1000 return QualType();
1001 }
1002
1003 // Build the elaborated-type-specifier type.
1004 QualType T = SemaRef.Context.getTypeDeclType(Tag);
1005 return SemaRef.Context.getElaboratedType(Keyword,
1006 QualifierLoc.getNestedNameSpecifier(),
1007 T);
1008 }
1009
1010 /// \brief Build a new pack expansion type.
1011 ///
1012 /// By default, builds a new PackExpansionType type from the given pattern.
1013 /// Subclasses may override this routine to provide different behavior.
RebuildPackExpansionType(QualType Pattern,SourceRange PatternRange,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)1014 QualType RebuildPackExpansionType(QualType Pattern,
1015 SourceRange PatternRange,
1016 SourceLocation EllipsisLoc,
1017 Optional<unsigned> NumExpansions) {
1018 return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
1019 NumExpansions);
1020 }
1021
1022 /// \brief Build a new atomic type given its value type.
1023 ///
1024 /// By default, performs semantic analysis when building the atomic type.
1025 /// Subclasses may override this routine to provide different behavior.
1026 QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc);
1027
1028 /// \brief Build a new template name given a nested name specifier, a flag
1029 /// indicating whether the "template" keyword was provided, and the template
1030 /// that the template name refers to.
1031 ///
1032 /// By default, builds the new template name directly. Subclasses may override
1033 /// this routine to provide different behavior.
1034 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1035 bool TemplateKW,
1036 TemplateDecl *Template);
1037
1038 /// \brief Build a new template name given a nested name specifier and the
1039 /// name that is referred to as a template.
1040 ///
1041 /// By default, performs semantic analysis to determine whether the name can
1042 /// be resolved to a specific template, then builds the appropriate kind of
1043 /// template name. Subclasses may override this routine to provide different
1044 /// behavior.
1045 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1046 const IdentifierInfo &Name,
1047 SourceLocation NameLoc,
1048 QualType ObjectType,
1049 NamedDecl *FirstQualifierInScope);
1050
1051 /// \brief Build a new template name given a nested name specifier and the
1052 /// overloaded operator name that is referred to as a template.
1053 ///
1054 /// By default, performs semantic analysis to determine whether the name can
1055 /// be resolved to a specific template, then builds the appropriate kind of
1056 /// template name. Subclasses may override this routine to provide different
1057 /// behavior.
1058 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1059 OverloadedOperatorKind Operator,
1060 SourceLocation NameLoc,
1061 QualType ObjectType);
1062
1063 /// \brief Build a new template name given a template template parameter pack
1064 /// and the
1065 ///
1066 /// By default, performs semantic analysis to determine whether the name can
1067 /// be resolved to a specific template, then builds the appropriate kind of
1068 /// template name. Subclasses may override this routine to provide different
1069 /// behavior.
RebuildTemplateName(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack)1070 TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param,
1071 const TemplateArgument &ArgPack) {
1072 return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
1073 }
1074
1075 /// \brief Build a new compound statement.
1076 ///
1077 /// By default, performs semantic analysis to build the new statement.
1078 /// Subclasses may override this routine to provide different behavior.
RebuildCompoundStmt(SourceLocation LBraceLoc,MultiStmtArg Statements,SourceLocation RBraceLoc,bool IsStmtExpr)1079 StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
1080 MultiStmtArg Statements,
1081 SourceLocation RBraceLoc,
1082 bool IsStmtExpr) {
1083 return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
1084 IsStmtExpr);
1085 }
1086
1087 /// \brief Build a new case statement.
1088 ///
1089 /// By default, performs semantic analysis to build the new statement.
1090 /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmt(SourceLocation CaseLoc,Expr * LHS,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation ColonLoc)1091 StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
1092 Expr *LHS,
1093 SourceLocation EllipsisLoc,
1094 Expr *RHS,
1095 SourceLocation ColonLoc) {
1096 return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
1097 ColonLoc);
1098 }
1099
1100 /// \brief Attach the body to a new case statement.
1101 ///
1102 /// By default, performs semantic analysis to build the new statement.
1103 /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmtBody(Stmt * S,Stmt * Body)1104 StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
1105 getSema().ActOnCaseStmtBody(S, Body);
1106 return S;
1107 }
1108
1109 /// \brief Build a new default statement.
1110 ///
1111 /// By default, performs semantic analysis to build the new statement.
1112 /// Subclasses may override this routine to provide different behavior.
RebuildDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt)1113 StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
1114 SourceLocation ColonLoc,
1115 Stmt *SubStmt) {
1116 return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
1117 /*CurScope=*/nullptr);
1118 }
1119
1120 /// \brief Build a new label statement.
1121 ///
1122 /// By default, performs semantic analysis to build the new statement.
1123 /// Subclasses may override this routine to provide different behavior.
RebuildLabelStmt(SourceLocation IdentLoc,LabelDecl * L,SourceLocation ColonLoc,Stmt * SubStmt)1124 StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
1125 SourceLocation ColonLoc, Stmt *SubStmt) {
1126 return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
1127 }
1128
1129 /// \brief Build a new label statement.
1130 ///
1131 /// By default, performs semantic analysis to build the new statement.
1132 /// Subclasses may override this routine to provide different behavior.
RebuildAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)1133 StmtResult RebuildAttributedStmt(SourceLocation AttrLoc,
1134 ArrayRef<const Attr*> Attrs,
1135 Stmt *SubStmt) {
1136 return SemaRef.ActOnAttributedStmt(AttrLoc, Attrs, SubStmt);
1137 }
1138
1139 /// \brief Build a new "if" statement.
1140 ///
1141 /// By default, performs semantic analysis to build the new statement.
1142 /// Subclasses may override this routine to provide different behavior.
RebuildIfStmt(SourceLocation IfLoc,Sema::FullExprArg Cond,VarDecl * CondVar,Stmt * Then,SourceLocation ElseLoc,Stmt * Else)1143 StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond,
1144 VarDecl *CondVar, Stmt *Then,
1145 SourceLocation ElseLoc, Stmt *Else) {
1146 return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else);
1147 }
1148
1149 /// \brief Start building a new switch statement.
1150 ///
1151 /// By default, performs semantic analysis to build the new statement.
1152 /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtStart(SourceLocation SwitchLoc,Expr * Cond,VarDecl * CondVar)1153 StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
1154 Expr *Cond, VarDecl *CondVar) {
1155 return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond,
1156 CondVar);
1157 }
1158
1159 /// \brief Attach the body to the switch statement.
1160 ///
1161 /// By default, performs semantic analysis to build the new statement.
1162 /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtBody(SourceLocation SwitchLoc,Stmt * Switch,Stmt * Body)1163 StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
1164 Stmt *Switch, Stmt *Body) {
1165 return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
1166 }
1167
1168 /// \brief Build a new while statement.
1169 ///
1170 /// By default, performs semantic analysis to build the new statement.
1171 /// Subclasses may override this routine to provide different behavior.
RebuildWhileStmt(SourceLocation WhileLoc,Sema::FullExprArg Cond,VarDecl * CondVar,Stmt * Body)1172 StmtResult RebuildWhileStmt(SourceLocation WhileLoc, Sema::FullExprArg Cond,
1173 VarDecl *CondVar, Stmt *Body) {
1174 return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body);
1175 }
1176
1177 /// \brief Build a new do-while statement.
1178 ///
1179 /// By default, performs semantic analysis to build the new statement.
1180 /// Subclasses may override this routine to provide different behavior.
RebuildDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation LParenLoc,Expr * Cond,SourceLocation RParenLoc)1181 StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
1182 SourceLocation WhileLoc, SourceLocation LParenLoc,
1183 Expr *Cond, SourceLocation RParenLoc) {
1184 return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
1185 Cond, RParenLoc);
1186 }
1187
1188 /// \brief Build a new for statement.
1189 ///
1190 /// By default, performs semantic analysis to build the new statement.
1191 /// Subclasses may override this routine to provide different behavior.
RebuildForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * Init,Sema::FullExprArg Cond,VarDecl * CondVar,Sema::FullExprArg Inc,SourceLocation RParenLoc,Stmt * Body)1192 StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1193 Stmt *Init, Sema::FullExprArg Cond,
1194 VarDecl *CondVar, Sema::FullExprArg Inc,
1195 SourceLocation RParenLoc, Stmt *Body) {
1196 return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
1197 CondVar, Inc, RParenLoc, Body);
1198 }
1199
1200 /// \brief Build a new goto statement.
1201 ///
1202 /// By default, performs semantic analysis to build the new statement.
1203 /// Subclasses may override this routine to provide different behavior.
RebuildGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * Label)1204 StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
1205 LabelDecl *Label) {
1206 return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
1207 }
1208
1209 /// \brief Build a new indirect goto statement.
1210 ///
1211 /// By default, performs semantic analysis to build the new statement.
1212 /// Subclasses may override this routine to provide different behavior.
RebuildIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * Target)1213 StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
1214 SourceLocation StarLoc,
1215 Expr *Target) {
1216 return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
1217 }
1218
1219 /// \brief Build a new return statement.
1220 ///
1221 /// By default, performs semantic analysis to build the new statement.
1222 /// Subclasses may override this routine to provide different behavior.
RebuildReturnStmt(SourceLocation ReturnLoc,Expr * Result)1223 StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
1224 return getSema().BuildReturnStmt(ReturnLoc, Result);
1225 }
1226
1227 /// \brief Build a new declaration statement.
1228 ///
1229 /// By default, performs semantic analysis to build the new statement.
1230 /// Subclasses may override this routine to provide different behavior.
RebuildDeclStmt(MutableArrayRef<Decl * > Decls,SourceLocation StartLoc,SourceLocation EndLoc)1231 StmtResult RebuildDeclStmt(MutableArrayRef<Decl *> Decls,
1232 SourceLocation StartLoc, SourceLocation EndLoc) {
1233 Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls);
1234 return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
1235 }
1236
1237 /// \brief Build a new inline asm statement.
1238 ///
1239 /// By default, performs semantic analysis to build the new statement.
1240 /// Subclasses may override this routine to provide different behavior.
RebuildGCCAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg Constraints,MultiExprArg Exprs,Expr * AsmString,MultiExprArg Clobbers,SourceLocation RParenLoc)1241 StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1242 bool IsVolatile, unsigned NumOutputs,
1243 unsigned NumInputs, IdentifierInfo **Names,
1244 MultiExprArg Constraints, MultiExprArg Exprs,
1245 Expr *AsmString, MultiExprArg Clobbers,
1246 SourceLocation RParenLoc) {
1247 return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
1248 NumInputs, Names, Constraints, Exprs,
1249 AsmString, Clobbers, RParenLoc);
1250 }
1251
1252 /// \brief Build a new MS style inline asm statement.
1253 ///
1254 /// By default, performs semantic analysis to build the new statement.
1255 /// Subclasses may override this routine to provide different behavior.
RebuildMSAsmStmt(SourceLocation AsmLoc,SourceLocation LBraceLoc,ArrayRef<Token> AsmToks,StringRef AsmString,unsigned NumOutputs,unsigned NumInputs,ArrayRef<StringRef> Constraints,ArrayRef<StringRef> Clobbers,ArrayRef<Expr * > Exprs,SourceLocation EndLoc)1256 StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
1257 ArrayRef<Token> AsmToks,
1258 StringRef AsmString,
1259 unsigned NumOutputs, unsigned NumInputs,
1260 ArrayRef<StringRef> Constraints,
1261 ArrayRef<StringRef> Clobbers,
1262 ArrayRef<Expr*> Exprs,
1263 SourceLocation EndLoc) {
1264 return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString,
1265 NumOutputs, NumInputs,
1266 Constraints, Clobbers, Exprs, EndLoc);
1267 }
1268
1269 /// \brief Build a new Objective-C \@try statement.
1270 ///
1271 /// By default, performs semantic analysis to build the new statement.
1272 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtTryStmt(SourceLocation AtLoc,Stmt * TryBody,MultiStmtArg CatchStmts,Stmt * Finally)1273 StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
1274 Stmt *TryBody,
1275 MultiStmtArg CatchStmts,
1276 Stmt *Finally) {
1277 return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts,
1278 Finally);
1279 }
1280
1281 /// \brief Rebuild an Objective-C exception declaration.
1282 ///
1283 /// By default, performs semantic analysis to build the new declaration.
1284 /// Subclasses may override this routine to provide different behavior.
RebuildObjCExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * TInfo,QualType T)1285 VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
1286 TypeSourceInfo *TInfo, QualType T) {
1287 return getSema().BuildObjCExceptionDecl(TInfo, T,
1288 ExceptionDecl->getInnerLocStart(),
1289 ExceptionDecl->getLocation(),
1290 ExceptionDecl->getIdentifier());
1291 }
1292
1293 /// \brief Build a new Objective-C \@catch statement.
1294 ///
1295 /// By default, performs semantic analysis to build the new statement.
1296 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParenLoc,VarDecl * Var,Stmt * Body)1297 StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
1298 SourceLocation RParenLoc,
1299 VarDecl *Var,
1300 Stmt *Body) {
1301 return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
1302 Var, Body);
1303 }
1304
1305 /// \brief Build a new Objective-C \@finally statement.
1306 ///
1307 /// By default, performs semantic analysis to build the new statement.
1308 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)1309 StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
1310 Stmt *Body) {
1311 return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
1312 }
1313
1314 /// \brief Build a new Objective-C \@throw statement.
1315 ///
1316 /// By default, performs semantic analysis to build the new statement.
1317 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Operand)1318 StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
1319 Expr *Operand) {
1320 return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
1321 }
1322
1323 /// \brief Build a new OpenMP executable directive.
1324 ///
1325 /// By default, performs semantic analysis to build the new statement.
1326 /// Subclasses may override this routine to provide different behavior.
RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,DeclarationNameInfo DirName,ArrayRef<OMPClause * > Clauses,Stmt * AStmt,SourceLocation StartLoc,SourceLocation EndLoc)1327 StmtResult RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,
1328 DeclarationNameInfo DirName,
1329 ArrayRef<OMPClause *> Clauses,
1330 Stmt *AStmt, SourceLocation StartLoc,
1331 SourceLocation EndLoc) {
1332 return getSema().ActOnOpenMPExecutableDirective(Kind, DirName, Clauses,
1333 AStmt, StartLoc, EndLoc);
1334 }
1335
1336 /// \brief Build a new OpenMP 'if' clause.
1337 ///
1338 /// By default, performs semantic analysis to build the new OpenMP clause.
1339 /// Subclasses may override this routine to provide different behavior.
RebuildOMPIfClause(Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1340 OMPClause *RebuildOMPIfClause(Expr *Condition,
1341 SourceLocation StartLoc,
1342 SourceLocation LParenLoc,
1343 SourceLocation EndLoc) {
1344 return getSema().ActOnOpenMPIfClause(Condition, StartLoc,
1345 LParenLoc, EndLoc);
1346 }
1347
1348 /// \brief Build a new OpenMP 'final' clause.
1349 ///
1350 /// By default, performs semantic analysis to build the new OpenMP clause.
1351 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFinalClause(Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1352 OMPClause *RebuildOMPFinalClause(Expr *Condition, SourceLocation StartLoc,
1353 SourceLocation LParenLoc,
1354 SourceLocation EndLoc) {
1355 return getSema().ActOnOpenMPFinalClause(Condition, StartLoc, LParenLoc,
1356 EndLoc);
1357 }
1358
1359 /// \brief Build a new OpenMP 'num_threads' clause.
1360 ///
1361 /// By default, performs semantic analysis to build the new OpenMP clause.
1362 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNumThreadsClause(Expr * NumThreads,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1363 OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads,
1364 SourceLocation StartLoc,
1365 SourceLocation LParenLoc,
1366 SourceLocation EndLoc) {
1367 return getSema().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc,
1368 LParenLoc, EndLoc);
1369 }
1370
1371 /// \brief Build a new OpenMP 'safelen' clause.
1372 ///
1373 /// By default, performs semantic analysis to build the new OpenMP clause.
1374 /// Subclasses may override this routine to provide different behavior.
RebuildOMPSafelenClause(Expr * Len,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1375 OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc,
1376 SourceLocation LParenLoc,
1377 SourceLocation EndLoc) {
1378 return getSema().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc, EndLoc);
1379 }
1380
1381 /// \brief Build a new OpenMP 'collapse' clause.
1382 ///
1383 /// By default, performs semantic analysis to build the new OpenMP clause.
1384 /// Subclasses may override this routine to provide different behavior.
RebuildOMPCollapseClause(Expr * Num,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1385 OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc,
1386 SourceLocation LParenLoc,
1387 SourceLocation EndLoc) {
1388 return getSema().ActOnOpenMPCollapseClause(Num, StartLoc, LParenLoc,
1389 EndLoc);
1390 }
1391
1392 /// \brief Build a new OpenMP 'default' clause.
1393 ///
1394 /// By default, performs semantic analysis to build the new OpenMP clause.
1395 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDefaultClause(OpenMPDefaultClauseKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1396 OMPClause *RebuildOMPDefaultClause(OpenMPDefaultClauseKind Kind,
1397 SourceLocation KindKwLoc,
1398 SourceLocation StartLoc,
1399 SourceLocation LParenLoc,
1400 SourceLocation EndLoc) {
1401 return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc,
1402 StartLoc, LParenLoc, EndLoc);
1403 }
1404
1405 /// \brief Build a new OpenMP 'proc_bind' clause.
1406 ///
1407 /// By default, performs semantic analysis to build the new OpenMP clause.
1408 /// Subclasses may override this routine to provide different behavior.
RebuildOMPProcBindClause(OpenMPProcBindClauseKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1409 OMPClause *RebuildOMPProcBindClause(OpenMPProcBindClauseKind Kind,
1410 SourceLocation KindKwLoc,
1411 SourceLocation StartLoc,
1412 SourceLocation LParenLoc,
1413 SourceLocation EndLoc) {
1414 return getSema().ActOnOpenMPProcBindClause(Kind, KindKwLoc,
1415 StartLoc, LParenLoc, EndLoc);
1416 }
1417
1418 /// \brief Build a new OpenMP 'schedule' clause.
1419 ///
1420 /// By default, performs semantic analysis to build the new OpenMP clause.
1421 /// Subclasses may override this routine to provide different behavior.
RebuildOMPScheduleClause(OpenMPScheduleClauseKind Kind,Expr * ChunkSize,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation KindLoc,SourceLocation CommaLoc,SourceLocation EndLoc)1422 OMPClause *RebuildOMPScheduleClause(OpenMPScheduleClauseKind Kind,
1423 Expr *ChunkSize,
1424 SourceLocation StartLoc,
1425 SourceLocation LParenLoc,
1426 SourceLocation KindLoc,
1427 SourceLocation CommaLoc,
1428 SourceLocation EndLoc) {
1429 return getSema().ActOnOpenMPScheduleClause(
1430 Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc);
1431 }
1432
1433 /// \brief Build a new OpenMP 'private' clause.
1434 ///
1435 /// By default, performs semantic analysis to build the new OpenMP clause.
1436 /// Subclasses may override this routine to provide different behavior.
RebuildOMPPrivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1437 OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList,
1438 SourceLocation StartLoc,
1439 SourceLocation LParenLoc,
1440 SourceLocation EndLoc) {
1441 return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc,
1442 EndLoc);
1443 }
1444
1445 /// \brief Build a new OpenMP 'firstprivate' clause.
1446 ///
1447 /// By default, performs semantic analysis to build the new OpenMP clause.
1448 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFirstprivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1449 OMPClause *RebuildOMPFirstprivateClause(ArrayRef<Expr *> VarList,
1450 SourceLocation StartLoc,
1451 SourceLocation LParenLoc,
1452 SourceLocation EndLoc) {
1453 return getSema().ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc,
1454 EndLoc);
1455 }
1456
1457 /// \brief Build a new OpenMP 'lastprivate' clause.
1458 ///
1459 /// By default, performs semantic analysis to build the new OpenMP clause.
1460 /// Subclasses may override this routine to provide different behavior.
RebuildOMPLastprivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1461 OMPClause *RebuildOMPLastprivateClause(ArrayRef<Expr *> VarList,
1462 SourceLocation StartLoc,
1463 SourceLocation LParenLoc,
1464 SourceLocation EndLoc) {
1465 return getSema().ActOnOpenMPLastprivateClause(VarList, StartLoc, LParenLoc,
1466 EndLoc);
1467 }
1468
1469 /// \brief Build a new OpenMP 'shared' clause.
1470 ///
1471 /// By default, performs semantic analysis to build the new OpenMP clause.
1472 /// Subclasses may override this routine to provide different behavior.
RebuildOMPSharedClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1473 OMPClause *RebuildOMPSharedClause(ArrayRef<Expr *> VarList,
1474 SourceLocation StartLoc,
1475 SourceLocation LParenLoc,
1476 SourceLocation EndLoc) {
1477 return getSema().ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc,
1478 EndLoc);
1479 }
1480
1481 /// \brief Build a new OpenMP 'reduction' clause.
1482 ///
1483 /// By default, performs semantic analysis to build the new statement.
1484 /// Subclasses may override this routine to provide different behavior.
RebuildOMPReductionClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc,CXXScopeSpec & ReductionIdScopeSpec,const DeclarationNameInfo & ReductionId)1485 OMPClause *RebuildOMPReductionClause(ArrayRef<Expr *> VarList,
1486 SourceLocation StartLoc,
1487 SourceLocation LParenLoc,
1488 SourceLocation ColonLoc,
1489 SourceLocation EndLoc,
1490 CXXScopeSpec &ReductionIdScopeSpec,
1491 const DeclarationNameInfo &ReductionId) {
1492 return getSema().ActOnOpenMPReductionClause(
1493 VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
1494 ReductionId);
1495 }
1496
1497 /// \brief Build a new OpenMP 'linear' clause.
1498 ///
1499 /// By default, performs semantic analysis to build the new OpenMP clause.
1500 /// Subclasses may override this routine to provide different behavior.
RebuildOMPLinearClause(ArrayRef<Expr * > VarList,Expr * Step,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1501 OMPClause *RebuildOMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
1502 SourceLocation StartLoc,
1503 SourceLocation LParenLoc,
1504 SourceLocation ColonLoc,
1505 SourceLocation EndLoc) {
1506 return getSema().ActOnOpenMPLinearClause(VarList, Step, StartLoc, LParenLoc,
1507 ColonLoc, EndLoc);
1508 }
1509
1510 /// \brief Build a new OpenMP 'aligned' clause.
1511 ///
1512 /// By default, performs semantic analysis to build the new OpenMP clause.
1513 /// Subclasses may override this routine to provide different behavior.
RebuildOMPAlignedClause(ArrayRef<Expr * > VarList,Expr * Alignment,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1514 OMPClause *RebuildOMPAlignedClause(ArrayRef<Expr *> VarList, Expr *Alignment,
1515 SourceLocation StartLoc,
1516 SourceLocation LParenLoc,
1517 SourceLocation ColonLoc,
1518 SourceLocation EndLoc) {
1519 return getSema().ActOnOpenMPAlignedClause(VarList, Alignment, StartLoc,
1520 LParenLoc, ColonLoc, EndLoc);
1521 }
1522
1523 /// \brief Build a new OpenMP 'copyin' clause.
1524 ///
1525 /// By default, performs semantic analysis to build the new OpenMP clause.
1526 /// Subclasses may override this routine to provide different behavior.
RebuildOMPCopyinClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1527 OMPClause *RebuildOMPCopyinClause(ArrayRef<Expr *> VarList,
1528 SourceLocation StartLoc,
1529 SourceLocation LParenLoc,
1530 SourceLocation EndLoc) {
1531 return getSema().ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc,
1532 EndLoc);
1533 }
1534
1535 /// \brief Build a new OpenMP 'copyprivate' clause.
1536 ///
1537 /// By default, performs semantic analysis to build the new OpenMP clause.
1538 /// Subclasses may override this routine to provide different behavior.
RebuildOMPCopyprivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1539 OMPClause *RebuildOMPCopyprivateClause(ArrayRef<Expr *> VarList,
1540 SourceLocation StartLoc,
1541 SourceLocation LParenLoc,
1542 SourceLocation EndLoc) {
1543 return getSema().ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc,
1544 EndLoc);
1545 }
1546
1547 /// \brief Build a new OpenMP 'flush' pseudo clause.
1548 ///
1549 /// By default, performs semantic analysis to build the new OpenMP clause.
1550 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFlushClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1551 OMPClause *RebuildOMPFlushClause(ArrayRef<Expr *> VarList,
1552 SourceLocation StartLoc,
1553 SourceLocation LParenLoc,
1554 SourceLocation EndLoc) {
1555 return getSema().ActOnOpenMPFlushClause(VarList, StartLoc, LParenLoc,
1556 EndLoc);
1557 }
1558
1559 /// \brief Rebuild the operand to an Objective-C \@synchronized statement.
1560 ///
1561 /// By default, performs semantic analysis to build the new statement.
1562 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * object)1563 ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,
1564 Expr *object) {
1565 return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object);
1566 }
1567
1568 /// \brief Build a new Objective-C \@synchronized statement.
1569 ///
1570 /// By default, performs semantic analysis to build the new statement.
1571 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * Object,Stmt * Body)1572 StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
1573 Expr *Object, Stmt *Body) {
1574 return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body);
1575 }
1576
1577 /// \brief Build a new Objective-C \@autoreleasepool statement.
1578 ///
1579 /// By default, performs semantic analysis to build the new statement.
1580 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)1581 StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
1582 Stmt *Body) {
1583 return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
1584 }
1585
1586 /// \brief Build a new Objective-C fast enumeration statement.
1587 ///
1588 /// By default, performs semantic analysis to build the new statement.
1589 /// Subclasses may override this routine to provide different behavior.
RebuildObjCForCollectionStmt(SourceLocation ForLoc,Stmt * Element,Expr * Collection,SourceLocation RParenLoc,Stmt * Body)1590 StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
1591 Stmt *Element,
1592 Expr *Collection,
1593 SourceLocation RParenLoc,
1594 Stmt *Body) {
1595 StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc,
1596 Element,
1597 Collection,
1598 RParenLoc);
1599 if (ForEachStmt.isInvalid())
1600 return StmtError();
1601
1602 return getSema().FinishObjCForCollectionStmt(ForEachStmt.get(), Body);
1603 }
1604
1605 /// \brief Build a new C++ exception declaration.
1606 ///
1607 /// By default, performs semantic analysis to build the new decaration.
1608 /// Subclasses may override this routine to provide different behavior.
RebuildExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * Declarator,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id)1609 VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
1610 TypeSourceInfo *Declarator,
1611 SourceLocation StartLoc,
1612 SourceLocation IdLoc,
1613 IdentifierInfo *Id) {
1614 VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator,
1615 StartLoc, IdLoc, Id);
1616 if (Var)
1617 getSema().CurContext->addDecl(Var);
1618 return Var;
1619 }
1620
1621 /// \brief Build a new C++ catch statement.
1622 ///
1623 /// By default, performs semantic analysis to build the new statement.
1624 /// Subclasses may override this routine to provide different behavior.
RebuildCXXCatchStmt(SourceLocation CatchLoc,VarDecl * ExceptionDecl,Stmt * Handler)1625 StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
1626 VarDecl *ExceptionDecl,
1627 Stmt *Handler) {
1628 return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
1629 Handler));
1630 }
1631
1632 /// \brief Build a new C++ try statement.
1633 ///
1634 /// By default, performs semantic analysis to build the new statement.
1635 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTryStmt(SourceLocation TryLoc,Stmt * TryBlock,ArrayRef<Stmt * > Handlers)1636 StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock,
1637 ArrayRef<Stmt *> Handlers) {
1638 return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers);
1639 }
1640
1641 /// \brief Build a new C++0x range-based for statement.
1642 ///
1643 /// By default, performs semantic analysis to build the new statement.
1644 /// Subclasses may override this routine to provide different behavior.
RebuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation ColonLoc,Stmt * Range,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVar,SourceLocation RParenLoc)1645 StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc,
1646 SourceLocation ColonLoc,
1647 Stmt *Range, Stmt *BeginEnd,
1648 Expr *Cond, Expr *Inc,
1649 Stmt *LoopVar,
1650 SourceLocation RParenLoc) {
1651 // If we've just learned that the range is actually an Objective-C
1652 // collection, treat this as an Objective-C fast enumeration loop.
1653 if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) {
1654 if (RangeStmt->isSingleDecl()) {
1655 if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) {
1656 if (RangeVar->isInvalidDecl())
1657 return StmtError();
1658
1659 Expr *RangeExpr = RangeVar->getInit();
1660 if (!RangeExpr->isTypeDependent() &&
1661 RangeExpr->getType()->isObjCObjectPointerType())
1662 return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar, RangeExpr,
1663 RParenLoc);
1664 }
1665 }
1666 }
1667
1668 return getSema().BuildCXXForRangeStmt(ForLoc, ColonLoc, Range, BeginEnd,
1669 Cond, Inc, LoopVar, RParenLoc,
1670 Sema::BFRK_Rebuild);
1671 }
1672
1673 /// \brief Build a new C++0x range-based for statement.
1674 ///
1675 /// By default, performs semantic analysis to build the new statement.
1676 /// Subclasses may override this routine to provide different behavior.
RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)1677 StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,
1678 bool IsIfExists,
1679 NestedNameSpecifierLoc QualifierLoc,
1680 DeclarationNameInfo NameInfo,
1681 Stmt *Nested) {
1682 return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
1683 QualifierLoc, NameInfo, Nested);
1684 }
1685
1686 /// \brief Attach body to a C++0x range-based for statement.
1687 ///
1688 /// By default, performs semantic analysis to finish the new statement.
1689 /// Subclasses may override this routine to provide different behavior.
FinishCXXForRangeStmt(Stmt * ForRange,Stmt * Body)1690 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
1691 return getSema().FinishCXXForRangeStmt(ForRange, Body);
1692 }
1693
RebuildSEHTryStmt(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)1694 StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc,
1695 Stmt *TryBlock, Stmt *Handler) {
1696 return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler);
1697 }
1698
RebuildSEHExceptStmt(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)1699 StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr,
1700 Stmt *Block) {
1701 return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block);
1702 }
1703
RebuildSEHFinallyStmt(SourceLocation Loc,Stmt * Block)1704 StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) {
1705 return SEHFinallyStmt::Create(getSema().getASTContext(), Loc, Block);
1706 }
1707
1708 /// \brief Build a new predefined expression.
1709 ///
1710 /// By default, performs semantic analysis to build the new expression.
1711 /// Subclasses may override this routine to provide different behavior.
RebuildPredefinedExpr(SourceLocation Loc,PredefinedExpr::IdentType IT)1712 ExprResult RebuildPredefinedExpr(SourceLocation Loc,
1713 PredefinedExpr::IdentType IT) {
1714 return getSema().BuildPredefinedExpr(Loc, IT);
1715 }
1716
1717 /// \brief Build a new expression that references a declaration.
1718 ///
1719 /// By default, performs semantic analysis to build the new expression.
1720 /// Subclasses may override this routine to provide different behavior.
RebuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool RequiresADL)1721 ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
1722 LookupResult &R,
1723 bool RequiresADL) {
1724 return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
1725 }
1726
1727
1728 /// \brief Build a new expression that references a declaration.
1729 ///
1730 /// By default, performs semantic analysis to build the new expression.
1731 /// Subclasses may override this routine to provide different behavior.
RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,ValueDecl * VD,const DeclarationNameInfo & NameInfo,TemplateArgumentListInfo * TemplateArgs)1732 ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
1733 ValueDecl *VD,
1734 const DeclarationNameInfo &NameInfo,
1735 TemplateArgumentListInfo *TemplateArgs) {
1736 CXXScopeSpec SS;
1737 SS.Adopt(QualifierLoc);
1738
1739 // FIXME: loses template args.
1740
1741 return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD);
1742 }
1743
1744 /// \brief Build a new expression in parentheses.
1745 ///
1746 /// By default, performs semantic analysis to build the new expression.
1747 /// Subclasses may override this routine to provide different behavior.
RebuildParenExpr(Expr * SubExpr,SourceLocation LParen,SourceLocation RParen)1748 ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
1749 SourceLocation RParen) {
1750 return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
1751 }
1752
1753 /// \brief Build a new pseudo-destructor expression.
1754 ///
1755 /// By default, performs semantic analysis to build the new expression.
1756 /// Subclasses may override this routine to provide different behavior.
1757 ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
1758 SourceLocation OperatorLoc,
1759 bool isArrow,
1760 CXXScopeSpec &SS,
1761 TypeSourceInfo *ScopeType,
1762 SourceLocation CCLoc,
1763 SourceLocation TildeLoc,
1764 PseudoDestructorTypeStorage Destroyed);
1765
1766 /// \brief Build a new unary operator expression.
1767 ///
1768 /// By default, performs semantic analysis to build the new expression.
1769 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryOperator(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * SubExpr)1770 ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
1771 UnaryOperatorKind Opc,
1772 Expr *SubExpr) {
1773 return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr);
1774 }
1775
1776 /// \brief Build a new builtin offsetof expression.
1777 ///
1778 /// By default, performs semantic analysis to build the new expression.
1779 /// Subclasses may override this routine to provide different behavior.
RebuildOffsetOfExpr(SourceLocation OperatorLoc,TypeSourceInfo * Type,Sema::OffsetOfComponent * Components,unsigned NumComponents,SourceLocation RParenLoc)1780 ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
1781 TypeSourceInfo *Type,
1782 Sema::OffsetOfComponent *Components,
1783 unsigned NumComponents,
1784 SourceLocation RParenLoc) {
1785 return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
1786 NumComponents, RParenLoc);
1787 }
1788
1789 /// \brief Build a new sizeof, alignof or vec_step expression with a
1790 /// type argument.
1791 ///
1792 /// By default, performs semantic analysis to build the new expression.
1793 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)1794 ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
1795 SourceLocation OpLoc,
1796 UnaryExprOrTypeTrait ExprKind,
1797 SourceRange R) {
1798 return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
1799 }
1800
1801 /// \brief Build a new sizeof, alignof or vec step expression with an
1802 /// expression argument.
1803 ///
1804 /// By default, performs semantic analysis to build the new expression.
1805 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(Expr * SubExpr,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)1806 ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
1807 UnaryExprOrTypeTrait ExprKind,
1808 SourceRange R) {
1809 ExprResult Result
1810 = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
1811 if (Result.isInvalid())
1812 return ExprError();
1813
1814 return Result;
1815 }
1816
1817 /// \brief Build a new array subscript expression.
1818 ///
1819 /// By default, performs semantic analysis to build the new expression.
1820 /// Subclasses may override this routine to provide different behavior.
RebuildArraySubscriptExpr(Expr * LHS,SourceLocation LBracketLoc,Expr * RHS,SourceLocation RBracketLoc)1821 ExprResult RebuildArraySubscriptExpr(Expr *LHS,
1822 SourceLocation LBracketLoc,
1823 Expr *RHS,
1824 SourceLocation RBracketLoc) {
1825 return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS,
1826 LBracketLoc, RHS,
1827 RBracketLoc);
1828 }
1829
1830 /// \brief Build a new call expression.
1831 ///
1832 /// By default, performs semantic analysis to build the new expression.
1833 /// Subclasses may override this routine to provide different behavior.
1834 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
1835 MultiExprArg Args,
1836 SourceLocation RParenLoc,
1837 Expr *ExecConfig = nullptr) {
1838 return getSema().ActOnCallExpr(/*Scope=*/nullptr, Callee, LParenLoc,
1839 Args, RParenLoc, ExecConfig);
1840 }
1841
1842 /// \brief Build a new member access expression.
1843 ///
1844 /// By default, performs semantic analysis to build the new expression.
1845 /// Subclasses may override this routine to provide different behavior.
RebuildMemberExpr(Expr * Base,SourceLocation OpLoc,bool isArrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & MemberNameInfo,ValueDecl * Member,NamedDecl * FoundDecl,const TemplateArgumentListInfo * ExplicitTemplateArgs,NamedDecl * FirstQualifierInScope)1846 ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
1847 bool isArrow,
1848 NestedNameSpecifierLoc QualifierLoc,
1849 SourceLocation TemplateKWLoc,
1850 const DeclarationNameInfo &MemberNameInfo,
1851 ValueDecl *Member,
1852 NamedDecl *FoundDecl,
1853 const TemplateArgumentListInfo *ExplicitTemplateArgs,
1854 NamedDecl *FirstQualifierInScope) {
1855 ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base,
1856 isArrow);
1857 if (!Member->getDeclName()) {
1858 // We have a reference to an unnamed field. This is always the
1859 // base of an anonymous struct/union member access, i.e. the
1860 // field is always of record type.
1861 assert(!QualifierLoc && "Can't have an unnamed field with a qualifier!");
1862 assert(Member->getType()->isRecordType() &&
1863 "unnamed member not of record type?");
1864
1865 BaseResult =
1866 getSema().PerformObjectMemberConversion(BaseResult.get(),
1867 QualifierLoc.getNestedNameSpecifier(),
1868 FoundDecl, Member);
1869 if (BaseResult.isInvalid())
1870 return ExprError();
1871 Base = BaseResult.get();
1872 ExprValueKind VK = isArrow ? VK_LValue : Base->getValueKind();
1873 MemberExpr *ME = new (getSema().Context)
1874 MemberExpr(Base, isArrow, OpLoc, Member, MemberNameInfo,
1875 cast<FieldDecl>(Member)->getType(), VK, OK_Ordinary);
1876 return ME;
1877 }
1878
1879 CXXScopeSpec SS;
1880 SS.Adopt(QualifierLoc);
1881
1882 Base = BaseResult.get();
1883 QualType BaseType = Base->getType();
1884
1885 // FIXME: this involves duplicating earlier analysis in a lot of
1886 // cases; we should avoid this when possible.
1887 LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
1888 R.addDecl(FoundDecl);
1889 R.resolveKind();
1890
1891 return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
1892 SS, TemplateKWLoc,
1893 FirstQualifierInScope,
1894 R, ExplicitTemplateArgs);
1895 }
1896
1897 /// \brief Build a new binary operator expression.
1898 ///
1899 /// By default, performs semantic analysis to build the new expression.
1900 /// Subclasses may override this routine to provide different behavior.
RebuildBinaryOperator(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)1901 ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
1902 BinaryOperatorKind Opc,
1903 Expr *LHS, Expr *RHS) {
1904 return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS);
1905 }
1906
1907 /// \brief Build a new conditional operator expression.
1908 ///
1909 /// By default, performs semantic analysis to build the new expression.
1910 /// Subclasses may override this routine to provide different behavior.
RebuildConditionalOperator(Expr * Cond,SourceLocation QuestionLoc,Expr * LHS,SourceLocation ColonLoc,Expr * RHS)1911 ExprResult RebuildConditionalOperator(Expr *Cond,
1912 SourceLocation QuestionLoc,
1913 Expr *LHS,
1914 SourceLocation ColonLoc,
1915 Expr *RHS) {
1916 return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
1917 LHS, RHS);
1918 }
1919
1920 /// \brief Build a new C-style cast expression.
1921 ///
1922 /// By default, performs semantic analysis to build the new expression.
1923 /// Subclasses may override this routine to provide different behavior.
RebuildCStyleCastExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * SubExpr)1924 ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
1925 TypeSourceInfo *TInfo,
1926 SourceLocation RParenLoc,
1927 Expr *SubExpr) {
1928 return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
1929 SubExpr);
1930 }
1931
1932 /// \brief Build a new compound literal expression.
1933 ///
1934 /// By default, performs semantic analysis to build the new expression.
1935 /// Subclasses may override this routine to provide different behavior.
RebuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * Init)1936 ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
1937 TypeSourceInfo *TInfo,
1938 SourceLocation RParenLoc,
1939 Expr *Init) {
1940 return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
1941 Init);
1942 }
1943
1944 /// \brief Build a new extended vector element access expression.
1945 ///
1946 /// By default, performs semantic analysis to build the new expression.
1947 /// Subclasses may override this routine to provide different behavior.
RebuildExtVectorElementExpr(Expr * Base,SourceLocation OpLoc,SourceLocation AccessorLoc,IdentifierInfo & Accessor)1948 ExprResult RebuildExtVectorElementExpr(Expr *Base,
1949 SourceLocation OpLoc,
1950 SourceLocation AccessorLoc,
1951 IdentifierInfo &Accessor) {
1952
1953 CXXScopeSpec SS;
1954 DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
1955 return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
1956 OpLoc, /*IsArrow*/ false,
1957 SS, SourceLocation(),
1958 /*FirstQualifierInScope*/ nullptr,
1959 NameInfo,
1960 /* TemplateArgs */ nullptr);
1961 }
1962
1963 /// \brief Build a new initializer list expression.
1964 ///
1965 /// By default, performs semantic analysis to build the new expression.
1966 /// Subclasses may override this routine to provide different behavior.
RebuildInitList(SourceLocation LBraceLoc,MultiExprArg Inits,SourceLocation RBraceLoc,QualType ResultTy)1967 ExprResult RebuildInitList(SourceLocation LBraceLoc,
1968 MultiExprArg Inits,
1969 SourceLocation RBraceLoc,
1970 QualType ResultTy) {
1971 ExprResult Result
1972 = SemaRef.ActOnInitList(LBraceLoc, Inits, RBraceLoc);
1973 if (Result.isInvalid() || ResultTy->isDependentType())
1974 return Result;
1975
1976 // Patch in the result type we were given, which may have been computed
1977 // when the initial InitListExpr was built.
1978 InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get());
1979 ILE->setType(ResultTy);
1980 return Result;
1981 }
1982
1983 /// \brief Build a new designated initializer expression.
1984 ///
1985 /// By default, performs semantic analysis to build the new expression.
1986 /// Subclasses may override this routine to provide different behavior.
RebuildDesignatedInitExpr(Designation & Desig,MultiExprArg ArrayExprs,SourceLocation EqualOrColonLoc,bool GNUSyntax,Expr * Init)1987 ExprResult RebuildDesignatedInitExpr(Designation &Desig,
1988 MultiExprArg ArrayExprs,
1989 SourceLocation EqualOrColonLoc,
1990 bool GNUSyntax,
1991 Expr *Init) {
1992 ExprResult Result
1993 = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
1994 Init);
1995 if (Result.isInvalid())
1996 return ExprError();
1997
1998 return Result;
1999 }
2000
2001 /// \brief Build a new value-initialized expression.
2002 ///
2003 /// By default, builds the implicit value initialization without performing
2004 /// any semantic analysis. Subclasses may override this routine to provide
2005 /// different behavior.
RebuildImplicitValueInitExpr(QualType T)2006 ExprResult RebuildImplicitValueInitExpr(QualType T) {
2007 return new (SemaRef.Context) ImplicitValueInitExpr(T);
2008 }
2009
2010 /// \brief Build a new \c va_arg expression.
2011 ///
2012 /// By default, performs semantic analysis to build the new expression.
2013 /// Subclasses may override this routine to provide different behavior.
RebuildVAArgExpr(SourceLocation BuiltinLoc,Expr * SubExpr,TypeSourceInfo * TInfo,SourceLocation RParenLoc)2014 ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
2015 Expr *SubExpr, TypeSourceInfo *TInfo,
2016 SourceLocation RParenLoc) {
2017 return getSema().BuildVAArgExpr(BuiltinLoc,
2018 SubExpr, TInfo,
2019 RParenLoc);
2020 }
2021
2022 /// \brief Build a new expression list in parentheses.
2023 ///
2024 /// By default, performs semantic analysis to build the new expression.
2025 /// Subclasses may override this routine to provide different behavior.
RebuildParenListExpr(SourceLocation LParenLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)2026 ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
2027 MultiExprArg SubExprs,
2028 SourceLocation RParenLoc) {
2029 return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs);
2030 }
2031
2032 /// \brief Build a new address-of-label expression.
2033 ///
2034 /// By default, performs semantic analysis, using the name of the label
2035 /// rather than attempting to map the label statement itself.
2036 /// Subclasses may override this routine to provide different behavior.
RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,SourceLocation LabelLoc,LabelDecl * Label)2037 ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
2038 SourceLocation LabelLoc, LabelDecl *Label) {
2039 return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
2040 }
2041
2042 /// \brief Build a new GNU statement expression.
2043 ///
2044 /// By default, performs semantic analysis to build the new expression.
2045 /// Subclasses may override this routine to provide different behavior.
RebuildStmtExpr(SourceLocation LParenLoc,Stmt * SubStmt,SourceLocation RParenLoc)2046 ExprResult RebuildStmtExpr(SourceLocation LParenLoc,
2047 Stmt *SubStmt,
2048 SourceLocation RParenLoc) {
2049 return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc);
2050 }
2051
2052 /// \brief Build a new __builtin_choose_expr expression.
2053 ///
2054 /// By default, performs semantic analysis to build the new expression.
