1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pass that optimizes call sequences on x86.
11 // Currently, it converts movs of function parameters onto the stack into
12 // pushes. This is beneficial for two main reasons:
13 // 1) The push instruction encoding is much smaller than an esp-relative mov
14 // 2) It is possible to push memory arguments directly. So, if the
15 //    the transformation is preformed pre-reg-alloc, it can help relieve
16 //    register pressure.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include <algorithm>
21 
22 #include "X86.h"
23 #include "X86InstrInfo.h"
24 #include "X86Subtarget.h"
25 #include "X86MachineFunctionInfo.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "x86-cf-opt"
39 
40 static cl::opt<bool>
41     NoX86CFOpt("no-x86-call-frame-opt",
42                cl::desc("Avoid optimizing x86 call frames for size"),
43                cl::init(false), cl::Hidden);
44 
45 namespace {
46 class X86CallFrameOptimization : public MachineFunctionPass {
47 public:
X86CallFrameOptimization()48   X86CallFrameOptimization() : MachineFunctionPass(ID) {}
49 
50   bool runOnMachineFunction(MachineFunction &MF) override;
51 
52 private:
53   // Information we know about a particular call site
54   struct CallContext {
CallContext__anon49792e110111::X86CallFrameOptimization::CallContext55     CallContext()
56         : Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
57           MovVector(4, nullptr), NoStackParams(false), UsePush(false){};
58 
59     // Actuall call instruction
60     MachineInstr *Call;
61 
62     // A copy of the stack pointer
63     MachineInstr *SPCopy;
64 
65     // The total displacement of all passed parameters
66     int64_t ExpectedDist;
67 
68     // The sequence of movs used to pass the parameters
69     SmallVector<MachineInstr *, 4> MovVector;
70 
71     // True if this call site has no stack parameters
72     bool NoStackParams;
73 
74     // True of this callsite can use push instructions
75     bool UsePush;
76   };
77 
78   typedef DenseMap<MachineInstr *, CallContext> ContextMap;
79 
80   bool isLegal(MachineFunction &MF);
81 
82   bool isProfitable(MachineFunction &MF, ContextMap &CallSeqMap);
83 
84   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
85                        MachineBasicBlock::iterator I, CallContext &Context);
86 
87   bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock::iterator I,
88                           const CallContext &Context);
89 
90   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
91                                    unsigned Reg);
92 
getPassName() const93   const char *getPassName() const override { return "X86 Optimize Call Frame"; }
94 
95   const TargetInstrInfo *TII;
96   const TargetFrameLowering *TFL;
97   const MachineRegisterInfo *MRI;
98   static char ID;
99 };
100 
101 char X86CallFrameOptimization::ID = 0;
102 }
103 
createX86CallFrameOptimization()104 FunctionPass *llvm::createX86CallFrameOptimization() {
105   return new X86CallFrameOptimization();
106 }
107 
108 // This checks whether the transformation is legal.
109 // Also returns false in cases where it's potentially legal, but
110 // we don't even want to try.
isLegal(MachineFunction & MF)111 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
112   if (NoX86CFOpt.getValue())
113     return false;
114 
115   // We currently only support call sequences where *all* parameters.
116   // are passed on the stack.
117   // No point in running this in 64-bit mode, since some arguments are
118   // passed in-register in all common calling conventions, so the pattern
119   // we're looking for will never match.
120   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
121   if (STI.is64Bit())
122     return false;
123 
124   // You would expect straight-line code between call-frame setup and
125   // call-frame destroy. You would be wrong. There are circumstances (e.g.
126   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
127   // end up with the setup and the destroy in different basic blocks.
128   // This is bad, and breaks SP adjustment.
129   // So, check that all of the frames in the function are closed inside
130   // the same block, and, for good measure, that there are no nested frames.