2055 /// Subclasses may override this routine to provide different behavior.
RebuildChooseExpr(SourceLocation BuiltinLoc,Expr * Cond,Expr * LHS,Expr * RHS,SourceLocation RParenLoc)2056 ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
2057 Expr *Cond, Expr *LHS, Expr *RHS,
2058 SourceLocation RParenLoc) {
2059 return SemaRef.ActOnChooseExpr(BuiltinLoc,
2060 Cond, LHS, RHS,
2061 RParenLoc);
2062 }
2063
2064 /// \brief Build a new generic selection expression.
2065 ///
2066 /// By default, performs semantic analysis to build the new expression.
2067 /// Subclasses may override this routine to provide different behavior.
RebuildGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)2068 ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
2069 SourceLocation DefaultLoc,
2070 SourceLocation RParenLoc,
2071 Expr *ControllingExpr,
2072 ArrayRef<TypeSourceInfo *> Types,
2073 ArrayRef<Expr *> Exprs) {
2074 return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
2075 ControllingExpr, Types, Exprs);
2076 }
2077
2078 /// \brief Build a new overloaded operator call expression.
2079 ///
2080 /// By default, performs semantic analysis to build the new expression.
2081 /// The semantic analysis provides the behavior of template instantiation,
2082 /// copying with transformations that turn what looks like an overloaded
2083 /// operator call into a use of a builtin operator, performing
2084 /// argument-dependent lookup, etc. Subclasses may override this routine to
2085 /// provide different behavior.
2086 ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
2087 SourceLocation OpLoc,
2088 Expr *Callee,
2089 Expr *First,
2090 Expr *Second);
2091
2092 /// \brief Build a new C++ "named" cast expression, such as static_cast or
2093 /// reinterpret_cast.
2094 ///
2095 /// By default, this routine dispatches to one of the more-specific routines
2096 /// for a particular named case, e.g., RebuildCXXStaticCastExpr().
2097 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNamedCastExpr(SourceLocation OpLoc,Stmt::StmtClass Class,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2098 ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
2099 Stmt::StmtClass Class,
2100 SourceLocation LAngleLoc,
2101 TypeSourceInfo *TInfo,
2102 SourceLocation RAngleLoc,
2103 SourceLocation LParenLoc,
2104 Expr *SubExpr,
2105 SourceLocation RParenLoc) {
2106 switch (Class) {
2107 case Stmt::CXXStaticCastExprClass:
2108 return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
2109 RAngleLoc, LParenLoc,
2110 SubExpr, RParenLoc);
2111
2112 case Stmt::CXXDynamicCastExprClass:
2113 return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
2114 RAngleLoc, LParenLoc,
2115 SubExpr, RParenLoc);
2116
2117 case Stmt::CXXReinterpretCastExprClass:
2118 return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
2119 RAngleLoc, LParenLoc,
2120 SubExpr,
2121 RParenLoc);
2122
2123 case Stmt::CXXConstCastExprClass:
2124 return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
2125 RAngleLoc, LParenLoc,
2126 SubExpr, RParenLoc);
2127
2128 default:
2129 llvm_unreachable("Invalid C++ named cast");
2130 }
2131 }
2132
2133 /// \brief Build a new C++ static_cast expression.
2134 ///
2135 /// By default, performs semantic analysis to build the new expression.
2136 /// Subclasses may override this routine to provide different behavior.
RebuildCXXStaticCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2137 ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
2138 SourceLocation LAngleLoc,
2139 TypeSourceInfo *TInfo,
2140 SourceLocation RAngleLoc,
2141 SourceLocation LParenLoc,
2142 Expr *SubExpr,
2143 SourceLocation RParenLoc) {
2144 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
2145 TInfo, SubExpr,
2146 SourceRange(LAngleLoc, RAngleLoc),
2147 SourceRange(LParenLoc, RParenLoc));
2148 }
2149
2150 /// \brief Build a new C++ dynamic_cast expression.
2151 ///
2152 /// By default, performs semantic analysis to build the new expression.
2153 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDynamicCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2154 ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
2155 SourceLocation LAngleLoc,
2156 TypeSourceInfo *TInfo,
2157 SourceLocation RAngleLoc,
2158 SourceLocation LParenLoc,
2159 Expr *SubExpr,
2160 SourceLocation RParenLoc) {
2161 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
2162 TInfo, SubExpr,
2163 SourceRange(LAngleLoc, RAngleLoc),
2164 SourceRange(LParenLoc, RParenLoc));
2165 }
2166
2167 /// \brief Build a new C++ reinterpret_cast expression.
2168 ///
2169 /// By default, performs semantic analysis to build the new expression.
2170 /// Subclasses may override this routine to provide different behavior.
RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2171 ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
2172 SourceLocation LAngleLoc,
2173 TypeSourceInfo *TInfo,
2174 SourceLocation RAngleLoc,
2175 SourceLocation LParenLoc,
2176 Expr *SubExpr,
2177 SourceLocation RParenLoc) {
2178 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
2179 TInfo, SubExpr,
2180 SourceRange(LAngleLoc, RAngleLoc),
2181 SourceRange(LParenLoc, RParenLoc));
2182 }
2183
2184 /// \brief Build a new C++ const_cast expression.
2185 ///
2186 /// By default, performs semantic analysis to build the new expression.
2187 /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2188 ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
2189 SourceLocation LAngleLoc,
2190 TypeSourceInfo *TInfo,
2191 SourceLocation RAngleLoc,
2192 SourceLocation LParenLoc,
2193 Expr *SubExpr,
2194 SourceLocation RParenLoc) {
2195 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
2196 TInfo, SubExpr,
2197 SourceRange(LAngleLoc, RAngleLoc),
2198 SourceRange(LParenLoc, RParenLoc));
2199 }
2200
2201 /// \brief Build a new C++ functional-style cast expression.
2202 ///
2203 /// By default, performs semantic analysis to build the new expression.
2204 /// Subclasses may override this routine to provide different behavior.
RebuildCXXFunctionalCastExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,Expr * Sub,SourceLocation RParenLoc)2205 ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
2206 SourceLocation LParenLoc,
2207 Expr *Sub,
2208 SourceLocation RParenLoc) {
2209 return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
2210 MultiExprArg(&Sub, 1),
2211 RParenLoc);
2212 }
2213
2214 /// \brief Build a new C++ typeid(type) expression.
2215 ///
2216 /// By default, performs semantic analysis to build the new expression.
2217 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)2218 ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
2219 SourceLocation TypeidLoc,
2220 TypeSourceInfo *Operand,
2221 SourceLocation RParenLoc) {
2222 return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
2223 RParenLoc);
2224 }
2225
2226
2227 /// \brief Build a new C++ typeid(expr) expression.
2228 ///
2229 /// By default, performs semantic analysis to build the new expression.
2230 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)2231 ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
2232 SourceLocation TypeidLoc,
2233 Expr *Operand,
2234 SourceLocation RParenLoc) {
2235 return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
2236 RParenLoc);
2237 }
2238
2239 /// \brief Build a new C++ __uuidof(type) expression.
2240 ///
2241 /// By default, performs semantic analysis to build the new expression.
2242 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)2243 ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
2244 SourceLocation TypeidLoc,
2245 TypeSourceInfo *Operand,
2246 SourceLocation RParenLoc) {
2247 return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
2248 RParenLoc);
2249 }
2250
2251 /// \brief Build a new C++ __uuidof(expr) expression.
2252 ///
2253 /// By default, performs semantic analysis to build the new expression.
2254 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)2255 ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
2256 SourceLocation TypeidLoc,
2257 Expr *Operand,
2258 SourceLocation RParenLoc) {
2259 return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
2260 RParenLoc);
2261 }
2262
2263 /// \brief Build a new C++ "this" expression.
2264 ///
2265 /// By default, builds a new "this" expression without performing any
2266 /// semantic analysis. Subclasses may override this routine to provide
2267 /// different behavior.
RebuildCXXThisExpr(SourceLocation ThisLoc,QualType ThisType,bool isImplicit)2268 ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
2269 QualType ThisType,
2270 bool isImplicit) {
2271 getSema().CheckCXXThisCapture(ThisLoc);
2272 return new (getSema().Context) CXXThisExpr(ThisLoc, ThisType, isImplicit);
2273 }
2274
2275 /// \brief Build a new C++ throw expression.
2276 ///
2277 /// By default, performs semantic analysis to build the new expression.
2278 /// Subclasses may override this routine to provide different behavior.
RebuildCXXThrowExpr(SourceLocation ThrowLoc,Expr * Sub,bool IsThrownVariableInScope)2279 ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
2280 bool IsThrownVariableInScope) {
2281 return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
2282 }
2283
2284 /// \brief Build a new C++ default-argument expression.
2285 ///
2286 /// By default, builds a new default-argument expression, which does not
2287 /// require any semantic analysis. Subclasses may override this routine to
2288 /// provide different behavior.
RebuildCXXDefaultArgExpr(SourceLocation Loc,ParmVarDecl * Param)2289 ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc,
2290 ParmVarDecl *Param) {
2291 return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param);
2292 }
2293
2294 /// \brief Build a new C++11 default-initialization expression.
2295 ///
2296 /// By default, builds a new default field initialization expression, which
2297 /// does not require any semantic analysis. Subclasses may override this
2298 /// routine to provide different behavior.
RebuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)2299 ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc,
2300 FieldDecl *Field) {
2301 return CXXDefaultInitExpr::Create(getSema().Context, Loc, Field);
2302 }
2303
2304 /// \brief Build a new C++ zero-initialization expression.
2305 ///
2306 /// By default, performs semantic analysis to build the new expression.
2307 /// Subclasses may override this routine to provide different behavior.
RebuildCXXScalarValueInitExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,SourceLocation RParenLoc)2308 ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
2309 SourceLocation LParenLoc,
2310 SourceLocation RParenLoc) {
2311 return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc,
2312 None, RParenLoc);
2313 }
2314
2315 /// \brief Build a new C++ "new" expression.
2316 ///
2317 /// By default, performs semantic analysis to build the new expression.
2318 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNewExpr(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocatedType,TypeSourceInfo * AllocatedTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer)2319 ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
2320 bool UseGlobal,
2321 SourceLocation PlacementLParen,
2322 MultiExprArg PlacementArgs,
2323 SourceLocation PlacementRParen,
2324 SourceRange TypeIdParens,
2325 QualType AllocatedType,
2326 TypeSourceInfo *AllocatedTypeInfo,
2327 Expr *ArraySize,
2328 SourceRange DirectInitRange,
2329 Expr *Initializer) {
2330 return getSema().BuildCXXNew(StartLoc, UseGlobal,
2331 PlacementLParen,
2332 PlacementArgs,
2333 PlacementRParen,
2334 TypeIdParens,
2335 AllocatedType,
2336 AllocatedTypeInfo,
2337 ArraySize,
2338 DirectInitRange,
2339 Initializer);
2340 }
2341
2342 /// \brief Build a new C++ "delete" expression.
2343 ///
2344 /// By default, performs semantic analysis to build the new expression.
2345 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDeleteExpr(SourceLocation StartLoc,bool IsGlobalDelete,bool IsArrayForm,Expr * Operand)2346 ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
2347 bool IsGlobalDelete,
2348 bool IsArrayForm,
2349 Expr *Operand) {
2350 return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
2351 Operand);
2352 }
2353
2354 /// \brief Build a new type trait expression.
2355 ///
2356 /// By default, performs semantic analysis to build the new expression.
2357 /// Subclasses may override this routine to provide different behavior.
RebuildTypeTrait(TypeTrait Trait,SourceLocation StartLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)2358 ExprResult RebuildTypeTrait(TypeTrait Trait,
2359 SourceLocation StartLoc,
2360 ArrayRef<TypeSourceInfo *> Args,
2361 SourceLocation RParenLoc) {
2362 return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc);
2363 }
2364
2365 /// \brief Build a new array type trait expression.
2366 ///
2367 /// By default, performs semantic analysis to build the new expression.
2368 /// Subclasses may override this routine to provide different behavior.
RebuildArrayTypeTrait(ArrayTypeTrait Trait,SourceLocation StartLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParenLoc)2369 ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
2370 SourceLocation StartLoc,
2371 TypeSourceInfo *TSInfo,
2372 Expr *DimExpr,
2373 SourceLocation RParenLoc) {
2374 return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
2375 }
2376
2377 /// \brief Build a new expression trait expression.
2378 ///
2379 /// By default, performs semantic analysis to build the new expression.
2380 /// Subclasses may override this routine to provide different behavior.
RebuildExpressionTrait(ExpressionTrait Trait,SourceLocation StartLoc,Expr * Queried,SourceLocation RParenLoc)2381 ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
2382 SourceLocation StartLoc,
2383 Expr *Queried,
2384 SourceLocation RParenLoc) {
2385 return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
2386 }
2387
2388 /// \brief Build a new (previously unresolved) declaration reference
2389 /// expression.
2390 ///
2391 /// By default, performs semantic analysis to build the new expression.
2392 /// Subclasses may override this routine to provide different behavior.
RebuildDependentScopeDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,bool IsAddressOfOperand,TypeSourceInfo ** RecoveryTSI)2393 ExprResult RebuildDependentScopeDeclRefExpr(
2394 NestedNameSpecifierLoc QualifierLoc,
2395 SourceLocation TemplateKWLoc,
2396 const DeclarationNameInfo &NameInfo,
2397 const TemplateArgumentListInfo *TemplateArgs,
2398 bool IsAddressOfOperand,
2399 TypeSourceInfo **RecoveryTSI) {
2400 CXXScopeSpec SS;
2401 SS.Adopt(QualifierLoc);
2402
2403 if (TemplateArgs || TemplateKWLoc.isValid())
2404 return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc, NameInfo,
2405 TemplateArgs);
2406
2407 return getSema().BuildQualifiedDeclarationNameExpr(
2408 SS, NameInfo, IsAddressOfOperand, RecoveryTSI);
2409 }
2410
2411 /// \brief Build a new template-id expression.
2412 ///
2413 /// By default, performs semantic analysis to build the new expression.
2414 /// Subclasses may override this routine to provide different behavior.
RebuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2415 ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
2416 SourceLocation TemplateKWLoc,
2417 LookupResult &R,
2418 bool RequiresADL,
2419 const TemplateArgumentListInfo *TemplateArgs) {
2420 return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL,
2421 TemplateArgs);
2422 }
2423
2424 /// \brief Build a new object-construction expression.
2425 ///
2426 /// By default, performs semantic analysis to build the new expression.
2427 /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstructExpr(QualType T,SourceLocation Loc,CXXConstructorDecl * Constructor,bool IsElidable,MultiExprArg Args,bool HadMultipleCandidates,bool ListInitialization,bool StdInitListInitialization,bool RequiresZeroInit,CXXConstructExpr::ConstructionKind ConstructKind,SourceRange ParenRange)2428 ExprResult RebuildCXXConstructExpr(QualType T,
2429 SourceLocation Loc,
2430 CXXConstructorDecl *Constructor,
2431 bool IsElidable,
2432 MultiExprArg Args,
2433 bool HadMultipleCandidates,
2434 bool ListInitialization,
2435 bool StdInitListInitialization,
2436 bool RequiresZeroInit,
2437 CXXConstructExpr::ConstructionKind ConstructKind,
2438 SourceRange ParenRange) {
2439 SmallVector<Expr*, 8> ConvertedArgs;
2440 if (getSema().CompleteConstructorCall(Constructor, Args, Loc,
2441 ConvertedArgs))
2442 return ExprError();
2443
2444 return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable,
2445 ConvertedArgs,
2446 HadMultipleCandidates,
2447 ListInitialization,
2448 StdInitListInitialization,
2449 RequiresZeroInit, ConstructKind,
2450 ParenRange);
2451 }
2452
2453 /// \brief Build a new object-construction expression.
2454 ///
2455 /// By default, performs semantic analysis to build the new expression.
2456 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTemporaryObjectExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)2457 ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
2458 SourceLocation LParenLoc,
2459 MultiExprArg Args,
2460 SourceLocation RParenLoc) {
2461 return getSema().BuildCXXTypeConstructExpr(TSInfo,
2462 LParenLoc,
2463 Args,
2464 RParenLoc);
2465 }
2466
2467 /// \brief Build a new object-construction expression.
2468 ///
2469 /// By default, performs semantic analysis to build the new expression.
2470 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUnresolvedConstructExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)2471 ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
2472 SourceLocation LParenLoc,
2473 MultiExprArg Args,
2474 SourceLocation RParenLoc) {
2475 return getSema().BuildCXXTypeConstructExpr(TSInfo,
2476 LParenLoc,
2477 Args,
2478 RParenLoc);
2479 }
2480
2481 /// \brief Build a new member reference expression.
2482 ///
2483 /// By default, performs semantic analysis to build the new expression.
2484 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDependentScopeMemberExpr(Expr * BaseE,QualType BaseType,bool IsArrow,SourceLocation OperatorLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & MemberNameInfo,const TemplateArgumentListInfo * TemplateArgs)2485 ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
2486 QualType BaseType,
2487 bool IsArrow,
2488 SourceLocation OperatorLoc,
2489 NestedNameSpecifierLoc QualifierLoc,
2490 SourceLocation TemplateKWLoc,
2491 NamedDecl *FirstQualifierInScope,
2492 const DeclarationNameInfo &MemberNameInfo,
2493 const TemplateArgumentListInfo *TemplateArgs) {
2494 CXXScopeSpec SS;
2495 SS.Adopt(QualifierLoc);
2496
2497 return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
2498 OperatorLoc, IsArrow,
2499 SS, TemplateKWLoc,
2500 FirstQualifierInScope,
2501 MemberNameInfo,
2502 TemplateArgs);
2503 }
2504
2505 /// \brief Build a new member reference expression.
2506 ///
2507 /// By default, performs semantic analysis to build the new expression.
2508 /// Subclasses may override this routine to provide different behavior.
RebuildUnresolvedMemberExpr(Expr * BaseE,QualType BaseType,SourceLocation OperatorLoc,bool IsArrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)2509 ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType,
2510 SourceLocation OperatorLoc,
2511 bool IsArrow,
2512 NestedNameSpecifierLoc QualifierLoc,
2513 SourceLocation TemplateKWLoc,
2514 NamedDecl *FirstQualifierInScope,
2515 LookupResult &R,
2516 const TemplateArgumentListInfo *TemplateArgs) {
2517 CXXScopeSpec SS;
2518 SS.Adopt(QualifierLoc);
2519
2520 return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
2521 OperatorLoc, IsArrow,
2522 SS, TemplateKWLoc,
2523 FirstQualifierInScope,
2524 R, TemplateArgs);
2525 }
2526
2527 /// \brief Build a new noexcept expression.
2528 ///
2529 /// By default, performs semantic analysis to build the new expression.
2530 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNoexceptExpr(SourceRange Range,Expr * Arg)2531 ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
2532 return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
2533 }
2534
2535 /// \brief Build a new expression to compute the length of a parameter pack.
RebuildSizeOfPackExpr(SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc,Optional<unsigned> Length)2536 ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack,
2537 SourceLocation PackLoc,
2538 SourceLocation RParenLoc,
2539 Optional<unsigned> Length) {
2540 if (Length)
2541 return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
2542 OperatorLoc, Pack, PackLoc,
2543 RParenLoc, *Length);
2544
2545 return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
2546 OperatorLoc, Pack, PackLoc,
2547 RParenLoc);
2548 }
2549
2550 /// \brief Build a new Objective-C boxed expression.
2551 ///
2552 /// By default, performs semantic analysis to build the new expression.
2553 /// Subclasses may override this routine to provide different behavior.
RebuildObjCBoxedExpr(SourceRange SR,Expr * ValueExpr)2554 ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
2555 return getSema().BuildObjCBoxedExpr(SR, ValueExpr);
2556 }
2557
2558 /// \brief Build a new Objective-C array literal.
2559 ///
2560 /// By default, performs semantic analysis to build the new expression.
2561 /// Subclasses may override this routine to provide different behavior.
RebuildObjCArrayLiteral(SourceRange Range,Expr ** Elements,unsigned NumElements)2562 ExprResult RebuildObjCArrayLiteral(SourceRange Range,
2563 Expr **Elements, unsigned NumElements) {
2564 return getSema().BuildObjCArrayLiteral(Range,
2565 MultiExprArg(Elements, NumElements));
2566 }
2567
RebuildObjCSubscriptRefExpr(SourceLocation RB,Expr * Base,Expr * Key,ObjCMethodDecl * getterMethod,ObjCMethodDecl * setterMethod)2568 ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB,
2569 Expr *Base, Expr *Key,
2570 ObjCMethodDecl *getterMethod,
2571 ObjCMethodDecl *setterMethod) {
2572 return getSema().BuildObjCSubscriptExpression(RB, Base, Key,
2573 getterMethod, setterMethod);
2574 }
2575
2576 /// \brief Build a new Objective-C dictionary literal.
2577 ///
2578 /// By default, performs semantic analysis to build the new expression.
2579 /// Subclasses may override this routine to provide different behavior.
RebuildObjCDictionaryLiteral(SourceRange Range,ObjCDictionaryElement * Elements,unsigned NumElements)2580 ExprResult RebuildObjCDictionaryLiteral(SourceRange Range,
2581 ObjCDictionaryElement *Elements,
2582 unsigned NumElements) {
2583 return getSema().BuildObjCDictionaryLiteral(Range, Elements, NumElements);
2584 }
2585
2586 /// \brief Build a new Objective-C \@encode expression.
2587 ///
2588 /// By default, performs semantic analysis to build the new expression.
2589 /// Subclasses may override this routine to provide different behavior.
RebuildObjCEncodeExpr(SourceLocation AtLoc,TypeSourceInfo * EncodeTypeInfo,SourceLocation RParenLoc)2590 ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
2591 TypeSourceInfo *EncodeTypeInfo,
2592 SourceLocation RParenLoc) {
2593 return SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, RParenLoc);
2594 }
2595
2596 /// \brief Build a new Objective-C class message.
RebuildObjCMessageExpr(TypeSourceInfo * ReceiverTypeInfo,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)2597 ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
2598 Selector Sel,
2599 ArrayRef<SourceLocation> SelectorLocs,
2600 ObjCMethodDecl *Method,
2601 SourceLocation LBracLoc,
2602 MultiExprArg Args,
2603 SourceLocation RBracLoc) {
2604 return SemaRef.BuildClassMessage(ReceiverTypeInfo,
2605 ReceiverTypeInfo->getType(),
2606 /*SuperLoc=*/SourceLocation(),
2607 Sel, Method, LBracLoc, SelectorLocs,
2608 RBracLoc, Args);
2609 }
2610
2611 /// \brief Build a new Objective-C instance message.
RebuildObjCMessageExpr(Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)2612 ExprResult RebuildObjCMessageExpr(Expr *Receiver,
2613 Selector Sel,
2614 ArrayRef<SourceLocation> SelectorLocs,
2615 ObjCMethodDecl *Method,
2616 SourceLocation LBracLoc,
2617 MultiExprArg Args,
2618 SourceLocation RBracLoc) {
2619 return SemaRef.BuildInstanceMessage(Receiver,
2620 Receiver->getType(),
2621 /*SuperLoc=*/SourceLocation(),
2622 Sel, Method, LBracLoc, SelectorLocs,
2623 RBracLoc, Args);
2624 }
2625
2626 /// \brief Build a new Objective-C instance/class message to 'super'.
RebuildObjCMessageExpr(SourceLocation SuperLoc,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)2627 ExprResult RebuildObjCMessageExpr(SourceLocation SuperLoc,
2628 Selector Sel,
2629 ArrayRef<SourceLocation> SelectorLocs,
2630 ObjCMethodDecl *Method,
2631 SourceLocation LBracLoc,
2632 MultiExprArg Args,
2633 SourceLocation RBracLoc) {
2634 ObjCInterfaceDecl *Class = Method->getClassInterface();
2635 QualType ReceiverTy = SemaRef.Context.getObjCInterfaceType(Class);
2636
2637 return Method->isInstanceMethod() ? SemaRef.BuildInstanceMessage(nullptr,
2638 ReceiverTy,
2639 SuperLoc,
2640 Sel, Method, LBracLoc, SelectorLocs,
2641 RBracLoc, Args)
2642 : SemaRef.BuildClassMessage(nullptr,
2643 ReceiverTy,
2644 SuperLoc,
2645 Sel, Method, LBracLoc, SelectorLocs,
2646 RBracLoc, Args);
2647
2648
2649 }
2650
2651 /// \brief Build a new Objective-C ivar reference expression.
2652 ///
2653 /// By default, performs semantic analysis to build the new expression.
2654 /// Subclasses may override this routine to provide different behavior.
RebuildObjCIvarRefExpr(Expr * BaseArg,ObjCIvarDecl * Ivar,SourceLocation IvarLoc,bool IsArrow,bool IsFreeIvar)2655 ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
2656 SourceLocation IvarLoc,
2657 bool IsArrow, bool IsFreeIvar) {
2658 // FIXME: We lose track of the IsFreeIvar bit.
2659 CXXScopeSpec SS;
2660 DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc);
2661 return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
2662 /*FIXME:*/IvarLoc, IsArrow,
2663 SS, SourceLocation(),
2664 /*FirstQualifierInScope=*/nullptr,
2665 NameInfo,
2666 /*TemplateArgs=*/nullptr);
2667 }
2668
2669 /// \brief Build a new Objective-C property reference expression.
2670 ///
2671 /// By default, performs semantic analysis to build the new expression.
2672 /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * BaseArg,ObjCPropertyDecl * Property,SourceLocation PropertyLoc)2673 ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
2674 ObjCPropertyDecl *Property,
2675 SourceLocation PropertyLoc) {
2676 CXXScopeSpec SS;
2677 DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc);
2678 return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
2679 /*FIXME:*/PropertyLoc,
2680 /*IsArrow=*/false,
2681 SS, SourceLocation(),
2682 /*FirstQualifierInScope=*/nullptr,
2683 NameInfo,
2684 /*TemplateArgs=*/nullptr);
2685 }
2686
2687 /// \brief Build a new Objective-C property reference expression.
2688 ///
2689 /// By default, performs semantic analysis to build the new expression.
2690 /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * Base,QualType T,ObjCMethodDecl * Getter,ObjCMethodDecl * Setter,SourceLocation PropertyLoc)2691 ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
2692 ObjCMethodDecl *Getter,
2693 ObjCMethodDecl *Setter,
2694 SourceLocation PropertyLoc) {
2695 // Since these expressions can only be value-dependent, we do not
2696 // need to perform semantic analysis again.
2697 return Owned(
2698 new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
2699 VK_LValue, OK_ObjCProperty,
2700 PropertyLoc, Base));
2701 }
2702
2703 /// \brief Build a new Objective-C "isa" expression.
2704 ///
2705 /// By default, performs semantic analysis to build the new expression.
2706 /// Subclasses may override this routine to provide different behavior.
RebuildObjCIsaExpr(Expr * BaseArg,SourceLocation IsaLoc,SourceLocation OpLoc,bool IsArrow)2707 ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
2708 SourceLocation OpLoc, bool IsArrow) {
2709 CXXScopeSpec SS;
2710 DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc);
2711 return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
2712 OpLoc, IsArrow,
2713 SS, SourceLocation(),
2714 /*FirstQualifierInScope=*/nullptr,
2715 NameInfo,
2716 /*TemplateArgs=*/nullptr);
2717 }
2718
2719 /// \brief Build a new shuffle vector expression.
2720 ///
2721 /// By default, performs semantic analysis to build the new expression.
2722 /// Subclasses may override this routine to provide different behavior.
RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)2723 ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
2724 MultiExprArg SubExprs,
2725 SourceLocation RParenLoc) {
2726 // Find the declaration for __builtin_shufflevector
2727 const IdentifierInfo &Name
2728 = SemaRef.Context.Idents.get("__builtin_shufflevector");
2729 TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
2730 DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
2731 assert(!Lookup.empty() && "No __builtin_shufflevector?");
2732
2733 // Build a reference to the __builtin_shufflevector builtin
2734 FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front());
2735 Expr *Callee = new (SemaRef.Context) DeclRefExpr(Builtin, false,
2736 SemaRef.Context.BuiltinFnTy,
2737 VK_RValue, BuiltinLoc);
2738 QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType());
2739 Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy,
2740 CK_BuiltinFnToFnPtr).get();
2741
2742 // Build the CallExpr
2743 ExprResult TheCall = new (SemaRef.Context) CallExpr(
2744 SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(),
2745 Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc);
2746
2747 // Type-check the __builtin_shufflevector expression.
2748 return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.get()));
2749 }
2750
2751 /// \brief Build a new convert vector expression.
RebuildConvertVectorExpr(SourceLocation BuiltinLoc,Expr * SrcExpr,TypeSourceInfo * DstTInfo,SourceLocation RParenLoc)2752 ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc,
2753 Expr *SrcExpr, TypeSourceInfo *DstTInfo,
2754 SourceLocation RParenLoc) {
2755 return SemaRef.SemaConvertVectorExpr(SrcExpr, DstTInfo,
2756 BuiltinLoc, RParenLoc);
2757 }
2758
2759 /// \brief Build a new template argument pack expansion.
2760 ///
2761 /// By default, performs semantic analysis to build a new pack expansion
2762 /// for a template argument. Subclasses may override this routine to provide
2763 /// different behavior.
RebuildPackExpansion(TemplateArgumentLoc Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)2764 TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
2765 SourceLocation EllipsisLoc,
2766 Optional<unsigned> NumExpansions) {
2767 switch (Pattern.getArgument().getKind()) {
2768 case TemplateArgument::Expression: {
2769 ExprResult Result
2770 = getSema().CheckPackExpansion(Pattern.getSourceExpression(),
2771 EllipsisLoc, NumExpansions);
2772 if (Result.isInvalid())
2773 return TemplateArgumentLoc();
2774
2775 return TemplateArgumentLoc(Result.get(), Result.get());
2776 }
2777
2778 case TemplateArgument::Template:
2779 return TemplateArgumentLoc(TemplateArgument(
2780 Pattern.getArgument().getAsTemplate(),
2781 NumExpansions),
2782 Pattern.getTemplateQualifierLoc(),
2783 Pattern.getTemplateNameLoc(),
2784 EllipsisLoc);
2785
2786 case TemplateArgument::Null:
2787 case TemplateArgument::Integral:
2788 case TemplateArgument::Declaration:
2789 case TemplateArgument::Pack:
2790 case TemplateArgument::TemplateExpansion:
2791 case TemplateArgument::NullPtr:
2792 llvm_unreachable("Pack expansion pattern has no parameter packs");
2793
2794 case TemplateArgument::Type:
2795 if (TypeSourceInfo *Expansion
2796 = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
2797 EllipsisLoc,
2798 NumExpansions))
2799 return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
2800 Expansion);
2801 break;
2802 }
2803
2804 return TemplateArgumentLoc();
2805 }
2806
2807 /// \brief Build a new expression pack expansion.
2808 ///
2809 /// By default, performs semantic analysis to build a new pack expansion
2810 /// for an expression. Subclasses may override this routine to provide
2811 /// different behavior.
RebuildPackExpansion(Expr * Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)2812 ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
2813 Optional<unsigned> NumExpansions) {
2814 return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
2815 }
2816
2817 /// \brief Build a new C++1z fold-expression.
2818 ///
2819 /// By default, performs semantic analysis in order to build a new fold
2820 /// expression.
RebuildCXXFoldExpr(SourceLocation LParenLoc,Expr * LHS,BinaryOperatorKind Operator,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation RParenLoc)2821 ExprResult RebuildCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS,
2822 BinaryOperatorKind Operator,
2823 SourceLocation EllipsisLoc, Expr *RHS,
2824 SourceLocation RParenLoc) {
2825 return getSema().BuildCXXFoldExpr(LParenLoc, LHS, Operator, EllipsisLoc,
2826 RHS, RParenLoc);
2827 }
2828
2829 /// \brief Build an empty C++1z fold-expression with the given operator.
2830 ///
2831 /// By default, produces the fallback value for the fold-expression, or
2832 /// produce an error if there is no fallback value.
RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,BinaryOperatorKind Operator)2833 ExprResult RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
2834 BinaryOperatorKind Operator) {
2835 return getSema().BuildEmptyCXXFoldExpr(EllipsisLoc, Operator);
2836 }
2837
2838 /// \brief Build a new atomic operation expression.
2839 ///
2840 /// By default, performs semantic analysis to build the new expression.
2841 /// Subclasses may override this routine to provide different behavior.
RebuildAtomicExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,QualType RetTy,AtomicExpr::AtomicOp Op,SourceLocation RParenLoc)2842 ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc,
2843 MultiExprArg SubExprs,
2844 QualType RetTy,
2845 AtomicExpr::AtomicOp Op,
2846 SourceLocation RParenLoc) {
2847 // Just create the expression; there is not any interesting semantic
2848 // analysis here because we can't actually build an AtomicExpr until
2849 // we are sure it is semantically sound.
2850 return new (SemaRef.Context) AtomicExpr(BuiltinLoc, SubExprs, RetTy, Op,
2851 RParenLoc);
2852 }
2853
2854 private:
2855 TypeLoc TransformTypeInObjectScope(TypeLoc TL,
2856 QualType ObjectType,
2857 NamedDecl *FirstQualifierInScope,
2858 CXXScopeSpec &SS);
2859
2860 TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
2861 QualType ObjectType,
2862 NamedDecl *FirstQualifierInScope,
2863 CXXScopeSpec &SS);
2864
2865 TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType,
2866 NamedDecl *FirstQualifierInScope,
2867 CXXScopeSpec &SS);
2868 };
2869
2870 template<typename Derived>
TransformStmt(Stmt * S)2871 StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) {
2872 if (!S)
2873 return S;
2874
2875 switch (S->getStmtClass()) {
2876 case Stmt::NoStmtClass: break;
2877
2878 // Transform individual statement nodes
2879 #define STMT(Node, Parent) \
2880 case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
2881 #define ABSTRACT_STMT(Node)
2882 #define EXPR(Node, Parent)
2883 #include "clang/AST/StmtNodes.inc"
2884
2885 // Transform expressions by calling TransformExpr.
2886 #define STMT(Node, Parent)
2887 #define ABSTRACT_STMT(Stmt)
2888 #define EXPR(Node, Parent) case Stmt::Node##Class:
2889 #include "clang/AST/StmtNodes.inc"
2890 {
2891 ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
2892 if (E.isInvalid())
2893 return StmtError();
2894
2895 return getSema().ActOnExprStmt(E);
2896 }
2897 }
2898
2899 return S;
2900 }
2901
2902 template<typename Derived>
TransformOMPClause(OMPClause * S)2903 OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) {
2904 if (!S)
2905 return S;
2906
2907 switch (S->getClauseKind()) {
2908 default: break;
2909 // Transform individual clause nodes
2910 #define OPENMP_CLAUSE(Name, Class) \
2911 case OMPC_ ## Name : \
2912 return getDerived().Transform ## Class(cast<Class>(S));
2913 #include "clang/Basic/OpenMPKinds.def"
2914 }
2915
2916 return S;
2917 }
2918
2919
2920 template<typename Derived>
TransformExpr(Expr * E)2921 ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
2922 if (!E)
2923 return E;
2924
2925 switch (E->getStmtClass()) {
2926 case Stmt::NoStmtClass: break;
2927 #define STMT(Node, Parent) case Stmt::Node##Class: break;
2928 #define ABSTRACT_STMT(Stmt)
2929 #define EXPR(Node, Parent) \
2930 case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
2931 #include "clang/AST/StmtNodes.inc"
2932 }
2933
2934 return E;
2935 }
2936
2937 template<typename Derived>
TransformInitializer(Expr * Init,bool NotCopyInit)2938 ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init,
2939 bool NotCopyInit) {
2940 // Initializers are instantiated like expressions, except that various outer
2941 // layers are stripped.
2942 if (!Init)
2943 return Init;
2944
2945 if (ExprWithCleanups *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
2946 Init = ExprTemp->getSubExpr();
2947
2948 if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
2949 Init = MTE->GetTemporaryExpr();
2950
2951 while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
2952 Init = Binder->getSubExpr();
2953
2954 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
2955 Init = ICE->getSubExprAsWritten();
2956
2957 if (CXXStdInitializerListExpr *ILE =
2958 dyn_cast<CXXStdInitializerListExpr>(Init))
2959 return TransformInitializer(ILE->getSubExpr(), NotCopyInit);
2960
2961 // If this is copy-initialization, we only need to reconstruct
2962 // InitListExprs. Other forms of copy-initialization will be a no-op if
2963 // the initializer is already the right type.
2964 CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init);
2965 if (!NotCopyInit && !(Construct && Construct->isListInitialization()))
2966 return getDerived().TransformExpr(Init);
2967
2968 // Revert value-initialization back to empty parens.
2969 if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) {
2970 SourceRange Parens = VIE->getSourceRange();
2971 return getDerived().RebuildParenListExpr(Parens.getBegin(), None,
2972 Parens.getEnd());
2973 }
2974
2975 // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization.
2976 if (isa<ImplicitValueInitExpr>(Init))
2977 return getDerived().RebuildParenListExpr(SourceLocation(), None,
2978 SourceLocation());
2979
2980 // Revert initialization by constructor back to a parenthesized or braced list
2981 // of expressions. Any other form of initializer can just be reused directly.
2982 if (!Construct || isa<CXXTemporaryObjectExpr>(Construct))
2983 return getDerived().TransformExpr(Init);
2984
2985 // If the initialization implicitly converted an initializer list to a
2986 // std::initializer_list object, unwrap the std::initializer_list too.
2987 if (Construct && Construct->isStdInitListInitialization())
2988 return TransformInitializer(Construct->getArg(0), NotCopyInit);
2989
2990 SmallVector<Expr*, 8> NewArgs;
2991 bool ArgChanged = false;
2992 if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(),
2993 /*IsCall*/true, NewArgs, &ArgChanged))
2994 return ExprError();
2995
2996 // If this was list initialization, revert to list form.
2997 if (Construct->isListInitialization())
2998 return getDerived().RebuildInitList(Construct->getLocStart(), NewArgs,
2999 Construct->getLocEnd(),
3000 Construct->getType());
3001
3002 // Build a ParenListExpr to represent anything else.
3003 SourceRange Parens = Construct->getParenOrBraceRange();
3004 if (Parens.isInvalid()) {
3005 // This was a variable declaration's initialization for which no initializer
3006 // was specified.
3007 assert(NewArgs.empty() &&
3008 "no parens or braces but have direct init with arguments?");
3009 return ExprEmpty();
3010 }
3011 return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs,
3012 Parens.getEnd());
3013 }
3014
3015 template<typename Derived>
TransformExprs(Expr ** Inputs,unsigned NumInputs,bool IsCall,SmallVectorImpl<Expr * > & Outputs,bool * ArgChanged)3016 bool TreeTransform<Derived>::TransformExprs(Expr **Inputs,
3017 unsigned NumInputs,
3018 bool IsCall,
3019 SmallVectorImpl<Expr *> &Outputs,
3020 bool *ArgChanged) {
3021 for (unsigned I = 0; I != NumInputs; ++I) {
3022 // If requested, drop call arguments that need to be dropped.
3023 if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
3024 if (ArgChanged)
3025 *ArgChanged = true;
3026
3027 break;
3028 }
3029
3030 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
3031 Expr *Pattern = Expansion->getPattern();
3032
3033 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3034 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
3035 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
3036
3037 // Determine whether the set of unexpanded parameter packs can and should
3038 // be expanded.
3039 bool Expand = true;
3040 bool RetainExpansion = false;
3041 Optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions();
3042 Optional<unsigned> NumExpansions = OrigNumExpansions;
3043 if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
3044 Pattern->getSourceRange(),
3045 Unexpanded,
3046 Expand, RetainExpansion,
3047 NumExpansions))
3048 return true;
3049
3050 if (!Expand) {
3051 // The transform has determined that we should perform a simple
3052 // transformation on the pack expansion, producing another pack
3053 // expansion.
3054 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
3055 ExprResult OutPattern = getDerived().TransformExpr(Pattern);
3056 if (OutPattern.isInvalid())
3057 return true;
3058
3059 ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
3060 Expansion->getEllipsisLoc(),
3061 NumExpansions);
3062 if (Out.isInvalid())
3063 return true;
3064
3065 if (ArgChanged)
3066 *ArgChanged = true;
3067 Outputs.push_back(Out.get());
3068 continue;
3069 }
3070
3071 // Record right away that the argument was changed. This needs
3072 // to happen even if the array expands to nothing.
3073 if (ArgChanged) *ArgChanged = true;
3074
3075 // The transform has determined that we should perform an elementwise
3076 // expansion of the pattern. Do so.
3077 for (unsigned I = 0; I != *NumExpansions; ++I) {
3078 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
3079 ExprResult Out = getDerived().TransformExpr(Pattern);
3080 if (Out.isInvalid())
3081 return true;
3082
3083 // FIXME: Can this happen? We should not try to expand the pack
3084 // in this case.
3085 if (Out.get()->containsUnexpandedParameterPack()) {
3086 Out = getDerived().RebuildPackExpansion(
3087 Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
3088 if (Out.isInvalid())
3089 return true;
3090 }
3091
3092 Outputs.push_back(Out.get());
3093 }
3094
3095 // If we're supposed to retain a pack expansion, do so by temporarily
3096 // forgetting the partially-substituted parameter pack.
3097 if (RetainExpansion) {
3098 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
3099
3100 ExprResult Out = getDerived().TransformExpr(Pattern);
3101 if (Out.isInvalid())
3102 return true;
3103
3104 Out = getDerived().RebuildPackExpansion(
3105 Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
3106 if (Out.isInvalid())
3107 return true;
3108
3109 Outputs.push_back(Out.get());
3110 }
3111
3112 continue;
3113 }
3114
3115 ExprResult Result =
3116 IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false)
3117 : getDerived().TransformExpr(Inputs[I]);
3118 if (Result.isInvalid())
3119 return true;
3120
3121 if (Result.get() != Inputs[I] && ArgChanged)
3122 *ArgChanged = true;
3123
3124 Outputs.push_back(Result.get());
3125 }
3126
3127 return false;
3128 }
3129
3130 template<typename Derived>
3131 NestedNameSpecifierLoc
TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,QualType ObjectType,NamedDecl * FirstQualifierInScope)3132 TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
3133 NestedNameSpecifierLoc NNS,
3134 QualType ObjectType,
3135 NamedDecl *FirstQualifierInScope) {
3136 SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
3137 for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
3138 Qualifier = Qualifier.getPrefix())
3139 Qualifiers.push_back(Qualifier);
3140
3141 CXXScopeSpec SS;
3142 while (!Qualifiers.empty()) {
3143 NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
3144 NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
3145
3146 switch (QNNS->getKind()) {
3147 case NestedNameSpecifier::Identifier:
3148 if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr,
3149 *QNNS->getAsIdentifier(),
3150 Q.getLocalBeginLoc(),
3151 Q.getLocalEndLoc(),
3152 ObjectType, false, SS,
3153 FirstQualifierInScope, false))
3154 return NestedNameSpecifierLoc();
3155
3156 break;
3157
3158 case NestedNameSpecifier::Namespace: {
3159 NamespaceDecl *NS
3160 = cast_or_null<NamespaceDecl>(
3161 getDerived().TransformDecl(
3162 Q.getLocalBeginLoc(),
3163 QNNS->getAsNamespace()));
3164 SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
3165 break;
3166 }
3167
3168 case NestedNameSpecifier::NamespaceAlias: {
3169 NamespaceAliasDecl *Alias
3170 = cast_or_null<NamespaceAliasDecl>(
3171 getDerived().TransformDecl(Q.getLocalBeginLoc(),
3172 QNNS->getAsNamespaceAlias()));
3173 SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
3174 Q.getLocalEndLoc());
3175 break;
3176 }
3177
3178 case NestedNameSpecifier::Global:
3179 // There is no meaningful transformation that one could perform on the
3180 // global scope.
3181 SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
3182 break;
3183
3184 case NestedNameSpecifier::Super: {
3185 CXXRecordDecl *RD =
3186 cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
3187 SourceLocation(), QNNS->getAsRecordDecl()));
3188 SS.MakeSuper(SemaRef.Context, RD, Q.getBeginLoc(), Q.getEndLoc());
3189 break;
3190 }
3191
3192 case NestedNameSpecifier::TypeSpecWithTemplate:
3193 case NestedNameSpecifier::TypeSpec: {
3194 TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
3195 FirstQualifierInScope, SS);
3196
3197 if (!TL)
3198 return NestedNameSpecifierLoc();
3199
3200 if (TL.getType()->isDependentType() || TL.getType()->isRecordType() ||
3201 (SemaRef.getLangOpts().CPlusPlus11 &&
3202 TL.getType()->isEnumeralType())) {
3203 assert(!TL.getType().hasLocalQualifiers() &&
3204 "Can't get cv-qualifiers here");
3205 if (TL.getType()->isEnumeralType())
3206 SemaRef.Diag(TL.getBeginLoc(),
3207 diag::warn_cxx98_compat_enum_nested_name_spec);
3208 SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL,
3209 Q.getLocalEndLoc());
3210 break;
3211 }
3212 // If the nested-name-specifier is an invalid type def, don't emit an
3213 // error because a previous error should have already been emitted.
3214 TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>();
3215 if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) {
3216 SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
3217 << TL.getType() << SS.getRange();
3218 }
3219 return NestedNameSpecifierLoc();
3220 }
3221 }
3222
3223 // The qualifier-in-scope and object type only apply to the leftmost entity.
3224 FirstQualifierInScope = nullptr;
3225 ObjectType = QualType();
3226 }
3227
3228 // Don't rebuild the nested-name-specifier if we don't have to.
3229 if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
3230 !getDerived().AlwaysRebuild())
3231 return NNS;
3232
3233 // If we can re-use the source-location data from the original
3234 // nested-name-specifier, do so.
3235 if (SS.location_size() == NNS.getDataLength() &&
3236 memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
3237 return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
3238
3239 // Allocate new nested-name-specifier location information.
3240 return SS.getWithLocInContext(SemaRef.Context);
3241 }
3242
3243 template<typename Derived>
3244 DeclarationNameInfo
3245 TreeTransform<Derived>
TransformDeclarationNameInfo(const DeclarationNameInfo & NameInfo)3246 ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
3247 DeclarationName Name = NameInfo.getName();
3248 if (!Name)
3249 return DeclarationNameInfo();
3250
3251 switch (Name.getNameKind()) {
3252 case DeclarationName::Identifier:
3253 case DeclarationName::ObjCZeroArgSelector:
3254 case DeclarationName::ObjCOneArgSelector:
3255 case DeclarationName::ObjCMultiArgSelector:
3256 case DeclarationName::CXXOperatorName:
3257 case DeclarationName::CXXLiteralOperatorName:
3258 case DeclarationName::CXXUsingDirective:
3259 return NameInfo;
3260
3261 case DeclarationName::CXXConstructorName:
3262 case DeclarationName::CXXDestructorName:
3263 case DeclarationName::CXXConversionFunctionName: {
3264 TypeSourceInfo *NewTInfo;
3265 CanQualType NewCanTy;
3266 if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
3267 NewTInfo = getDerived().TransformType(OldTInfo);
3268 if (!NewTInfo)
3269 return DeclarationNameInfo();
3270 NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
3271 }
3272 else {
3273 NewTInfo = nullptr;
3274 TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
3275 QualType NewT = getDerived().TransformType(Name.getCXXNameType());
3276 if (NewT.isNull())
3277 return DeclarationNameInfo();
3278 NewCanTy = SemaRef.Context.getCanonicalType(NewT);
3279 }
3280
3281 DeclarationName NewName
3282 = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
3283 NewCanTy);
3284 DeclarationNameInfo NewNameInfo(NameInfo);
3285 NewNameInfo.setName(NewName);
3286 NewNameInfo.setNamedTypeInfo(NewTInfo);
3287 return NewNameInfo;
3288 }
3289 }
3290
3291 llvm_unreachable("Unknown name kind.");
3292 }
3293
3294 template<typename Derived>
3295 TemplateName
TransformTemplateName(CXXScopeSpec & SS,TemplateName Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope)3296 TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
3297 TemplateName Name,
3298 SourceLocation NameLoc,
3299 QualType ObjectType,
3300 NamedDecl *FirstQualifierInScope) {
3301 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
3302 TemplateDecl *Template = QTN->getTemplateDecl();
3303 assert(Template && "qualified template name must refer to a template");
3304
3305 TemplateDecl *TransTemplate
3306 = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
3307 Template));
3308 if (!TransTemplate)
3309 return TemplateName();
3310
3311 if (!getDerived().AlwaysRebuild() &&
3312 SS.getScopeRep() == QTN->getQualifier() &&
3313 TransTemplate == Template)
3314 return Name;
3315
3316 return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
3317 TransTemplate);
3318 }
3319
3320 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
3321 if (SS.getScopeRep()) {
3322 // These apply to the scope specifier, not the template.
3323 ObjectType = QualType();
3324 FirstQualifierInScope = nullptr;
3325 }
3326
3327 if (!getDerived().AlwaysRebuild() &&
3328 SS.getScopeRep() == DTN->getQualifier() &&
3329 ObjectType.isNull())
3330 return Name;
3331
3332 if (DTN->isIdentifier()) {
3333 return getDerived().RebuildTemplateName(SS,
3334 *DTN->getIdentifier(),
3335 NameLoc,
3336 ObjectType,
3337 FirstQualifierInScope);
3338 }
3339
3340 return getDerived().RebuildTemplateName(SS, DTN->getOperator(), NameLoc,
3341 ObjectType);
3342 }
3343
3344 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3345 TemplateDecl *TransTemplate
3346 = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
3347 Template));
3348 if (!TransTemplate)
3349 return TemplateName();
3350
3351 if (!getDerived().AlwaysRebuild() &&
3352 TransTemplate == Template)
3353 return Name;
3354
3355 return TemplateName(TransTemplate);
3356 }
3357
3358 if (SubstTemplateTemplateParmPackStorage *SubstPack
3359 = Name.getAsSubstTemplateTemplateParmPack()) {
3360 TemplateTemplateParmDecl *TransParam
3361 = cast_or_null<TemplateTemplateParmDecl>(
3362 getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack()));
3363 if (!TransParam)
3364 return TemplateName();
3365
3366 if (!getDerived().AlwaysRebuild() &&
3367 TransParam == SubstPack->getParameterPack())
3368 return Name;
3369
3370 return getDerived().RebuildTemplateName(TransParam,
3371 SubstPack->getArgumentPack());
3372 }
3373
3374 // These should be getting filtered out before they reach the AST.
3375 llvm_unreachable("overloaded function decl survived to here");
3376 }
3377
3378 template<typename Derived>
InventTemplateArgumentLoc(const TemplateArgument & Arg,TemplateArgumentLoc & Output)3379 void TreeTransform<Derived>::InventTemplateArgumentLoc(
3380 const TemplateArgument &Arg,
3381 TemplateArgumentLoc &Output) {
3382 SourceLocation Loc = getDerived().getBaseLocation();
3383 switch (Arg.getKind()) {
3384 case TemplateArgument::Null:
3385 llvm_unreachable("null template argument in TreeTransform");
3386 break;
3387
3388 case TemplateArgument::Type:
3389 Output = TemplateArgumentLoc(Arg,
3390 SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
3391
3392 break;
3393
3394 case TemplateArgument::Template:
3395 case TemplateArgument::TemplateExpansion: {
3396 NestedNameSpecifierLocBuilder Builder;
3397 TemplateName Template = Arg.getAsTemplate();
3398 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
3399 Builder.MakeTrivial(SemaRef.Context, DTN->getQualifier(), Loc);
3400 else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3401 Builder.MakeTrivial(SemaRef.Context, QTN->getQualifier(), Loc);
3402
3403 if (Arg.getKind() == TemplateArgument::Template)
3404 Output = TemplateArgumentLoc(Arg,
3405 Builder.getWithLocInContext(SemaRef.Context),
3406 Loc);
3407 else
3408 Output = TemplateArgumentLoc(Arg,
3409 Builder.getWithLocInContext(SemaRef.Context),
3410 Loc, Loc);
3411
3412 break;
3413 }
3414
3415 case TemplateArgument::Expression:
3416 Output = TemplateArgumentLoc(Arg, Arg.getAsExpr());
3417 break;
3418
3419 case TemplateArgument::Declaration:
3420 case TemplateArgument::Integral:
3421 case TemplateArgument::Pack:
3422 case TemplateArgument::NullPtr:
3423 Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
3424 break;
3425 }
3426 }
3427
3428 template<typename Derived>
TransformTemplateArgument(const TemplateArgumentLoc & Input,TemplateArgumentLoc & Output)3429 bool TreeTransform<Derived>::TransformTemplateArgument(
3430 const TemplateArgumentLoc &Input,
3431 TemplateArgumentLoc &Output) {
3432 const TemplateArgument &Arg = Input.getArgument();
3433 switch (Arg.getKind()) {
3434 case TemplateArgument::Null:
3435 case TemplateArgument::Integral:
3436 case TemplateArgument::Pack:
3437 case TemplateArgument::Declaration:
3438 case TemplateArgument::NullPtr:
3439 llvm_unreachable("Unexpected TemplateArgument");
3440
3441 case TemplateArgument::Type: {
3442 TypeSourceInfo *DI = Input.getTypeSourceInfo();
3443 if (!DI)
3444 DI = InventTypeSourceInfo(Input.getArgument().getAsType());
3445
3446 DI = getDerived().TransformType(DI);
3447 if (!DI) return true;
3448
3449 Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3450 return false;
3451 }
3452
3453 case TemplateArgument::Template: {
3454 NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
3455 if (QualifierLoc) {
3456 QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
3457 if (!QualifierLoc)
3458 return true;
3459 }
3460
3461 CXXScopeSpec SS;
3462 SS.Adopt(QualifierLoc);
3463 TemplateName Template
3464 = getDerived().TransformTemplateName(SS, Arg.getAsTemplate(),
3465 Input.getTemplateNameLoc());
3466 if (Template.isNull())
3467 return true;
3468
3469 Output = TemplateArgumentLoc(TemplateArgument(Template), QualifierLoc,
3470 Input.getTemplateNameLoc());
3471 return false;
3472 }
3473
3474 case TemplateArgument::TemplateExpansion:
3475 llvm_unreachable("Caller should expand pack expansions");
3476
3477 case TemplateArgument::Expression: {
3478 // Template argument expressions are constant expressions.
3479 EnterExpressionEvaluationContext Unevaluated(getSema(),
3480 Sema::ConstantEvaluated);
3481
3482 Expr *InputExpr = Input.getSourceExpression();
3483 if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
3484
3485 ExprResult E = getDerived().TransformExpr(InputExpr);
3486 E = SemaRef.ActOnConstantExpression(E);
3487 if (E.isInvalid()) return true;
3488 Output = TemplateArgumentLoc(TemplateArgument(E.get()), E.get());
3489 return false;
3490 }
3491 }
3492
3493 // Work around bogus GCC warning
3494 return true;
3495 }
3496
3497 /// \brief Iterator adaptor that invents template argument location information
3498 /// for each of the template arguments in its underlying iterator.
3499 template<typename Derived, typename InputIterator>
3500 class TemplateArgumentLocInventIterator {
3501 TreeTransform<Derived> &Self;
3502 InputIterator Iter;
3503
3504 public:
3505 typedef TemplateArgumentLoc value_type;
3506 typedef TemplateArgumentLoc reference;
3507 typedef typename std::iterator_traits<InputIterator>::difference_type
3508 difference_type;
3509 typedef std::input_iterator_tag iterator_category;
3510
3511 class pointer {
3512 TemplateArgumentLoc Arg;
3513
3514 public:
pointer(TemplateArgumentLoc Arg)3515 explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
3516
3517 const TemplateArgumentLoc *operator->() const { return &Arg; }
3518 };
3519
TemplateArgumentLocInventIterator()3520 TemplateArgumentLocInventIterator() { }
3521
TemplateArgumentLocInventIterator(TreeTransform<Derived> & Self,InputIterator Iter)3522 explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
3523 InputIterator Iter)
3524 : Self(Self), Iter(Iter) { }
3525
3526 TemplateArgumentLocInventIterator &operator++() {
3527 ++Iter;
3528 return *this;
3529 }
3530
3531 TemplateArgumentLocInventIterator operator++(int) {
3532 TemplateArgumentLocInventIterator Old(*this);
3533 ++(*this);
3534 return Old;
3535 }
3536
3537 reference operator*() const {
3538 TemplateArgumentLoc Result;
3539 Self.InventTemplateArgumentLoc(*Iter, Result);
3540 return Result;
3541 }
3542
3543 pointer operator->() const { return pointer(**this); }
3544
3545 friend bool operator==(const TemplateArgumentLocInventIterator &X,
3546 const TemplateArgumentLocInventIterator &Y) {
3547 return X.Iter == Y.Iter;
3548 }
3549
3550 friend bool operator!=(const TemplateArgumentLocInventIterator &X,
3551 const TemplateArgumentLocInventIterator &Y) {
3552 return X.Iter != Y.Iter;
3553 }
3554 };
3555
3556 template<typename Derived>
3557 template<typename InputIterator>
TransformTemplateArguments(InputIterator First,InputIterator Last,TemplateArgumentListInfo & Outputs)3558 bool TreeTransform<Derived>::TransformTemplateArguments(InputIterator First,
3559 InputIterator Last,
3560 TemplateArgumentListInfo &Outputs) {
3561 for (; First != Last; ++First) {
3562 TemplateArgumentLoc Out;
3563 TemplateArgumentLoc In = *First;
3564
3565 if (In.getArgument().getKind() == TemplateArgument::Pack) {
3566 // Unpack argument packs, which we translate them into separate
3567 // arguments.
3568 // FIXME: We could do much better if we could guarantee that the
3569 // TemplateArgumentLocInfo for the pack expansion would be usable for
3570 // all of the template arguments in the argument pack.
3571 typedef TemplateArgumentLocInventIterator<Derived,
3572 TemplateArgument::pack_iterator>
3573 PackLocIterator;
3574 if (TransformTemplateArguments(PackLocIterator(*this,
3575 In.getArgument().pack_begin()),
3576 PackLocIterator(*this,
3577 In.getArgument().pack_end()),
3578 Outputs))
3579 return true;
3580
3581 continue;
3582 }
3583
3584 if (In.getArgument().isPackExpansion()) {
3585 // We have a pack expansion, for which we will be substituting into
3586 // the pattern.
3587 SourceLocation Ellipsis;
3588 Optional<unsigned> OrigNumExpansions;
3589 TemplateArgumentLoc Pattern
3590 = getSema().getTemplateArgumentPackExpansionPattern(
3591 In, Ellipsis, OrigNumExpansions);
3592
3593 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3594 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
3595 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
3596
3597 // Determine whether the set of unexpanded parameter packs can and should
3598 // be expanded.
3599 bool Expand = true;
3600 bool RetainExpansion = false;
3601 Optional<unsigned> NumExpansions = OrigNumExpansions;
3602 if (getDerived().TryExpandParameterPacks(Ellipsis,
3603 Pattern.getSourceRange(),
3604 Unexpanded,
3605 Expand,
3606 RetainExpansion,
3607 NumExpansions))
3608 return true;
3609
3610 if (!Expand) {
3611 // The transform has determined that we should perform a simple
3612 // transformation on the pack expansion, producing another pack
3613 // expansion.
3614 TemplateArgumentLoc OutPattern;
3615 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
3616 if (getDerived().TransformTemplateArgument(Pattern, OutPattern))
3617 return true;
3618
3619 Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
3620 NumExpansions);
3621 if (Out.getArgument().isNull())
3622 return true;
3623
3624 Outputs.addArgument(Out);
3625 continue;
3626 }
3627
3628 // The transform has determined that we should perform an elementwise
3629 // expansion of the pattern. Do so.
3630 for (unsigned I = 0; I != *NumExpansions; ++I) {
3631 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
3632
3633 if (getDerived().TransformTemplateArgument(Pattern, Out))
3634 return true;
3635
3636 if (Out.getArgument().containsUnexpandedParameterPack()) {
3637 Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
3638 OrigNumExpansions);
3639 if (Out.getArgument().isNull())
3640 return true;
3641 }
3642
3643 Outputs.addArgument(Out);
3644 }
3645
3646 // If we're supposed to retain a pack expansion, do so by temporarily
3647 // forgetting the partially-substituted parameter pack.
3648 if (RetainExpansion) {
3649 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
3650
3651 if (getDerived().TransformTemplateArgument(Pattern, Out))
3652 return true;
3653
3654 Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
3655 OrigNumExpansions);
3656 if (Out.getArgument().isNull())
3657 return true;
3658
3659 Outputs.addArgument(Out);
3660 }
3661
3662 continue;
3663 }
3664
3665 // The simple case:
3666 if (getDerived().TransformTemplateArgument(In, Out))
3667 return true;
3668
3669 Outputs.addArgument(Out);
3670 }
3671
3672 return false;
3673
3674 }
3675
3676 //===----------------------------------------------------------------------===//
3677 // Type transformation
3678 //===----------------------------------------------------------------------===//
3679
3680 template<typename Derived>
TransformType(QualType T)3681 QualType TreeTransform<Derived>::TransformType(QualType T) {
3682 if (getDerived().AlreadyTransformed(T))
3683 return T;
3684
3685 // Temporary workaround. All of these transformations should
3686 // eventually turn into transformations on TypeLocs.
3687 TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
3688 getDerived().getBaseLocation());
3689
3690 TypeSourceInfo *NewDI = getDerived().TransformType(DI);
3691
3692 if (!NewDI)
3693 return QualType();
3694
3695 return NewDI->getType();
3696 }
3697
3698 template<typename Derived>
TransformType(TypeSourceInfo * DI)3699 TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
3700 // Refine the base location to the type's location.
3701 TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
3702 getDerived().getBaseEntity());
3703 if (getDerived().AlreadyTransformed(DI->getType()))
3704 return DI;
3705
3706 TypeLocBuilder TLB;
3707
3708 TypeLoc TL = DI->getTypeLoc();
3709 TLB.reserve(TL.getFullDataSize());
3710
3711 QualType Result = getDerived().TransformType(TLB, TL);
3712 if (Result.isNull())
3713 return nullptr;
3714
3715 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
3716 }
3717
3718 template<typename Derived>
3719 QualType
TransformType(TypeLocBuilder & TLB,TypeLoc T)3720 TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
3721 switch (T.getTypeLocClass()) {
3722 #define ABSTRACT_TYPELOC(CLASS, PARENT)
3723 #define TYPELOC(CLASS, PARENT) \
3724 case TypeLoc::CLASS: \
3725 return getDerived().Transform##CLASS##Type(TLB, \
3726 T.castAs<CLASS##TypeLoc>());
3727 #include "clang/AST/TypeLocNodes.def"
3728 }
3729
3730 llvm_unreachable("unhandled type loc!");
3731 }
3732
3733 /// FIXME: By default, this routine adds type qualifiers only to types
3734 /// that can have qualifiers, and silently suppresses those qualifiers
3735 /// that are not permitted (e.g., qualifiers on reference or function
3736 /// types). This is the right thing for template instantiation, but
3737 /// probably not for other clients.
3738 template<typename Derived>
3739 QualType
TransformQualifiedType(TypeLocBuilder & TLB,QualifiedTypeLoc T)3740 TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
3741 QualifiedTypeLoc T) {
3742 Qualifiers Quals = T.getType().getLocalQualifiers();
3743
3744 QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc());
3745 if (Result.isNull())
3746 return QualType();
3747
3748 // Silently suppress qualifiers if the result type can't be qualified.
3749 // FIXME: this is the right thing for template instantiation, but
3750 // probably not for other clients.
3751 if (Result->isFunctionType() || Result->isReferenceType())
3752 return Result;
3753
3754 // Suppress Objective-C lifetime qualifiers if they don't make sense for the
3755 // resulting type.
3756 if (Quals.hasObjCLifetime()) {
3757 if (!Result->isObjCLifetimeType() && !Result->isDependentType())
3758 Quals.removeObjCLifetime();
3759 else if (Result.getObjCLifetime()) {
3760 // Objective-C ARC:
3761 // A lifetime qualifier applied to a substituted template parameter
3762 // overrides the lifetime qualifier from the template argument.
3763 const AutoType *AutoTy;
3764 if (const SubstTemplateTypeParmType *SubstTypeParam
3765 = dyn_cast<SubstTemplateTypeParmType>(Result)) {
3766 QualType Replacement = SubstTypeParam->getReplacementType();
3767 Qualifiers Qs = Replacement.getQualifiers();
3768 Qs.removeObjCLifetime();
3769 Replacement
3770 = SemaRef.Context.getQualifiedType(Replacement.getUnqualifiedType(),
3771 Qs);
3772 Result = SemaRef.Context.getSubstTemplateTypeParmType(
3773 SubstTypeParam->getReplacedParameter(),
3774 Replacement);
3775 TLB.TypeWasModifiedSafely(Result);
3776 } else if ((AutoTy = dyn_cast<AutoType>(Result)) && AutoTy->isDeduced()) {
3777 // 'auto' types behave the same way as template parameters.
3778 QualType Deduced = AutoTy->getDeducedType();
3779 Qualifiers Qs = Deduced.getQualifiers();
3780 Qs.removeObjCLifetime();
3781 Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(),
3782 Qs);
3783 Result = SemaRef.Context.getAutoType(Deduced, AutoTy->isDecltypeAuto(),
3784 AutoTy->isDependentType());
3785 TLB.TypeWasModifiedSafely(Result);
3786 } else {
3787 // Otherwise, complain about the addition of a qualifier to an
3788 // already-qualified type.
3789 SourceRange R = T.getUnqualifiedLoc().getSourceRange();
3790 SemaRef.Diag(R.getBegin(), diag::err_attr_objc_ownership_redundant)
3791 << Result << R;
3792
3793 Quals.removeObjCLifetime();
3794 }
3795 }
3796 }
3797 if (!Quals.empty()) {
3798 Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals);
3799 // BuildQualifiedType might not add qualifiers if they are invalid.
3800 if (Result.hasLocalQualifiers())
3801 TLB.push<QualifiedTypeLoc>(Result);
3802 // No location information to preserve.
3803 }
3804
3805 return Result;
3806 }
3807
3808 template<typename Derived>
3809 TypeLoc
TransformTypeInObjectScope(TypeLoc TL,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)3810 TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
3811 QualType ObjectType,
3812 NamedDecl *UnqualLookup,
3813 CXXScopeSpec &SS) {
3814 if (getDerived().AlreadyTransformed(TL.getType()))
3815 return TL;
3816
3817 TypeSourceInfo *TSI =
3818 TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS);
3819 if (TSI)
3820 return TSI->getTypeLoc();
3821 return TypeLoc();
3822 }
3823
3824 template<typename Derived>
3825 TypeSourceInfo *
TransformTypeInObjectScope(TypeSourceInfo * TSInfo,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)3826 TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
3827 QualType ObjectType,
3828 NamedDecl *UnqualLookup,
3829 CXXScopeSpec &SS) {
3830 if (getDerived().AlreadyTransformed(TSInfo->getType()))
3831 return TSInfo;
3832
3833 return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType,
3834 UnqualLookup, SS);
3835 }
3836
3837 template <typename Derived>
TransformTSIInObjectScope(TypeLoc TL,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)3838 TypeSourceInfo *TreeTransform<Derived>::TransformTSIInObjectScope(
3839 TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup,
3840 CXXScopeSpec &SS) {
3841 QualType T = TL.getType();
3842 assert(!getDerived().AlreadyTransformed(T));
3843
3844 TypeLocBuilder TLB;
3845 QualType Result;
3846
3847 if (isa<TemplateSpecializationType>(T)) {
3848 TemplateSpecializationTypeLoc SpecTL =
3849 TL.castAs<TemplateSpecializationTypeLoc>();
3850
3851 TemplateName Template
3852 = getDerived().TransformTemplateName(SS,
3853 SpecTL.getTypePtr()->getTemplateName(),
3854 SpecTL.getTemplateNameLoc(),
3855 ObjectType, UnqualLookup);
3856 if (Template.isNull())
3857 return nullptr;
3858
3859 Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
3860 Template);
3861 } else if (isa<DependentTemplateSpecializationType>(T)) {
3862 DependentTemplateSpecializationTypeLoc SpecTL =
3863 TL.castAs<DependentTemplateSpecializationTypeLoc>();
3864
3865 TemplateName Template
3866 = getDerived().RebuildTemplateName(SS,
3867 *SpecTL.getTypePtr()->getIdentifier(),
3868 SpecTL.getTemplateNameLoc(),
3869 ObjectType, UnqualLookup);
3870 if (Template.isNull())
3871 return nullptr;
3872
3873 Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
3874 SpecTL,
3875 Template,
3876 SS);
3877 } else {
3878 // Nothing special needs to be done for these.
3879 Result = getDerived().TransformType(TLB, TL);
3880 }
3881
3882 if (Result.isNull())
3883 return nullptr;
3884
3885 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
3886 }
3887
3888 template <class TyLoc> static inline
TransformTypeSpecType(TypeLocBuilder & TLB,TyLoc T)3889 QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
3890 TyLoc NewT = TLB.push<TyLoc>(T.getType());
3891 NewT.setNameLoc(T.getNameLoc());
3892 return T.getType();
3893 }
3894
3895 template<typename Derived>
TransformBuiltinType(TypeLocBuilder & TLB,BuiltinTypeLoc T)3896 QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
3897 BuiltinTypeLoc T) {
3898 BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
3899 NewT.setBuiltinLoc(T.getBuiltinLoc());
3900 if (T.needsExtraLocalData())
3901 NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
3902 return T.getType();
3903 }
3904
3905 template<typename Derived>
TransformComplexType(TypeLocBuilder & TLB,ComplexTypeLoc T)3906 QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
3907 ComplexTypeLoc T) {
3908 // FIXME: recurse?
3909 return TransformTypeSpecType(TLB, T);
3910 }
3911
3912 template <typename Derived>
TransformAdjustedType(TypeLocBuilder & TLB,AdjustedTypeLoc TL)3913 QualType TreeTransform<Derived>::TransformAdjustedType(TypeLocBuilder &TLB,
3914 AdjustedTypeLoc TL) {
3915 // Adjustments applied during transformation are handled elsewhere.
3916 return getDerived().TransformType(TLB, TL.getOriginalLoc());
3917 }
3918
3919 template<typename Derived>
TransformDecayedType(TypeLocBuilder & TLB,DecayedTypeLoc TL)3920 QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB,
3921 DecayedTypeLoc TL) {
3922 QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc());
3923 if (OriginalType.isNull())
3924 return QualType();
3925
3926 QualType Result = TL.getType();
3927 if (getDerived().AlwaysRebuild() ||
3928 OriginalType != TL.getOriginalLoc().getType())
3929 Result = SemaRef.Context.getDecayedType(OriginalType);
3930 TLB.push<DecayedTypeLoc>(Result);
3931 // Nothing to set for DecayedTypeLoc.
3932 return Result;
3933 }
3934
3935 template<typename Derived>
TransformPointerType(TypeLocBuilder & TLB,PointerTypeLoc TL)3936 QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
3937 PointerTypeLoc TL) {
3938 QualType PointeeType
3939 = getDerived().TransformType(TLB, TL.getPointeeLoc());
3940 if (PointeeType.isNull())
3941 return QualType();
3942
3943 QualType Result = TL.getType();
3944 if (PointeeType->getAs<ObjCObjectType>()) {
3945 // A dependent pointer type 'T *' has is being transformed such
3946 // that an Objective-C class type is being replaced for 'T'. The
3947 // resulting pointer type is an ObjCObjectPointerType, not a
3948 // PointerType.
3949 Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
3950
3951 ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
3952 NewT.setStarLoc(TL.getStarLoc());
3953 return Result;
3954 }
3955
3956 if (getDerived().AlwaysRebuild() ||
3957 PointeeType != TL.getPointeeLoc().getType()) {
3958 Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
3959 if (Result.isNull())
3960 return QualType();
3961 }
3962
3963 // Objective-C ARC can add lifetime qualifiers to the type that we're
3964 // pointing to.
3965 TLB.TypeWasModifiedSafely(Result->getPointeeType());
3966
3967 PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
3968 NewT.setSigilLoc(TL.getSigilLoc());
3969 return Result;
3970 }
3971
3972 template<typename Derived>
3973 QualType
TransformBlockPointerType(TypeLocBuilder & TLB,BlockPointerTypeLoc TL)3974 TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
3975 BlockPointerTypeLoc TL) {
3976 QualType PointeeType
3977 = getDerived().TransformType(TLB, TL.getPointeeLoc());
3978 if (PointeeType.isNull())
3979 return QualType();
3980
3981 QualType Result = TL.getType();
3982 if (getDerived().AlwaysRebuild() ||
3983 PointeeType != TL.getPointeeLoc().getType()) {
3984 Result = getDerived().RebuildBlockPointerType(PointeeType,
3985 TL.getSigilLoc());
3986 if (Result.isNull())
3987 return QualType();
3988 }
3989
3990 BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
3991 NewT.setSigilLoc(TL.getSigilLoc());
3992 return Result;
3993 }
3994
3995 /// Transforms a reference type. Note that somewhat paradoxically we
3996 /// don't care whether the type itself is an l-value type or an r-value
3997 /// type; we only care if the type was *written* as an l-value type
3998 /// or an r-value type.
3999 template<typename Derived>
4000 QualType
TransformReferenceType(TypeLocBuilder & TLB,ReferenceTypeLoc TL)4001 TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
4002 ReferenceTypeLoc TL) {
4003 const ReferenceType *T = TL.getTypePtr();
4004
4005 // Note that this works with the pointee-as-written.
4006 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
4007 if (PointeeType.isNull())
4008 return QualType();
4009
4010 QualType Result = TL.getType();
4011 if (getDerived().AlwaysRebuild() ||
4012 PointeeType != T->getPointeeTypeAsWritten()) {
4013 Result = getDerived().RebuildReferenceType(PointeeType,
4014 T->isSpelledAsLValue(),
4015 TL.getSigilLoc());
4016 if (Result.isNull())
4017 return QualType();
4018 }
4019
4020 // Objective-C ARC can add lifetime qualifiers to the type that we're
4021 // referring to.
4022 TLB.TypeWasModifiedSafely(
4023 Result->getAs<ReferenceType>()->getPointeeTypeAsWritten());
4024
4025 // r-value references can be rebuilt as l-value references.
4026 ReferenceTypeLoc NewTL;
4027 if (isa<LValueReferenceType>(Result))
4028 NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
4029 else
4030 NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
4031 NewTL.setSigilLoc(TL.getSigilLoc());
4032
4033 return Result;
4034 }
4035
4036 template<typename Derived>
4037 QualType
TransformLValueReferenceType(TypeLocBuilder & TLB,LValueReferenceTypeLoc TL)4038 TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
4039 LValueReferenceTypeLoc TL) {
4040 return TransformReferenceType(TLB, TL);
4041 }
4042
4043 template<typename Derived>
4044 QualType
TransformRValueReferenceType(TypeLocBuilder & TLB,RValueReferenceTypeLoc TL)4045 TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
4046 RValueReferenceTypeLoc TL) {
4047 return TransformReferenceType(TLB, TL);
4048 }
4049
4050 template<typename Derived>
4051 QualType
TransformMemberPointerType(TypeLocBuilder & TLB,MemberPointerTypeLoc TL)4052 TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
4053 MemberPointerTypeLoc TL) {
4054 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
4055 if (PointeeType.isNull())
4056 return QualType();
4057
4058 TypeSourceInfo* OldClsTInfo = TL.getClassTInfo();
4059 TypeSourceInfo *NewClsTInfo = nullptr;
4060 if (OldClsTInfo) {
4061 NewClsTInfo = getDerived().TransformType(OldClsTInfo);
4062 if (!NewClsTInfo)
4063 return QualType();
4064 }
4065
4066 const MemberPointerType *T = TL.getTypePtr();
4067 QualType OldClsType = QualType(T->getClass(), 0);
4068 QualType NewClsType;
4069 if (NewClsTInfo)
4070 NewClsType = NewClsTInfo->getType();
4071 else {
4072 NewClsType = getDerived().TransformType(OldClsType);
4073 if (NewClsType.isNull())
4074 return QualType();
4075 }
4076
4077 QualType Result = TL.getType();
4078 if (getDerived().AlwaysRebuild() ||
4079 PointeeType != T->getPointeeType() ||
4080 NewClsType != OldClsType) {
4081 Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType,
4082 TL.getStarLoc());
4083 if (Result.isNull())
4084 return QualType();
4085 }
4086
4087 // If we had to adjust the pointee type when building a member pointer, make
4088 // sure to push TypeLoc info for it.
4089 const MemberPointerType *MPT = Result->getAs<MemberPointerType>();
4090 if (MPT && PointeeType != MPT->getPointeeType()) {
4091 assert(isa<AdjustedType>(MPT->getPointeeType()));
4092 TLB.push<AdjustedTypeLoc>(MPT->getPointeeType());
4093 }
4094
4095 MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
4096 NewTL.setSigilLoc(TL.getSigilLoc());
4097 NewTL.setClassTInfo(NewClsTInfo);
4098
4099 return Result;
4100 }
4101
4102 template<typename Derived>
4103 QualType
TransformConstantArrayType(TypeLocBuilder & TLB,ConstantArrayTypeLoc TL)4104 TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
4105 ConstantArrayTypeLoc TL) {
4106 const ConstantArrayType *T = TL.getTypePtr();
4107 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
4108 if (ElementType.isNull())
4109 return QualType();
4110
4111 QualType Result = TL.getType();
4112 if (getDerived().AlwaysRebuild() ||
4113 ElementType != T->getElementType()) {
4114 Result = getDerived().RebuildConstantArrayType(ElementType,
4115 T->getSizeModifier(),
4116 T->getSize(),
4117 T->getIndexTypeCVRQualifiers(),
4118 TL.getBracketsRange());
4119 if (Result.isNull())
4120 return QualType();
4121 }
4122
4123 // We might have either a ConstantArrayType or a VariableArrayType now:
4124 // a ConstantArrayType is allowed to have an element type which is a
4125 // VariableArrayType if the type is dependent. Fortunately, all array
4126 // types have the same location layout.
4127 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
4128 NewTL.setLBracketLoc(TL.getLBracketLoc());
4129 NewTL.setRBracketLoc(TL.getRBracketLoc());
4130
4131 Expr *Size = TL.getSizeExpr();
4132 if (Size) {
4133 EnterExpressionEvaluationContext Unevaluated(SemaRef,
4134 Sema::ConstantEvaluated);
4135 Size = getDerived().TransformExpr(Size).template getAs<Expr>();
4136 Size = SemaRef.ActOnConstantExpression(Size).get();
4137 }
4138 NewTL.setSizeExpr(Size);
4139
4140 return Result;
4141 }
4142
4143 template<typename Derived>
TransformIncompleteArrayType(TypeLocBuilder & TLB,IncompleteArrayTypeLoc TL)4144 QualType TreeTransform<Derived>::TransformIncompleteArrayType(
4145 TypeLocBuilder &TLB,
4146 IncompleteArrayTypeLoc TL) {
4147 const IncompleteArrayType *T = TL.getTypePtr();
4148 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
4149 if (ElementType.isNull())
4150 return QualType();
4151
4152 QualType Result = TL.getType();
4153 if (getDerived().AlwaysRebuild() ||
4154 ElementType != T->getElementType()) {
4155 Result = getDerived().RebuildIncompleteArrayType(ElementType,
4156 T->getSizeModifier(),
4157 T->getIndexTypeCVRQualifiers(),
4158 TL.getBracketsRange());
4159 if (Result.isNull())
4160 return QualType();
4161 }
4162
4163 IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
4164 NewTL.setLBracketLoc(TL.getLBracketLoc());
4165 NewTL.setRBracketLoc(TL.getRBracketLoc());
4166 NewTL.setSizeExpr(nullptr);
4167
4168 return Result;
4169 }
4170
4171 template<typename Derived>
4172 QualType
TransformVariableArrayType(TypeLocBuilder & TLB,VariableArrayTypeLoc TL)4173 TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
4174 VariableArrayTypeLoc TL) {
4175 const VariableArrayType *T = TL.getTypePtr();
4176 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
4177 if (ElementType.isNull())
4178 return QualType();
4179
4180 ExprResult SizeResult
4181 = getDerived().TransformExpr(T->getSizeExpr());
4182 if (SizeResult.isInvalid())
4183 return QualType();
4184
4185 Expr *Size = SizeResult.get();
4186
4187 QualType Result = TL.getType();
4188 if (getDerived().AlwaysRebuild() ||
4189 ElementType != T->getElementType() ||
4190 Size != T->getSizeExpr()) {
4191 Result = getDerived().RebuildVariableArrayType(ElementType,
4192 T->getSizeModifier(),
4193 Size,
4194 T->getIndexTypeCVRQualifiers(),
4195 TL.getBracketsRange());
4196 if (Result.isNull())
4197 return QualType();
4198 }
4199
4200 // We might have constant size array now, but fortunately it has the same
4201 // location layout.
4202 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
4203 NewTL.setLBracketLoc(TL.getLBracketLoc());
4204 NewTL.setRBracketLoc(TL.getRBracketLoc());
4205 NewTL.setSizeExpr(Size);
4206
4207 return Result;
4208 }
4209
4210 template<typename Derived>
4211 QualType
TransformDependentSizedArrayType(TypeLocBuilder & TLB,DependentSizedArrayTypeLoc TL)4212 TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
4213 DependentSizedArrayTypeLoc TL) {
4214 const DependentSizedArrayType *T = TL.getTypePtr();
4215 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
4216 if (ElementType.isNull())
4217 return QualType();
4218
4219 // Array bounds are constant expressions.
4220 EnterExpressionEvaluationContext Unevaluated(SemaRef,
4221 Sema::ConstantEvaluated);
4222
4223 // Prefer the expression from the TypeLoc; the other may have been uniqued.
4224 Expr *origSize = TL.getSizeExpr();
4225 if (!origSize) origSize = T->getSizeExpr();
4226
4227 ExprResult sizeResult
4228 = getDerived().TransformExpr(origSize);
4229 sizeResult = SemaRef.ActOnConstantExpression(sizeResult);
4230 if (sizeResult.isInvalid())
4231 return QualType();
4232
4233 Expr *size = sizeResult.get();
4234
4235 QualType Result = TL.getType();
4236 if (getDerived().AlwaysRebuild() ||
4237 ElementType != T->getElementType() ||
4238 size != origSize) {
4239 Result = getDerived().RebuildDependentSizedArrayType(ElementType,
4240 T->getSizeModifier(),
4241 size,
4242 T->getIndexTypeCVRQualifiers(),
4243 TL.getBracketsRange());
4244 if (Result.isNull())
4245 return QualType();
4246 }
4247
4248 // We might have any sort of array type now, but fortunately they
4249 // all have the same location layout.
4250 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
4251 NewTL.setLBracketLoc(TL.getLBracketLoc());
4252 NewTL.setRBracketLoc(TL.getRBracketLoc());
4253 NewTL.setSizeExpr(size);
4254
4255 return Result;
4256 }
4257
4258 template<typename Derived>
TransformDependentSizedExtVectorType(TypeLocBuilder & TLB,DependentSizedExtVectorTypeLoc TL)4259 QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
4260 TypeLocBuilder &TLB,
4261 DependentSizedExtVectorTypeLoc TL) {
4262 const DependentSizedExtVectorType *T = TL.getTypePtr();
4263
4264 // FIXME: ext vector locs should be nested
4265 QualType ElementType = getDerived().TransformType(T->getElementType());
4266 if (ElementType.isNull())
4267 return QualType();
4268
4269 // Vector sizes are constant expressions.
4270 EnterExpressionEvaluationContext Unevaluated(SemaRef,
4271 Sema::ConstantEvaluated);
4272
4273 ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
4274 Size = SemaRef.ActOnConstantExpression(Size);
4275 if (Size.isInvalid())
4276 return QualType();
4277
4278 QualType Result = TL.getType();
4279 if (getDerived().AlwaysRebuild() ||
4280 ElementType != T->getElementType() ||
4281 Size.get() != T->getSizeExpr()) {
4282 Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
4283 Size.get(),
4284 T->getAttributeLoc());
4285 if (Result.isNull())
4286 return QualType();
4287 }
4288
4289 // Result might be dependent or not.
4290 if (isa<DependentSizedExtVectorType>(Result)) {
4291 DependentSizedExtVectorTypeLoc NewTL
4292 = TLB.push<DependentSizedExtVectorTypeLoc>(Result);
4293 NewTL.setNameLoc(TL.getNameLoc());
4294 } else {
4295 ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
4296 NewTL.setNameLoc(TL.getNameLoc());
4297 }
4298
4299 return Result;
4300 }
4301
4302 template<typename Derived>
TransformVectorType(TypeLocBuilder & TLB,VectorTypeLoc TL)4303 QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
4304 VectorTypeLoc TL) {
4305 const VectorType *T = TL.getTypePtr();
4306 QualType ElementType = getDerived().TransformType(T->getElementType());
4307 if (ElementType.isNull())
4308 return QualType();
4309
4310 QualType Result = TL.getType();
4311 if (getDerived().AlwaysRebuild() ||
4312 ElementType != T->getElementType()) {
4313 Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
4314 T->getVectorKind());
4315 if (Result.isNull())
4316 return QualType();
4317 }
4318
4319 VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
4320 NewTL.setNameLoc(TL.getNameLoc());
4321
4322 return Result;
4323 }
4324
4325 template<typename Derived>
TransformExtVectorType(TypeLocBuilder & TLB,ExtVectorTypeLoc TL)4326 QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
4327 ExtVectorTypeLoc TL) {
4328 const VectorType *T = TL.getTypePtr();
4329 QualType ElementType = getDerived().TransformType(T->getElementType());
4330 if (ElementType.isNull())
4331 return QualType();
4332
4333 QualType Result = TL.getType();
4334 if (getDerived().AlwaysRebuild() ||
4335 ElementType != T->getElementType()) {
4336 Result = getDerived().RebuildExtVectorType(ElementType,
4337 T->getNumElements(),
4338 /*FIXME*/ SourceLocation());
4339 if (Result.isNull())
4340 return QualType();
4341 }
4342
4343 ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
4344 NewTL.setNameLoc(TL.getNameLoc());
4345
4346 return Result;
4347 }
4348
4349 template <typename Derived>
TransformFunctionTypeParam(ParmVarDecl * OldParm,int indexAdjustment,Optional<unsigned> NumExpansions,bool ExpectParameterPack)4350 ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam(
4351 ParmVarDecl *OldParm, int indexAdjustment, Optional<unsigned> NumExpansions,
4352 bool ExpectParameterPack) {
4353 TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
4354 TypeSourceInfo *NewDI = nullptr;
4355
4356 if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
4357 // If we're substituting into a pack expansion type and we know the
4358 // length we want to expand to, just substitute for the pattern.
4359 TypeLoc OldTL = OldDI->getTypeLoc();
4360 PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>();
4361
4362 TypeLocBuilder TLB;
4363 TypeLoc NewTL = OldDI->getTypeLoc();
4364 TLB.reserve(NewTL.getFullDataSize());
4365
4366 QualType Result = getDerived().TransformType(TLB,
4367 OldExpansionTL.getPatternLoc());
4368 if (Result.isNull())
4369 return nullptr;
4370
4371 Result = RebuildPackExpansionType(Result,
4372 OldExpansionTL.getPatternLoc().getSourceRange(),
4373 OldExpansionTL.getEllipsisLoc(),
4374 NumExpansions);
4375 if (Result.isNull())
4376 return nullptr;
4377
4378 PackExpansionTypeLoc NewExpansionTL
4379 = TLB.push<PackExpansionTypeLoc>(Result);
4380 NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
4381 NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
4382 } else
4383 NewDI = getDerived().TransformType(OldDI);
4384 if (!NewDI)
4385 return nullptr;
4386
4387 if (NewDI == OldDI && indexAdjustment == 0)
4388 return OldParm;
4389
4390 ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
4391 OldParm->getDeclContext(),
4392 OldParm->getInnerLocStart(),
4393 OldParm->getLocation(),
4394 OldParm->getIdentifier(),
4395 NewDI->getType(),
4396 NewDI,
4397 OldParm->getStorageClass(),
4398 /* DefArg */ nullptr);
4399 newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
4400 OldParm->getFunctionScopeIndex() + indexAdjustment);
4401 return newParm;
4402 }
4403
4404 template<typename Derived>
4405 bool TreeTransform<Derived>::
TransformFunctionTypeParams(SourceLocation Loc,ParmVarDecl ** Params,unsigned NumParams,const QualType * ParamTypes,SmallVectorImpl<QualType> & OutParamTypes,SmallVectorImpl<ParmVarDecl * > * PVars)4406 TransformFunctionTypeParams(SourceLocation Loc,
4407 ParmVarDecl **Params, unsigned NumParams,
4408 const QualType *ParamTypes,
4409 SmallVectorImpl<QualType> &OutParamTypes,
4410 SmallVectorImpl<ParmVarDecl*> *PVars) {
4411 int indexAdjustment = 0;
4412
4413 for (unsigned i = 0; i != NumParams; ++i) {
4414 if (ParmVarDecl *OldParm = Params[i]) {
4415 assert(OldParm->getFunctionScopeIndex() == i);
4416
4417 Optional<unsigned> NumExpansions;
4418 ParmVarDecl *NewParm = nullptr;
4419 if (OldParm->isParameterPack()) {
4420 // We have a function parameter pack that may need to be expanded.
4421 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
4422
4423 // Find the parameter packs that could be expanded.
4424 TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
4425 PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>();
4426 TypeLoc Pattern = ExpansionTL.getPatternLoc();
4427 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
4428 assert(Unexpanded.size() > 0 && "Could not find parameter packs!");
4429
4430 // Determine whether we should expand the parameter packs.
4431 bool ShouldExpand = false;
4432 bool RetainExpansion = false;
4433 Optional<unsigned> OrigNumExpansions =
4434 ExpansionTL.getTypePtr()->getNumExpansions();
4435 NumExpansions = OrigNumExpansions;
4436 if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
4437 Pattern.getSourceRange(),
4438 Unexpanded,
4439 ShouldExpand,
4440 RetainExpansion,
4441 NumExpansions)) {
4442 return true;
4443 }
4444
4445 if (ShouldExpand) {
4446 // Expand the function parameter pack into multiple, separate
4447 // parameters.
4448 getDerived().ExpandingFunctionParameterPack(OldParm);
4449 for (unsigned I = 0; I != *NumExpansions; ++I) {
4450 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
4451 ParmVarDecl *NewParm
4452 = getDerived().TransformFunctionTypeParam(OldParm,
4453 indexAdjustment++,
4454 OrigNumExpansions,
4455 /*ExpectParameterPack=*/false);
4456 if (!NewParm)
4457 return true;
4458
4459 OutParamTypes.push_back(NewParm->getType());
4460 if (PVars)
4461 PVars->push_back(NewParm);
4462 }
4463
4464 // If we're supposed to retain a pack expansion, do so by temporarily
4465 // forgetting the partially-substituted parameter pack.
4466 if (RetainExpansion) {
4467 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
4468 ParmVarDecl *NewParm
4469 = getDerived().TransformFunctionTypeParam(OldParm,
4470 indexAdjustment++,
4471 OrigNumExpansions,
4472 /*ExpectParameterPack=*/false);
4473 if (!NewParm)
4474 return true;
4475
4476 OutParamTypes.push_back(NewParm->getType());
4477 if (PVars)
4478 PVars->push_back(NewParm);
4479 }
4480
4481 // The next parameter should have the same adjustment as the
4482 // last thing we pushed, but we post-incremented indexAdjustment
4483 // on every push. Also, if we push nothing, the adjustment should
4484 // go down by one.
4485 indexAdjustment--;
4486
4487 // We're done with the pack expansion.
4488 continue;
4489 }
4490
4491 // We'll substitute the parameter now without expanding the pack
4492 // expansion.
4493 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
4494 NewParm = getDerived().TransformFunctionTypeParam(OldParm,
4495 indexAdjustment,
4496 NumExpansions,
4497 /*ExpectParameterPack=*/true);
4498 } else {
4499 NewParm = getDerived().TransformFunctionTypeParam(
4500 OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false);
4501 }
4502
4503 if (!NewParm)
4504 return true;
4505
4506 OutParamTypes.push_back(NewParm->getType());
4507 if (PVars)
4508 PVars->push_back(NewParm);
4509 continue;
4510 }
4511
4512 // Deal with the possibility that we don't have a parameter
4513 // declaration for this parameter.
4514 QualType OldType = ParamTypes[i];
4515 bool IsPackExpansion = false;
4516 Optional<unsigned> NumExpansions;
4517 QualType NewType;
4518 if (const PackExpansionType *Expansion
4519 = dyn_cast<PackExpansionType>(OldType)) {
4520 // We have a function parameter pack that may need to be expanded.
4521 QualType Pattern = Expansion->getPattern();
4522 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
4523 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
4524
4525 // Determine whether we should expand the parameter packs.
4526 bool ShouldExpand = false;
4527 bool RetainExpansion = false;
4528 if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
4529 Unexpanded,
4530 ShouldExpand,
4531 RetainExpansion,
4532 NumExpansions)) {
4533 return true;
4534 }
4535
4536 if (ShouldExpand) {
4537 // Expand the function parameter pack into multiple, separate
4538 // parameters.
4539 for (unsigned I = 0; I != *NumExpansions; ++I) {
4540 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
4541 QualType NewType = getDerived().TransformType(Pattern);
4542 if (NewType.isNull())
4543 return true;
4544
4545 OutParamTypes.push_back(NewType);
4546 if (PVars)
4547 PVars->push_back(nullptr);
4548 }
4549
4550 // We're done with the pack expansion.
4551 continue;
4552 }
4553
4554 // If we're supposed to retain a pack expansion, do so by temporarily
4555 // forgetting the partially-substituted parameter pack.
4556 if (RetainExpansion) {
4557 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
4558 QualType NewType = getDerived().TransformType(Pattern);
4559 if (NewType.isNull())
4560 return true;
4561
4562 OutParamTypes.push_back(NewType);
4563 if (PVars)
4564 PVars->push_back(nullptr);
4565 }
4566
4567 // We'll substitute the parameter now without expanding the pack
4568 // expansion.
4569 OldType = Expansion->getPattern();
4570 IsPackExpansion = true;
4571 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
4572 NewType = getDerived().TransformType(OldType);
4573 } else {
4574 NewType = getDerived().TransformType(OldType);
4575 }
4576
4577 if (NewType.isNull())
4578 return true;
4579
4580 if (IsPackExpansion)
4581 NewType = getSema().Context.getPackExpansionType(NewType,
4582 NumExpansions);
4583
4584 OutParamTypes.push_back(NewType);
4585 if (PVars)
4586 PVars->push_back(nullptr);
4587 }
4588
4589 #ifndef NDEBUG
4590 if (PVars) {
4591 for (unsigned i = 0, e = PVars->size(); i != e; ++i)
4592 if (ParmVarDecl *parm = (*PVars)[i])
4593 assert(parm->getFunctionScopeIndex() == i);
4594 }
4595 #endif
4596
4597 return false;
4598 }
4599
4600 template<typename Derived>
4601 QualType
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL)4602 TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
4603 FunctionProtoTypeLoc TL) {
4604 SmallVector<QualType, 4> ExceptionStorage;
4605 TreeTransform *This = this; // Work around gcc.gnu.org/PR56135.
4606 return getDerived().TransformFunctionProtoType(
4607 TLB, TL, nullptr, 0,
4608 [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
4609 return This->TransformExceptionSpec(TL.getBeginLoc(), ESI,
4610 ExceptionStorage, Changed);
4611 });
4612 }
4613
4614 template<typename Derived> template<typename Fn>
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL,CXXRecordDecl * ThisContext,unsigned ThisTypeQuals,Fn TransformExceptionSpec)4615 QualType TreeTransform<Derived>::TransformFunctionProtoType(
4616 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext,
4617 unsigned ThisTypeQuals, Fn TransformExceptionSpec) {
4618 // Transform the parameters and return type.
4619 //
4620 // We are required to instantiate the params and return type in source order.
4621 // When the function has a trailing return type, we instantiate the
4622 // parameters before the return type, since the return type can then refer
4623 // to the parameters themselves (via decltype, sizeof, etc.).
4624 //
4625 SmallVector<QualType, 4> ParamTypes;
4626 SmallVector<ParmVarDecl*, 4> ParamDecls;
4627 const FunctionProtoType *T = TL.getTypePtr();
4628
4629 QualType ResultType;
4630
4631 if (T->hasTrailingReturn()) {
4632 if (getDerived().TransformFunctionTypeParams(
4633 TL.getBeginLoc(), TL.getParmArray(), TL.getNumParams(),
4634 TL.getTypePtr()->param_type_begin(), ParamTypes, &ParamDecls))
4635 return QualType();
4636
4637 {
4638 // C++11 [expr.prim.general]p3:
4639 // If a declaration declares a member function or member function
4640 // template of a class X, the expression this is a prvalue of type
4641 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
4642 // and the end of the function-definition, member-declarator, or
4643 // declarator.
4644 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals);
4645
4646 ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
4647 if (ResultType.isNull())
4648 return QualType();
4649 }
4650 }
4651 else {
4652 ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
4653 if (ResultType.isNull())
4654 return QualType();
4655
4656 if (getDerived().TransformFunctionTypeParams(
4657 TL.getBeginLoc(), TL.getParmArray(), TL.getNumParams(),
4658 TL.getTypePtr()->param_type_begin(), ParamTypes, &ParamDecls))
4659 return QualType();
4660 }
4661
4662 FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo();
4663
4664 bool EPIChanged = false;
4665 if (TransformExceptionSpec(EPI.ExceptionSpec, EPIChanged))
4666 return QualType();
4667
4668 // FIXME: Need to transform ConsumedParameters for variadic template
4669 // expansion.
4670
4671 QualType Result = TL.getType();
4672 if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() ||
4673 T->getNumParams() != ParamTypes.size() ||
4674 !std::equal(T->param_type_begin(), T->param_type_end(),
4675 ParamTypes.begin()) || EPIChanged) {
4676 Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, EPI);
4677 if (Result.isNull())
4678 return QualType();
4679 }
4680
4681 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
4682 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
4683 NewTL.setLParenLoc(TL.getLParenLoc());
4684 NewTL.setRParenLoc(TL.getRParenLoc());
4685 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
4686 for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i)
4687 NewTL.setParam(i, ParamDecls[i]);
4688
4689 return Result;
4690 }
4691
4692 template<typename Derived>
TransformExceptionSpec(SourceLocation Loc,FunctionProtoType::ExceptionSpecInfo & ESI,SmallVectorImpl<QualType> & Exceptions,bool & Changed)4693 bool TreeTransform<Derived>::TransformExceptionSpec(
4694 SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI,
4695 SmallVectorImpl<QualType> &Exceptions, bool &Changed) {
4696 assert(ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated);
4697
4698 // Instantiate a dynamic noexcept expression, if any.
4699 if (ESI.Type == EST_ComputedNoexcept) {
4700 EnterExpressionEvaluationContext Unevaluated(getSema(),
4701 Sema::ConstantEvaluated);
4702 ExprResult NoexceptExpr = getDerived().TransformExpr(ESI.NoexceptExpr);
4703 if (NoexceptExpr.isInvalid())
4704 return true;
4705
4706 NoexceptExpr = getSema().CheckBooleanCondition(
4707 NoexceptExpr.get(), NoexceptExpr.get()->getLocStart());
4708 if (NoexceptExpr.isInvalid())
4709 return true;
4710
4711 if (!NoexceptExpr.get()->isValueDependent()) {
4712 NoexceptExpr = getSema().VerifyIntegerConstantExpression(
4713 NoexceptExpr.get(), nullptr,
4714 diag::err_noexcept_needs_constant_expression,
4715 /*AllowFold*/false);
4716 if (NoexceptExpr.isInvalid())
4717 return true;
4718 }
4719
4720 if (ESI.NoexceptExpr != NoexceptExpr.get())
4721 Changed = true;
4722 ESI.NoexceptExpr = NoexceptExpr.get();
4723 }
4724
4725 if (ESI.Type != EST_Dynamic)
4726 return false;
4727
4728 // Instantiate a dynamic exception specification's type.
4729 for (QualType T : ESI.Exceptions) {
4730 if (const PackExpansionType *PackExpansion =
4731 T->getAs<PackExpansionType>()) {
4732 Changed = true;
4733
4734 // We have a pack expansion. Instantiate it.
4735 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
4736 SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(),
4737 Unexpanded);
4738 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
4739
4740 // Determine whether the set of unexpanded parameter packs can and
4741 // should
4742 // be expanded.
4743 bool Expand = false;
4744 bool RetainExpansion = false;
4745 Optional<unsigned> NumExpansions = PackExpansion->getNumExpansions();
4746 // FIXME: Track the location of the ellipsis (and track source location
4747 // information for the types in the exception specification in general).
4748 if (getDerived().TryExpandParameterPacks(
4749 Loc, SourceRange(), Unexpanded, Expand,
4750 RetainExpansion, NumExpansions))
4751 return true;
4752
4753 if (!Expand) {
4754 // We can't expand this pack expansion into separate arguments yet;
4755 // just substitute into the pattern and create a new pack expansion
4756 // type.
4757 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
4758 QualType U = getDerived().TransformType(PackExpansion->getPattern());
4759 if (U.isNull())
4760 return true;
4761
4762 U = SemaRef.Context.getPackExpansionType(U, NumExpansions);
4763 Exceptions.push_back(U);
4764 continue;
4765 }
4766
4767 // Substitute into the pack expansion pattern for each slice of the
4768 // pack.
4769 for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) {
4770 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx);
4771
4772 QualType U = getDerived().TransformType(PackExpansion->getPattern());
4773 if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
4774 return true;
4775
4776 Exceptions.push_back(U);
4777 }
4778 } else {
4779 QualType U = getDerived().TransformType(T);
4780 if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
4781 return true;
4782 if (T != U)
4783 Changed = true;
4784
4785 Exceptions.push_back(U);
4786 }
4787 }
4788
4789 ESI.Exceptions = Exceptions;
4790 return false;
4791 }
4792
4793 template<typename Derived>
TransformFunctionNoProtoType(TypeLocBuilder & TLB,FunctionNoProtoTypeLoc TL)4794 QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
4795 TypeLocBuilder &TLB,
4796 FunctionNoProtoTypeLoc TL) {
4797 const FunctionNoProtoType *T = TL.getTypePtr();
4798 QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
4799 if (ResultType.isNull())
4800 return QualType();
4801
4802 QualType Result = TL.getType();
4803 if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType())
4804 Result = getDerived().RebuildFunctionNoProtoType(ResultType);
4805
4806 FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
4807 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
4808 NewTL.setLParenLoc(TL.getLParenLoc());
4809 NewTL.setRParenLoc(TL.getRParenLoc());
4810 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
4811
4812 return Result;
4813 }
4814
4815 template<typename Derived> QualType
TransformUnresolvedUsingType(TypeLocBuilder & TLB,UnresolvedUsingTypeLoc TL)4816 TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
4817 UnresolvedUsingTypeLoc TL) {
4818 const UnresolvedUsingType *T = TL.getTypePtr();
4819 Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
4820 if (!D)
4821 return QualType();
4822
4823 QualType Result = TL.getType();
4824 if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
4825 Result = getDerived().RebuildUnresolvedUsingType(D);
4826 if (Result.isNull())
4827 return QualType();
4828 }
4829
4830 // We might get an arbitrary type spec type back. We should at
4831 // least always get a type spec type, though.
4832 TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
4833 NewTL.setNameLoc(TL.getNameLoc());
4834
4835 return Result;
4836 }
4837
4838 template<typename Derived>
TransformTypedefType(TypeLocBuilder & TLB,TypedefTypeLoc TL)4839 QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
4840 TypedefTypeLoc TL) {
4841 const TypedefType *T = TL.getTypePtr();
4842 TypedefNameDecl *Typedef
4843 = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
4844 T->getDecl()));
4845 if (!Typedef)
4846 return QualType();
4847
4848 QualType Result = TL.getType();
4849 if (getDerived().AlwaysRebuild() ||
4850 Typedef != T->getDecl()) {
4851 Result = getDerived().RebuildTypedefType(Typedef);
4852 if (Result.isNull())
4853 return QualType();
4854 }
4855
4856 TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
4857 NewTL.setNameLoc(TL.getNameLoc());
4858
4859 return Result;
4860 }
4861
4862 template<typename Derived>
TransformTypeOfExprType(TypeLocBuilder & TLB,TypeOfExprTypeLoc TL)4863 QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
4864 TypeOfExprTypeLoc TL) {
4865 // typeof expressions are not potentially evaluated contexts
4866 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
4867 Sema::ReuseLambdaContextDecl);
4868
4869 ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
4870 if (E.isInvalid())
4871 return QualType();
4872
4873 E = SemaRef.HandleExprEvaluationContextForTypeof(E.get());
4874 if (E.isInvalid())
4875 return QualType();
4876
4877 QualType Result = TL.getType();
4878 if (getDerived().AlwaysRebuild() ||
4879 E.get() != TL.getUnderlyingExpr()) {
4880 Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
4881 if (Result.isNull())
4882 return QualType();
4883 }
4884 else E.get();
4885
4886 TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
4887 NewTL.setTypeofLoc(TL.getTypeofLoc());
4888 NewTL.setLParenLoc(TL.getLParenLoc());
4889 NewTL.setRParenLoc(TL.getRParenLoc());
4890
4891 return Result;
4892 }
4893
4894 template<typename Derived>
TransformTypeOfType(TypeLocBuilder & TLB,TypeOfTypeLoc TL)4895 QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
4896 TypeOfTypeLoc TL) {
4897 TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
4898 TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
4899 if (!New_Under_TI)
4900 return QualType();
4901
4902 QualType Result = TL.getType();
4903 if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
4904 Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
4905 if (Result.isNull())
4906 return QualType();
4907 }
4908
4909 TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
4910 NewTL.setTypeofLoc(TL.getTypeofLoc());
4911 NewTL.setLParenLoc(TL.getLParenLoc());
4912 NewTL.setRParenLoc(TL.getRParenLoc());
4913 NewTL.setUnderlyingTInfo(New_Under_TI);
4914
4915 return Result;
4916 }
4917
4918 template<typename Derived>
TransformDecltypeType(TypeLocBuilder & TLB,DecltypeTypeLoc TL)4919 QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
4920 DecltypeTypeLoc TL) {
4921 const DecltypeType *T = TL.getTypePtr();
4922
4923 // decltype expressions are not potentially evaluated contexts
4924 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
4925 nullptr, /*IsDecltype=*/ true);
4926
4927 ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
4928 if (E.isInvalid())
4929 return QualType();
4930
4931 E = getSema().ActOnDecltypeExpression(E.get());
4932 if (E.isInvalid())
4933 return QualType();
4934
4935 QualType Result = TL.getType();
4936 if (getDerived().AlwaysRebuild() ||
4937 E.get() != T->getUnderlyingExpr()) {
4938 Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc());
4939 if (Result.isNull())
4940 return QualType();
4941 }
4942 else E.get();
4943
4944 DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
4945 NewTL.setNameLoc(TL.getNameLoc());
4946
4947 return Result;
4948 }
4949
4950 template<typename Derived>
TransformUnaryTransformType(TypeLocBuilder & TLB,UnaryTransformTypeLoc TL)4951 QualType TreeTransform<Derived>::TransformUnaryTransformType(
4952 TypeLocBuilder &TLB,
4953 UnaryTransformTypeLoc TL) {
4954 QualType Result = TL.getType();
4955 if (Result->isDependentType()) {
4956 const UnaryTransformType *T = TL.getTypePtr();
4957 QualType NewBase =
4958 getDerived().TransformType(TL.getUnderlyingTInfo())->getType();
4959 Result = getDerived().RebuildUnaryTransformType(NewBase,
4960 T->getUTTKind(),
4961 TL.getKWLoc());
4962 if (Result.isNull())
4963 return QualType();
4964 }
4965
4966 UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
4967 NewTL.setKWLoc(TL.getKWLoc());
4968 NewTL.setParensRange(TL.getParensRange());
4969 NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
4970 return Result;
4971 }
4972
4973 template<typename Derived>
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)4974 QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
4975 AutoTypeLoc TL) {
4976 const AutoType *T = TL.getTypePtr();
4977 QualType OldDeduced = T->getDeducedType();
4978 QualType NewDeduced;
4979 if (!OldDeduced.isNull()) {
4980 NewDeduced = getDerived().TransformType(OldDeduced);
4981 if (NewDeduced.isNull())
4982 return QualType();
4983 }
4984
4985 QualType Result = TL.getType();
4986 if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
4987 T->isDependentType()) {
4988 Result = getDerived().RebuildAutoType(NewDeduced, T->isDecltypeAuto());
4989 if (Result.isNull())
4990 return QualType();
4991 }
4992
4993 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
4994 NewTL.setNameLoc(TL.getNameLoc());
4995
4996 return Result;
4997 }
4998
4999 template<typename Derived>
TransformRecordType(TypeLocBuilder & TLB,RecordTypeLoc TL)5000 QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
5001 RecordTypeLoc TL) {
5002 const RecordType *T = TL.getTypePtr();
5003 RecordDecl *Record
5004 = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
5005 T->getDecl()));
5006 if (!Record)
5007 return QualType();
5008
5009 QualType Result = TL.getType();
5010 if (getDerived().AlwaysRebuild() ||
5011 Record != T->getDecl()) {
5012 Result = getDerived().RebuildRecordType(Record);
5013 if (Result.isNull())
5014 return QualType();
5015 }
5016
5017 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
5018 NewTL.setNameLoc(TL.getNameLoc());
5019
5020 return Result;
5021 }
5022
5023 template<typename Derived>
TransformEnumType(TypeLocBuilder & TLB,EnumTypeLoc TL)5024 QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
5025 EnumTypeLoc TL) {
5026 const EnumType *T = TL.getTypePtr();
5027 EnumDecl *Enum
5028 = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
5029 T->getDecl()));
5030 if (!Enum)
5031 return QualType();
5032
5033 QualType Result = TL.getType();
5034 if (getDerived().AlwaysRebuild() ||
5035 Enum != T->getDecl()) {
5036 Result = getDerived().RebuildEnumType(Enum);
5037 if (Result.isNull())
5038 return QualType();
5039 }
5040
5041 EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
5042 NewTL.setNameLoc(TL.getNameLoc());
5043
5044 return Result;
5045 }
5046
5047 template<typename Derived>
TransformInjectedClassNameType(TypeLocBuilder & TLB,InjectedClassNameTypeLoc TL)5048 QualType TreeTransform<Derived>::TransformInjectedClassNameType(
5049 TypeLocBuilder &TLB,
5050 InjectedClassNameTypeLoc TL) {
5051 Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
5052 TL.getTypePtr()->getDecl());
5053 if (!D) return QualType();
5054
5055 QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
5056 TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
5057 return T;
5058 }
5059
5060 template<typename Derived>
TransformTemplateTypeParmType(TypeLocBuilder & TLB,TemplateTypeParmTypeLoc TL)5061 QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
5062 TypeLocBuilder &TLB,
5063 TemplateTypeParmTypeLoc TL) {
5064 return TransformTypeSpecType(TLB, TL);
5065 }
5066
5067 template<typename Derived>
TransformSubstTemplateTypeParmType(TypeLocBuilder & TLB,SubstTemplateTypeParmTypeLoc TL)5068 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
5069 TypeLocBuilder &TLB,
5070 SubstTemplateTypeParmTypeLoc TL) {
5071 const SubstTemplateTypeParmType *T = TL.getTypePtr();
5072
5073 // Substitute into the replacement type, which itself might involve something
5074 // that needs to be transformed. This only tends to occur with default
5075 // template arguments of template template parameters.
5076 TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
5077 QualType Replacement = getDerived().TransformType(T->getReplacementType());
5078 if (Replacement.isNull())
5079 return QualType();
5080
5081 // Always canonicalize the replacement type.
5082 Replacement = SemaRef.Context.getCanonicalType(Replacement);
5083 QualType Result
5084 = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(),
5085 Replacement);
5086
5087 // Propagate type-source information.
5088 SubstTemplateTypeParmTypeLoc NewTL
5089 = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
5090 NewTL.setNameLoc(TL.getNameLoc());
5091 return Result;
5092
5093 }
5094
5095 template<typename Derived>
TransformSubstTemplateTypeParmPackType(TypeLocBuilder & TLB,SubstTemplateTypeParmPackTypeLoc TL)5096 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
5097 TypeLocBuilder &TLB,
5098 SubstTemplateTypeParmPackTypeLoc TL) {
5099 return TransformTypeSpecType(TLB, TL);
5100 }
5101
5102 template<typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL)5103 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
5104 TypeLocBuilder &TLB,
5105 TemplateSpecializationTypeLoc TL) {
5106 const TemplateSpecializationType *T = TL.getTypePtr();
5107
5108 // The nested-name-specifier never matters in a TemplateSpecializationType,
5109 // because we can't have a dependent nested-name-specifier anyway.
5110 CXXScopeSpec SS;
5111 TemplateName Template
5112 = getDerived().TransformTemplateName(SS, T->getTemplateName(),
5113 TL.getTemplateNameLoc());
5114 if (Template.isNull())
5115 return QualType();
5116
5117 return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
5118 }
5119
5120 template<typename Derived>
TransformAtomicType(TypeLocBuilder & TLB,AtomicTypeLoc TL)5121 QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB,
5122 AtomicTypeLoc TL) {
5123 QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
5124 if (ValueType.isNull())
5125 return QualType();
5126
5127 QualType Result = TL.getType();
5128 if (getDerived().AlwaysRebuild() ||
5129 ValueType != TL.getValueLoc().getType()) {
5130 Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc());
5131 if (Result.isNull())
5132 return QualType();
5133 }
5134
5135 AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result);
5136 NewTL.setKWLoc(TL.getKWLoc());
5137 NewTL.setLParenLoc(TL.getLParenLoc());
5138 NewTL.setRParenLoc(TL.getRParenLoc());
5139
5140 return Result;
5141 }
5142
5143 /// \brief Simple iterator that traverses the template arguments in a
5144 /// container that provides a \c getArgLoc() member function.
5145 ///
5146 /// This iterator is intended to be used with the iterator form of
5147 /// \c TreeTransform<Derived>::TransformTemplateArguments().
5148 template<typename ArgLocContainer>
5149 class TemplateArgumentLocContainerIterator {
5150 ArgLocContainer *Container;
5151 unsigned Index;
5152
5153 public:
5154 typedef TemplateArgumentLoc value_type;
5155 typedef TemplateArgumentLoc reference;
5156 typedef int difference_type;
5157 typedef std::input_iterator_tag iterator_category;
5158
5159 class pointer {
5160 TemplateArgumentLoc Arg;
5161
5162 public:
pointer(TemplateArgumentLoc Arg)5163 explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
5164
5165 const TemplateArgumentLoc *operator->() const {
5166 return &Arg;
5167 }
5168 };
5169
5170
TemplateArgumentLocContainerIterator()5171 TemplateArgumentLocContainerIterator() {}
5172
TemplateArgumentLocContainerIterator(ArgLocContainer & Container,unsigned Index)5173 TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
5174 unsigned Index)
5175 : Container(&Container), Index(Index) { }
5176
5177 TemplateArgumentLocContainerIterator &operator++() {
5178 ++Index;
5179 return *this;
5180 }
5181
5182 TemplateArgumentLocContainerIterator operator++(int) {
5183 TemplateArgumentLocContainerIterator Old(*this);
5184 ++(*this);
5185 return Old;
5186 }
5187
5188 TemplateArgumentLoc operator*() const {
5189 return Container->getArgLoc(Index);
5190 }
5191
5192 pointer operator->() const {
5193 return pointer(Container->getArgLoc(Index));
5194 }
5195
5196 friend bool operator==(const TemplateArgumentLocContainerIterator &X,
5197 const TemplateArgumentLocContainerIterator &Y) {
5198 return X.Container == Y.Container && X.Index == Y.Index;
5199 }
5200
5201 friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
5202 const TemplateArgumentLocContainerIterator &Y) {
5203 return !(X == Y);
5204 }
5205 };
5206
5207
5208 template <typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL,TemplateName Template)5209 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
5210 TypeLocBuilder &TLB,
5211 TemplateSpecializationTypeLoc TL,
5212 TemplateName Template) {
5213 TemplateArgumentListInfo NewTemplateArgs;
5214 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
5215 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
5216 typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
5217 ArgIterator;
5218 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
5219 ArgIterator(TL, TL.getNumArgs()),
5220 NewTemplateArgs))
5221 return QualType();
5222
5223 // FIXME: maybe don't rebuild if all the template arguments are the same.
5224
5225 QualType Result =
5226 getDerived().RebuildTemplateSpecializationType(Template,
5227 TL.getTemplateNameLoc(),
5228 NewTemplateArgs);
5229
5230 if (!Result.isNull()) {
5231 // Specializations of template template parameters are represented as
5232 // TemplateSpecializationTypes, and substitution of type alias templates
5233 // within a dependent context can transform them into
5234 // DependentTemplateSpecializationTypes.
5235 if (isa<DependentTemplateSpecializationType>(Result)) {
5236 DependentTemplateSpecializationTypeLoc NewTL
5237 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
5238 NewTL.setElaboratedKeywordLoc(SourceLocation());
5239 NewTL.setQualifierLoc(NestedNameSpecifierLoc());
5240 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
5241 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
5242 NewTL.setLAngleLoc(TL.getLAngleLoc());
5243 NewTL.setRAngleLoc(TL.getRAngleLoc());
5244 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
5245 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
5246 return Result;
5247 }
5248
5249 TemplateSpecializationTypeLoc NewTL
5250 = TLB.push<TemplateSpecializationTypeLoc>(Result);
5251 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
5252 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
5253 NewTL.setLAngleLoc(TL.getLAngleLoc());
5254 NewTL.setRAngleLoc(TL.getRAngleLoc());
5255 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
5256 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
5257 }
5258
5259 return Result;
5260 }
5261
5262 template <typename Derived>
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,TemplateName Template,CXXScopeSpec & SS)5263 QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
5264 TypeLocBuilder &TLB,
5265 DependentTemplateSpecializationTypeLoc TL,
5266 TemplateName Template,
5267 CXXScopeSpec &SS) {
5268 TemplateArgumentListInfo NewTemplateArgs;
5269 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
5270 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
5271 typedef TemplateArgumentLocContainerIterator<
5272 DependentTemplateSpecializationTypeLoc> ArgIterator;
5273 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
5274 ArgIterator(TL, TL.getNumArgs()),
5275 NewTemplateArgs))
5276 return QualType();
5277
5278 // FIXME: maybe don't rebuild if all the template arguments are the same.
5279
5280 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
5281 QualType Result
5282 = getSema().Context.getDependentTemplateSpecializationType(
5283 TL.getTypePtr()->getKeyword(),
5284 DTN->getQualifier(),
5285 DTN->getIdentifier(),
5286 NewTemplateArgs);
5287
5288 DependentTemplateSpecializationTypeLoc NewTL
5289 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
5290 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5291 NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
5292 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
5293 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
5294 NewTL.setLAngleLoc(TL.getLAngleLoc());
5295 NewTL.setRAngleLoc(TL.getRAngleLoc());
5296 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
5297 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
5298 return Result;
5299 }
5300
5301 QualType Result
5302 = getDerived().RebuildTemplateSpecializationType(Template,
5303 TL.getTemplateNameLoc(),
5304 NewTemplateArgs);
5305
5306 if (!Result.isNull()) {
5307 /// FIXME: Wrap this in an elaborated-type-specifier?
5308 TemplateSpecializationTypeLoc NewTL
5309 = TLB.push<TemplateSpecializationTypeLoc>(Result);
5310 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
5311 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
5312 NewTL.setLAngleLoc(TL.getLAngleLoc());
5313 NewTL.setRAngleLoc(TL.getRAngleLoc());
5314 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
5315 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
5316 }
5317
5318 return Result;
5319 }
5320
5321 template<typename Derived>
5322 QualType
TransformElaboratedType(TypeLocBuilder & TLB,ElaboratedTypeLoc TL)5323 TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
5324 ElaboratedTypeLoc TL) {
5325 const ElaboratedType *T = TL.getTypePtr();
5326
5327 NestedNameSpecifierLoc QualifierLoc;
5328 // NOTE: the qualifier in an ElaboratedType is optional.
5329 if (TL.getQualifierLoc()) {
5330 QualifierLoc
5331 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
5332 if (!QualifierLoc)
5333 return QualType();
5334 }
5335
5336 QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
5337 if (NamedT.isNull())
5338 return QualType();
5339
5340 // C++0x [dcl.type.elab]p2:
5341 // If the identifier resolves to a typedef-name or the simple-template-id
5342 // resolves to an alias template specialization, the
5343 // elaborated-type-specifier is ill-formed.
5344 if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) {
5345 if (const TemplateSpecializationType *TST =
5346 NamedT->getAs<TemplateSpecializationType>()) {
5347 TemplateName Template = TST->getTemplateName();
5348 if (TypeAliasTemplateDecl *TAT = dyn_cast_or_null<TypeAliasTemplateDecl>(
5349 Template.getAsTemplateDecl())) {
5350 SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
5351 diag::err_tag_reference_non_tag) << 4;
5352 SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
5353 }
5354 }
5355 }
5356
5357 QualType Result = TL.getType();
5358 if (getDerived().AlwaysRebuild() ||
5359 QualifierLoc != TL.getQualifierLoc() ||
5360 NamedT != T->getNamedType()) {
5361 Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(),
5362 T->getKeyword(),
5363 QualifierLoc, NamedT);
5364 if (Result.isNull())
5365 return QualType();
5366 }
5367
5368 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
5369 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5370 NewTL.setQualifierLoc(QualifierLoc);
5371 return Result;
5372 }
5373
5374 template<typename Derived>
TransformAttributedType(TypeLocBuilder & TLB,AttributedTypeLoc TL)5375 QualType TreeTransform<Derived>::TransformAttributedType(
5376 TypeLocBuilder &TLB,
5377 AttributedTypeLoc TL) {
5378 const AttributedType *oldType = TL.getTypePtr();
5379 QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
5380 if (modifiedType.isNull())
5381 return QualType();
5382
5383 QualType result = TL.getType();
5384
5385 // FIXME: dependent operand expressions?
5386 if (getDerived().AlwaysRebuild() ||
5387 modifiedType != oldType->getModifiedType()) {
5388 // TODO: this is really lame; we should really be rebuilding the
5389 // equivalent type from first principles.
5390 QualType equivalentType
5391 = getDerived().TransformType(oldType->getEquivalentType());
5392 if (equivalentType.isNull())
5393 return QualType();
5394 result = SemaRef.Context.getAttributedType(oldType->getAttrKind(),
5395 modifiedType,
5396 equivalentType);
5397 }
5398
5399 AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
5400 newTL.setAttrNameLoc(TL.getAttrNameLoc());
5401 if (TL.hasAttrOperand())
5402 newTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5403 if (TL.hasAttrExprOperand())
5404 newTL.setAttrExprOperand(TL.getAttrExprOperand());
5405 else if (TL.hasAttrEnumOperand())
5406 newTL.setAttrEnumOperandLoc(TL.getAttrEnumOperandLoc());
5407
5408 return result;
5409 }
5410
5411 template<typename Derived>
5412 QualType
TransformParenType(TypeLocBuilder & TLB,ParenTypeLoc TL)5413 TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
5414 ParenTypeLoc TL) {
5415 QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
5416 if (Inner.isNull())
5417 return QualType();
5418
5419 QualType Result = TL.getType();
5420 if (getDerived().AlwaysRebuild() ||
5421 Inner != TL.getInnerLoc().getType()) {
5422 Result = getDerived().RebuildParenType(Inner);
5423 if (Result.isNull())
5424 return QualType();
5425 }
5426
5427 ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
5428 NewTL.setLParenLoc(TL.getLParenLoc());
5429 NewTL.setRParenLoc(TL.getRParenLoc());
5430 return Result;
5431 }
5432
5433 template<typename Derived>
TransformDependentNameType(TypeLocBuilder & TLB,DependentNameTypeLoc TL)5434 QualType TreeTransform<Derived>::TransformDependentNameType(TypeLocBuilder &TLB,
5435 DependentNameTypeLoc TL) {
5436 const DependentNameType *T = TL.getTypePtr();
5437
5438 NestedNameSpecifierLoc QualifierLoc
5439 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
5440 if (!QualifierLoc)
5441 return QualType();
5442
5443 QualType Result
5444 = getDerived().RebuildDependentNameType(T->getKeyword(),
5445 TL.getElaboratedKeywordLoc(),
5446 QualifierLoc,
5447 T->getIdentifier(),
5448 TL.getNameLoc());
5449 if (Result.isNull())
5450 return QualType();
5451
5452 if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
5453 QualType NamedT = ElabT->getNamedType();
5454 TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
5455
5456 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
5457 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5458 NewTL.setQualifierLoc(QualifierLoc);
5459 } else {
5460 DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
5461 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5462 NewTL.setQualifierLoc(QualifierLoc);
5463 NewTL.setNameLoc(TL.getNameLoc());
5464 }
5465 return Result;
5466 }
5467
5468 template<typename Derived>
5469 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL)5470 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
5471 DependentTemplateSpecializationTypeLoc TL) {
5472 NestedNameSpecifierLoc QualifierLoc;
5473 if (TL.getQualifierLoc()) {
5474 QualifierLoc
5475 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
5476 if (!QualifierLoc)
5477 return QualType();
5478 }
5479
5480 return getDerived()
5481 .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc);
5482 }
5483
5484 template<typename Derived>
5485 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,NestedNameSpecifierLoc QualifierLoc)5486 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
5487 DependentTemplateSpecializationTypeLoc TL,
5488 NestedNameSpecifierLoc QualifierLoc) {
5489 const DependentTemplateSpecializationType *T = TL.getTypePtr();
5490
5491 TemplateArgumentListInfo NewTemplateArgs;
5492 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
5493 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
5494
5495 typedef TemplateArgumentLocContainerIterator<
5496 DependentTemplateSpecializationTypeLoc> ArgIterator;
5497 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
5498 ArgIterator(TL, TL.getNumArgs()),
5499 NewTemplateArgs))
5500 return QualType();
5501
5502 QualType Result
5503 = getDerived().RebuildDependentTemplateSpecializationType(T->getKeyword(),
5504 QualifierLoc,
5505 T->getIdentifier(),
5506 TL.getTemplateNameLoc(),
5507 NewTemplateArgs);
5508 if (Result.isNull())
5509 return QualType();
5510
5511 if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
5512 QualType NamedT = ElabT->getNamedType();
5513
5514 // Copy information relevant to the template specialization.
5515 TemplateSpecializationTypeLoc NamedTL
5516 = TLB.push<TemplateSpecializationTypeLoc>(NamedT);
5517 NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
5518 NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc());
5519 NamedTL.setLAngleLoc(TL.getLAngleLoc());
5520 NamedTL.setRAngleLoc(TL.getRAngleLoc());
5521 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
5522 NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
5523
5524 // Copy information relevant to the elaborated type.
5525 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
5526 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5527 NewTL.setQualifierLoc(QualifierLoc);
5528 } else if (isa<DependentTemplateSpecializationType>(Result)) {
5529 DependentTemplateSpecializationTypeLoc SpecTL
5530 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
5531 SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
5532 SpecTL.setQualifierLoc(QualifierLoc);
5533 SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
5534 SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
5535 SpecTL.setLAngleLoc(TL.getLAngleLoc());
5536 SpecTL.setRAngleLoc(TL.getRAngleLoc());
5537 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
5538 SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
5539 } else {
5540 TemplateSpecializationTypeLoc SpecTL
5541 = TLB.push<TemplateSpecializationTypeLoc>(Result);
5542 SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
5543 SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
5544 SpecTL.setLAngleLoc(TL.getLAngleLoc());
5545 SpecTL.setRAngleLoc(TL.getRAngleLoc());
5546 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
5547 SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
5548 }
5549 return Result;
5550 }
5551
5552 template<typename Derived>
TransformPackExpansionType(TypeLocBuilder & TLB,PackExpansionTypeLoc TL)5553 QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
5554 PackExpansionTypeLoc TL) {
5555 QualType Pattern
5556 = getDerived().TransformType(TLB, TL.getPatternLoc());
5557 if (Pattern.isNull())
5558 return QualType();
5559
5560 QualType Result = TL.getType();
5561 if (getDerived().AlwaysRebuild() ||
5562 Pattern != TL.getPatternLoc().getType()) {
5563 Result = getDerived().RebuildPackExpansionType(Pattern,
5564 TL.getPatternLoc().getSourceRange(),
5565 TL.getEllipsisLoc(),
5566 TL.getTypePtr()->getNumExpansions());
5567 if (Result.isNull())
5568 return QualType();
5569 }
5570
5571 PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
5572 NewT.setEllipsisLoc(TL.getEllipsisLoc());
5573 return Result;
5574 }
5575
5576 template<typename Derived>
5577 QualType
TransformObjCInterfaceType(TypeLocBuilder & TLB,ObjCInterfaceTypeLoc TL)5578 TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
5579 ObjCInterfaceTypeLoc TL) {
5580 // ObjCInterfaceType is never dependent.
5581 TLB.pushFullCopy(TL);
5582 return TL.getType();
5583 }
5584
5585 template<typename Derived>
5586 QualType
TransformObjCObjectType(TypeLocBuilder & TLB,ObjCObjectTypeLoc TL)5587 TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
5588 ObjCObjectTypeLoc TL) {
5589 // ObjCObjectType is never dependent.
5590 TLB.pushFullCopy(TL);
5591 return TL.getType();
5592 }
5593
5594 template<typename Derived>
5595 QualType
TransformObjCObjectPointerType(TypeLocBuilder & TLB,ObjCObjectPointerTypeLoc TL)5596 TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
5597 ObjCObjectPointerTypeLoc TL) {
5598 // ObjCObjectPointerType is never dependent.
5599 TLB.pushFullCopy(TL);
5600 return TL.getType();
5601 }
5602
5603 //===----------------------------------------------------------------------===//
5604 // Statement transformation
5605 //===----------------------------------------------------------------------===//
5606 template<typename Derived>
5607 StmtResult
TransformNullStmt(NullStmt * S)5608 TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
5609 return S;
5610 }
5611
5612 template<typename Derived>
5613 StmtResult
TransformCompoundStmt(CompoundStmt * S)5614 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
5615 return getDerived().TransformCompoundStmt(S, false);
5616 }
5617
5618 template<typename Derived>
5619 StmtResult
TransformCompoundStmt(CompoundStmt * S,bool IsStmtExpr)5620 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
5621 bool IsStmtExpr) {
5622 Sema::CompoundScopeRAII CompoundScope(getSema());
5623
5624 bool SubStmtInvalid = false;
5625 bool SubStmtChanged = false;
5626 SmallVector<Stmt*, 8> Statements;
5627 for (auto *B : S->body()) {
5628 StmtResult Result = getDerived().TransformStmt(B);
5629 if (Result.isInvalid()) {
5630 // Immediately fail if this was a DeclStmt, since it's very
5631 // likely that this will cause problems for future statements.
5632 if (isa<DeclStmt>(B))
5633 return StmtError();
5634
5635 // Otherwise, just keep processing substatements and fail later.
5636 SubStmtInvalid = true;
5637 continue;
5638 }
5639
5640 SubStmtChanged = SubStmtChanged || Result.get() != B;
5641 Statements.push_back(Result.getAs<Stmt>());
5642 }
5643
5644 if (SubStmtInvalid)
5645 return StmtError();
5646
5647 if (!getDerived().AlwaysRebuild() &&
5648 !SubStmtChanged)
5649 return S;
5650
5651 return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
5652 Statements,
5653 S->getRBracLoc(),
5654 IsStmtExpr);
5655 }
5656
5657 template<typename Derived>
5658 StmtResult
TransformCaseStmt(CaseStmt * S)5659 TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
5660 ExprResult LHS, RHS;
5661 {
5662 EnterExpressionEvaluationContext Unevaluated(SemaRef,
5663 Sema::ConstantEvaluated);
5664
5665 // Transform the left-hand case value.
5666 LHS = getDerived().TransformExpr(S->getLHS());
5667 LHS = SemaRef.ActOnConstantExpression(LHS);
5668 if (LHS.isInvalid())
5669 return StmtError();
5670
5671 // Transform the right-hand case value (for the GNU case-range extension).
5672 RHS = getDerived().TransformExpr(S->getRHS());
5673 RHS = SemaRef.ActOnConstantExpression(RHS);
5674 if (RHS.isInvalid())
5675 return StmtError();
5676 }
5677
5678 // Build the case statement.
5679 // Case statements are always rebuilt so that they will attached to their
5680 // transformed switch statement.
5681 StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
5682 LHS.get(),
5683 S->getEllipsisLoc(),
5684 RHS.get(),
5685 S->getColonLoc());
5686 if (Case.isInvalid())
5687 return StmtError();
5688
5689 // Transform the statement following the case
5690 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
5691 if (SubStmt.isInvalid())
5692 return StmtError();
5693
5694 // Attach the body to the case statement
5695 return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
5696 }
5697
5698 template<typename Derived>
5699 StmtResult
TransformDefaultStmt(DefaultStmt * S)5700 TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
5701 // Transform the statement following the default case
5702 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
5703 if (SubStmt.isInvalid())
5704 return StmtError();
5705
5706 // Default statements are always rebuilt
5707 return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
5708 SubStmt.get());
5709 }
5710
5711 template<typename Derived>
5712 StmtResult
TransformLabelStmt(LabelStmt * S)5713 TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) {
5714 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
5715 if (SubStmt.isInvalid())
5716 return StmtError();
5717
5718 Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
5719 S->getDecl());
5720 if (!LD)
5721 return StmtError();
5722
5723
5724 // FIXME: Pass the real colon location in.
5725 return getDerived().RebuildLabelStmt(S->getIdentLoc(),
5726 cast<LabelDecl>(LD), SourceLocation(),
5727 SubStmt.get());
5728 }
5729
5730 template <typename Derived>
TransformAttr(const Attr * R)5731 const Attr *TreeTransform<Derived>::TransformAttr(const Attr *R) {
5732 if (!R)
5733 return R;
5734
5735 switch (R->getKind()) {
5736 // Transform attributes with a pragma spelling by calling TransformXXXAttr.
5737 #define ATTR(X)
5738 #define PRAGMA_SPELLING_ATTR(X) \
5739 case attr::X: \
5740 return getDerived().Transform##X##Attr(cast<X##Attr>(R));
5741 #include "clang/Basic/AttrList.inc"
5742 default:
5743 return R;
5744 }
5745 }
5746
5747 template <typename Derived>
TransformAttributedStmt(AttributedStmt * S)5748 StmtResult TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S) {
5749 bool AttrsChanged = false;
5750 SmallVector<const Attr *, 1> Attrs;
5751
5752 // Visit attributes and keep track if any are transformed.
5753 for (const auto *I : S->getAttrs()) {
5754 const Attr *R = getDerived().TransformAttr(I);
5755 AttrsChanged |= (I != R);
5756 Attrs.push_back(R);
5757 }
5758
5759 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
5760 if (SubStmt.isInvalid())
5761 return StmtError();
5762
5763 if (SubStmt.get() == S->getSubStmt() && !AttrsChanged)
5764 return S;
5765
5766 return getDerived().RebuildAttributedStmt(S->getAttrLoc(), Attrs,
5767 SubStmt.get());
5768 }
5769
5770 template<typename Derived>
5771 StmtResult
TransformIfStmt(IfStmt * S)5772 TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
5773 // Transform the condition
5774 ExprResult Cond;
5775 VarDecl *ConditionVar = nullptr;
5776 if (S->getConditionVariable()) {
5777 ConditionVar
5778 = cast_or_null<VarDecl>(
5779 getDerived().TransformDefinition(
5780 S->getConditionVariable()->getLocation(),
5781 S->getConditionVariable()));
5782 if (!ConditionVar)
5783 return StmtError();
5784 } else {
5785 Cond = getDerived().TransformExpr(S->getCond());
5786
5787 if (Cond.isInvalid())
5788 return StmtError();
5789
5790 // Convert the condition to a boolean value.
5791 if (S->getCond()) {
5792 ExprResult CondE = getSema().ActOnBooleanCondition(nullptr, S->getIfLoc(),
5793 Cond.get());
5794 if (CondE.isInvalid())
5795 return StmtError();
5796
5797 Cond = CondE.get();
5798 }
5799 }
5800
5801 Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get()));
5802 if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
5803 return StmtError();
5804
5805 // Transform the "then" branch.
5806 StmtResult Then = getDerived().TransformStmt(S->getThen());
5807 if (Then.isInvalid())
5808 return StmtError();
5809
5810 // Transform the "else" branch.
5811 StmtResult Else = getDerived().TransformStmt(S->getElse());
5812 if (Else.isInvalid())
5813 return StmtError();
5814
5815 if (!getDerived().AlwaysRebuild() &&
5816 FullCond.get() == S->getCond() &&
5817 ConditionVar == S->getConditionVariable() &&
5818 Then.get() == S->getThen() &&
5819 Else.get() == S->getElse())
5820 return S;
5821
5822 return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar,
5823 Then.get(),
5824 S->getElseLoc(), Else.get());
5825 }
5826
5827 template<typename Derived>
5828 StmtResult
TransformSwitchStmt(SwitchStmt * S)5829 TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
5830 // Transform the condition.
5831 ExprResult Cond;
5832 VarDecl *ConditionVar = nullptr;
5833 if (S->getConditionVariable()) {
5834 ConditionVar
5835 = cast_or_null<VarDecl>(
5836 getDerived().TransformDefinition(
5837 S->getConditionVariable()->getLocation(),
5838 S->getConditionVariable()));
5839 if (!ConditionVar)
5840 return StmtError();
5841 } else {
5842 Cond = getDerived().TransformExpr(S->getCond());
5843
5844 if (Cond.isInvalid())
5845 return StmtError();
5846 }
5847
5848 // Rebuild the switch statement.
5849 StmtResult Switch
5850 = getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), Cond.get(),
5851 ConditionVar);
5852 if (Switch.isInvalid())
5853 return StmtError();
5854
5855 // Transform the body of the switch statement.
5856 StmtResult Body = getDerived().TransformStmt(S->getBody());
5857 if (Body.isInvalid())
5858 return StmtError();
5859
5860 // Complete the switch statement.
5861 return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
5862 Body.get());
5863 }
5864
5865 template<typename Derived>
5866 StmtResult
TransformWhileStmt(WhileStmt * S)5867 TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
5868 // Transform the condition
5869 ExprResult Cond;
5870 VarDecl *ConditionVar = nullptr;
5871 if (S->getConditionVariable()) {
5872 ConditionVar
5873 = cast_or_null<VarDecl>(
5874 getDerived().TransformDefinition(
5875 S->getConditionVariable()->getLocation(),
5876 S->getConditionVariable()));
5877 if (!ConditionVar)
5878 return StmtError();
5879 } else {
5880 Cond = getDerived().TransformExpr(S->getCond());
5881
5882 if (Cond.isInvalid())
5883 return StmtError();
5884
5885 if (S->getCond()) {
5886 // Convert the condition to a boolean value.
5887 ExprResult CondE = getSema().ActOnBooleanCondition(nullptr,
5888 S->getWhileLoc(),
5889 Cond.get());
5890 if (CondE.isInvalid())
5891 return StmtError();
5892 Cond = CondE;
5893 }
5894 }
5895
5896 Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get()));
5897 if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
5898 return StmtError();
5899
5900 // Transform the body
5901 StmtResult Body = getDerived().TransformStmt(S->getBody());
5902 if (Body.isInvalid())
5903 return StmtError();
5904
5905 if (!getDerived().AlwaysRebuild() &&
5906 FullCond.get() == S->getCond() &&
5907 ConditionVar == S->getConditionVariable() &&
5908 Body.get() == S->getBody())
5909 return Owned(S);
5910
5911 return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond,
5912 ConditionVar, Body.get());
5913 }
5914
5915 template<typename Derived>
5916 StmtResult
TransformDoStmt(DoStmt * S)5917 TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
5918 // Transform the body
5919 StmtResult Body = getDerived().TransformStmt(S->getBody());
5920 if (Body.isInvalid())
5921 return StmtError();
5922
5923 // Transform the condition
5924 ExprResult Cond = getDerived().TransformExpr(S->getCond());
5925 if (Cond.isInvalid())
5926 return StmtError();
5927
5928 if (!getDerived().AlwaysRebuild() &&
5929 Cond.get() == S->getCond() &&
5930 Body.get() == S->getBody())
5931 return S;
5932
5933 return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
5934 /*FIXME:*/S->getWhileLoc(), Cond.get(),
5935 S->getRParenLoc());
5936 }
5937
5938 template<typename Derived>
5939 StmtResult
TransformForStmt(ForStmt * S)5940 TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
5941 // Transform the initialization statement
5942 StmtResult Init = getDerived().TransformStmt(S->getInit());
5943 if (Init.isInvalid())
5944 return StmtError();
5945
5946 // Transform the condition
5947 ExprResult Cond;
5948 VarDecl *ConditionVar = nullptr;
5949 if (S->getConditionVariable()) {
5950 ConditionVar
5951 = cast_or_null<VarDecl>(
5952 getDerived().TransformDefinition(
5953 S->getConditionVariable()->getLocation(),
5954 S->getConditionVariable()));
5955 if (!ConditionVar)
5956 return StmtError();
5957 } else {
5958 Cond = getDerived().TransformExpr(S->getCond());
5959
5960 if (Cond.isInvalid())
5961 return StmtError();
5962
5963 if (S->getCond()) {
5964 // Convert the condition to a boolean value.
5965 ExprResult CondE = getSema().ActOnBooleanCondition(nullptr,
5966 S->getForLoc(),
5967 Cond.get());
5968 if (CondE.isInvalid())
5969 return StmtError();
5970
5971 Cond = CondE.get();
5972 }
5973 }
5974
5975 Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.get()));
5976 if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
5977 return StmtError();
5978
5979 // Transform the increment
5980 ExprResult Inc = getDerived().TransformExpr(S->getInc());
5981 if (Inc.isInvalid())
5982 return StmtError();
5983
5984 Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get()));
5985 if (S->getInc() && !FullInc.get())
5986 return StmtError();
5987
5988 // Transform the body
5989 StmtResult Body = getDerived().TransformStmt(S->getBody());
5990 if (Body.isInvalid())
5991 return StmtError();
5992
5993 if (!getDerived().AlwaysRebuild() &&
5994 Init.get() == S->getInit() &&
5995 FullCond.get() == S->getCond() &&
5996 Inc.get() == S->getInc() &&
5997 Body.get() == S->getBody())
5998 return S;
5999
6000 return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
6001 Init.get(), FullCond, ConditionVar,
6002 FullInc, S->getRParenLoc(), Body.get());
6003 }
6004
6005 template<typename Derived>
6006 StmtResult
TransformGotoStmt(GotoStmt * S)6007 TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
6008 Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
6009 S->getLabel());
6010 if (!LD)
6011 return StmtError();
6012
6013 // Goto statements must always be rebuilt, to resolve the label.
6014 return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
6015 cast<LabelDecl>(LD));
6016 }
6017
6018 template<typename Derived>
6019 StmtResult
TransformIndirectGotoStmt(IndirectGotoStmt * S)6020 TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
6021 ExprResult Target = getDerived().TransformExpr(S->getTarget());
6022 if (Target.isInvalid())
6023 return StmtError();
6024 Target = SemaRef.MaybeCreateExprWithCleanups(Target.get());
6025
6026 if (!getDerived().AlwaysRebuild() &&
6027 Target.get() == S->getTarget())
6028 return S;
6029
6030 return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
6031 Target.get());
6032 }
6033
6034 template<typename Derived>
6035 StmtResult
TransformContinueStmt(ContinueStmt * S)6036 TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
6037 return S;
6038 }
6039
6040 template<typename Derived>
6041 StmtResult
TransformBreakStmt(BreakStmt * S)6042 TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
6043 return S;
6044 }
6045
6046 template<typename Derived>
6047 StmtResult
TransformReturnStmt(ReturnStmt * S)6048 TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
6049 ExprResult Result = getDerived().TransformInitializer(S->getRetValue(),
6050 /*NotCopyInit*/false);
6051 if (Result.isInvalid())
6052 return StmtError();
6053
6054 // FIXME: We always rebuild the return statement because there is no way
6055 // to tell whether the return type of the function has changed.
6056 return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
6057 }
6058
6059 template<typename Derived>
6060 StmtResult
TransformDeclStmt(DeclStmt * S)6061 TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
6062 bool DeclChanged = false;
6063 SmallVector<Decl *, 4> Decls;
6064 for (auto *D : S->decls()) {
6065 Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D);
6066 if (!Transformed)
6067 return StmtError();
6068
6069 if (Transformed != D)
6070 DeclChanged = true;
6071
6072 Decls.push_back(Transformed);
6073 }
6074
6075 if (!getDerived().AlwaysRebuild() && !DeclChanged)
6076 return S;
6077
6078 return getDerived().RebuildDeclStmt(Decls, S->getStartLoc(), S->getEndLoc());
6079 }
6080
6081 template<typename Derived>
6082 StmtResult
TransformGCCAsmStmt(GCCAsmStmt * S)6083 TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) {
6084
6085 SmallVector<Expr*, 8> Constraints;
6086 SmallVector<Expr*, 8> Exprs;
6087 SmallVector<IdentifierInfo *, 4> Names;
6088
6089 ExprResult AsmString;
6090 SmallVector<Expr*, 8> Clobbers;
6091
6092 bool ExprsChanged = false;
6093
6094 // Go through the outputs.
6095 for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
6096 Names.push_back(S->getOutputIdentifier(I));
6097
6098 // No need to transform the constraint literal.
6099 Constraints.push_back(S->getOutputConstraintLiteral(I));
6100
6101 // Transform the output expr.
6102 Expr *OutputExpr = S->getOutputExpr(I);
6103 ExprResult Result = getDerived().TransformExpr(OutputExpr);
6104 if (Result.isInvalid())
6105 return StmtError();
6106
6107 ExprsChanged |= Result.get() != OutputExpr;
6108
6109 Exprs.push_back(Result.get());
6110 }
6111
6112 // Go through the inputs.
6113 for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
6114 Names.push_back(S->getInputIdentifier(I));
6115
6116 // No need to transform the constraint literal.
6117 Constraints.push_back(S->getInputConstraintLiteral(I));
6118
6119 // Transform the input expr.
6120 Expr *InputExpr = S->getInputExpr(I);
6121 ExprResult Result = getDerived().TransformExpr(InputExpr);
6122 if (Result.isInvalid())
6123 return StmtError();
6124
6125 ExprsChanged |= Result.get() != InputExpr;
6126
6127 Exprs.push_back(Result.get());
6128 }
6129
6130 if (!getDerived().AlwaysRebuild() && !ExprsChanged)
6131 return S;
6132
6133 // Go through the clobbers.
6134 for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
6135 Clobbers.push_back(S->getClobberStringLiteral(I));
6136
6137 // No need to transform the asm string literal.
6138 AsmString = S->getAsmString();
6139 return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(),
6140 S->isVolatile(), S->getNumOutputs(),
6141 S->getNumInputs(), Names.data(),
6142 Constraints, Exprs, AsmString.get(),
6143 Clobbers, S->getRParenLoc());
6144 }
6145
6146 template<typename Derived>
6147 StmtResult
TransformMSAsmStmt(MSAsmStmt * S)6148 TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) {
6149 ArrayRef<Token> AsmToks =
6150 llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks());
6151
6152 bool HadError = false, HadChange = false;
6153
6154 ArrayRef<Expr*> SrcExprs = S->getAllExprs();
6155 SmallVector<Expr*, 8> TransformedExprs;
6156 TransformedExprs.reserve(SrcExprs.size());
6157 for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) {
6158 ExprResult Result = getDerived().TransformExpr(SrcExprs[i]);
6159 if (!Result.isUsable()) {
6160 HadError = true;
6161 } else {
6162 HadChange |= (Result.get() != SrcExprs[i]);
6163 TransformedExprs.push_back(Result.get());
6164 }
6165 }
6166
6167 if (HadError) return StmtError();
6168 if (!HadChange && !getDerived().AlwaysRebuild())
6169 return Owned(S);
6170
6171 return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(),
6172 AsmToks, S->getAsmString(),
6173 S->getNumOutputs(), S->getNumInputs(),
6174 S->getAllConstraints(), S->getClobbers(),
6175 TransformedExprs, S->getEndLoc());
6176 }
6177
6178 template<typename Derived>
6179 StmtResult
TransformObjCAtTryStmt(ObjCAtTryStmt * S)6180 TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
6181 // Transform the body of the @try.
6182 StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
6183 if (TryBody.isInvalid())
6184 return StmtError();
6185
6186 // Transform the @catch statements (if present).
6187 bool AnyCatchChanged = false;
6188 SmallVector<Stmt*, 8> CatchStmts;
6189 for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
6190 StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
6191 if (Catch.isInvalid())
6192 return StmtError();
6193 if (Catch.get() != S->getCatchStmt(I))
6194 AnyCatchChanged = true;
6195 CatchStmts.push_back(Catch.get());
6196 }
6197
6198 // Transform the @finally statement (if present).
6199 StmtResult Finally;
6200 if (S->getFinallyStmt()) {
6201 Finally = getDerived().TransformStmt(S->getFinallyStmt());
6202 if (Finally.isInvalid())
6203 return StmtError();
6204 }
6205
6206 // If nothing changed, just retain this statement.
6207 if (!getDerived().AlwaysRebuild() &&
6208 TryBody.get() == S->getTryBody() &&
6209 !AnyCatchChanged &&
6210 Finally.get() == S->getFinallyStmt())
6211 return S;
6212
6213 // Build a new statement.
6214 return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
6215 CatchStmts, Finally.get());
6216 }
6217
6218 template<typename Derived>
6219 StmtResult
TransformObjCAtCatchStmt(ObjCAtCatchStmt * S)6220 TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
6221 // Transform the @catch parameter, if there is one.
6222 VarDecl *Var = nullptr;
6223 if (VarDecl *FromVar = S->getCatchParamDecl()) {
6224 TypeSourceInfo *TSInfo = nullptr;
6225 if (FromVar->getTypeSourceInfo()) {
6226 TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
6227 if (!TSInfo)
6228 return StmtError();
6229 }
6230
6231 QualType T;
6232 if (TSInfo)
6233 T = TSInfo->getType();
6234 else {
6235 T = getDerived().TransformType(FromVar->getType());
6236 if (T.isNull())
6237 return StmtError();
6238 }
6239
6240 Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
6241 if (!Var)
6242 return StmtError();
6243 }
6244
6245 StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
6246 if (Body.isInvalid())
6247 return StmtError();
6248
6249 return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
6250 S->getRParenLoc(),
6251 Var, Body.get());
6252 }
6253
6254 template<typename Derived>
6255 StmtResult
TransformObjCAtFinallyStmt(ObjCAtFinallyStmt * S)6256 TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
6257 // Transform the body.
6258 StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
6259 if (Body.isInvalid())
6260 return StmtError();
6261
6262 // If nothing changed, just retain this statement.
6263 if (!getDerived().AlwaysRebuild() &&
6264 Body.get() == S->getFinallyBody())
6265 return S;
6266
6267 // Build a new statement.
6268 return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
6269 Body.get());
6270 }
6271
6272 template<typename Derived>
6273 StmtResult
TransformObjCAtThrowStmt(ObjCAtThrowStmt * S)6274 TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
6275 ExprResult Operand;
6276 if (S->getThrowExpr()) {
6277 Operand = getDerived().TransformExpr(S->getThrowExpr());
6278 if (Operand.isInvalid())
6279 return StmtError();
6280 }
6281
6282 if (!getDerived().AlwaysRebuild() &&
6283 Operand.get() == S->getThrowExpr())
6284 return S;
6285
6286 return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
6287 }
6288
6289 template<typename Derived>
6290 StmtResult
TransformObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt * S)6291 TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
6292 ObjCAtSynchronizedStmt *S) {
6293 // Transform the object we are locking.
6294 ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
6295 if (Object.isInvalid())
6296 return StmtError();
6297 Object =
6298 getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(),
6299 Object.get());
6300 if (Object.isInvalid())
6301 return StmtError();
6302
6303 // Transform the body.
6304 StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
6305 if (Body.isInvalid())
6306 return StmtError();
6307
6308 // If nothing change, just retain the current statement.
6309 if (!getDerived().AlwaysRebuild() &&
6310 Object.get() == S->getSynchExpr() &&
6311 Body.get() == S->getSynchBody())
6312 return S;
6313
6314 // Build a new statement.
6315 return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
6316 Object.get(), Body.get());
6317 }
6318
6319 template<typename Derived>
6320 StmtResult
TransformObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt * S)6321 TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
6322 ObjCAutoreleasePoolStmt *S) {
6323 // Transform the body.
6324 StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
6325 if (Body.isInvalid())
6326 return StmtError();
6327
6328 // If nothing changed, just retain this statement.
6329 if (!getDerived().AlwaysRebuild() &&
6330 Body.get() == S->getSubStmt())
6331 return S;
6332
6333 // Build a new statement.
6334 return getDerived().RebuildObjCAutoreleasePoolStmt(
6335 S->getAtLoc(), Body.get());
6336 }
6337
6338 template<typename Derived>
6339 StmtResult
TransformObjCForCollectionStmt(ObjCForCollectionStmt * S)6340 TreeTransform<Derived>::TransformObjCForCollectionStmt(
6341 ObjCForCollectionStmt *S) {
6342 // Transform the element statement.
6343 StmtResult Element = getDerived().TransformStmt(S->getElement());
6344 if (Element.isInvalid())
6345 return StmtError();
6346
6347 // Transform the collection expression.
6348 ExprResult Collection = getDerived().TransformExpr(S->getCollection());
6349 if (Collection.isInvalid())
6350 return StmtError();
6351
6352 // Transform the body.
6353 StmtResult Body = getDerived().TransformStmt(S->getBody());
6354 if (Body.isInvalid())
6355 return StmtError();
6356
6357 // If nothing changed, just retain this statement.
6358 if (!getDerived().AlwaysRebuild() &&
6359 Element.get() == S->getElement() &&
6360 Collection.get() == S->getCollection() &&
6361 Body.get() == S->getBody())
6362 return S;
6363
6364 // Build a new statement.
6365 return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
6366 Element.get(),
6367 Collection.get(),
6368 S->getRParenLoc(),
6369 Body.get());
6370 }
6371
6372 template <typename Derived>
TransformCXXCatchStmt(CXXCatchStmt * S)6373 StmtResult TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
6374 // Transform the exception declaration, if any.
6375 VarDecl *Var = nullptr;
6376 if (VarDecl *ExceptionDecl = S->getExceptionDecl()) {
6377 TypeSourceInfo *T =
6378 getDerived().TransformType(ExceptionDecl->getTypeSourceInfo());
6379 if (!T)
6380 return StmtError();
6381
6382 Var = getDerived().RebuildExceptionDecl(
6383 ExceptionDecl, T, ExceptionDecl->getInnerLocStart(),
6384 ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier());
6385 if (!Var || Var->isInvalidDecl())
6386 return StmtError();
6387 }
6388
6389 // Transform the actual exception handler.
6390 StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
6391 if (Handler.isInvalid())
6392 return StmtError();
6393
6394 if (!getDerived().AlwaysRebuild() && !Var &&
6395 Handler.get() == S->getHandlerBlock())
6396 return S;
6397
6398 return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get());
6399 }
6400
6401 template <typename Derived>
TransformCXXTryStmt(CXXTryStmt * S)6402 StmtResult TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
6403 // Transform the try block itself.
6404 StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
6405 if (TryBlock.isInvalid())
6406 return StmtError();
6407
6408 // Transform the handlers.
6409 bool HandlerChanged = false;
6410 SmallVector<Stmt *, 8> Handlers;
6411 for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
6412 StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I));
6413 if (Handler.isInvalid())
6414 return StmtError();
6415
6416 HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
6417 Handlers.push_back(Handler.getAs<Stmt>());
6418 }
6419
6420 if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
6421 !HandlerChanged)
6422 return S;
6423
6424 return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
6425 Handlers);
6426 }
6427
6428 template<typename Derived>
6429 StmtResult
TransformCXXForRangeStmt(CXXForRangeStmt * S)6430 TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
6431 StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
6432 if (Range.isInvalid())
6433 return StmtError();
6434
6435 StmtResult BeginEnd = getDerived().TransformStmt(S->getBeginEndStmt());
6436 if (BeginEnd.isInvalid())
6437 return StmtError();
6438
6439 ExprResult Cond = getDerived().TransformExpr(S->getCond());
6440 if (Cond.isInvalid())
6441 return StmtError();
6442 if (Cond.get())
6443 Cond = SemaRef.CheckBooleanCondition(Cond.get(), S->getColonLoc());
6444 if (Cond.isInvalid())
6445 return StmtError();
6446 if (Cond.get())
6447 Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get());
6448
6449 ExprResult Inc = getDerived().TransformExpr(S->getInc());
6450 if (Inc.isInvalid())
6451 return StmtError();
6452 if (Inc.get())
6453 Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get());
6454
6455 StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
6456 if (LoopVar.isInvalid())
6457 return StmtError();
6458
6459 StmtResult NewStmt = S;
6460 if (getDerived().AlwaysRebuild() ||
6461 Range.get() != S->getRangeStmt() ||
6462 BeginEnd.get() != S->getBeginEndStmt() ||
6463 Cond.get() != S->getCond() ||
6464 Inc.get() != S->getInc() ||
6465 LoopVar.get() != S->getLoopVarStmt()) {
6466 NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
6467 S->getColonLoc(), Range.get(),
6468 BeginEnd.get(), Cond.get(),
6469 Inc.get(), LoopVar.get(),
6470 S->getRParenLoc());
6471 if (NewStmt.isInvalid())
6472 return StmtError();
6473 }
6474
6475 StmtResult Body = getDerived().TransformStmt(S->getBody());
6476 if (Body.isInvalid())
6477 return StmtError();
6478
6479 // Body has changed but we didn't rebuild the for-range statement. Rebuild
6480 // it now so we have a new statement to attach the body to.
6481 if (Body.get() != S->getBody() && NewStmt.get() == S) {
6482 NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
6483 S->getColonLoc(), Range.get(),
6484 BeginEnd.get(), Cond.get(),
6485 Inc.get(), LoopVar.get(),
6486 S->getRParenLoc());
6487 if (NewStmt.isInvalid())
6488 return StmtError();
6489 }
6490
6491 if (NewStmt.get() == S)
6492 return S;
6493
6494 return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
6495 }
6496
6497 template<typename Derived>
6498 StmtResult
TransformMSDependentExistsStmt(MSDependentExistsStmt * S)6499 TreeTransform<Derived>::TransformMSDependentExistsStmt(
6500 MSDependentExistsStmt *S) {
6501 // Transform the nested-name-specifier, if any.
6502 NestedNameSpecifierLoc QualifierLoc;
6503 if (S->getQualifierLoc()) {
6504 QualifierLoc
6505 = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc());
6506 if (!QualifierLoc)
6507 return StmtError();
6508 }
6509
6510 // Transform the declaration name.
6511 DeclarationNameInfo NameInfo = S->getNameInfo();
6512 if (NameInfo.getName()) {
6513 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
6514 if (!NameInfo.getName())
6515 return StmtError();
6516 }
6517
6518 // Check whether anything changed.
6519 if (!getDerived().AlwaysRebuild() &&
6520 QualifierLoc == S->getQualifierLoc() &&
6521 NameInfo.getName() == S->getNameInfo().getName())
6522 return S;
6523
6524 // Determine whether this name exists, if we can.
6525 CXXScopeSpec SS;
6526 SS.Adopt(QualifierLoc);
6527 bool Dependent = false;
6528 switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) {
6529 case Sema::IER_Exists:
6530 if (S->isIfExists())
6531 break;
6532
6533 return new (getSema().Context) NullStmt(S->getKeywordLoc());
6534
6535 case Sema::IER_DoesNotExist:
6536 if (S->isIfNotExists())
6537 break;
6538
6539 return new (getSema().Context) NullStmt(S->getKeywordLoc());
6540
6541 case Sema::IER_Dependent:
6542 Dependent = true;
6543 break;
6544
6545 case Sema::IER_Error:
6546 return StmtError();
6547 }
6548
6549 // We need to continue with the instantiation, so do so now.
6550 StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt());
6551 if (SubStmt.isInvalid())
6552 return StmtError();
6553
6554 // If we have resolved the name, just transform to the substatement.
6555 if (!Dependent)
6556 return SubStmt;
6557
6558 // The name is still dependent, so build a dependent expression again.
6559 return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(),
6560 S->isIfExists(),
6561 QualifierLoc,
6562 NameInfo,
6563 SubStmt.get());
6564 }
6565
6566 template<typename Derived>
6567 ExprResult
TransformMSPropertyRefExpr(MSPropertyRefExpr * E)6568 TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) {
6569 NestedNameSpecifierLoc QualifierLoc;
6570 if (E->getQualifierLoc()) {
6571 QualifierLoc
6572 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
6573 if (!QualifierLoc)
6574 return ExprError();
6575 }
6576
6577 MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>(
6578 getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl()));
6579 if (!PD)
6580 return ExprError();
6581
6582 ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
6583 if (Base.isInvalid())
6584 return ExprError();
6585
6586 return new (SemaRef.getASTContext())
6587 MSPropertyRefExpr(Base.get(), PD, E->isArrow(),
6588 SemaRef.getASTContext().PseudoObjectTy, VK_LValue,
6589 QualifierLoc, E->getMemberLoc());
6590 }
6591
6592 template <typename Derived>
TransformSEHTryStmt(SEHTryStmt * S)6593 StmtResult TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
6594 StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
6595 if (TryBlock.isInvalid())
6596 return StmtError();
6597
6598 StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
6599 if (Handler.isInvalid())
6600 return StmtError();
6601
6602 if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
6603 Handler.get() == S->getHandler())
6604 return S;
6605
6606 return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(),
6607 TryBlock.get(), Handler.get());
6608 }
6609
6610 template <typename Derived>
TransformSEHFinallyStmt(SEHFinallyStmt * S)6611 StmtResult TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
6612 StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
6613 if (Block.isInvalid())
6614 return StmtError();
6615
6616 return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get());
6617 }
6618
6619 template <typename Derived>
TransformSEHExceptStmt(SEHExceptStmt * S)6620 StmtResult TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
6621 ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
6622 if (FilterExpr.isInvalid())
6623 return StmtError();
6624
6625 StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
6626 if (Block.isInvalid())
6627 return StmtError();
6628
6629 return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(),
6630 Block.get());
6631 }
6632
6633 template <typename Derived>
TransformSEHHandler(Stmt * Handler)6634 StmtResult TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
6635 if (isa<SEHFinallyStmt>(Handler))
6636 return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
6637 else
6638 return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
6639 }
6640
6641 template<typename Derived>
6642 StmtResult
TransformSEHLeaveStmt(SEHLeaveStmt * S)6643 TreeTransform<Derived>::TransformSEHLeaveStmt(SEHLeaveStmt *S) {
6644 return S;
6645 }
6646
6647 //===----------------------------------------------------------------------===//
6648 // OpenMP directive transformation
6649 //===----------------------------------------------------------------------===//
6650 template <typename Derived>
TransformOMPExecutableDirective(OMPExecutableDirective * D)6651 StmtResult TreeTransform<Derived>::TransformOMPExecutableDirective(
6652 OMPExecutableDirective *D) {
6653
6654 // Transform the clauses
6655 llvm::SmallVector<OMPClause *, 16> TClauses;
6656 ArrayRef<OMPClause *> Clauses = D->clauses();
6657 TClauses.reserve(Clauses.size());
6658 for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
6659 I != E; ++I) {
6660 if (*I) {
6661 OMPClause *Clause = getDerived().TransformOMPClause(*I);
6662 if (Clause)
6663 TClauses.push_back(Clause);
6664 } else {
6665 TClauses.push_back(nullptr);
6666 }
6667 }
6668 StmtResult AssociatedStmt;
6669 if (D->hasAssociatedStmt()) {
6670 if (!D->getAssociatedStmt()) {
6671 return StmtError();
6672 }
6673 getDerived().getSema().ActOnOpenMPRegionStart(D->getDirectiveKind(),
6674 /*CurScope=*/nullptr);
6675 StmtResult Body;
6676 {
6677 Sema::CompoundScopeRAII CompoundScope(getSema());
6678 Body = getDerived().TransformStmt(
6679 cast<CapturedStmt>(D->getAssociatedStmt())->getCapturedStmt());
6680 }
6681 AssociatedStmt =
6682 getDerived().getSema().ActOnOpenMPRegionEnd(Body, TClauses);
6683 if (AssociatedStmt.isInvalid()) {
6684 return StmtError();
6685 }
6686 }
6687 if (TClauses.size() != Clauses.size()) {
6688 return StmtError();
6689 }
6690
6691 // Transform directive name for 'omp critical' directive.
6692 DeclarationNameInfo DirName;
6693 if (D->getDirectiveKind() == OMPD_critical) {
6694 DirName = cast<OMPCriticalDirective>(D)->getDirectiveName();
6695 DirName = getDerived().TransformDeclarationNameInfo(DirName);
6696 }
6697
6698 return getDerived().RebuildOMPExecutableDirective(
6699 D->getDirectiveKind(), DirName, TClauses, AssociatedStmt.get(),
6700 D->getLocStart(), D->getLocEnd());
6701 }
6702
6703 template <typename Derived>
6704 StmtResult
TransformOMPParallelDirective(OMPParallelDirective * D)6705 TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) {
6706 DeclarationNameInfo DirName;
6707 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel, DirName, nullptr,
6708 D->getLocStart());
6709 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6710 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6711 return Res;
6712 }
6713
6714 template <typename Derived>
6715 StmtResult
TransformOMPSimdDirective(OMPSimdDirective * D)6716 TreeTransform<Derived>::TransformOMPSimdDirective(OMPSimdDirective *D) {
6717 DeclarationNameInfo DirName;
6718 getDerived().getSema().StartOpenMPDSABlock(OMPD_simd, DirName, nullptr,
6719 D->getLocStart());
6720 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6721 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6722 return Res;
6723 }
6724
6725 template <typename Derived>
6726 StmtResult
TransformOMPForDirective(OMPForDirective * D)6727 TreeTransform<Derived>::TransformOMPForDirective(OMPForDirective *D) {
6728 DeclarationNameInfo DirName;
6729 getDerived().getSema().StartOpenMPDSABlock(OMPD_for, DirName, nullptr,
6730 D->getLocStart());
6731 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6732 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6733 return Res;
6734 }
6735
6736 template <typename Derived>
6737 StmtResult
TransformOMPForSimdDirective(OMPForSimdDirective * D)6738 TreeTransform<Derived>::TransformOMPForSimdDirective(OMPForSimdDirective *D) {
6739 DeclarationNameInfo DirName;
6740 getDerived().getSema().StartOpenMPDSABlock(OMPD_for_simd, DirName, nullptr,
6741 D->getLocStart());
6742 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6743 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6744 return Res;
6745 }
6746
6747 template <typename Derived>
6748 StmtResult
TransformOMPSectionsDirective(OMPSectionsDirective * D)6749 TreeTransform<Derived>::TransformOMPSectionsDirective(OMPSectionsDirective *D) {
6750 DeclarationNameInfo DirName;
6751 getDerived().getSema().StartOpenMPDSABlock(OMPD_sections, DirName, nullptr,
6752 D->getLocStart());
6753 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6754 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6755 return Res;
6756 }
6757
6758 template <typename Derived>
6759 StmtResult
TransformOMPSectionDirective(OMPSectionDirective * D)6760 TreeTransform<Derived>::TransformOMPSectionDirective(OMPSectionDirective *D) {
6761 DeclarationNameInfo DirName;
6762 getDerived().getSema().StartOpenMPDSABlock(OMPD_section, DirName, nullptr,
6763 D->getLocStart());
6764 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6765 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6766 return Res;
6767 }
6768
6769 template <typename Derived>
6770 StmtResult
TransformOMPSingleDirective(OMPSingleDirective * D)6771 TreeTransform<Derived>::TransformOMPSingleDirective(OMPSingleDirective *D) {
6772 DeclarationNameInfo DirName;
6773 getDerived().getSema().StartOpenMPDSABlock(OMPD_single, DirName, nullptr,
6774 D->getLocStart());
6775 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6776 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6777 return Res;
6778 }
6779
6780 template <typename Derived>
6781 StmtResult
TransformOMPMasterDirective(OMPMasterDirective * D)6782 TreeTransform<Derived>::TransformOMPMasterDirective(OMPMasterDirective *D) {
6783 DeclarationNameInfo DirName;
6784 getDerived().getSema().StartOpenMPDSABlock(OMPD_master, DirName, nullptr,
6785 D->getLocStart());
6786 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6787 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6788 return Res;
6789 }
6790
6791 template <typename Derived>
6792 StmtResult
TransformOMPCriticalDirective(OMPCriticalDirective * D)6793 TreeTransform<Derived>::TransformOMPCriticalDirective(OMPCriticalDirective *D) {
6794 getDerived().getSema().StartOpenMPDSABlock(
6795 OMPD_critical, D->getDirectiveName(), nullptr, D->getLocStart());
6796 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6797 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6798 return Res;
6799 }
6800
6801 template <typename Derived>
TransformOMPParallelForDirective(OMPParallelForDirective * D)6802 StmtResult TreeTransform<Derived>::TransformOMPParallelForDirective(
6803 OMPParallelForDirective *D) {
6804 DeclarationNameInfo DirName;
6805 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for, DirName,
6806 nullptr, D->getLocStart());
6807 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6808 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6809 return Res;
6810 }
6811
6812 template <typename Derived>
TransformOMPParallelForSimdDirective(OMPParallelForSimdDirective * D)6813 StmtResult TreeTransform<Derived>::TransformOMPParallelForSimdDirective(
6814 OMPParallelForSimdDirective *D) {
6815 DeclarationNameInfo DirName;
6816 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for_simd, DirName,
6817 nullptr, D->getLocStart());
6818 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6819 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6820 return Res;
6821 }
6822
6823 template <typename Derived>
TransformOMPParallelSectionsDirective(OMPParallelSectionsDirective * D)6824 StmtResult TreeTransform<Derived>::TransformOMPParallelSectionsDirective(
6825 OMPParallelSectionsDirective *D) {
6826 DeclarationNameInfo DirName;
6827 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_sections, DirName,
6828 nullptr, D->getLocStart());
6829 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6830 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6831 return Res;
6832 }
6833
6834 template <typename Derived>
6835 StmtResult
TransformOMPTaskDirective(OMPTaskDirective * D)6836 TreeTransform<Derived>::TransformOMPTaskDirective(OMPTaskDirective *D) {
6837 DeclarationNameInfo DirName;
6838 getDerived().getSema().StartOpenMPDSABlock(OMPD_task, DirName, nullptr,
6839 D->getLocStart());
6840 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6841 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6842 return Res;
6843 }
6844
6845 template <typename Derived>
TransformOMPTaskyieldDirective(OMPTaskyieldDirective * D)6846 StmtResult TreeTransform<Derived>::TransformOMPTaskyieldDirective(
6847 OMPTaskyieldDirective *D) {
6848 DeclarationNameInfo DirName;
6849 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskyield, DirName, nullptr,
6850 D->getLocStart());
6851 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6852 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6853 return Res;
6854 }
6855
6856 template <typename Derived>
6857 StmtResult
TransformOMPBarrierDirective(OMPBarrierDirective * D)6858 TreeTransform<Derived>::TransformOMPBarrierDirective(OMPBarrierDirective *D) {
6859 DeclarationNameInfo DirName;
6860 getDerived().getSema().StartOpenMPDSABlock(OMPD_barrier, DirName, nullptr,
6861 D->getLocStart());
6862 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6863 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6864 return Res;
6865 }
6866
6867 template <typename Derived>
6868 StmtResult
TransformOMPTaskwaitDirective(OMPTaskwaitDirective * D)6869 TreeTransform<Derived>::TransformOMPTaskwaitDirective(OMPTaskwaitDirective *D) {
6870 DeclarationNameInfo DirName;
6871 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskwait, DirName, nullptr,
6872 D->getLocStart());
6873 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6874 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6875 return Res;
6876 }
6877
6878 template <typename Derived>
6879 StmtResult
TransformOMPFlushDirective(OMPFlushDirective * D)6880 TreeTransform<Derived>::TransformOMPFlushDirective(OMPFlushDirective *D) {
6881 DeclarationNameInfo DirName;
6882 getDerived().getSema().StartOpenMPDSABlock(OMPD_flush, DirName, nullptr,
6883 D->getLocStart());
6884 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6885 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6886 return Res;
6887 }
6888
6889 template <typename Derived>
6890 StmtResult
TransformOMPOrderedDirective(OMPOrderedDirective * D)6891 TreeTransform<Derived>::TransformOMPOrderedDirective(OMPOrderedDirective *D) {
6892 DeclarationNameInfo DirName;
6893 getDerived().getSema().StartOpenMPDSABlock(OMPD_ordered, DirName, nullptr,
6894 D->getLocStart());
6895 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6896 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6897 return Res;
6898 }
6899
6900 template <typename Derived>
6901 StmtResult
TransformOMPAtomicDirective(OMPAtomicDirective * D)6902 TreeTransform<Derived>::TransformOMPAtomicDirective(OMPAtomicDirective *D) {
6903 DeclarationNameInfo DirName;
6904 getDerived().getSema().StartOpenMPDSABlock(OMPD_atomic, DirName, nullptr,
6905 D->getLocStart());
6906 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6907 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6908 return Res;
6909 }
6910
6911 template <typename Derived>
6912 StmtResult
TransformOMPTargetDirective(OMPTargetDirective * D)6913 TreeTransform<Derived>::TransformOMPTargetDirective(OMPTargetDirective *D) {
6914 DeclarationNameInfo DirName;
6915 getDerived().getSema().StartOpenMPDSABlock(OMPD_target, DirName, nullptr,
6916 D->getLocStart());
6917 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6918 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6919 return Res;
6920 }
6921
6922 template <typename Derived>
6923 StmtResult
TransformOMPTeamsDirective(OMPTeamsDirective * D)6924 TreeTransform<Derived>::TransformOMPTeamsDirective(OMPTeamsDirective *D) {
6925 DeclarationNameInfo DirName;
6926 getDerived().getSema().StartOpenMPDSABlock(OMPD_teams, DirName, nullptr,
6927 D->getLocStart());
6928 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
6929 getDerived().getSema().EndOpenMPDSABlock(Res.get());
6930 return Res;
6931 }
6932
6933 //===----------------------------------------------------------------------===//
6934 // OpenMP clause transformation
6935 //===----------------------------------------------------------------------===//
6936 template <typename Derived>
TransformOMPIfClause(OMPIfClause * C)6937 OMPClause *TreeTransform<Derived>::TransformOMPIfClause(OMPIfClause *C) {
6938 ExprResult Cond = getDerived().TransformExpr(C->getCondition());
6939 if (Cond.isInvalid())
6940 return nullptr;
6941 return getDerived().RebuildOMPIfClause(Cond.get(), C->getLocStart(),
6942 C->getLParenLoc(), C->getLocEnd());
6943 }
6944
6945 template <typename Derived>
TransformOMPFinalClause(OMPFinalClause * C)6946 OMPClause *TreeTransform<Derived>::TransformOMPFinalClause(OMPFinalClause *C) {
6947 ExprResult Cond = getDerived().TransformExpr(C->getCondition());
6948 if (Cond.isInvalid())
6949 return nullptr;
6950 return getDerived().RebuildOMPFinalClause(Cond.get(), C->getLocStart(),
6951 C->getLParenLoc(), C->getLocEnd());
6952 }
6953
6954 template <typename Derived>
6955 OMPClause *
TransformOMPNumThreadsClause(OMPNumThreadsClause * C)6956 TreeTransform<Derived>::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) {
6957 ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads());
6958 if (NumThreads.isInvalid())
6959 return nullptr;
6960 return getDerived().RebuildOMPNumThreadsClause(
6961 NumThreads.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
6962 }
6963
6964 template <typename Derived>
6965 OMPClause *
TransformOMPSafelenClause(OMPSafelenClause * C)6966 TreeTransform<Derived>::TransformOMPSafelenClause(OMPSafelenClause *C) {
6967 ExprResult E = getDerived().TransformExpr(C->getSafelen());
6968 if (E.isInvalid())
6969 return nullptr;
6970 return getDerived().RebuildOMPSafelenClause(
6971 E.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
6972 }
6973
6974 template <typename Derived>
6975 OMPClause *
TransformOMPCollapseClause(OMPCollapseClause * C)6976 TreeTransform<Derived>::TransformOMPCollapseClause(OMPCollapseClause *C) {
6977 ExprResult E = getDerived().TransformExpr(C->getNumForLoops());
6978 if (E.isInvalid())
6979 return 0;
6980 return getDerived().RebuildOMPCollapseClause(
6981 E.get(), C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
6982 }
6983
6984 template <typename Derived>
6985 OMPClause *
TransformOMPDefaultClause(OMPDefaultClause * C)6986 TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) {
6987 return getDerived().RebuildOMPDefaultClause(
6988 C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getLocStart(),
6989 C->getLParenLoc(), C->getLocEnd());
6990 }
6991
6992 template <typename Derived>
6993 OMPClause *
TransformOMPProcBindClause(OMPProcBindClause * C)6994 TreeTransform<Derived>::TransformOMPProcBindClause(OMPProcBindClause *C) {
6995 return getDerived().RebuildOMPProcBindClause(
6996 C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getLocStart(),
6997 C->getLParenLoc(), C->getLocEnd());
6998 }
6999
7000 template <typename Derived>
7001 OMPClause *
TransformOMPScheduleClause(OMPScheduleClause * C)7002 TreeTransform<Derived>::TransformOMPScheduleClause(OMPScheduleClause *C) {
7003 ExprResult E = getDerived().TransformExpr(C->getChunkSize());
7004 if (E.isInvalid())
7005 return nullptr;
7006 return getDerived().RebuildOMPScheduleClause(
7007 C->getScheduleKind(), E.get(), C->getLocStart(), C->getLParenLoc(),
7008 C->getScheduleKindLoc(), C->getCommaLoc(), C->getLocEnd());
7009 }
7010
7011 template <typename Derived>
7012 OMPClause *
TransformOMPOrderedClause(OMPOrderedClause * C)7013 TreeTransform<Derived>::TransformOMPOrderedClause(OMPOrderedClause *C) {
7014 // No need to rebuild this clause, no template-dependent parameters.
7015 return C;
7016 }
7017
7018 template <typename Derived>
7019 OMPClause *
TransformOMPNowaitClause(OMPNowaitClause * C)7020 TreeTransform<Derived>::TransformOMPNowaitClause(OMPNowaitClause *C) {
7021 // No need to rebuild this clause, no template-dependent parameters.
7022 return C;
7023 }
7024
7025 template <typename Derived>
7026 OMPClause *
TransformOMPUntiedClause(OMPUntiedClause * C)7027 TreeTransform<Derived>::TransformOMPUntiedClause(OMPUntiedClause *C) {
7028 // No need to rebuild this clause, no template-dependent parameters.
7029 return C;
7030 }
7031
7032 template <typename Derived>
7033 OMPClause *
TransformOMPMergeableClause(OMPMergeableClause * C)7034 TreeTransform<Derived>::TransformOMPMergeableClause(OMPMergeableClause *C) {
7035 // No need to rebuild this clause, no template-dependent parameters.
7036 return C;
7037 }
7038
7039 template <typename Derived>
TransformOMPReadClause(OMPReadClause * C)7040 OMPClause *TreeTransform<Derived>::TransformOMPReadClause(OMPReadClause *C) {
7041 // No need to rebuild this clause, no template-dependent parameters.
7042 return C;
7043 }
7044
7045 template <typename Derived>
TransformOMPWriteClause(OMPWriteClause * C)7046 OMPClause *TreeTransform<Derived>::TransformOMPWriteClause(OMPWriteClause *C) {
7047 // No need to rebuild this clause, no template-dependent parameters.
7048 return C;
7049 }
7050
7051 template <typename Derived>
7052 OMPClause *
TransformOMPUpdateClause(OMPUpdateClause * C)7053 TreeTransform<Derived>::TransformOMPUpdateClause(OMPUpdateClause *C) {
7054 // No need to rebuild this clause, no template-dependent parameters.
7055 return C;
7056 }
7057
7058 template <typename Derived>
7059 OMPClause *
TransformOMPCaptureClause(OMPCaptureClause * C)7060 TreeTransform<Derived>::TransformOMPCaptureClause(OMPCaptureClause *C) {
7061 // No need to rebuild this clause, no template-dependent parameters.
7062 return C;
7063 }
7064
7065 template <typename Derived>
7066 OMPClause *
TransformOMPSeqCstClause(OMPSeqCstClause * C)7067 TreeTransform<Derived>::TransformOMPSeqCstClause(OMPSeqCstClause *C) {
7068 // No need to rebuild this clause, no template-dependent parameters.
7069 return C;
7070 }
7071
7072 template <typename Derived>
7073 OMPClause *
TransformOMPPrivateClause(OMPPrivateClause * C)7074 TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) {
7075 llvm::SmallVector<Expr *, 16> Vars;
7076 Vars.reserve(C->varlist_size());
7077 for (auto *VE : C->varlists()) {
7078 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
7079 if (EVar.isInvalid())
7080 return nullptr;
7081 Vars.push_back(EVar.get());
7082 }
7083 return getDerived().RebuildOMPPrivateClause(
7084 Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
7085 }
7086
7087 template <typename Derived>
TransformOMPFirstprivateClause(OMPFirstprivateClause * C)7088 OMPClause *TreeTransform<Derived>::TransformOMPFirstprivateClause(
7089 OMPFirstprivateClause *C) {
7090 llvm::SmallVector<Expr *, 16> Vars;
7091 Vars.reserve(C->varlist_size());
7092 for (auto *VE : C->varlists()) {
7093 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
7094 if (EVar.isInvalid())
7095 return nullptr;
7096 Vars.push_back(EVar.get());
7097 }
7098 return getDerived().RebuildOMPFirstprivateClause(
7099 Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
7100 }
7101
7102 template <typename Derived>
7103 OMPClause *
TransformOMPLastprivateClause(OMPLastprivateClause * C)7104 TreeTransform<Derived>::TransformOMPLastprivateClause(OMPLastprivateClause *C) {
7105 llvm::SmallVector<Expr *, 16> Vars;
7106 Vars.reserve(C->varlist_size());
7107 for (auto *VE : C->varlists()) {
7108 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
7109 if (EVar.isInvalid())
7110 return nullptr;
7111 Vars.push_back(EVar.get());
7112 }
7113 return getDerived().RebuildOMPLastprivateClause(
7114 Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
7115 }
7116
7117 template <typename Derived>
7118 OMPClause *
TransformOMPSharedClause(OMPSharedClause * C)7119 TreeTransform<Derived>::TransformOMPSharedClause(OMPSharedClause *C) {
7120 llvm::SmallVector<Expr *, 16> Vars;
7121 Vars.reserve(C->varlist_size());
7122 for (auto *VE : C->varlists()) {
7123 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
7124 if (EVar.isInvalid())
7125 return nullptr;
7126 Vars.push_back(EVar.get());
7127 }
7128 return getDerived().RebuildOMPSharedClause(Vars, C->getLocStart(),
7129 C->getLParenLoc(), C->getLocEnd());
7130 }
7131
7132 template <typename Derived>
7133 OMPClause *
TransformOMPReductionClause(OMPReductionClause * C)7134 TreeTransform<Derived>::TransformOMPReductionClause(OMPReductionClause *C) {
7135 llvm::SmallVector<Expr *, 16> Vars;
7136 Vars.reserve(C->varlist_size());
7137 for (auto *VE : C->varlists()) {
7138 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
7139 if (EVar.isInvalid())
7140 return nullptr;
7141 Vars.push_back(EVar.get());
7142 }
7143 CXXScopeSpec ReductionIdScopeSpec;
7144 ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
7145
7146 DeclarationNameInfo NameInfo = C->getNameInfo();
7147 if (NameInfo.getName()) {
7148 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
7149 if (!NameInfo.getName())
7150 return nullptr;
7151 }
7152 return getDerived().RebuildOMPReductionClause(
7153 Vars, C->getLocStart(), C->getLParenLoc(), C->getColonLoc(),
7154 C->getLocEnd(), ReductionIdScopeSpec, NameInfo);
7155 }
7156
7157 template <typename Derived>
7158 OMPClause *
TransformOMPLinearClause(OMPLinearClause * C)7159 TreeTransform<Derived>::TransformOMPLinearClause(OMPLinearClause *C) {
7160 llvm::SmallVector<Expr *, 16> Vars;
7161 Vars.reserve(C->varlist_size());
7162 for (auto *VE : C->varlists()) {
7163 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
7164 if (EVar.isInvalid())
7165 return nullptr;
7166 Vars.push_back(EVar.get());
7167 }
7168 ExprResult Step = getDerived().TransformExpr(C->getStep());
7169 if (Step.isInvalid())
7170 return nullptr;
7171 return getDerived().RebuildOMPLinearClause(Vars, Step.get(), C->getLocStart(),
7172 C->getLParenLoc(),
7173 C->getColonLoc(), C->getLocEnd());
7174 }
7175
7176 template <typename Derived>
7177 OMPClause *
TransformOMPAlignedClause(OMPAlignedClause * C)7178 TreeTransform<Derived>::TransformOMPAlignedClause(OMPAlignedClause *C) {
7179 llvm::SmallVector<Expr *, 16> Vars;
7180 Vars.reserve(C->varlist_size());
7181 for (auto *VE : C->varlists()) {
7182 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
7183 if (EVar.isInvalid())
7184 return nullptr;
7185 Vars.push_back(EVar.get());
7186 }
7187 ExprResult Alignment = getDerived().TransformExpr(C->getAlignment());
7188 if (Alignment.isInvalid())
7189 return nullptr;
7190 return getDerived().RebuildOMPAlignedClause(
7191 Vars, Alignment.get(), C->getLocStart(), C->getLParenLoc(),
7192 C->getColonLoc(), C->getLocEnd());
7193 }
7194
7195 template <typename Derived>
7196 OMPClause *
TransformOMPCopyinClause(OMPCopyinClause * C)7197 TreeTransform<Derived>::TransformOMPCopyinClause(OMPCopyinClause *C) {
7198 llvm::SmallVector<Expr *, 16> Vars;
7199 Vars.reserve(C->varlist_size());
7200 for (auto *VE : C->varlists()) {
7201 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
7202 if (EVar.isInvalid())
7203 return nullptr;
7204 Vars.push_back(EVar.get());
7205 }
7206 return getDerived().RebuildOMPCopyinClause(Vars, C->getLocStart(),
7207 C->getLParenLoc(), C->getLocEnd());
7208 }
7209
7210 template <typename Derived>
7211 OMPClause *
TransformOMPCopyprivateClause(OMPCopyprivateClause * C)7212 TreeTransform<Derived>::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) {
7213 llvm::SmallVector<Expr *, 16> Vars;
7214 Vars.reserve(C->varlist_size());
7215 for (auto *VE : C->varlists()) {
7216 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
7217 if (EVar.isInvalid())
7218 return nullptr;
7219 Vars.push_back(EVar.get());
7220 }
7221 return getDerived().RebuildOMPCopyprivateClause(
7222 Vars, C->getLocStart(), C->getLParenLoc(), C->getLocEnd());
7223 }
7224
7225 template <typename Derived>
TransformOMPFlushClause(OMPFlushClause * C)7226 OMPClause *TreeTransform<Derived>::TransformOMPFlushClause(OMPFlushClause *C) {
7227 llvm::SmallVector<Expr *, 16> Vars;
7228 Vars.reserve(C->varlist_size());
7229 for (auto *VE : C->varlists()) {
7230 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
7231 if (EVar.isInvalid())
7232 return nullptr;
7233 Vars.push_back(EVar.get());
7234 }
7235 return getDerived().RebuildOMPFlushClause(Vars, C->getLocStart(),
7236 C->getLParenLoc(), C->getLocEnd());
7237 }
7238
7239 //===----------------------------------------------------------------------===//
7240 // Expression transformation
7241 //===----------------------------------------------------------------------===//
7242 template<typename Derived>
7243 ExprResult
TransformPredefinedExpr(PredefinedExpr * E)7244 TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
7245 if (!E->isTypeDependent())
7246 return E;
7247
7248 return getDerived().RebuildPredefinedExpr(E->getLocation(),
7249 E->getIdentType());
7250 }
7251
7252 template<typename Derived>
7253 ExprResult
TransformDeclRefExpr(DeclRefExpr * E)7254 TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
7255 NestedNameSpecifierLoc QualifierLoc;
7256 if (E->getQualifierLoc()) {
7257 QualifierLoc
7258 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
7259 if (!QualifierLoc)
7260 return ExprError();
7261 }
7262
7263 ValueDecl *ND
7264 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
7265 E->getDecl()));
7266 if (!ND)
7267 return ExprError();
7268
7269 DeclarationNameInfo NameInfo = E->getNameInfo();
7270 if (NameInfo.getName()) {
7271 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
7272 if (!NameInfo.getName())
7273 return ExprError();
7274 }
7275
7276 if (!getDerived().AlwaysRebuild() &&
7277 QualifierLoc == E->getQualifierLoc() &&
7278 ND == E->getDecl() &&
7279 NameInfo.getName() == E->getDecl()->getDeclName() &&
7280 !E->hasExplicitTemplateArgs()) {
7281
7282 // Mark it referenced in the new context regardless.
7283 // FIXME: this is a bit instantiation-specific.
7284 SemaRef.MarkDeclRefReferenced(E);
7285
7286 return E;
7287 }
7288
7289 TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr;
7290 if (E->hasExplicitTemplateArgs()) {
7291 TemplateArgs = &TransArgs;
7292 TransArgs.setLAngleLoc(E->getLAngleLoc());
7293 TransArgs.setRAngleLoc(E->getRAngleLoc());
7294 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
7295 E->getNumTemplateArgs(),
7296 TransArgs))
7297 return ExprError();
7298 }
7299
7300 return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
7301 TemplateArgs);
7302 }
7303
7304 template<typename Derived>
7305 ExprResult
TransformIntegerLiteral(IntegerLiteral * E)7306 TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
7307 return E;
7308 }
7309
7310 template<typename Derived>
7311 ExprResult
TransformFloatingLiteral(FloatingLiteral * E)7312 TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
7313 return E;
7314 }
7315
7316 template<typename Derived>
7317 ExprResult
TransformImaginaryLiteral(ImaginaryLiteral * E)7318 TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
7319 return E;
7320 }
7321
7322 template<typename Derived>
7323 ExprResult
TransformStringLiteral(StringLiteral * E)7324 TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
7325 return E;
7326 }
7327
7328 template<typename Derived>
7329 ExprResult
TransformCharacterLiteral(CharacterLiteral * E)7330 TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
7331 return E;
7332 }
7333
7334 template<typename Derived>
7335 ExprResult
TransformUserDefinedLiteral(UserDefinedLiteral * E)7336 TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) {
7337 if (FunctionDecl *FD = E->getDirectCallee())
7338 SemaRef.MarkFunctionReferenced(E->getLocStart(), FD);
7339 return SemaRef.MaybeBindToTemporary(E);
7340 }
7341
7342 template<typename Derived>
7343 ExprResult
TransformGenericSelectionExpr(GenericSelectionExpr * E)7344 TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
7345 ExprResult ControllingExpr =
7346 getDerived().TransformExpr(E->getControllingExpr());
7347 if (ControllingExpr.isInvalid())
7348 return ExprError();
7349
7350 SmallVector<Expr *, 4> AssocExprs;
7351 SmallVector<TypeSourceInfo *, 4> AssocTypes;
7352 for (unsigned i = 0; i != E->getNumAssocs(); ++i) {
7353 TypeSourceInfo *TS = E->getAssocTypeSourceInfo(i);
7354 if (TS) {
7355 TypeSourceInfo *AssocType = getDerived().TransformType(TS);
7356 if (!AssocType)
7357 return ExprError();
7358 AssocTypes.push_back(AssocType);
7359 } else {
7360 AssocTypes.push_back(nullptr);
7361 }
7362
7363 ExprResult AssocExpr = getDerived().TransformExpr(E->getAssocExpr(i));
7364 if (AssocExpr.isInvalid())
7365 return ExprError();
7366 AssocExprs.push_back(AssocExpr.get());
7367 }
7368
7369 return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
7370 E->getDefaultLoc(),
7371 E->getRParenLoc(),
7372 ControllingExpr.get(),
7373 AssocTypes,
7374 AssocExprs);
7375 }
7376
7377 template<typename Derived>
7378 ExprResult
TransformParenExpr(ParenExpr * E)7379 TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
7380 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
7381 if (SubExpr.isInvalid())
7382 return ExprError();
7383
7384 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
7385 return E;
7386
7387 return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
7388 E->getRParen());
7389 }
7390
7391 /// \brief The operand of a unary address-of operator has special rules: it's
7392 /// allowed to refer to a non-static member of a class even if there's no 'this'
7393 /// object available.
7394 template<typename Derived>
7395 ExprResult
TransformAddressOfOperand(Expr * E)7396 TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) {
7397 if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E))
7398 return getDerived().TransformDependentScopeDeclRefExpr(DRE, true, nullptr);
7399 else
7400 return getDerived().TransformExpr(E);
7401 }
7402
7403 template<typename Derived>
7404 ExprResult
TransformUnaryOperator(UnaryOperator * E)7405 TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
7406 ExprResult SubExpr;
7407 if (E->getOpcode() == UO_AddrOf)
7408 SubExpr = TransformAddressOfOperand(E->getSubExpr());
7409 else
7410 SubExpr = TransformExpr(E->getSubExpr());
7411 if (SubExpr.isInvalid())
7412 return ExprError();
7413
7414 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
7415 return E;
7416
7417 return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
7418 E->getOpcode(),
7419 SubExpr.get());
7420 }
7421
7422 template<typename Derived>
7423 ExprResult
TransformOffsetOfExpr(OffsetOfExpr * E)7424 TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
7425 // Transform the type.
7426 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
7427 if (!Type)
7428 return ExprError();
7429
7430 // Transform all of the components into components similar to what the
7431 // parser uses.
7432 // FIXME: It would be slightly more efficient in the non-dependent case to
7433 // just map FieldDecls, rather than requiring the rebuilder to look for
7434 // the fields again. However, __builtin_offsetof is rare enough in
7435 // template code that we don't care.
7436 bool ExprChanged = false;
7437 typedef Sema::OffsetOfComponent Component;
7438 typedef OffsetOfExpr::OffsetOfNode Node;
7439 SmallVector<Component, 4> Components;
7440 for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
7441 const Node &ON = E->getComponent(I);
7442 Component Comp;
7443 Comp.isBrackets = true;
7444 Comp.LocStart = ON.getSourceRange().getBegin();
7445 Comp.LocEnd = ON.getSourceRange().getEnd();
7446 switch (ON.getKind()) {
7447 case Node::Array: {
7448 Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
7449 ExprResult Index = getDerived().TransformExpr(FromIndex);
7450 if (Index.isInvalid())
7451 return ExprError();
7452
7453 ExprChanged = ExprChanged || Index.get() != FromIndex;
7454 Comp.isBrackets = true;
7455 Comp.U.E = Index.get();
7456 break;
7457 }
7458
7459 case Node::Field:
7460 case Node::Identifier:
7461 Comp.isBrackets = false;
7462 Comp.U.IdentInfo = ON.getFieldName();
7463 if (!Comp.U.IdentInfo)
7464 continue;
7465
7466 break;
7467
7468 case Node::Base:
7469 // Will be recomputed during the rebuild.
7470 continue;
7471 }
7472
7473 Components.push_back(Comp);
7474 }
7475
7476 // If nothing changed, retain the existing expression.
7477 if (!getDerived().AlwaysRebuild() &&
7478 Type == E->getTypeSourceInfo() &&
7479 !ExprChanged)
7480 return E;
7481
7482 // Build a new offsetof expression.
7483 return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
7484 Components.data(), Components.size(),
7485 E->getRParenLoc());
7486 }
7487
7488 template<typename Derived>
7489 ExprResult
TransformOpaqueValueExpr(OpaqueValueExpr * E)7490 TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
7491 assert(getDerived().AlreadyTransformed(E->getType()) &&
7492 "opaque value expression requires transformation");
7493 return E;
7494 }
7495
7496 template<typename Derived>
7497 ExprResult
TransformTypoExpr(TypoExpr * E)7498 TreeTransform<Derived>::TransformTypoExpr(TypoExpr *E) {
7499 return E;
7500 }
7501
7502 template<typename Derived>
7503 ExprResult
TransformPseudoObjectExpr(PseudoObjectExpr * E)7504 TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
7505 // Rebuild the syntactic form. The original syntactic form has
7506 // opaque-value expressions in it, so strip those away and rebuild
7507 // the result. This is a really awful way of doing this, but the
7508 // better solution (rebuilding the semantic expressions and
7509 // rebinding OVEs as necessary) doesn't work; we'd need
7510 // TreeTransform to not strip away implicit conversions.
7511 Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E);
7512 ExprResult result = getDerived().TransformExpr(newSyntacticForm);
7513 if (result.isInvalid()) return ExprError();
7514
7515 // If that gives us a pseudo-object result back, the pseudo-object
7516 // expression must have been an lvalue-to-rvalue conversion which we
7517 // should reapply.
7518 if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
7519 result = SemaRef.checkPseudoObjectRValue(result.get());
7520
7521 return result;
7522 }
7523
7524 template<typename Derived>
7525 ExprResult
TransformUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr * E)7526 TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
7527 UnaryExprOrTypeTraitExpr *E) {
7528 if (E->isArgumentType()) {
7529 TypeSourceInfo *OldT = E->getArgumentTypeInfo();
7530
7531 TypeSourceInfo *NewT = getDerived().TransformType(OldT);
7532 if (!NewT)
7533 return ExprError();
7534
7535 if (!getDerived().AlwaysRebuild() && OldT == NewT)
7536 return E;
7537
7538 return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
7539 E->getKind(),
7540 E->getSourceRange());
7541 }
7542
7543 // C++0x [expr.sizeof]p1:
7544 // The operand is either an expression, which is an unevaluated operand
7545 // [...]
7546 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
7547 Sema::ReuseLambdaContextDecl);
7548
7549 // Try to recover if we have something like sizeof(T::X) where X is a type.
7550 // Notably, there must be *exactly* one set of parens if X is a type.
7551 TypeSourceInfo *RecoveryTSI = nullptr;
7552 ExprResult SubExpr;
7553 auto *PE = dyn_cast<ParenExpr>(E->getArgumentExpr());
7554 if (auto *DRE =
7555 PE ? dyn_cast<DependentScopeDeclRefExpr>(PE->getSubExpr()) : nullptr)
7556 SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr(
7557 PE, DRE, false, &RecoveryTSI);
7558 else
7559 SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
7560
7561 if (RecoveryTSI) {
7562 return getDerived().RebuildUnaryExprOrTypeTrait(
7563 RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange());
7564 } else if (SubExpr.isInvalid())
7565 return ExprError();
7566
7567 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
7568 return E;
7569
7570 return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
7571 E->getOperatorLoc(),
7572 E->getKind(),
7573 E->getSourceRange());
7574 }
7575
7576 template<typename Derived>
7577 ExprResult
TransformArraySubscriptExpr(ArraySubscriptExpr * E)7578 TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
7579 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
7580 if (LHS.isInvalid())
7581 return ExprError();
7582
7583 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
7584 if (RHS.isInvalid())
7585 return ExprError();
7586
7587
7588 if (!getDerived().AlwaysRebuild() &&
7589 LHS.get() == E->getLHS() &&
7590 RHS.get() == E->getRHS())
7591 return E;
7592
7593 return getDerived().RebuildArraySubscriptExpr(LHS.get(),
7594 /*FIXME:*/E->getLHS()->getLocStart(),
7595 RHS.get(),
7596 E->getRBracketLoc());
7597 }
7598
7599 template<typename Derived>
7600 ExprResult
TransformCallExpr(CallExpr * E)7601 TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
7602 // Transform the callee.
7603 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
7604 if (Callee.isInvalid())
7605 return ExprError();
7606
7607 // Transform arguments.
7608 bool ArgChanged = false;
7609 SmallVector<Expr*, 8> Args;
7610 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
7611 &ArgChanged))
7612 return ExprError();
7613
7614 if (!getDerived().AlwaysRebuild() &&
7615 Callee.get() == E->getCallee() &&
7616 !ArgChanged)
7617 return SemaRef.MaybeBindToTemporary(E);
7618
7619 // FIXME: Wrong source location information for the '('.
7620 SourceLocation FakeLParenLoc
7621 = ((Expr *)Callee.get())->getSourceRange().getBegin();
7622 return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
7623 Args,
7624 E->getRParenLoc());
7625 }
7626
7627 template<typename Derived>
7628 ExprResult
TransformMemberExpr(MemberExpr * E)7629 TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
7630 ExprResult Base = getDerived().TransformExpr(E->getBase());
7631 if (Base.isInvalid())
7632 return ExprError();
7633
7634 NestedNameSpecifierLoc QualifierLoc;
7635 if (E->hasQualifier()) {
7636 QualifierLoc
7637 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
7638
7639 if (!QualifierLoc)
7640 return ExprError();
7641 }
7642 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
7643
7644 ValueDecl *Member
7645 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
7646 E->getMemberDecl()));
7647 if (!Member)
7648 return ExprError();
7649
7650 NamedDecl *FoundDecl = E->getFoundDecl();
7651 if (FoundDecl == E->getMemberDecl()) {
7652 FoundDecl = Member;
7653 } else {
7654 FoundDecl = cast_or_null<NamedDecl>(
7655 getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
7656 if (!FoundDecl)
7657 return ExprError();
7658 }
7659
7660 if (!getDerived().AlwaysRebuild() &&
7661 Base.get() == E->getBase() &&
7662 QualifierLoc == E->getQualifierLoc() &&
7663 Member == E->getMemberDecl() &&
7664 FoundDecl == E->getFoundDecl() &&
7665 !E->hasExplicitTemplateArgs()) {
7666
7667 // Mark it referenced in the new context regardless.
7668 // FIXME: this is a bit instantiation-specific.
7669 SemaRef.MarkMemberReferenced(E);
7670
7671 return E;
7672 }
7673
7674 TemplateArgumentListInfo TransArgs;
7675 if (E->hasExplicitTemplateArgs()) {
7676 TransArgs.setLAngleLoc(E->getLAngleLoc());
7677 TransArgs.setRAngleLoc(E->getRAngleLoc());
7678 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
7679 E->getNumTemplateArgs(),
7680 TransArgs))
7681 return ExprError();
7682 }
7683
7684 // FIXME: Bogus source location for the operator
7685 SourceLocation FakeOperatorLoc =
7686 SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
7687
7688 // FIXME: to do this check properly, we will need to preserve the
7689 // first-qualifier-in-scope here, just in case we had a dependent
7690 // base (and therefore couldn't do the check) and a
7691 // nested-name-qualifier (and therefore could do the lookup).
7692 NamedDecl *FirstQualifierInScope = nullptr;
7693
7694 return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
7695 E->isArrow(),
7696 QualifierLoc,
7697 TemplateKWLoc,
7698 E->getMemberNameInfo(),
7699 Member,
7700 FoundDecl,
7701 (E->hasExplicitTemplateArgs()
7702 ? &TransArgs : nullptr),
7703 FirstQualifierInScope);
7704 }
7705
7706 template<typename Derived>
7707 ExprResult
TransformBinaryOperator(BinaryOperator * E)7708 TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
7709 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
7710 if (LHS.isInvalid())
7711 return ExprError();
7712
7713 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
7714 if (RHS.isInvalid())
7715 return ExprError();
7716
7717 if (!getDerived().AlwaysRebuild() &&
7718 LHS.get() == E->getLHS() &&
7719 RHS.get() == E->getRHS())
7720 return E;
7721
7722 Sema::FPContractStateRAII FPContractState(getSema());
7723 getSema().FPFeatures.fp_contract = E->isFPContractable();
7724
7725 return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
7726 LHS.get(), RHS.get());
7727 }
7728
7729 template<typename Derived>
7730 ExprResult
TransformCompoundAssignOperator(CompoundAssignOperator * E)7731 TreeTransform<Derived>::TransformCompoundAssignOperator(
7732 CompoundAssignOperator *E) {
7733 return getDerived().TransformBinaryOperator(E);
7734 }
7735
7736 template<typename Derived>
7737 ExprResult TreeTransform<Derived>::
TransformBinaryConditionalOperator(BinaryConditionalOperator * e)7738 TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
7739 // Just rebuild the common and RHS expressions and see whether we
7740 // get any changes.
7741
7742 ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
7743 if (commonExpr.isInvalid())
7744 return ExprError();
7745
7746 ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
7747 if (rhs.isInvalid())
7748 return ExprError();
7749
7750 if (!getDerived().AlwaysRebuild() &&
7751 commonExpr.get() == e->getCommon() &&
7752 rhs.get() == e->getFalseExpr())
7753 return e;
7754
7755 return getDerived().RebuildConditionalOperator(commonExpr.get(),
7756 e->getQuestionLoc(),
7757 nullptr,
7758 e->getColonLoc(),
7759 rhs.get());
7760 }
7761
7762 template<typename Derived>
7763 ExprResult
TransformConditionalOperator(ConditionalOperator * E)7764 TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
7765 ExprResult Cond = getDerived().TransformExpr(E->getCond());
7766 if (Cond.isInvalid())
7767 return ExprError();
7768
7769 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
7770 if (LHS.isInvalid())
7771 return ExprError();
7772
7773 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
7774 if (RHS.isInvalid())
7775 return ExprError();
7776
7777 if (!getDerived().AlwaysRebuild() &&
7778 Cond.get() == E->getCond() &&
7779 LHS.get() == E->getLHS() &&
7780 RHS.get() == E->getRHS())
7781 return E;
7782
7783 return getDerived().RebuildConditionalOperator(Cond.get(),
7784 E->getQuestionLoc(),
7785 LHS.get(),
7786 E->getColonLoc(),
7787 RHS.get());
7788 }
7789
7790 template<typename Derived>
7791 ExprResult
TransformImplicitCastExpr(ImplicitCastExpr * E)7792 TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
7793 // Implicit casts are eliminated during transformation, since they
7794 // will be recomputed by semantic analysis after transformation.
7795 return getDerived().TransformExpr(E->getSubExprAsWritten());
7796 }
7797
7798 template<typename Derived>
7799 ExprResult
TransformCStyleCastExpr(CStyleCastExpr * E)7800 TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
7801 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
7802 if (!Type)
7803 return ExprError();
7804
7805 ExprResult SubExpr
7806 = getDerived().TransformExpr(E->getSubExprAsWritten());
7807 if (SubExpr.isInvalid())
7808 return ExprError();
7809
7810 if (!getDerived().AlwaysRebuild() &&
7811 Type == E->getTypeInfoAsWritten() &&
7812 SubExpr.get() == E->getSubExpr())
7813 return E;
7814
7815 return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
7816 Type,
7817 E->getRParenLoc(),
7818 SubExpr.get());
7819 }
7820
7821 template<typename Derived>
7822 ExprResult
TransformCompoundLiteralExpr(CompoundLiteralExpr * E)7823 TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
7824 TypeSourceInfo *OldT = E->getTypeSourceInfo();
7825 TypeSourceInfo *NewT = getDerived().TransformType(OldT);
7826 if (!NewT)
7827 return ExprError();
7828
7829 ExprResult Init = getDerived().TransformExpr(E->getInitializer());
7830 if (Init.isInvalid())
7831 return ExprError();
7832
7833 if (!getDerived().AlwaysRebuild() &&
7834 OldT == NewT &&
7835 Init.get() == E->getInitializer())
7836 return SemaRef.MaybeBindToTemporary(E);
7837
7838 // Note: the expression type doesn't necessarily match the
7839 // type-as-written, but that's okay, because it should always be
7840 // derivable from the initializer.
7841
7842 return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT,
7843 /*FIXME:*/E->getInitializer()->getLocEnd(),
7844 Init.get());
7845 }
7846
7847 template<typename Derived>
7848 ExprResult
TransformExtVectorElementExpr(ExtVectorElementExpr * E)7849 TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
7850 ExprResult Base = getDerived().TransformExpr(E->getBase());
7851 if (Base.isInvalid())
7852 return ExprError();
7853
7854 if (!getDerived().AlwaysRebuild() &&
7855 Base.get() == E->getBase())
7856 return E;
7857
7858 // FIXME: Bad source location
7859 SourceLocation FakeOperatorLoc =
7860 SemaRef.getLocForEndOfToken(E->getBase()->getLocEnd());
7861 return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
7862 E->getAccessorLoc(),
7863 E->getAccessor());
7864 }
7865
7866 template<typename Derived>
7867 ExprResult
TransformInitListExpr(InitListExpr * E)7868 TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
7869 if (InitListExpr *Syntactic = E->getSyntacticForm())
7870 E = Syntactic;
7871
7872 bool InitChanged = false;
7873
7874 SmallVector<Expr*, 4> Inits;
7875 if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
7876 Inits, &InitChanged))
7877 return ExprError();
7878
7879 if (!getDerived().AlwaysRebuild() && !InitChanged) {
7880 // FIXME: Attempt to reuse the existing syntactic form of the InitListExpr
7881 // in some cases. We can't reuse it in general, because the syntactic and
7882 // semantic forms are linked, and we can't know that semantic form will
7883 // match even if the syntactic form does.
7884 }
7885
7886 return getDerived().RebuildInitList(E->getLBraceLoc(), Inits,
7887 E->getRBraceLoc(), E->getType());
7888 }
7889
7890 template<typename Derived>
7891 ExprResult
TransformDesignatedInitExpr(DesignatedInitExpr * E)7892 TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
7893 Designation Desig;
7894
7895 // transform the initializer value
7896 ExprResult Init = getDerived().TransformExpr(E->getInit());
7897 if (Init.isInvalid())
7898 return ExprError();
7899
7900 // transform the designators.
7901 SmallVector<Expr*, 4> ArrayExprs;
7902 bool ExprChanged = false;
7903 for (DesignatedInitExpr::designators_iterator D = E->designators_begin(),
7904 DEnd = E->designators_end();
7905 D != DEnd; ++D) {
7906 if (D->isFieldDesignator()) {
7907 Desig.AddDesignator(Designator::getField(D->getFieldName(),
7908 D->getDotLoc(),
7909 D->getFieldLoc()));
7910 continue;
7911 }
7912
7913 if (D->isArrayDesignator()) {
7914 ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D));
7915 if (Index.isInvalid())
7916 return ExprError();
7917
7918 Desig.AddDesignator(Designator::getArray(Index.get(),
7919 D->getLBracketLoc()));
7920
7921 ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D);
7922 ArrayExprs.push_back(Index.get());
7923 continue;
7924 }
7925
7926 assert(D->isArrayRangeDesignator() && "New kind of designator?");
7927 ExprResult Start
7928 = getDerived().TransformExpr(E->getArrayRangeStart(*D));
7929 if (Start.isInvalid())
7930 return ExprError();
7931
7932 ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D));
7933 if (End.isInvalid())
7934 return ExprError();
7935
7936 Desig.AddDesignator(Designator::getArrayRange(Start.get(),
7937 End.get(),
7938 D->getLBracketLoc(),
7939 D->getEllipsisLoc()));
7940
7941 ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) ||
7942 End.get() != E->getArrayRangeEnd(*D);
7943
7944 ArrayExprs.push_back(Start.get());
7945 ArrayExprs.push_back(End.get());
7946 }
7947
7948 if (!getDerived().AlwaysRebuild() &&
7949 Init.get() == E->getInit() &&
7950 !ExprChanged)
7951 return E;
7952
7953 return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs,
7954 E->getEqualOrColonLoc(),
7955 E->usesGNUSyntax(), Init.get());
7956 }
7957
7958 template<typename Derived>
7959 ExprResult
TransformImplicitValueInitExpr(ImplicitValueInitExpr * E)7960 TreeTransform<Derived>::TransformImplicitValueInitExpr(
7961 ImplicitValueInitExpr *E) {
7962 TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
7963
7964 // FIXME: Will we ever have proper type location here? Will we actually
7965 // need to transform the type?
7966 QualType T = getDerived().TransformType(E->getType());
7967 if (T.isNull())
7968 return ExprError();
7969
7970 if (!getDerived().AlwaysRebuild() &&
7971 T == E->getType())
7972 return E;
7973
7974 return getDerived().RebuildImplicitValueInitExpr(T);
7975 }
7976
7977 template<typename Derived>
7978 ExprResult
TransformVAArgExpr(VAArgExpr * E)7979 TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
7980 TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
7981 if (!TInfo)
7982 return ExprError();
7983
7984 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
7985 if (SubExpr.isInvalid())
7986 return ExprError();
7987
7988 if (!getDerived().AlwaysRebuild() &&
7989 TInfo == E->getWrittenTypeInfo() &&
7990 SubExpr.get() == E->getSubExpr())
7991 return E;
7992
7993 return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
7994 TInfo, E->getRParenLoc());
7995 }
7996
7997 template<typename Derived>
7998 ExprResult
TransformParenListExpr(ParenListExpr * E)7999 TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
8000 bool ArgumentChanged = false;
8001 SmallVector<Expr*, 4> Inits;
8002 if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
8003 &ArgumentChanged))
8004 return ExprError();
8005
8006 return getDerived().RebuildParenListExpr(E->getLParenLoc(),
8007 Inits,
8008 E->getRParenLoc());
8009 }
8010
8011 /// \brief Transform an address-of-label expression.
8012 ///
8013 /// By default, the transformation of an address-of-label expression always
8014 /// rebuilds the expression, so that the label identifier can be resolved to
8015 /// the corresponding label statement by semantic analysis.
8016 template<typename Derived>
8017 ExprResult
TransformAddrLabelExpr(AddrLabelExpr * E)8018 TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
8019 Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
8020 E->getLabel());
8021 if (!LD)
8022 return ExprError();
8023
8024 return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
8025 cast<LabelDecl>(LD));
8026 }
8027
8028 template<typename Derived>
8029 ExprResult
TransformStmtExpr(StmtExpr * E)8030 TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
8031 SemaRef.ActOnStartStmtExpr();
8032 StmtResult SubStmt
8033 = getDerived().TransformCompoundStmt(E->getSubStmt(), true);
8034 if (SubStmt.isInvalid()) {
8035 SemaRef.ActOnStmtExprError();
8036 return ExprError();
8037 }
8038
8039 if (!getDerived().AlwaysRebuild() &&
8040 SubStmt.get() == E->getSubStmt()) {
8041 // Calling this an 'error' is unintuitive, but it does the right thing.
8042 SemaRef.ActOnStmtExprError();
8043 return SemaRef.MaybeBindToTemporary(E);
8044 }
8045
8046 return getDerived().RebuildStmtExpr(E->getLParenLoc(),
8047 SubStmt.get(),
8048 E->getRParenLoc());
8049 }
8050
8051 template<typename Derived>
8052 ExprResult
TransformChooseExpr(ChooseExpr * E)8053 TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
8054 ExprResult Cond = getDerived().TransformExpr(E->getCond());
8055 if (Cond.isInvalid())
8056 return ExprError();
8057
8058 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
8059 if (LHS.isInvalid())
8060 return ExprError();
8061
8062 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
8063 if (RHS.isInvalid())
8064 return ExprError();
8065
8066 if (!getDerived().AlwaysRebuild() &&
8067 Cond.get() == E->getCond() &&
8068 LHS.get() == E->getLHS() &&
8069 RHS.get() == E->getRHS())
8070 return E;
8071
8072 return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
8073 Cond.get(), LHS.get(), RHS.get(),
8074 E->getRParenLoc());
8075 }
8076
8077 template<typename Derived>
8078 ExprResult
TransformGNUNullExpr(GNUNullExpr * E)8079 TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
8080 return E;
8081 }
8082
8083 template<typename Derived>
8084 ExprResult
TransformCXXOperatorCallExpr(CXXOperatorCallExpr * E)8085 TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8086 switch (E->getOperator()) {
8087 case OO_New:
8088 case OO_Delete:
8089 case OO_Array_New:
8090 case OO_Array_Delete:
8091 llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
8092
8093 case OO_Call: {
8094 // This is a call to an object's operator().
8095 assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
8096
8097 // Transform the object itself.
8098 ExprResult Object = getDerived().TransformExpr(E->getArg(0));
8099 if (Object.isInvalid())
8100 return ExprError();
8101
8102 // FIXME: Poor location information
8103 SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken(
8104 static_cast<Expr *>(Object.get())->getLocEnd());
8105
8106 // Transform the call arguments.
8107 SmallVector<Expr*, 8> Args;
8108 if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
8109 Args))
8110 return ExprError();
8111
8112 return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc,
8113 Args,
8114 E->getLocEnd());
8115 }
8116
8117 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
8118 case OO_##Name:
8119 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
8120 #include "clang/Basic/OperatorKinds.def"
8121 case OO_Subscript:
8122 // Handled below.
8123 break;
8124
8125 case OO_Conditional:
8126 llvm_unreachable("conditional operator is not actually overloadable");
8127
8128 case OO_None:
8129 case NUM_OVERLOADED_OPERATORS:
8130 llvm_unreachable("not an overloaded operator?");
8131 }
8132
8133 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
8134 if (Callee.isInvalid())
8135 return ExprError();
8136
8137 ExprResult First;
8138 if (E->getOperator() == OO_Amp)
8139 First = getDerived().TransformAddressOfOperand(E->getArg(0));
8140 else
8141 First = getDerived().TransformExpr(E->getArg(0));
8142 if (First.isInvalid())
8143 return ExprError();
8144
8145 ExprResult Second;
8146 if (E->getNumArgs() == 2) {
8147 Second = getDerived().TransformExpr(E->getArg(1));
8148 if (Second.isInvalid())
8149 return ExprError();
8150 }
8151
8152 if (!getDerived().AlwaysRebuild() &&
8153 Callee.get() == E->getCallee() &&
8154 First.get() == E->getArg(0) &&
8155 (E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
8156 return SemaRef.MaybeBindToTemporary(E);
8157
8158 Sema::FPContractStateRAII FPContractState(getSema());
8159 getSema().FPFeatures.fp_contract = E->isFPContractable();
8160
8161 return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
8162 E->getOperatorLoc(),
8163 Callee.get(),
8164 First.get(),
8165 Second.get());
8166 }
8167
8168 template<typename Derived>
8169 ExprResult
TransformCXXMemberCallExpr(CXXMemberCallExpr * E)8170 TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
8171 return getDerived().TransformCallExpr(E);
8172 }
8173
8174 template<typename Derived>
8175 ExprResult
TransformCUDAKernelCallExpr(CUDAKernelCallExpr * E)8176 TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
8177 // Transform the callee.
8178 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
8179 if (Callee.isInvalid())
8180 return ExprError();
8181
8182 // Transform exec config.
8183 ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
8184 if (EC.isInvalid())
8185 return ExprError();
8186
8187 // Transform arguments.
8188 bool ArgChanged = false;
8189 SmallVector<Expr*, 8> Args;
8190 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
8191 &ArgChanged))
8192 return ExprError();
8193
8194 if (!getDerived().AlwaysRebuild() &&
8195 Callee.get() == E->getCallee() &&
8196 !ArgChanged)
8197 return SemaRef.MaybeBindToTemporary(E);
8198
8199 // FIXME: Wrong source location information for the '('.
8200 SourceLocation FakeLParenLoc
8201 = ((Expr *)Callee.get())->getSourceRange().getBegin();
8202 return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
8203 Args,
8204 E->getRParenLoc(), EC.get());
8205 }
8206
8207 template<typename Derived>
8208 ExprResult
TransformCXXNamedCastExpr(CXXNamedCastExpr * E)8209 TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
8210 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
8211 if (!Type)
8212 return ExprError();
8213
8214 ExprResult SubExpr
8215 = getDerived().TransformExpr(E->getSubExprAsWritten());
8216 if (SubExpr.isInvalid())
8217 return ExprError();
8218
8219 if (!getDerived().AlwaysRebuild() &&
8220 Type == E->getTypeInfoAsWritten() &&
8221 SubExpr.get() == E->getSubExpr())
8222 return E;
8223 return getDerived().RebuildCXXNamedCastExpr(
8224 E->getOperatorLoc(), E->getStmtClass(), E->getAngleBrackets().getBegin(),
8225 Type, E->getAngleBrackets().getEnd(),
8226 // FIXME. this should be '(' location
8227 E->getAngleBrackets().getEnd(), SubExpr.get(), E->getRParenLoc());
8228 }
8229
8230 template<typename Derived>
8231 ExprResult
TransformCXXStaticCastExpr(CXXStaticCastExpr * E)8232 TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
8233 return getDerived().TransformCXXNamedCastExpr(E);
8234 }
8235
8236 template<typename Derived>
8237 ExprResult
TransformCXXDynamicCastExpr(CXXDynamicCastExpr * E)8238 TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
8239 return getDerived().TransformCXXNamedCastExpr(E);
8240 }
8241
8242 template<typename Derived>
8243 ExprResult
TransformCXXReinterpretCastExpr(CXXReinterpretCastExpr * E)8244 TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
8245 CXXReinterpretCastExpr *E) {
8246 return getDerived().TransformCXXNamedCastExpr(E);
8247 }
8248
8249 template<typename Derived>
8250 ExprResult
TransformCXXConstCastExpr(CXXConstCastExpr * E)8251 TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
8252 return getDerived().TransformCXXNamedCastExpr(E);
8253 }
8254
8255 template<typename Derived>
8256 ExprResult
TransformCXXFunctionalCastExpr(CXXFunctionalCastExpr * E)8257 TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
8258 CXXFunctionalCastExpr *E) {
8259 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
8260 if (!Type)
8261 return ExprError();
8262
8263 ExprResult SubExpr
8264 = getDerived().TransformExpr(E->getSubExprAsWritten());
8265 if (SubExpr.isInvalid())
8266 return ExprError();
8267
8268 if (!getDerived().AlwaysRebuild() &&
8269 Type == E->getTypeInfoAsWritten() &&
8270 SubExpr.get() == E->getSubExpr())
8271 return E;
8272
8273 return getDerived().RebuildCXXFunctionalCastExpr(Type,
8274 E->getLParenLoc(),
8275 SubExpr.get(),
8276 E->getRParenLoc());
8277 }
8278
8279 template<typename Derived>
8280 ExprResult
TransformCXXTypeidExpr(CXXTypeidExpr * E)8281 TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
8282 if (E->isTypeOperand()) {
8283 TypeSourceInfo *TInfo
8284 = getDerived().TransformType(E->getTypeOperandSourceInfo());
8285 if (!TInfo)
8286 return ExprError();
8287
8288 if (!getDerived().AlwaysRebuild() &&
8289 TInfo == E->getTypeOperandSourceInfo())
8290 return E;
8291
8292 return getDerived().RebuildCXXTypeidExpr(E->getType(),
8293 E->getLocStart(),
8294 TInfo,
8295 E->getLocEnd());
8296 }
8297
8298 // We don't know whether the subexpression is potentially evaluated until
8299 // after we perform semantic analysis. We speculatively assume it is
8300 // unevaluated; it will get fixed later if the subexpression is in fact
8301 // potentially evaluated.
8302 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
8303 Sema::ReuseLambdaContextDecl);
8304
8305 ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
8306 if (SubExpr.isInvalid())
8307 return ExprError();
8308
8309 if (!getDerived().AlwaysRebuild() &&
8310 SubExpr.get() == E->getExprOperand())
8311 return E;
8312
8313 return getDerived().RebuildCXXTypeidExpr(E->getType(),
8314 E->getLocStart(),
8315 SubExpr.get(),
8316 E->getLocEnd());
8317 }
8318
8319 template<typename Derived>
8320 ExprResult
TransformCXXUuidofExpr(CXXUuidofExpr * E)8321 TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
8322 if (E->isTypeOperand()) {
8323 TypeSourceInfo *TInfo
8324 = getDerived().TransformType(E->getTypeOperandSourceInfo());
8325 if (!TInfo)
8326 return ExprError();
8327
8328 if (!getDerived().AlwaysRebuild() &&
8329 TInfo == E->getTypeOperandSourceInfo())
8330 return E;
8331
8332 return getDerived().RebuildCXXUuidofExpr(E->getType(),
8333 E->getLocStart(),
8334 TInfo,
8335 E->getLocEnd());
8336 }
8337
8338 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
8339
8340 ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
8341 if (SubExpr.isInvalid())
8342 return ExprError();
8343
8344 if (!getDerived().AlwaysRebuild() &&
8345 SubExpr.get() == E->getExprOperand())
8346 return E;
8347
8348 return getDerived().RebuildCXXUuidofExpr(E->getType(),
8349 E->getLocStart(),
8350 SubExpr.get(),
8351 E->getLocEnd());
8352 }
8353
8354 template<typename Derived>
8355 ExprResult
TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)8356 TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
8357 return E;
8358 }
8359
8360 template<typename Derived>
8361 ExprResult
TransformCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr * E)8362 TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
8363 CXXNullPtrLiteralExpr *E) {
8364 return E;
8365 }
8366
8367 template<typename Derived>
8368 ExprResult
TransformCXXThisExpr(CXXThisExpr * E)8369 TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
8370 QualType T = getSema().getCurrentThisType();
8371
8372 if (!getDerived().AlwaysRebuild() && T == E->getType()) {
8373 // Make sure that we capture 'this'.
8374 getSema().CheckCXXThisCapture(E->getLocStart());
8375 return E;
8376 }
8377
8378 return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit());
8379 }
8380
8381 template<typename Derived>
8382 ExprResult
TransformCXXThrowExpr(CXXThrowExpr * E)8383 TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
8384 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
8385 if (SubExpr.isInvalid())
8386 return ExprError();
8387
8388 if (!getDerived().AlwaysRebuild() &&
8389 SubExpr.get() == E->getSubExpr())
8390 return E;
8391
8392 return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
8393 E->isThrownVariableInScope());
8394 }
8395
8396 template<typename Derived>
8397 ExprResult
TransformCXXDefaultArgExpr(CXXDefaultArgExpr * E)8398 TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
8399 ParmVarDecl *Param
8400 = cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getLocStart(),
8401 E->getParam()));
8402 if (!Param)
8403 return ExprError();
8404
8405 if (!getDerived().AlwaysRebuild() &&
8406 Param == E->getParam())
8407 return E;
8408
8409 return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
8410 }
8411
8412 template<typename Derived>
8413 ExprResult
TransformCXXDefaultInitExpr(CXXDefaultInitExpr * E)8414 TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
8415 FieldDecl *Field
8416 = cast_or_null<FieldDecl>(getDerived().TransformDecl(E->getLocStart(),
8417 E->getField()));
8418 if (!Field)
8419 return ExprError();
8420
8421 if (!getDerived().AlwaysRebuild() && Field == E->getField())
8422 return E;
8423
8424 return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field);
8425 }
8426
8427 template<typename Derived>
8428 ExprResult
TransformCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)8429 TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
8430 CXXScalarValueInitExpr *E) {
8431 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
8432 if (!T)
8433 return ExprError();
8434
8435 if (!getDerived().AlwaysRebuild() &&
8436 T == E->getTypeSourceInfo())
8437 return E;
8438
8439 return getDerived().RebuildCXXScalarValueInitExpr(T,
8440 /*FIXME:*/T->getTypeLoc().getEndLoc(),
8441 E->getRParenLoc());
8442 }
8443
8444 template<typename Derived>
8445 ExprResult
TransformCXXNewExpr(CXXNewExpr * E)8446 TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
8447 // Transform the type that we're allocating
8448 TypeSourceInfo *AllocTypeInfo
8449 = getDerived().TransformType(E->getAllocatedTypeSourceInfo());
8450 if (!AllocTypeInfo)
8451 return ExprError();
8452
8453 // Transform the size of the array we're allocating (if any).
8454 ExprResult ArraySize = getDerived().TransformExpr(E->getArraySize());
8455 if (ArraySize.isInvalid())
8456 return ExprError();
8457
8458 // Transform the placement arguments (if any).
8459 bool ArgumentChanged = false;
8460 SmallVector<Expr*, 8> PlacementArgs;
8461 if (getDerived().TransformExprs(E->getPlacementArgs(),
8462 E->getNumPlacementArgs(), true,
8463 PlacementArgs, &ArgumentChanged))
8464 return ExprError();
8465
8466 // Transform the initializer (if any).
8467 Expr *OldInit = E->getInitializer();
8468 ExprResult NewInit;
8469 if (OldInit)
8470 NewInit = getDerived().TransformInitializer(OldInit, true);
8471 if (NewInit.isInvalid())
8472 return ExprError();
8473
8474 // Transform new operator and delete operator.
8475 FunctionDecl *OperatorNew = nullptr;
8476 if (E->getOperatorNew()) {
8477 OperatorNew = cast_or_null<FunctionDecl>(
8478 getDerived().TransformDecl(E->getLocStart(),
8479 E->getOperatorNew()));
8480 if (!OperatorNew)
8481 return ExprError();
8482 }
8483
8484 FunctionDecl *OperatorDelete = nullptr;
8485 if (E->getOperatorDelete()) {
8486 OperatorDelete = cast_or_null<FunctionDecl>(
8487 getDerived().TransformDecl(E->getLocStart(),
8488 E->getOperatorDelete()));
8489 if (!OperatorDelete)
8490 return ExprError();
8491 }
8492
8493 if (!getDerived().AlwaysRebuild() &&
8494 AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
8495 ArraySize.get() == E->getArraySize() &&
8496 NewInit.get() == OldInit &&
8497 OperatorNew == E->getOperatorNew() &&
8498 OperatorDelete == E->getOperatorDelete() &&
8499 !ArgumentChanged) {
8500 // Mark any declarations we need as referenced.
8501 // FIXME: instantiation-specific.
8502 if (OperatorNew)
8503 SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorNew);
8504 if (OperatorDelete)
8505 SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
8506
8507 if (E->isArray() && !E->getAllocatedType()->isDependentType()) {
8508 QualType ElementType
8509 = SemaRef.Context.getBaseElementType(E->getAllocatedType());
8510 if (const RecordType *RecordT = ElementType->getAs<RecordType>()) {
8511 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl());
8512 if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) {
8513 SemaRef.MarkFunctionReferenced(E->getLocStart(), Destructor);
8514 }
8515 }
8516 }
8517
8518 return E;
8519 }
8520
8521 QualType AllocType = AllocTypeInfo->getType();
8522 if (!ArraySize.get()) {
8523 // If no array size was specified, but the new expression was
8524 // instantiated with an array type (e.g., "new T" where T is
8525 // instantiated with "int[4]"), extract the outer bound from the
8526 // array type as our array size. We do this with constant and
8527 // dependently-sized array types.
8528 const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
8529 if (!ArrayT) {
8530 // Do nothing
8531 } else if (const ConstantArrayType *ConsArrayT
8532 = dyn_cast<ConstantArrayType>(ArrayT)) {
8533 ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(),
8534 SemaRef.Context.getSizeType(),
8535 /*FIXME:*/ E->getLocStart());
8536 AllocType = ConsArrayT->getElementType();
8537 } else if (const DependentSizedArrayType *DepArrayT
8538 = dyn_cast<DependentSizedArrayType>(ArrayT)) {
8539 if (DepArrayT->getSizeExpr()) {
8540 ArraySize = DepArrayT->getSizeExpr();
8541 AllocType = DepArrayT->getElementType();
8542 }
8543 }
8544 }
8545
8546 return getDerived().RebuildCXXNewExpr(E->getLocStart(),
8547 E->isGlobalNew(),
8548 /*FIXME:*/E->getLocStart(),
8549 PlacementArgs,
8550 /*FIXME:*/E->getLocStart(),
8551 E->getTypeIdParens(),
8552 AllocType,
8553 AllocTypeInfo,
8554 ArraySize.get(),
8555 E->getDirectInitRange(),
8556 NewInit.get());
8557 }
8558
8559 template<typename Derived>
8560 ExprResult
TransformCXXDeleteExpr(CXXDeleteExpr * E)8561 TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
8562 ExprResult Operand = getDerived().TransformExpr(E->getArgument());
8563 if (Operand.isInvalid())
8564 return ExprError();
8565
8566 // Transform the delete operator, if known.
8567 FunctionDecl *OperatorDelete = nullptr;
8568 if (E->getOperatorDelete()) {
8569 OperatorDelete = cast_or_null<FunctionDecl>(
8570 getDerived().TransformDecl(E->getLocStart(),
8571 E->getOperatorDelete()));
8572 if (!OperatorDelete)
8573 return ExprError();
8574 }
8575
8576 if (!getDerived().AlwaysRebuild() &&
8577 Operand.get() == E->getArgument() &&
8578 OperatorDelete == E->getOperatorDelete()) {
8579 // Mark any declarations we need as referenced.
8580 // FIXME: instantiation-specific.
8581 if (OperatorDelete)
8582 SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
8583
8584 if (!E->getArgument()->isTypeDependent()) {
8585 QualType Destroyed = SemaRef.Context.getBaseElementType(
8586 E->getDestroyedType());
8587 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
8588 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
8589 SemaRef.MarkFunctionReferenced(E->getLocStart(),
8590 SemaRef.LookupDestructor(Record));
8591 }
8592 }
8593
8594 return E;
8595 }
8596
8597 return getDerived().RebuildCXXDeleteExpr(E->getLocStart(),
8598 E->isGlobalDelete(),
8599 E->isArrayForm(),
8600 Operand.get());
8601 }
8602
8603 template<typename Derived>
8604 ExprResult
TransformCXXPseudoDestructorExpr(CXXPseudoDestructorExpr * E)8605 TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
8606 CXXPseudoDestructorExpr *E) {
8607 ExprResult Base = getDerived().TransformExpr(E->getBase());
8608 if (Base.isInvalid())
8609 return ExprError();
8610
8611 ParsedType ObjectTypePtr;
8612 bool MayBePseudoDestructor = false;
8613 Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
8614 E->getOperatorLoc(),
8615 E->isArrow()? tok::arrow : tok::period,
8616 ObjectTypePtr,
8617 MayBePseudoDestructor);
8618 if (Base.isInvalid())
8619 return ExprError();
8620
8621 QualType ObjectType = ObjectTypePtr.get();
8622 NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
8623 if (QualifierLoc) {
8624 QualifierLoc
8625 = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
8626 if (!QualifierLoc)
8627 return ExprError();
8628 }
8629 CXXScopeSpec SS;
8630 SS.Adopt(QualifierLoc);
8631
8632 PseudoDestructorTypeStorage Destroyed;
8633 if (E->getDestroyedTypeInfo()) {
8634 TypeSourceInfo *DestroyedTypeInfo
8635 = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
8636 ObjectType, nullptr, SS);
8637 if (!DestroyedTypeInfo)
8638 return ExprError();
8639 Destroyed = DestroyedTypeInfo;
8640 } else if (!ObjectType.isNull() && ObjectType->isDependentType()) {
8641 // We aren't likely to be able to resolve the identifier down to a type
8642 // now anyway, so just retain the identifier.
8643 Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
8644 E->getDestroyedTypeLoc());
8645 } else {
8646 // Look for a destructor known with the given name.
8647 ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
8648 *E->getDestroyedTypeIdentifier(),
8649 E->getDestroyedTypeLoc(),
8650 /*Scope=*/nullptr,
8651 SS, ObjectTypePtr,
8652 false);
8653 if (!T)
8654 return ExprError();
8655
8656 Destroyed
8657 = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
8658 E->getDestroyedTypeLoc());
8659 }
8660
8661 TypeSourceInfo *ScopeTypeInfo = nullptr;
8662 if (E->getScopeTypeInfo()) {
8663 CXXScopeSpec EmptySS;
8664 ScopeTypeInfo = getDerived().TransformTypeInObjectScope(
8665 E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS);
8666 if (!ScopeTypeInfo)
8667 return ExprError();
8668 }
8669
8670 return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
8671 E->getOperatorLoc(),
8672 E->isArrow(),
8673 SS,
8674 ScopeTypeInfo,
8675 E->getColonColonLoc(),
8676 E->getTildeLoc(),
8677 Destroyed);
8678 }
8679
8680 template<typename Derived>
8681 ExprResult
TransformUnresolvedLookupExpr(UnresolvedLookupExpr * Old)8682 TreeTransform<Derived>::TransformUnresolvedLookupExpr(
8683 UnresolvedLookupExpr *Old) {
8684 LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
8685 Sema::LookupOrdinaryName);
8686
8687 // Transform all the decls.
8688 for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(),
8689 E = Old->decls_end(); I != E; ++I) {
8690 NamedDecl *InstD = static_cast<NamedDecl*>(
8691 getDerived().TransformDecl(Old->getNameLoc(),
8692 *I));
8693 if (!InstD) {
8694 // Silently ignore these if a UsingShadowDecl instantiated to nothing.
8695 // This can happen because of dependent hiding.
8696 if (isa<UsingShadowDecl>(*I))
8697 continue;
8698 else {
8699 R.clear();
8700 return ExprError();
8701 }
8702 }
8703
8704 // Expand using declarations.
8705 if (isa<UsingDecl>(InstD)) {
8706 UsingDecl *UD = cast<UsingDecl>(InstD);
8707 for (auto *I : UD->shadows())
8708 R.addDecl(I);
8709 continue;
8710 }
8711
8712 R.addDecl(InstD);
8713 }
8714
8715 // Resolve a kind, but don't do any further analysis. If it's
8716 // ambiguous, the callee needs to deal with it.
8717 R.resolveKind();
8718
8719 // Rebuild the nested-name qualifier, if present.
8720 CXXScopeSpec SS;
8721 if (Old->getQualifierLoc()) {
8722 NestedNameSpecifierLoc QualifierLoc
8723 = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
8724 if (!QualifierLoc)
8725 return ExprError();
8726
8727 SS.Adopt(QualifierLoc);
8728 }
8729
8730 if (Old->getNamingClass()) {
8731 CXXRecordDecl *NamingClass
8732 = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
8733 Old->getNameLoc(),
8734 Old->getNamingClass()));
8735 if (!NamingClass) {
8736 R.clear();
8737 return ExprError();
8738 }
8739
8740 R.setNamingClass(NamingClass);
8741 }
8742
8743 SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
8744
8745 // If we have neither explicit template arguments, nor the template keyword,
8746 // it's a normal declaration name.
8747 if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid())
8748 return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
8749
8750 // If we have template arguments, rebuild them, then rebuild the
8751 // templateid expression.
8752 TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
8753 if (Old->hasExplicitTemplateArgs() &&
8754 getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
8755 Old->getNumTemplateArgs(),
8756 TransArgs)) {
8757 R.clear();
8758 return ExprError();
8759 }
8760
8761 return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R,
8762 Old->requiresADL(), &TransArgs);
8763 }
8764
8765 template<typename Derived>
8766 ExprResult
TransformTypeTraitExpr(TypeTraitExpr * E)8767 TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) {
8768 bool ArgChanged = false;
8769 SmallVector<TypeSourceInfo *, 4> Args;
8770 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
8771 TypeSourceInfo *From = E->getArg(I);
8772 TypeLoc FromTL = From->getTypeLoc();
8773 if (!FromTL.getAs<PackExpansionTypeLoc>()) {
8774 TypeLocBuilder TLB;
8775 TLB.reserve(FromTL.getFullDataSize());
8776 QualType To = getDerived().TransformType(TLB, FromTL);
8777 if (To.isNull())
8778 return ExprError();
8779
8780 if (To == From->getType())
8781 Args.push_back(From);
8782 else {
8783 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
8784 ArgChanged = true;
8785 }
8786 continue;
8787 }
8788
8789 ArgChanged = true;
8790
8791 // We have a pack expansion. Instantiate it.
8792 PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>();
8793 TypeLoc PatternTL = ExpansionTL.getPatternLoc();
8794 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
8795 SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded);
8796
8797 // Determine whether the set of unexpanded parameter packs can and should
8798 // be expanded.
8799 bool Expand = true;
8800 bool RetainExpansion = false;
8801 Optional<unsigned> OrigNumExpansions =
8802 ExpansionTL.getTypePtr()->getNumExpansions();
8803 Optional<unsigned> NumExpansions = OrigNumExpansions;
8804 if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
8805 PatternTL.getSourceRange(),
8806 Unexpanded,
8807 Expand, RetainExpansion,
8808 NumExpansions))
8809 return ExprError();
8810
8811 if (!Expand) {
8812 // The transform has determined that we should perform a simple
8813 // transformation on the pack expansion, producing another pack
8814 // expansion.
8815 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
8816
8817 TypeLocBuilder TLB;
8818 TLB.reserve(From->getTypeLoc().getFullDataSize());
8819
8820 QualType To = getDerived().TransformType(TLB, PatternTL);
8821 if (To.isNull())
8822 return ExprError();
8823
8824 To = getDerived().RebuildPackExpansionType(To,
8825 PatternTL.getSourceRange(),
8826 ExpansionTL.getEllipsisLoc(),
8827 NumExpansions);
8828 if (To.isNull())
8829 return ExprError();
8830
8831 PackExpansionTypeLoc ToExpansionTL
8832 = TLB.push<PackExpansionTypeLoc>(To);
8833 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
8834 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
8835 continue;
8836 }
8837
8838 // Expand the pack expansion by substituting for each argument in the
8839 // pack(s).
8840 for (unsigned I = 0; I != *NumExpansions; ++I) {
8841 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
8842 TypeLocBuilder TLB;
8843 TLB.reserve(PatternTL.getFullDataSize());
8844 QualType To = getDerived().TransformType(TLB, PatternTL);
8845 if (To.isNull())
8846 return ExprError();
8847
8848 if (To->containsUnexpandedParameterPack()) {
8849 To = getDerived().RebuildPackExpansionType(To,
8850 PatternTL.getSourceRange(),
8851 ExpansionTL.getEllipsisLoc(),
8852 NumExpansions);
8853 if (To.isNull())
8854 return ExprError();
8855
8856 PackExpansionTypeLoc ToExpansionTL
8857 = TLB.push<PackExpansionTypeLoc>(To);
8858 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
8859 }
8860
8861 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
8862 }
8863
8864 if (!RetainExpansion)
8865 continue;
8866
8867 // If we're supposed to retain a pack expansion, do so by temporarily
8868 // forgetting the partially-substituted parameter pack.
8869 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
8870
8871 TypeLocBuilder TLB;
8872 TLB.reserve(From->getTypeLoc().getFullDataSize());
8873
8874 QualType To = getDerived().TransformType(TLB, PatternTL);
8875 if (To.isNull())
8876 return ExprError();
8877
8878 To = getDerived().RebuildPackExpansionType(To,
8879 PatternTL.getSourceRange(),
8880 ExpansionTL.getEllipsisLoc(),
8881 NumExpansions);
8882 if (To.isNull())
8883 return ExprError();
8884
8885 PackExpansionTypeLoc ToExpansionTL
8886 = TLB.push<PackExpansionTypeLoc>(To);
8887 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
8888 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
8889 }
8890
8891 if (!getDerived().AlwaysRebuild() && !ArgChanged)
8892 return E;
8893
8894 return getDerived().RebuildTypeTrait(E->getTrait(),
8895 E->getLocStart(),
8896 Args,
8897 E->getLocEnd());
8898 }
8899
8900 template<typename Derived>
8901 ExprResult
TransformArrayTypeTraitExpr(ArrayTypeTraitExpr * E)8902 TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
8903 TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
8904 if (!T)
8905 return ExprError();
8906
8907 if (!getDerived().AlwaysRebuild() &&
8908 T == E->getQueriedTypeSourceInfo())
8909 return E;
8910
8911 ExprResult SubExpr;
8912 {
8913 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
8914 SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
8915 if (SubExpr.isInvalid())
8916 return ExprError();
8917
8918 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression())
8919 return E;
8920 }
8921
8922 return getDerived().RebuildArrayTypeTrait(E->getTrait(),
8923 E->getLocStart(),
8924 T,
8925 SubExpr.get(),
8926 E->getLocEnd());
8927 }
8928
8929 template<typename Derived>
8930 ExprResult
TransformExpressionTraitExpr(ExpressionTraitExpr * E)8931 TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
8932 ExprResult SubExpr;
8933 {
8934 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
8935 SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
8936 if (SubExpr.isInvalid())
8937 return ExprError();
8938
8939 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
8940 return E;
8941 }
8942
8943 return getDerived().RebuildExpressionTrait(
8944 E->getTrait(), E->getLocStart(), SubExpr.get(), E->getLocEnd());
8945 }
8946
8947 template <typename Derived>
TransformParenDependentScopeDeclRefExpr(ParenExpr * PE,DependentScopeDeclRefExpr * DRE,bool AddrTaken,TypeSourceInfo ** RecoveryTSI)8948 ExprResult TreeTransform<Derived>::TransformParenDependentScopeDeclRefExpr(
8949 ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken,
8950 TypeSourceInfo **RecoveryTSI) {
8951 ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr(
8952 DRE, AddrTaken, RecoveryTSI);
8953
8954 // Propagate both errors and recovered types, which return ExprEmpty.
8955 if (!NewDRE.isUsable())
8956 return NewDRE;
8957
8958 // We got an expr, wrap it up in parens.
8959 if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE)
8960 return PE;
8961 return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(),
8962 PE->getRParen());
8963 }
8964
8965 template <typename Derived>
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E)8966 ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
8967 DependentScopeDeclRefExpr *E) {
8968 return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false,
8969 nullptr);
8970 }
8971
8972 template<typename Derived>
8973 ExprResult
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E,bool IsAddressOfOperand,TypeSourceInfo ** RecoveryTSI)8974 TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
8975 DependentScopeDeclRefExpr *E,
8976 bool IsAddressOfOperand,
8977 TypeSourceInfo **RecoveryTSI) {
8978 assert(E->getQualifierLoc());
8979 NestedNameSpecifierLoc QualifierLoc
8980 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
8981 if (!QualifierLoc)
8982 return ExprError();
8983 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
8984
8985 // TODO: If this is a conversion-function-id, verify that the
8986 // destination type name (if present) resolves the same way after
8987 // instantiation as it did in the local scope.
8988
8989 DeclarationNameInfo NameInfo
8990 = getDerived().TransformDeclarationNameInfo(E->getNameInfo());
8991 if (!NameInfo.getName())
8992 return ExprError();
8993
8994 if (!E->hasExplicitTemplateArgs()) {
8995 if (!getDerived().AlwaysRebuild() &&
8996 QualifierLoc == E->getQualifierLoc() &&
8997 // Note: it is sufficient to compare the Name component of NameInfo:
8998 // if name has not changed, DNLoc has not changed either.
8999 NameInfo.getName() == E->getDeclName())
9000 return E;
9001
9002 return getDerived().RebuildDependentScopeDeclRefExpr(
9003 QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr,
9004 IsAddressOfOperand, RecoveryTSI);
9005 }
9006
9007 TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
9008 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
9009 E->getNumTemplateArgs(),
9010 TransArgs))
9011 return ExprError();
9012
9013 return getDerived().RebuildDependentScopeDeclRefExpr(
9014 QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand,
9015 RecoveryTSI);
9016 }
9017
9018 template<typename Derived>
9019 ExprResult
TransformCXXConstructExpr(CXXConstructExpr * E)9020 TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
9021 // CXXConstructExprs other than for list-initialization and
9022 // CXXTemporaryObjectExpr are always implicit, so when we have
9023 // a 1-argument construction we just transform that argument.
9024 if ((E->getNumArgs() == 1 ||
9025 (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) &&
9026 (!getDerived().DropCallArgument(E->getArg(0))) &&
9027 !E->isListInitialization())
9028 return getDerived().TransformExpr(E->getArg(0));
9029
9030 TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
9031
9032 QualType T = getDerived().TransformType(E->getType());
9033 if (T.isNull())
9034 return ExprError();
9035
9036 CXXConstructorDecl *Constructor
9037 = cast_or_null<CXXConstructorDecl>(
9038 getDerived().TransformDecl(E->getLocStart(),
9039 E->getConstructor()));
9040 if (!Constructor)
9041 return ExprError();
9042
9043 bool ArgumentChanged = false;
9044 SmallVector<Expr*, 8> Args;
9045 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
9046 &ArgumentChanged))
9047 return ExprError();
9048
9049 if (!getDerived().AlwaysRebuild() &&
9050 T == E->getType() &&
9051 Constructor == E->getConstructor() &&
9052 !ArgumentChanged) {
9053 // Mark the constructor as referenced.
9054 // FIXME: Instantiation-specific
9055 SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
9056 return E;
9057 }
9058
9059 return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(),
9060 Constructor, E->isElidable(),
9061 Args,
9062 E->hadMultipleCandidates(),
9063 E->isListInitialization(),
9064 E->isStdInitListInitialization(),
9065 E->requiresZeroInitialization(),
9066 E->getConstructionKind(),
9067 E->getParenOrBraceRange());
9068 }
9069
9070 /// \brief Transform a C++ temporary-binding expression.
9071 ///
9072 /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
9073 /// transform the subexpression and return that.
9074 template<typename Derived>
9075 ExprResult
TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)9076 TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
9077 return getDerived().TransformExpr(E->getSubExpr());
9078 }
9079
9080 /// \brief Transform a C++ expression that contains cleanups that should
9081 /// be run after the expression is evaluated.
9082 ///
9083 /// Since ExprWithCleanups nodes are implicitly generated, we
9084 /// just transform the subexpression and return that.
9085 template<typename Derived>
9086 ExprResult
TransformExprWithCleanups(ExprWithCleanups * E)9087 TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
9088 return getDerived().TransformExpr(E->getSubExpr());
9089 }
9090
9091 template<typename Derived>
9092 ExprResult
TransformCXXTemporaryObjectExpr(CXXTemporaryObjectExpr * E)9093 TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
9094 CXXTemporaryObjectExpr *E) {
9095 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
9096 if (!T)
9097 return ExprError();
9098
9099 CXXConstructorDecl *Constructor
9100 = cast_or_null<CXXConstructorDecl>(
9101 getDerived().TransformDecl(E->getLocStart(),
9102 E->getConstructor()));
9103 if (!Constructor)
9104 return ExprError();
9105
9106 bool ArgumentChanged = false;
9107 SmallVector<Expr*, 8> Args;
9108 Args.reserve(E->getNumArgs());
9109 if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
9110 &ArgumentChanged))
9111 return ExprError();
9112
9113 if (!getDerived().AlwaysRebuild() &&
9114 T == E->getTypeSourceInfo() &&
9115 Constructor == E->getConstructor() &&
9116 !ArgumentChanged) {
9117 // FIXME: Instantiation-specific
9118 SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
9119 return SemaRef.MaybeBindToTemporary(E);
9120 }
9121
9122 // FIXME: Pass in E->isListInitialization().
9123 return getDerived().RebuildCXXTemporaryObjectExpr(T,
9124 /*FIXME:*/T->getTypeLoc().getEndLoc(),
9125 Args,
9126 E->getLocEnd());
9127 }
9128
9129 template<typename Derived>
9130 ExprResult
TransformLambdaExpr(LambdaExpr * E)9131 TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
9132 // Transform any init-capture expressions before entering the scope of the
9133 // lambda body, because they are not semantically within that scope.
9134 SmallVector<InitCaptureInfoTy, 8> InitCaptureExprsAndTypes;
9135 InitCaptureExprsAndTypes.resize(E->explicit_capture_end() -
9136 E->explicit_capture_begin());
9137 for (LambdaExpr::capture_iterator C = E->capture_begin(),
9138 CEnd = E->capture_end();
9139 C != CEnd; ++C) {
9140 if (!C->isInitCapture())
9141 continue;
9142 EnterExpressionEvaluationContext EEEC(getSema(),
9143 Sema::PotentiallyEvaluated);
9144 ExprResult NewExprInitResult = getDerived().TransformInitializer(
9145 C->getCapturedVar()->getInit(),
9146 C->getCapturedVar()->getInitStyle() == VarDecl::CallInit);
9147
9148 if (NewExprInitResult.isInvalid())
9149 return ExprError();
9150 Expr *NewExprInit = NewExprInitResult.get();
9151
9152 VarDecl *OldVD = C->getCapturedVar();
9153 QualType NewInitCaptureType =
9154 getSema().performLambdaInitCaptureInitialization(C->getLocation(),
9155 OldVD->getType()->isReferenceType(), OldVD->getIdentifier(),
9156 NewExprInit);
9157 NewExprInitResult = NewExprInit;
9158 InitCaptureExprsAndTypes[C - E->capture_begin()] =
9159 std::make_pair(NewExprInitResult, NewInitCaptureType);
9160 }
9161
9162 LambdaScopeInfo *LSI = getSema().PushLambdaScope();
9163 Sema::FunctionScopeRAII FuncScopeCleanup(getSema());
9164
9165 // Transform the template parameters, and add them to the current
9166 // instantiation scope. The null case is handled correctly.
9167 LSI->GLTemplateParameterList = getDerived().TransformTemplateParameterList(
9168 E->getTemplateParameterList());
9169
9170 // Transform the type of the original lambda's call operator.
9171 // The transformation MUST be done in the CurrentInstantiationScope since
9172 // it introduces a mapping of the original to the newly created
9173 // transformed parameters.
9174 TypeSourceInfo *NewCallOpTSI = nullptr;
9175 {
9176 TypeSourceInfo *OldCallOpTSI = E->getCallOperator()->getTypeSourceInfo();
9177 FunctionProtoTypeLoc OldCallOpFPTL =
9178 OldCallOpTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
9179
9180 TypeLocBuilder NewCallOpTLBuilder;
9181 SmallVector<QualType, 4> ExceptionStorage;
9182 TreeTransform *This = this; // Work around gcc.gnu.org/PR56135.
9183 QualType NewCallOpType = TransformFunctionProtoType(
9184 NewCallOpTLBuilder, OldCallOpFPTL, nullptr, 0,
9185 [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
9186 return This->TransformExceptionSpec(OldCallOpFPTL.getBeginLoc(), ESI,
9187 ExceptionStorage, Changed);
9188 });
9189 if (NewCallOpType.isNull())
9190 return ExprError();
9191 NewCallOpTSI = NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context,
9192 NewCallOpType);
9193 }
9194
9195 // Create the local class that will describe the lambda.
9196 CXXRecordDecl *Class
9197 = getSema().createLambdaClosureType(E->getIntroducerRange(),
9198 NewCallOpTSI,
9199 /*KnownDependent=*/false,
9200 E->getCaptureDefault());
9201 getDerived().transformedLocalDecl(E->getLambdaClass(), Class);
9202
9203 // Build the call operator.
9204 CXXMethodDecl *NewCallOperator = getSema().startLambdaDefinition(
9205 Class, E->getIntroducerRange(), NewCallOpTSI,
9206 E->getCallOperator()->getLocEnd(),
9207 NewCallOpTSI->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams());
9208 LSI->CallOperator = NewCallOperator;
9209
9210 getDerived().transformAttrs(E->getCallOperator(), NewCallOperator);
9211
9212 // TransformLambdaScope will manage the function scope, so we can disable the
9213 // cleanup.
9214 FuncScopeCleanup.disable();
9215
9216 return getDerived().TransformLambdaScope(E, NewCallOperator,
9217 InitCaptureExprsAndTypes);
9218 }
9219
9220 template<typename Derived>
9221 ExprResult
TransformLambdaScope(LambdaExpr * E,CXXMethodDecl * CallOperator,ArrayRef<InitCaptureInfoTy> InitCaptureExprsAndTypes)9222 TreeTransform<Derived>::TransformLambdaScope(LambdaExpr *E,
9223 CXXMethodDecl *CallOperator,
9224 ArrayRef<InitCaptureInfoTy> InitCaptureExprsAndTypes) {
9225 bool Invalid = false;
9226
9227 // Introduce the context of the call operator.
9228 Sema::ContextRAII SavedContext(getSema(), CallOperator,
9229 /*NewThisContext*/false);
9230
9231 LambdaScopeInfo *const LSI = getSema().getCurLambda();
9232 // Enter the scope of the lambda.
9233 getSema().buildLambdaScope(LSI, CallOperator, E->getIntroducerRange(),
9234 E->getCaptureDefault(),
9235 E->getCaptureDefaultLoc(),
9236 E->hasExplicitParameters(),
9237 E->hasExplicitResultType(),
9238 E->isMutable());
9239
9240 // Transform captures.
9241 bool FinishedExplicitCaptures = false;
9242 for (LambdaExpr::capture_iterator C = E->capture_begin(),
9243 CEnd = E->capture_end();
9244 C != CEnd; ++C) {
9245 // When we hit the first implicit capture, tell Sema that we've finished
9246 // the list of explicit captures.
9247 if (!FinishedExplicitCaptures && C->isImplicit()) {
9248 getSema().finishLambdaExplicitCaptures(LSI);
9249 FinishedExplicitCaptures = true;
9250 }
9251
9252 // Capturing 'this' is trivial.
9253 if (C->capturesThis()) {
9254 getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit());
9255 continue;
9256 }
9257 // Captured expression will be recaptured during captured variables
9258 // rebuilding.
9259 if (C->capturesVLAType())
9260 continue;
9261
9262 // Rebuild init-captures, including the implied field declaration.
9263 if (C->isInitCapture()) {
9264
9265 InitCaptureInfoTy InitExprTypePair =
9266 InitCaptureExprsAndTypes[C - E->capture_begin()];
9267 ExprResult Init = InitExprTypePair.first;
9268 QualType InitQualType = InitExprTypePair.second;
9269 if (Init.isInvalid() || InitQualType.isNull()) {
9270 Invalid = true;
9271 continue;
9272 }
9273 VarDecl *OldVD = C->getCapturedVar();
9274 VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl(
9275 OldVD->getLocation(), InitExprTypePair.second,
9276 OldVD->getIdentifier(), Init.get());
9277 if (!NewVD)
9278 Invalid = true;
9279 else {
9280 getDerived().transformedLocalDecl(OldVD, NewVD);
9281 }
9282 getSema().buildInitCaptureField(LSI, NewVD);
9283 continue;
9284 }
9285
9286 assert(C->capturesVariable() && "unexpected kind of lambda capture");
9287
9288 // Determine the capture kind for Sema.
9289 Sema::TryCaptureKind Kind
9290 = C->isImplicit()? Sema::TryCapture_Implicit
9291 : C->getCaptureKind() == LCK_ByCopy
9292 ? Sema::TryCapture_ExplicitByVal
9293 : Sema::TryCapture_ExplicitByRef;
9294 SourceLocation EllipsisLoc;
9295 if (C->isPackExpansion()) {
9296 UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation());
9297 bool ShouldExpand = false;
9298 bool RetainExpansion = false;
9299 Optional<unsigned> NumExpansions;
9300 if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(),
9301 C->getLocation(),
9302 Unexpanded,
9303 ShouldExpand, RetainExpansion,
9304 NumExpansions)) {
9305 Invalid = true;
9306 continue;
9307 }
9308
9309 if (ShouldExpand) {
9310 // The transform has determined that we should perform an expansion;
9311 // transform and capture each of the arguments.
9312 // expansion of the pattern. Do so.
9313 VarDecl *Pack = C->getCapturedVar();
9314 for (unsigned I = 0; I != *NumExpansions; ++I) {
9315 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
9316 VarDecl *CapturedVar
9317 = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
9318 Pack));
9319 if (!CapturedVar) {
9320 Invalid = true;
9321 continue;
9322 }
9323
9324 // Capture the transformed variable.
9325 getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
9326 }
9327
9328 // FIXME: Retain a pack expansion if RetainExpansion is true.
9329
9330 continue;
9331 }
9332
9333 EllipsisLoc = C->getEllipsisLoc();
9334 }
9335
9336 // Transform the captured variable.
9337 VarDecl *CapturedVar
9338 = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
9339 C->getCapturedVar()));
9340 if (!CapturedVar || CapturedVar->isInvalidDecl()) {
9341 Invalid = true;
9342 continue;
9343 }
9344
9345 // Capture the transformed variable.
9346 getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
9347 }
9348 if (!FinishedExplicitCaptures)
9349 getSema().finishLambdaExplicitCaptures(LSI);
9350
9351
9352 // Enter a new evaluation context to insulate the lambda from any
9353 // cleanups from the enclosing full-expression.
9354 getSema().PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
9355
9356 if (Invalid) {
9357 getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/nullptr,
9358 /*IsInstantiation=*/true);
9359 return ExprError();
9360 }
9361
9362 // Instantiate the body of the lambda expression.
9363 StmtResult Body = getDerived().TransformStmt(E->getBody());
9364 if (Body.isInvalid()) {
9365 getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/nullptr,
9366 /*IsInstantiation=*/true);
9367 return ExprError();
9368 }
9369
9370 return getSema().ActOnLambdaExpr(E->getLocStart(), Body.get(),
9371 /*CurScope=*/nullptr,
9372 /*IsInstantiation=*/true);
9373 }
9374
9375 template<typename Derived>
9376 ExprResult
TransformCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr * E)9377 TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
9378 CXXUnresolvedConstructExpr *E) {
9379 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
9380 if (!T)
9381 return ExprError();
9382
9383 bool ArgumentChanged = false;
9384 SmallVector<Expr*, 8> Args;
9385 Args.reserve(E->arg_size());
9386 if (getDerived().TransformExprs(E->arg_begin(), E->arg_size(), true, Args,
9387 &ArgumentChanged))
9388 return ExprError();
9389
9390 if (!getDerived().AlwaysRebuild() &&
9391 T == E->getTypeSourceInfo() &&
9392 !ArgumentChanged)
9393 return E;
9394
9395 // FIXME: we're faking the locations of the commas
9396 return getDerived().RebuildCXXUnresolvedConstructExpr(T,
9397 E->getLParenLoc(),
9398 Args,
9399 E->getRParenLoc());
9400 }
9401
9402 template<typename Derived>
9403 ExprResult
TransformCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr * E)9404 TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
9405 CXXDependentScopeMemberExpr *E) {
9406 // Transform the base of the expression.
9407 ExprResult Base((Expr*) nullptr);
9408 Expr *OldBase;
9409 QualType BaseType;
9410 QualType ObjectType;
9411 if (!E->isImplicitAccess()) {
9412 OldBase = E->getBase();
9413 Base = getDerived().TransformExpr(OldBase);
9414 if (Base.isInvalid())
9415 return ExprError();
9416
9417 // Start the member reference and compute the object's type.
9418 ParsedType ObjectTy;
9419 bool MayBePseudoDestructor = false;
9420 Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
9421 E->getOperatorLoc(),
9422 E->isArrow()? tok::arrow : tok::period,
9423 ObjectTy,
9424 MayBePseudoDestructor);
9425 if (Base.isInvalid())
9426 return ExprError();
9427
9428 ObjectType = ObjectTy.get();
9429 BaseType = ((Expr*) Base.get())->getType();
9430 } else {
9431 OldBase = nullptr;
9432 BaseType = getDerived().TransformType(E->getBaseType());
9433 ObjectType = BaseType->getAs<PointerType>()->getPointeeType();
9434 }
9435
9436 // Transform the first part of the nested-name-specifier that qualifies
9437 // the member name.
9438 NamedDecl *FirstQualifierInScope
9439 = getDerived().TransformFirstQualifierInScope(
9440 E->getFirstQualifierFoundInScope(),
9441 E->getQualifierLoc().getBeginLoc());
9442
9443 NestedNameSpecifierLoc QualifierLoc;
9444 if (E->getQualifier()) {
9445 QualifierLoc
9446 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
9447 ObjectType,
9448 FirstQualifierInScope);
9449 if (!QualifierLoc)
9450 return ExprError();
9451 }
9452
9453 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
9454
9455 // TODO: If this is a conversion-function-id, verify that the
9456 // destination type name (if present) resolves the same way after
9457 // instantiation as it did in the local scope.
9458
9459 DeclarationNameInfo NameInfo
9460 = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
9461 if (!NameInfo.getName())
9462 return ExprError();
9463
9464 if (!E->hasExplicitTemplateArgs()) {
9465 // This is a reference to a member without an explicitly-specified
9466 // template argument list. Optimize for this common case.
9467 if (!getDerived().AlwaysRebuild() &&
9468 Base.get() == OldBase &&
9469 BaseType == E->getBaseType() &&
9470 QualifierLoc == E->getQualifierLoc() &&
9471 NameInfo.getName() == E->getMember() &&
9472 FirstQualifierInScope == E->getFirstQualifierFoundInScope())
9473 return E;
9474
9475 return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
9476 BaseType,
9477 E->isArrow(),
9478 E->getOperatorLoc(),
9479 QualifierLoc,
9480 TemplateKWLoc,
9481 FirstQualifierInScope,
9482 NameInfo,
9483 /*TemplateArgs*/nullptr);
9484 }
9485
9486 TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
9487 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
9488 E->getNumTemplateArgs(),
9489 TransArgs))
9490 return ExprError();
9491
9492 return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
9493 BaseType,
9494 E->isArrow(),
9495 E->getOperatorLoc(),
9496 QualifierLoc,
9497 TemplateKWLoc,
9498 FirstQualifierInScope,
9499 NameInfo,
9500 &TransArgs);
9501 }
9502
9503 template<typename Derived>
9504 ExprResult
TransformUnresolvedMemberExpr(UnresolvedMemberExpr * Old)9505 TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
9506 // Transform the base of the expression.
9507 ExprResult Base((Expr*) nullptr);
9508 QualType BaseType;
9509 if (!Old->isImplicitAccess()) {
9510 Base = getDerived().TransformExpr(Old->getBase());
9511 if (Base.isInvalid())
9512 return ExprError();
9513 Base = getSema().PerformMemberExprBaseConversion(Base.get(),
9514 Old->isArrow());
9515 if (Base.isInvalid())
9516 return ExprError();
9517 BaseType = Base.get()->getType();
9518 } else {
9519 BaseType = getDerived().TransformType(Old->getBaseType());
9520 }
9521
9522 NestedNameSpecifierLoc QualifierLoc;
9523 if (Old->getQualifierLoc()) {
9524 QualifierLoc
9525 = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
9526 if (!QualifierLoc)
9527 return ExprError();
9528 }
9529
9530 SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
9531
9532 LookupResult R(SemaRef, Old->getMemberNameInfo(),
9533 Sema::LookupOrdinaryName);
9534
9535 // Transform all the decls.
9536 for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(),
9537 E = Old->decls_end(); I != E; ++I) {
9538 NamedDecl *InstD = static_cast<NamedDecl*>(
9539 getDerived().TransformDecl(Old->getMemberLoc(),
9540 *I));
9541 if (!InstD) {
9542 // Silently ignore these if a UsingShadowDecl instantiated to nothing.
9543 // This can happen because of dependent hiding.
9544 if (isa<UsingShadowDecl>(*I))
9545 continue;
9546 else {
9547 R.clear();
9548 return ExprError();
9549 }
9550 }
9551
9552 // Expand using declarations.
9553 if (isa<UsingDecl>(InstD)) {
9554 UsingDecl *UD = cast<UsingDecl>(InstD);
9555 for (auto *I : UD->shadows())
9556 R.addDecl(I);
9557 continue;
9558 }
9559
9560 R.addDecl(InstD);
9561 }
9562
9563 R.resolveKind();
9564
9565 // Determine the naming class.
9566 if (Old->getNamingClass()) {
9567 CXXRecordDecl *NamingClass
9568 = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
9569 Old->getMemberLoc(),
9570 Old->getNamingClass()));
9571 if (!NamingClass)
9572 return ExprError();
9573
9574 R.setNamingClass(NamingClass);
9575 }
9576
9577 TemplateArgumentListInfo TransArgs;
9578 if (Old->hasExplicitTemplateArgs()) {
9579 TransArgs.setLAngleLoc(Old->getLAngleLoc());
9580 TransArgs.setRAngleLoc(Old->getRAngleLoc());
9581 if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
9582 Old->getNumTemplateArgs(),
9583 TransArgs))
9584 return ExprError();
9585 }
9586
9587 // FIXME: to do this check properly, we will need to preserve the
9588 // first-qualifier-in-scope here, just in case we had a dependent
9589 // base (and therefore couldn't do the check) and a
9590 // nested-name-qualifier (and therefore could do the lookup).
9591 NamedDecl *FirstQualifierInScope = nullptr;
9592
9593 return getDerived().RebuildUnresolvedMemberExpr(Base.get(),
9594 BaseType,
9595 Old->getOperatorLoc(),
9596 Old->isArrow(),
9597 QualifierLoc,
9598 TemplateKWLoc,
9599 FirstQualifierInScope,
9600 R,
9601 (Old->hasExplicitTemplateArgs()
9602 ? &TransArgs : nullptr));
9603 }
9604
9605 template<typename Derived>
9606 ExprResult
TransformCXXNoexceptExpr(CXXNoexceptExpr * E)9607 TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
9608 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
9609 ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
9610 if (SubExpr.isInvalid())
9611 return ExprError();
9612
9613 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
9614 return E;
9615
9616 return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
9617 }
9618
9619 template<typename Derived>
9620 ExprResult
TransformPackExpansionExpr(PackExpansionExpr * E)9621 TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
9622 ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
9623 if (Pattern.isInvalid())
9624 return ExprError();
9625
9626 if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
9627 return E;
9628
9629 return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
9630 E->getNumExpansions());
9631 }
9632
9633 template<typename Derived>
9634 ExprResult
TransformSizeOfPackExpr(SizeOfPackExpr * E)9635 TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
9636 // If E is not value-dependent, then nothing will change when we transform it.
9637 // Note: This is an instantiation-centric view.
9638 if (!E->isValueDependent())
9639 return E;
9640
9641 // Note: None of the implementations of TryExpandParameterPacks can ever
9642 // produce a diagnostic when given only a single unexpanded parameter pack,
9643 // so
9644 UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
9645 bool ShouldExpand = false;
9646 bool RetainExpansion = false;
9647 Optional<unsigned> NumExpansions;
9648 if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
9649 Unexpanded,
9650 ShouldExpand, RetainExpansion,
9651 NumExpansions))
9652 return ExprError();
9653
9654 if (RetainExpansion)
9655 return E;
9656
9657 NamedDecl *Pack = E->getPack();
9658 if (!ShouldExpand) {
9659 Pack = cast_or_null<NamedDecl>(getDerived().TransformDecl(E->getPackLoc(),
9660 Pack));
9661 if (!Pack)
9662 return ExprError();
9663 }
9664
9665
9666 // We now know the length of the parameter pack, so build a new expression
9667 // that stores that length.
9668 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack,
9669 E->getPackLoc(), E->getRParenLoc(),
9670 NumExpansions);
9671 }
9672
9673 template<typename Derived>
9674 ExprResult
TransformSubstNonTypeTemplateParmPackExpr(SubstNonTypeTemplateParmPackExpr * E)9675 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
9676 SubstNonTypeTemplateParmPackExpr *E) {
9677 // Default behavior is to do nothing with this transformation.
9678 return E;
9679 }
9680
9681 template<typename Derived>
9682 ExprResult
TransformSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)9683 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
9684 SubstNonTypeTemplateParmExpr *E) {
9685 // Default behavior is to do nothing with this transformation.
9686 return E;
9687 }
9688
9689 template<typename Derived>
9690 ExprResult
TransformFunctionParmPackExpr(FunctionParmPackExpr * E)9691 TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
9692 // Default behavior is to do nothing with this transformation.
9693 return E;
9694 }
9695
9696 template<typename Derived>
9697 ExprResult
TransformMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)9698 TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
9699 MaterializeTemporaryExpr *E) {
9700 return getDerived().TransformExpr(E->GetTemporaryExpr());
9701 }
9702
9703 template<typename Derived>
9704 ExprResult
TransformCXXFoldExpr(CXXFoldExpr * E)9705 TreeTransform<Derived>::TransformCXXFoldExpr(CXXFoldExpr *E) {
9706 Expr *Pattern = E->getPattern();
9707
9708 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
9709 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
9710 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
9711
9712 // Determine whether the set of unexpanded parameter packs can and should
9713 // be expanded.
9714 bool Expand = true;
9715 bool RetainExpansion = false;
9716 Optional<unsigned> NumExpansions;
9717 if (getDerived().TryExpandParameterPacks(E->getEllipsisLoc(),
9718 Pattern->getSourceRange(),
9719 Unexpanded,
9720 Expand, RetainExpansion,
9721 NumExpansions))
9722 return true;
9723
9724 if (!Expand) {
9725 // Do not expand any packs here, just transform and rebuild a fold
9726 // expression.
9727 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
9728
9729 ExprResult LHS =
9730 E->getLHS() ? getDerived().TransformExpr(E->getLHS()) : ExprResult();
9731 if (LHS.isInvalid())
9732 return true;
9733
9734 ExprResult RHS =
9735 E->getRHS() ? getDerived().TransformExpr(E->getRHS()) : ExprResult();
9736 if (RHS.isInvalid())
9737 return true;
9738
9739 if (!getDerived().AlwaysRebuild() &&
9740 LHS.get() == E->getLHS() && RHS.get() == E->getRHS())
9741 return E;
9742
9743 return getDerived().RebuildCXXFoldExpr(
9744 E->getLocStart(), LHS.get(), E->getOperator(), E->getEllipsisLoc(),
9745 RHS.get(), E->getLocEnd());
9746 }
9747
9748 // The transform has determined that we should perform an elementwise
9749 // expansion of the pattern. Do so.
9750 ExprResult Result = getDerived().TransformExpr(E->getInit());
9751 if (Result.isInvalid())
9752 return true;
9753 bool LeftFold = E->isLeftFold();
9754
9755 // If we're retaining an expansion for a right fold, it is the innermost
9756 // component and takes the init (if any).
9757 if (!LeftFold && RetainExpansion) {
9758 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
9759
9760 ExprResult Out = getDerived().TransformExpr(Pattern);
9761 if (Out.isInvalid())
9762 return true;
9763
9764 Result = getDerived().RebuildCXXFoldExpr(
9765 E->getLocStart(), Out.get(), E->getOperator(), E->getEllipsisLoc(),
9766 Result.get(), E->getLocEnd());
9767 if (Result.isInvalid())
9768 return true;
9769 }
9770
9771 for (unsigned I = 0; I != *NumExpansions; ++I) {
9772 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(
9773 getSema(), LeftFold ? I : *NumExpansions - I - 1);
9774 ExprResult Out = getDerived().TransformExpr(Pattern);
9775 if (Out.isInvalid())
9776 return true;
9777
9778 if (Out.get()->containsUnexpandedParameterPack()) {
9779 // We still have a pack; retain a pack expansion for this slice.
9780 Result = getDerived().RebuildCXXFoldExpr(
9781 E->getLocStart(),
9782 LeftFold ? Result.get() : Out.get(),
9783 E->getOperator(), E->getEllipsisLoc(),
9784 LeftFold ? Out.get() : Result.get(),
9785 E->getLocEnd());
9786 } else if (Result.isUsable()) {
9787 // We've got down to a single element; build a binary operator.
9788 Result = getDerived().RebuildBinaryOperator(
9789 E->getEllipsisLoc(), E->getOperator(),
9790 LeftFold ? Result.get() : Out.get(),
9791 LeftFold ? Out.get() : Result.get());
9792 } else
9793 Result = Out;
9794
9795 if (Result.isInvalid())
9796 return true;
9797 }
9798
9799 // If we're retaining an expansion for a left fold, it is the outermost
9800 // component and takes the complete expansion so far as its init (if any).
9801 if (LeftFold && RetainExpansion) {
9802 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
9803
9804 ExprResult Out = getDerived().TransformExpr(Pattern);
9805 if (Out.isInvalid())
9806 return true;
9807
9808 Result = getDerived().RebuildCXXFoldExpr(
9809 E->getLocStart(), Result.get(),
9810 E->getOperator(), E->getEllipsisLoc(),
9811 Out.get(), E->getLocEnd());
9812 if (Result.isInvalid())
9813 return true;
9814 }
9815
9816 // If we had no init and an empty pack, and we're not retaining an expansion,
9817 // then produce a fallback value or error.
9818 if (Result.isUnset())
9819 return getDerived().RebuildEmptyCXXFoldExpr(E->getEllipsisLoc(),
9820 E->getOperator());
9821
9822 return Result;
9823 }
9824
9825 template<typename Derived>
9826 ExprResult
TransformCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)9827 TreeTransform<Derived>::TransformCXXStdInitializerListExpr(
9828 CXXStdInitializerListExpr *E) {
9829 return getDerived().TransformExpr(E->getSubExpr());
9830 }
9831
9832 template<typename Derived>
9833 ExprResult
TransformObjCStringLiteral(ObjCStringLiteral * E)9834 TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
9835 return SemaRef.MaybeBindToTemporary(E);
9836 }
9837
9838 template<typename Derived>
9839 ExprResult
TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr * E)9840 TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
9841 return E;
9842 }
9843
9844 template<typename Derived>
9845 ExprResult
TransformObjCBoxedExpr(ObjCBoxedExpr * E)9846 TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) {
9847 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
9848 if (SubExpr.isInvalid())
9849 return ExprError();
9850
9851 if (!getDerived().AlwaysRebuild() &&
9852 SubExpr.get() == E->getSubExpr())
9853 return E;
9854
9855 return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get());
9856 }
9857
9858 template<typename Derived>
9859 ExprResult
TransformObjCArrayLiteral(ObjCArrayLiteral * E)9860 TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) {
9861 // Transform each of the elements.
9862 SmallVector<Expr *, 8> Elements;
9863 bool ArgChanged = false;
9864 if (getDerived().TransformExprs(E->getElements(), E->getNumElements(),
9865 /*IsCall=*/false, Elements, &ArgChanged))
9866 return ExprError();
9867
9868 if (!getDerived().AlwaysRebuild() && !ArgChanged)
9869 return SemaRef.MaybeBindToTemporary(E);
9870
9871 return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(),
9872 Elements.data(),
9873 Elements.size());
9874 }
9875
9876 template<typename Derived>
9877 ExprResult
TransformObjCDictionaryLiteral(ObjCDictionaryLiteral * E)9878 TreeTransform<Derived>::TransformObjCDictionaryLiteral(
9879 ObjCDictionaryLiteral *E) {
9880 // Transform each of the elements.
9881 SmallVector<ObjCDictionaryElement, 8> Elements;
9882 bool ArgChanged = false;
9883 for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
9884 ObjCDictionaryElement OrigElement = E->getKeyValueElement(I);
9885
9886 if (OrigElement.isPackExpansion()) {
9887 // This key/value element is a pack expansion.
9888 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
9889 getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded);
9890 getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded);
9891 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
9892
9893 // Determine whether the set of unexpanded parameter packs can
9894 // and should be expanded.
9895 bool Expand = true;
9896 bool RetainExpansion = false;
9897 Optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions;
9898 Optional<unsigned> NumExpansions = OrigNumExpansions;
9899 SourceRange PatternRange(OrigElement.Key->getLocStart(),
9900 OrigElement.Value->getLocEnd());
9901 if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc,
9902 PatternRange,
9903 Unexpanded,
9904 Expand, RetainExpansion,
9905 NumExpansions))
9906 return ExprError();
9907
9908 if (!Expand) {
9909 // The transform has determined that we should perform a simple
9910 // transformation on the pack expansion, producing another pack
9911 // expansion.
9912 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
9913 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
9914 if (Key.isInvalid())
9915 return ExprError();
9916
9917 if (Key.get() != OrigElement.Key)
9918 ArgChanged = true;
9919
9920 ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
9921 if (Value.isInvalid())
9922 return ExprError();
9923
9924 if (Value.get() != OrigElement.Value)
9925 ArgChanged = true;
9926
9927 ObjCDictionaryElement Expansion = {
9928 Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions
9929 };
9930 Elements.push_back(Expansion);
9931 continue;
9932 }
9933
9934 // Record right away that the argument was changed. This needs
9935 // to happen even if the array expands to nothing.
9936 ArgChanged = true;
9937
9938 // The transform has determined that we should perform an elementwise
9939 // expansion of the pattern. Do so.
9940 for (unsigned I = 0; I != *NumExpansions; ++I) {
9941 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
9942 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
9943 if (Key.isInvalid())
9944 return ExprError();
9945
9946 ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
9947 if (Value.isInvalid())
9948 return ExprError();
9949
9950 ObjCDictionaryElement Element = {
9951 Key.get(), Value.get(), SourceLocation(), NumExpansions
9952 };
9953
9954 // If any unexpanded parameter packs remain, we still have a
9955 // pack expansion.
9956 // FIXME: Can this really happen?
9957 if (Key.get()->containsUnexpandedParameterPack() ||
9958 Value.get()->containsUnexpandedParameterPack())
9959 Element.EllipsisLoc = OrigElement.EllipsisLoc;
9960
9961 Elements.push_back(Element);
9962 }
9963
9964 // FIXME: Retain a pack expansion if RetainExpansion is true.
9965
9966 // We've finished with this pack expansion.
9967 continue;
9968 }
9969
9970 // Transform and check key.
9971 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
9972 if (Key.isInvalid())
9973 return ExprError();
9974
9975 if (Key.get() != OrigElement.Key)
9976 ArgChanged = true;
9977
9978 // Transform and check value.
9979 ExprResult Value
9980 = getDerived().TransformExpr(OrigElement.Value);
9981 if (Value.isInvalid())
9982 return ExprError();
9983
9984 if (Value.get() != OrigElement.Value)
9985 ArgChanged = true;
9986
9987 ObjCDictionaryElement Element = {
9988 Key.get(), Value.get(), SourceLocation(), None
9989 };
9990 Elements.push_back(Element);
9991 }
9992
9993 if (!getDerived().AlwaysRebuild() && !ArgChanged)
9994 return SemaRef.MaybeBindToTemporary(E);
9995
9996 return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(),
9997 Elements.data(),
9998 Elements.size());
9999 }
10000
10001 template<typename Derived>
10002 ExprResult
TransformObjCEncodeExpr(ObjCEncodeExpr * E)10003 TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
10004 TypeSourceInfo *EncodedTypeInfo
10005 = getDerived().TransformType(E->getEncodedTypeSourceInfo());
10006 if (!EncodedTypeInfo)
10007 return ExprError();
10008
10009 if (!getDerived().AlwaysRebuild() &&
10010 EncodedTypeInfo == E->getEncodedTypeSourceInfo())
10011 return E;
10012
10013 return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
10014 EncodedTypeInfo,
10015 E->getRParenLoc());
10016 }
10017
10018 template<typename Derived>
10019 ExprResult TreeTransform<Derived>::
TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr * E)10020 TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
10021 // This is a kind of implicit conversion, and it needs to get dropped
10022 // and recomputed for the same general reasons that ImplicitCastExprs
10023 // do, as well a more specific one: this expression is only valid when
10024 // it appears *immediately* as an argument expression.
10025 return getDerived().TransformExpr(E->getSubExpr());
10026 }
10027
10028 template<typename Derived>
10029 ExprResult TreeTransform<Derived>::
TransformObjCBridgedCastExpr(ObjCBridgedCastExpr * E)10030 TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
10031 TypeSourceInfo *TSInfo
10032 = getDerived().TransformType(E->getTypeInfoAsWritten());
10033 if (!TSInfo)
10034 return ExprError();
10035
10036 ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
10037 if (Result.isInvalid())
10038 return ExprError();
10039
10040 if (!getDerived().AlwaysRebuild() &&
10041 TSInfo == E->getTypeInfoAsWritten() &&
10042 Result.get() == E->getSubExpr())
10043 return E;
10044
10045 return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(),
10046 E->getBridgeKeywordLoc(), TSInfo,
10047 Result.get());
10048 }
10049
10050 template<typename Derived>
10051 ExprResult
TransformObjCMessageExpr(ObjCMessageExpr * E)10052 TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
10053 // Transform arguments.
10054 bool ArgChanged = false;
10055 SmallVector<Expr*, 8> Args;
10056 Args.reserve(E->getNumArgs());
10057 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
10058 &ArgChanged))
10059 return ExprError();
10060
10061 if (E->getReceiverKind() == ObjCMessageExpr::Class) {
10062 // Class message: transform the receiver type.
10063 TypeSourceInfo *ReceiverTypeInfo
10064 = getDerived().TransformType(E->getClassReceiverTypeInfo());
10065 if (!ReceiverTypeInfo)
10066 return ExprError();
10067
10068 // If nothing changed, just retain the existing message send.
10069 if (!getDerived().AlwaysRebuild() &&
10070 ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
10071 return SemaRef.MaybeBindToTemporary(E);
10072
10073 // Build a new class message send.
10074 SmallVector<SourceLocation, 16> SelLocs;
10075 E->getSelectorLocs(SelLocs);
10076 return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
10077 E->getSelector(),
10078 SelLocs,
10079 E->getMethodDecl(),
10080 E->getLeftLoc(),
10081 Args,
10082 E->getRightLoc());
10083 }
10084 else if (E->getReceiverKind() == ObjCMessageExpr::SuperClass ||
10085 E->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
10086 // Build a new class message send to 'super'.
10087 SmallVector<SourceLocation, 16> SelLocs;
10088 E->getSelectorLocs(SelLocs);
10089 return getDerived().RebuildObjCMessageExpr(E->getSuperLoc(),
10090 E->getSelector(),
10091 SelLocs,
10092 E->getMethodDecl(),
10093 E->getLeftLoc(),
10094 Args,
10095 E->getRightLoc());
10096 }
10097
10098 // Instance message: transform the receiver
10099 assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
10100 "Only class and instance messages may be instantiated");
10101 ExprResult Receiver
10102 = getDerived().TransformExpr(E->getInstanceReceiver());
10103 if (Receiver.isInvalid())
10104 return ExprError();
10105
10106 // If nothing changed, just retain the existing message send.
10107 if (!getDerived().AlwaysRebuild() &&
10108 Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
10109 return SemaRef.MaybeBindToTemporary(E);
10110
10111 // Build a new instance message send.
10112 SmallVector<SourceLocation, 16> SelLocs;
10113 E->getSelectorLocs(SelLocs);
10114 return getDerived().RebuildObjCMessageExpr(Receiver.get(),
10115 E->getSelector(),
10116 SelLocs,
10117 E->getMethodDecl(),
10118 E->getLeftLoc(),
10119 Args,
10120 E->getRightLoc());
10121 }
10122
10123 template<typename Derived>
10124 ExprResult
TransformObjCSelectorExpr(ObjCSelectorExpr * E)10125 TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
10126 return E;
10127 }
10128
10129 template<typename Derived>
10130 ExprResult
TransformObjCProtocolExpr(ObjCProtocolExpr * E)10131 TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
10132 return E;
10133 }
10134
10135 template<typename Derived>
10136 ExprResult
TransformObjCIvarRefExpr(ObjCIvarRefExpr * E)10137 TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
10138 // Transform the base expression.
10139 ExprResult Base = getDerived().TransformExpr(E->getBase());
10140 if (Base.isInvalid())
10141 return ExprError();
10142
10143 // We don't need to transform the ivar; it will never change.
10144
10145 // If nothing changed, just retain the existing expression.
10146 if (!getDerived().AlwaysRebuild() &&
10147 Base.get() == E->getBase())
10148 return E;
10149
10150 return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
10151 E->getLocation(),
10152 E->isArrow(), E->isFreeIvar());
10153 }
10154
10155 template<typename Derived>
10156 ExprResult
TransformObjCPropertyRefExpr(ObjCPropertyRefExpr * E)10157 TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
10158 // 'super' and types never change. Property never changes. Just
10159 // retain the existing expression.
10160 if (!E->isObjectReceiver())
10161 return E;
10162
10163 // Transform the base expression.
10164 ExprResult Base = getDerived().TransformExpr(E->getBase());
10165 if (Base.isInvalid())
10166 return ExprError();
10167
10168 // We don't need to transform the property; it will never change.
10169
10170 // If nothing changed, just retain the existing expression.
10171 if (!getDerived().AlwaysRebuild() &&
10172 Base.get() == E->getBase())
10173 return E;
10174
10175 if (E->isExplicitProperty())
10176 return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
10177 E->getExplicitProperty(),
10178 E->getLocation());
10179
10180 return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
10181 SemaRef.Context.PseudoObjectTy,
10182 E->getImplicitPropertyGetter(),
10183 E->getImplicitPropertySetter(),
10184 E->getLocation());
10185 }
10186
10187 template<typename Derived>
10188 ExprResult
TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr * E)10189 TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
10190 // Transform the base expression.
10191 ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
10192 if (Base.isInvalid())
10193 return ExprError();
10194
10195 // Transform the key expression.
10196 ExprResult Key = getDerived().TransformExpr(E->getKeyExpr());
10197 if (Key.isInvalid())
10198 return ExprError();
10199
10200 // If nothing changed, just retain the existing expression.
10201 if (!getDerived().AlwaysRebuild() &&
10202 Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr())
10203 return E;
10204
10205 return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(),
10206 Base.get(), Key.get(),
10207 E->getAtIndexMethodDecl(),
10208 E->setAtIndexMethodDecl());
10209 }
10210
10211 template<typename Derived>
10212 ExprResult
TransformObjCIsaExpr(ObjCIsaExpr * E)10213 TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
10214 // Transform the base expression.
10215 ExprResult Base = getDerived().TransformExpr(E->getBase());
10216 if (Base.isInvalid())
10217 return ExprError();
10218
10219 // If nothing changed, just retain the existing expression.
10220 if (!getDerived().AlwaysRebuild() &&
10221 Base.get() == E->getBase())
10222 return E;
10223
10224 return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
10225 E->getOpLoc(),
10226 E->isArrow());
10227 }
10228
10229 template<typename Derived>
10230 ExprResult
TransformShuffleVectorExpr(ShuffleVectorExpr * E)10231 TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
10232 bool ArgumentChanged = false;
10233 SmallVector<Expr*, 8> SubExprs;
10234 SubExprs.reserve(E->getNumSubExprs());
10235 if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
10236 SubExprs, &ArgumentChanged))
10237 return ExprError();
10238
10239 if (!getDerived().AlwaysRebuild() &&
10240 !ArgumentChanged)
10241 return E;
10242
10243 return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
10244 SubExprs,
10245 E->getRParenLoc());
10246 }
10247
10248 template<typename Derived>
10249 ExprResult
TransformConvertVectorExpr(ConvertVectorExpr * E)10250 TreeTransform<Derived>::TransformConvertVectorExpr(ConvertVectorExpr *E) {
10251 ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
10252 if (SrcExpr.isInvalid())
10253 return ExprError();
10254
10255 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
10256 if (!Type)
10257 return ExprError();
10258
10259 if (!getDerived().AlwaysRebuild() &&
10260 Type == E->getTypeSourceInfo() &&
10261 SrcExpr.get() == E->getSrcExpr())
10262 return E;
10263
10264 return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(),
10265 SrcExpr.get(), Type,
10266 E->getRParenLoc());
10267 }
10268
10269 template<typename Derived>
10270 ExprResult
TransformBlockExpr(BlockExpr * E)10271 TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
10272 BlockDecl *oldBlock = E->getBlockDecl();
10273
10274 SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr);
10275 BlockScopeInfo *blockScope = SemaRef.getCurBlock();
10276
10277 blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
10278 blockScope->TheDecl->setBlockMissingReturnType(
10279 oldBlock->blockMissingReturnType());
10280
10281 SmallVector<ParmVarDecl*, 4> params;
10282 SmallVector<QualType, 4> paramTypes;
10283
10284 // Parameter substitution.
10285 if (getDerived().TransformFunctionTypeParams(E->getCaretLocation(),
10286 oldBlock->param_begin(),
10287 oldBlock->param_size(),
10288 nullptr, paramTypes, ¶ms)) {
10289 getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
10290 return ExprError();
10291 }
10292
10293 const FunctionProtoType *exprFunctionType = E->getFunctionType();
10294 QualType exprResultType =
10295 getDerived().TransformType(exprFunctionType->getReturnType());
10296
10297 QualType functionType =
10298 getDerived().RebuildFunctionProtoType(exprResultType, paramTypes,
10299 exprFunctionType->getExtProtoInfo());
10300 blockScope->FunctionType = functionType;
10301
10302 // Set the parameters on the block decl.
10303 if (!params.empty())
10304 blockScope->TheDecl->setParams(params);
10305
10306 if (!oldBlock->blockMissingReturnType()) {
10307 blockScope->HasImplicitReturnType = false;
10308 blockScope->ReturnType = exprResultType;
10309 }
10310
10311 // Transform the body
10312 StmtResult body = getDerived().TransformStmt(E->getBody());
10313 if (body.isInvalid()) {
10314 getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
10315 return ExprError();
10316 }
10317
10318 #ifndef NDEBUG
10319 // In builds with assertions, make sure that we captured everything we
10320 // captured before.
10321 if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
10322 for (const auto &I : oldBlock->captures()) {
10323 VarDecl *oldCapture = I.getVariable();
10324
10325 // Ignore parameter packs.
10326 if (isa<ParmVarDecl>(oldCapture) &&
10327 cast<ParmVarDecl>(oldCapture)->isParameterPack())
10328 continue;
10329
10330 VarDecl *newCapture =
10331 cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
10332 oldCapture));
10333 assert(blockScope->CaptureMap.count(newCapture));
10334 }
10335 assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured());
10336 }
10337 #endif
10338
10339 return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
10340 /*Scope=*/nullptr);
10341 }
10342
10343 template<typename Derived>
10344 ExprResult
TransformAsTypeExpr(AsTypeExpr * E)10345 TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
10346 llvm_unreachable("Cannot transform asType expressions yet");
10347 }
10348
10349 template<typename Derived>
10350 ExprResult
TransformAtomicExpr(AtomicExpr * E)10351 TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) {
10352 QualType RetTy = getDerived().TransformType(E->getType());
10353 bool ArgumentChanged = false;
10354 SmallVector<Expr*, 8> SubExprs;
10355 SubExprs.reserve(E->getNumSubExprs());
10356 if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
10357 SubExprs, &ArgumentChanged))
10358 return ExprError();
10359
10360 if (!getDerived().AlwaysRebuild() &&
10361 !ArgumentChanged)
10362 return E;
10363
10364 return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs,
10365 RetTy, E->getOp(), E->getRParenLoc());
10366 }
10367
10368 //===----------------------------------------------------------------------===//
10369 // Type reconstruction
10370 //===----------------------------------------------------------------------===//
10371
10372 template<typename Derived>
RebuildPointerType(QualType PointeeType,SourceLocation Star)10373 QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
10374 SourceLocation Star) {
10375 return SemaRef.BuildPointerType(PointeeType, Star,
10376 getDerived().getBaseEntity());
10377 }
10378
10379 template<typename Derived>
RebuildBlockPointerType(QualType PointeeType,SourceLocation Star)10380 QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
10381 SourceLocation Star) {
10382 return SemaRef.BuildBlockPointerType(PointeeType, Star,
10383 getDerived().getBaseEntity());
10384 }
10385
10386 template<typename Derived>
10387 QualType
RebuildReferenceType(QualType ReferentType,bool WrittenAsLValue,SourceLocation Sigil)10388 TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
10389 bool WrittenAsLValue,
10390 SourceLocation Sigil) {
10391 return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
10392 Sigil, getDerived().getBaseEntity());
10393 }
10394
10395 template<typename Derived>
10396 QualType
RebuildMemberPointerType(QualType PointeeType,QualType ClassType,SourceLocation Sigil)10397 TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
10398 QualType ClassType,
10399 SourceLocation Sigil) {
10400 return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Sigil,
10401 getDerived().getBaseEntity());
10402 }
10403
10404 template<typename Derived>
10405 QualType
RebuildArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt * Size,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)10406 TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
10407 ArrayType::ArraySizeModifier SizeMod,
10408 const llvm::APInt *Size,
10409 Expr *SizeExpr,
10410 unsigned IndexTypeQuals,
10411 SourceRange BracketsRange) {
10412 if (SizeExpr || !Size)
10413 return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
10414 IndexTypeQuals, BracketsRange,
10415 getDerived().getBaseEntity());
10416
10417 QualType Types[] = {
10418 SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
10419 SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
10420 SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
10421 };
10422 const unsigned NumTypes = llvm::array_lengthof(Types);
10423 QualType SizeType;
10424 for (unsigned I = 0; I != NumTypes; ++I)
10425 if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
10426 SizeType = Types[I];
10427 break;
10428 }
10429
10430 // Note that we can return a VariableArrayType here in the case where
10431 // the element type was a dependent VariableArrayType.
10432 IntegerLiteral *ArraySize
10433 = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType,
10434 /*FIXME*/BracketsRange.getBegin());
10435 return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize,
10436 IndexTypeQuals, BracketsRange,
10437 getDerived().getBaseEntity());
10438 }
10439
10440 template<typename Derived>
10441 QualType
RebuildConstantArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt & Size,unsigned IndexTypeQuals,SourceRange BracketsRange)10442 TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
10443 ArrayType::ArraySizeModifier SizeMod,
10444 const llvm::APInt &Size,
10445 unsigned IndexTypeQuals,
10446 SourceRange BracketsRange) {
10447 return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, nullptr,
10448 IndexTypeQuals, BracketsRange);
10449 }
10450
10451 template<typename Derived>
10452 QualType
RebuildIncompleteArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,unsigned IndexTypeQuals,SourceRange BracketsRange)10453 TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
10454 ArrayType::ArraySizeModifier SizeMod,
10455 unsigned IndexTypeQuals,
10456 SourceRange BracketsRange) {
10457 return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr,
10458 IndexTypeQuals, BracketsRange);
10459 }
10460
10461 template<typename Derived>
10462 QualType
RebuildVariableArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)10463 TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
10464 ArrayType::ArraySizeModifier SizeMod,
10465 Expr *SizeExpr,
10466 unsigned IndexTypeQuals,
10467 SourceRange BracketsRange) {
10468 return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
10469 SizeExpr,
10470 IndexTypeQuals, BracketsRange);
10471 }
10472
10473 template<typename Derived>
10474 QualType
RebuildDependentSizedArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)10475 TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
10476 ArrayType::ArraySizeModifier SizeMod,
10477 Expr *SizeExpr,
10478 unsigned IndexTypeQuals,
10479 SourceRange BracketsRange) {
10480 return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
10481 SizeExpr,
10482 IndexTypeQuals, BracketsRange);
10483 }
10484
10485 template<typename Derived>
RebuildVectorType(QualType ElementType,unsigned NumElements,VectorType::VectorKind VecKind)10486 QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
10487 unsigned NumElements,
10488 VectorType::VectorKind VecKind) {
10489 // FIXME: semantic checking!
10490 return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
10491 }
10492
10493 template<typename Derived>
RebuildExtVectorType(QualType ElementType,unsigned NumElements,SourceLocation AttributeLoc)10494 QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
10495 unsigned NumElements,
10496 SourceLocation AttributeLoc) {
10497 llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
10498 NumElements, true);
10499 IntegerLiteral *VectorSize
10500 = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
10501 AttributeLoc);
10502 return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
10503 }
10504
10505 template<typename Derived>
10506 QualType
RebuildDependentSizedExtVectorType(QualType ElementType,Expr * SizeExpr,SourceLocation AttributeLoc)10507 TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
10508 Expr *SizeExpr,
10509 SourceLocation AttributeLoc) {
10510 return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
10511 }
10512
10513 template<typename Derived>
RebuildFunctionProtoType(QualType T,MutableArrayRef<QualType> ParamTypes,const FunctionProtoType::ExtProtoInfo & EPI)10514 QualType TreeTransform<Derived>::RebuildFunctionProtoType(
10515 QualType T,
10516 MutableArrayRef<QualType> ParamTypes,
10517 const FunctionProtoType::ExtProtoInfo &EPI) {
10518 return SemaRef.BuildFunctionType(T, ParamTypes,
10519 getDerived().getBaseLocation(),
10520 getDerived().getBaseEntity(),
10521 EPI);
10522 }
10523
10524 template<typename Derived>
RebuildFunctionNoProtoType(QualType T)10525 QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
10526 return SemaRef.Context.getFunctionNoProtoType(T);
10527 }
10528
10529 template<typename Derived>
RebuildUnresolvedUsingType(Decl * D)10530 QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(Decl *D) {
10531 assert(D && "no decl found");
10532 if (D->isInvalidDecl()) return QualType();
10533
10534 // FIXME: Doesn't account for ObjCInterfaceDecl!
10535 TypeDecl *Ty;
10536 if (isa<UsingDecl>(D)) {
10537 UsingDecl *Using = cast<UsingDecl>(D);
10538 assert(Using->hasTypename() &&
10539 "UnresolvedUsingTypenameDecl transformed to non-typename using");
10540
10541 // A valid resolved using typename decl points to exactly one type decl.
10542 assert(++Using->shadow_begin() == Using->shadow_end());
10543 Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
10544
10545 } else {
10546 assert(isa<UnresolvedUsingTypenameDecl>(D) &&
10547 "UnresolvedUsingTypenameDecl transformed to non-using decl");
10548 Ty = cast<UnresolvedUsingTypenameDecl>(D);
10549 }
10550
10551 return SemaRef.Context.getTypeDeclType(Ty);
10552 }
10553
10554 template<typename Derived>
RebuildTypeOfExprType(Expr * E,SourceLocation Loc)10555 QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
10556 SourceLocation Loc) {
10557 return SemaRef.BuildTypeofExprType(E, Loc);
10558 }
10559
10560 template<typename Derived>
RebuildTypeOfType(QualType Underlying)10561 QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
10562 return SemaRef.Context.getTypeOfType(Underlying);
10563 }
10564
10565 template<typename Derived>
RebuildDecltypeType(Expr * E,SourceLocation Loc)10566 QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E,
10567 SourceLocation Loc) {
10568 return SemaRef.BuildDecltypeType(E, Loc);
10569 }
10570
10571 template<typename Derived>
RebuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)10572 QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
10573 UnaryTransformType::UTTKind UKind,
10574 SourceLocation Loc) {
10575 return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
10576 }
10577
10578 template<typename Derived>
RebuildTemplateSpecializationType(TemplateName Template,SourceLocation TemplateNameLoc,TemplateArgumentListInfo & TemplateArgs)10579 QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
10580 TemplateName Template,
10581 SourceLocation TemplateNameLoc,
10582 TemplateArgumentListInfo &TemplateArgs) {
10583 return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
10584 }
10585
10586 template<typename Derived>
RebuildAtomicType(QualType ValueType,SourceLocation KWLoc)10587 QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType,
10588 SourceLocation KWLoc) {
10589 return SemaRef.BuildAtomicType(ValueType, KWLoc);
10590 }
10591
10592 template<typename Derived>
10593 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,bool TemplateKW,TemplateDecl * Template)10594 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
10595 bool TemplateKW,
10596 TemplateDecl *Template) {
10597 return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
10598 Template);
10599 }
10600
10601 template<typename Derived>
10602 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,const IdentifierInfo & Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope)10603 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
10604 const IdentifierInfo &Name,
10605 SourceLocation NameLoc,
10606 QualType ObjectType,
10607 NamedDecl *FirstQualifierInScope) {
10608 UnqualifiedId TemplateName;
10609 TemplateName.setIdentifier(&Name, NameLoc);
10610 Sema::TemplateTy Template;
10611 SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
10612 getSema().ActOnDependentTemplateName(/*Scope=*/nullptr,
10613 SS, TemplateKWLoc, TemplateName,
10614 ParsedType::make(ObjectType),
10615 /*EnteringContext=*/false,
10616 Template);
10617 return Template.get();
10618 }
10619
10620 template<typename Derived>
10621 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,OverloadedOperatorKind Operator,SourceLocation NameLoc,QualType ObjectType)10622 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
10623 OverloadedOperatorKind Operator,
10624 SourceLocation NameLoc,
10625 QualType ObjectType) {
10626 UnqualifiedId Name;
10627 // FIXME: Bogus location information.
10628 SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
10629 Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
10630 SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
10631 Sema::TemplateTy Template;
10632 getSema().ActOnDependentTemplateName(/*Scope=*/nullptr,
10633 SS, TemplateKWLoc, Name,
10634 ParsedType::make(ObjectType),
10635 /*EnteringContext=*/false,
10636 Template);
10637 return Template.get();
10638 }
10639
10640 template<typename Derived>
10641 ExprResult
RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr * OrigCallee,Expr * First,Expr * Second)10642 TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
10643 SourceLocation OpLoc,
10644 Expr *OrigCallee,
10645 Expr *First,
10646 Expr *Second) {
10647 Expr *Callee = OrigCallee->IgnoreParenCasts();
10648 bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
10649
10650 if (First->getObjectKind() == OK_ObjCProperty) {
10651 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
10652 if (BinaryOperator::isAssignmentOp(Opc))
10653 return SemaRef.checkPseudoObjectAssignment(/*Scope=*/nullptr, OpLoc, Opc,
10654 First, Second);
10655 ExprResult Result = SemaRef.CheckPlaceholderExpr(First);
10656 if (Result.isInvalid())
10657 return ExprError();
10658 First = Result.get();
10659 }
10660
10661 if (Second && Second->getObjectKind() == OK_ObjCProperty) {
10662 ExprResult Result = SemaRef.CheckPlaceholderExpr(Second);
10663 if (Result.isInvalid())
10664 return ExprError();
10665 Second = Result.get();
10666 }
10667
10668 // Determine whether this should be a builtin operation.
10669 if (Op == OO_Subscript) {
10670 if (!First->getType()->isOverloadableType() &&
10671 !Second->getType()->isOverloadableType())
10672 return getSema().CreateBuiltinArraySubscriptExpr(First,
10673 Callee->getLocStart(),
10674 Second, OpLoc);
10675 } else if (Op == OO_Arrow) {
10676 // -> is never a builtin operation.
10677 return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc);
10678 } else if (Second == nullptr || isPostIncDec) {
10679 if (!First->getType()->isOverloadableType()) {
10680 // The argument is not of overloadable type, so try to create a
10681 // built-in unary operation.
10682 UnaryOperatorKind Opc
10683 = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
10684
10685 return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
10686 }
10687 } else {
10688 if (!First->getType()->isOverloadableType() &&
10689 !Second->getType()->isOverloadableType()) {
10690 // Neither of the arguments is an overloadable type, so try to
10691 // create a built-in binary operation.
10692 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
10693 ExprResult Result
10694 = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
10695 if (Result.isInvalid())
10696 return ExprError();
10697
10698 return Result;
10699 }
10700 }
10701
10702 // Compute the transformed set of functions (and function templates) to be
10703 // used during overload resolution.
10704 UnresolvedSet<16> Functions;
10705
10706 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
10707 assert(ULE->requiresADL());
10708 Functions.append(ULE->decls_begin(), ULE->decls_end());
10709 } else {
10710 // If we've resolved this to a particular non-member function, just call
10711 // that function. If we resolved it to a member function,
10712 // CreateOverloaded* will find that function for us.
10713 NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl();
10714 if (!isa<CXXMethodDecl>(ND))
10715 Functions.addDecl(ND);
10716 }
10717
10718 // Add any functions found via argument-dependent lookup.
10719 Expr *Args[2] = { First, Second };
10720 unsigned NumArgs = 1 + (Second != nullptr);
10721
10722 // Create the overloaded operator invocation for unary operators.
10723 if (NumArgs == 1 || isPostIncDec) {
10724 UnaryOperatorKind Opc
10725 = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
10726 return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First);
10727 }
10728
10729 if (Op == OO_Subscript) {
10730 SourceLocation LBrace;
10731 SourceLocation RBrace;
10732
10733 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) {
10734 DeclarationNameLoc NameLoc = DRE->getNameInfo().getInfo();
10735 LBrace = SourceLocation::getFromRawEncoding(
10736 NameLoc.CXXOperatorName.BeginOpNameLoc);
10737 RBrace = SourceLocation::getFromRawEncoding(
10738 NameLoc.CXXOperatorName.EndOpNameLoc);
10739 } else {
10740 LBrace = Callee->getLocStart();
10741 RBrace = OpLoc;
10742 }
10743
10744 return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace,
10745 First, Second);
10746 }
10747
10748 // Create the overloaded operator invocation for binary operators.
10749 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
10750 ExprResult Result
10751 = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]);
10752 if (Result.isInvalid())
10753 return ExprError();
10754
10755 return Result;
10756 }
10757
10758 template<typename Derived>
10759 ExprResult
RebuildCXXPseudoDestructorExpr(Expr * Base,SourceLocation OperatorLoc,bool isArrow,CXXScopeSpec & SS,TypeSourceInfo * ScopeType,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destroyed)10760 TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
10761 SourceLocation OperatorLoc,
10762 bool isArrow,
10763 CXXScopeSpec &SS,
10764 TypeSourceInfo *ScopeType,
10765 SourceLocation CCLoc,
10766 SourceLocation TildeLoc,
10767 PseudoDestructorTypeStorage Destroyed) {
10768 QualType BaseType = Base->getType();
10769 if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
10770 (!isArrow && !BaseType->getAs<RecordType>()) ||
10771 (isArrow && BaseType->getAs<PointerType>() &&
10772 !BaseType->getAs<PointerType>()->getPointeeType()
10773 ->template getAs<RecordType>())){
10774 // This pseudo-destructor expression is still a pseudo-destructor.
10775 return SemaRef.BuildPseudoDestructorExpr(
10776 Base, OperatorLoc, isArrow ? tok::arrow : tok::period, SS, ScopeType,
10777 CCLoc, TildeLoc, Destroyed);
10778 }
10779
10780 TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
10781 DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
10782 SemaRef.Context.getCanonicalType(DestroyedType->getType())));
10783 DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
10784 NameInfo.setNamedTypeInfo(DestroyedType);
10785
10786 // The scope type is now known to be a valid nested name specifier
10787 // component. Tack it on to the end of the nested name specifier.
10788 if (ScopeType) {
10789 if (!ScopeType->getType()->getAs<TagType>()) {
10790 getSema().Diag(ScopeType->getTypeLoc().getBeginLoc(),
10791 diag::err_expected_class_or_namespace)
10792 << ScopeType->getType() << getSema().getLangOpts().CPlusPlus;
10793 return ExprError();
10794 }
10795 SS.Extend(SemaRef.Context, SourceLocation(), ScopeType->getTypeLoc(),
10796 CCLoc);
10797 }
10798
10799 SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
10800 return getSema().BuildMemberReferenceExpr(Base, BaseType,
10801 OperatorLoc, isArrow,
10802 SS, TemplateKWLoc,
10803 /*FIXME: FirstQualifier*/ nullptr,
10804 NameInfo,
10805 /*TemplateArgs*/ nullptr);
10806 }
10807
10808 template<typename Derived>
10809 StmtResult
TransformCapturedStmt(CapturedStmt * S)10810 TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) {
10811 SourceLocation Loc = S->getLocStart();
10812 CapturedDecl *CD = S->getCapturedDecl();
10813 unsigned NumParams = CD->getNumParams();
10814 unsigned ContextParamPos = CD->getContextParamPosition();
10815 SmallVector<Sema::CapturedParamNameType, 4> Params;
10816 for (unsigned I = 0; I < NumParams; ++I) {
10817 if (I != ContextParamPos) {
10818 Params.push_back(
10819 std::make_pair(
10820 CD->getParam(I)->getName(),
10821 getDerived().TransformType(CD->getParam(I)->getType())));
10822 } else {
10823 Params.push_back(std::make_pair(StringRef(), QualType()));
10824 }
10825 }
10826 getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr,
10827 S->getCapturedRegionKind(), Params);
10828 StmtResult Body;
10829 {
10830 Sema::CompoundScopeRAII CompoundScope(getSema());
10831 Body = getDerived().TransformStmt(S->getCapturedStmt());
10832 }
10833
10834 if (Body.isInvalid()) {
10835 getSema().ActOnCapturedRegionError();
10836 return StmtError();
10837 }
10838
10839 return getSema().ActOnCapturedRegionEnd(Body.get());
10840 }
10841
10842 } // end namespace clang
10843
10844 #endif
10845