131   int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
132   int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
133   for (MachineBasicBlock &BB : MF) {
134     bool InsideFrameSequence = false;
135     for (MachineInstr &MI : BB) {
136       if (MI.getOpcode() == FrameSetupOpcode) {
137         if (InsideFrameSequence)
138           return false;
139         InsideFrameSequence = true;
140       } else if (MI.getOpcode() == FrameDestroyOpcode) {
141         if (!InsideFrameSequence)
142           return false;
143         InsideFrameSequence = false;
144       }
145     }
146 
147     if (InsideFrameSequence)
148       return false;
149   }
150 
151   return true;
152 }
153 
154 // Check whether this trasnformation is profitable for a particular
155 // function - in terms of code size.
isProfitable(MachineFunction & MF,ContextMap & CallSeqMap)156 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
157   ContextMap &CallSeqMap) {
158   // This transformation is always a win when we do not expect to have
159   // a reserved call frame. Under other circumstances, it may be either
160   // a win or a loss, and requires a heuristic.
161   bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
162   if (CannotReserveFrame)
163     return true;
164 
165   // Don't do this when not optimizing for size.
166   bool OptForSize =
167       MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) ||
168       MF.getFunction()->hasFnAttribute(Attribute::MinSize);
169 
170   if (!OptForSize)
171     return false;
172 
173 
174   unsigned StackAlign = TFL->getStackAlignment();
175 
176   int64_t Advantage = 0;
177   for (auto CC : CallSeqMap) {
178     // Call sites where no parameters are passed on the stack
179     // do not affect the cost, since there needs to be no
180     // stack adjustment.
181     if (CC.second.NoStackParams)
182       continue;
183 
184     if (!CC.second.UsePush) {
185       // If we don't use pushes for a particular call site,
186       // we pay for not having a reserved call frame with an
187       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
188       // depending on the size of the constant.
189       // TODO: Callee-pop functions should have a smaller penalty, because
190       // an add is needed even with a reserved call frame.
191       Advantage -= 6;
192     } else {
193       // We can use pushes. First, account for the fixed costs.
194       // We'll need a add after the call.
195       Advantage -= 3;
196       // If we have to realign the stack, we'll also need and sub before
197       if (CC.second.ExpectedDist % StackAlign)
198         Advantage -= 3;
199       // Now, for each push, we save ~3 bytes. For small constants, we actually,
200       // save more (up to 5 bytes), but 3 should be a good approximation.
201       Advantage += (CC.second.ExpectedDist / 4) * 3;
202     }
203   }
204 
205   return (Advantage >= 0);
206 }
207 
208 
runOnMachineFunction(MachineFunction & MF)209 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
210   TII = MF.getSubtarget().getInstrInfo();
211   TFL = MF.getSubtarget().getFrameLowering();
212   MRI = &MF.getRegInfo();
213 
214   if (!isLegal(MF))
215     return false;
216 
217   int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
218 
219   bool Changed = false;
220 
221   ContextMap CallSeqMap;
222 
223   for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
224     for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
225       if (I->getOpcode() == FrameSetupOpcode) {
226         CallContext &Context = CallSeqMap[I];
227         collectCallInfo(MF, *BB, I, Context);
228       }
229 
230   if (!isProfitable(MF, CallSeqMap))
231     return false;
232 
233   for (auto CC : CallSeqMap)
234     if (CC.second.UsePush)
235       Changed |= adjustCallSequence(MF, CC.first, CC.second);
236 
237   return Changed;
238 }
239 
collectCallInfo(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I,CallContext & Context)240 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
241                                                MachineBasicBlock &MBB,
242                                                MachineBasicBlock::iterator I,
243                                                CallContext &Context) {
244   // Check that this particular call sequence is amenable to the
245   // transformation.
246   const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
247                                        MF.getSubtarget().getRegisterInfo());
248   unsigned StackPtr = RegInfo.getStackRegister();
249   int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
250 
251   // We expect to enter this at the beginning of a call sequence
252   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
253   MachineBasicBlock::iterator FrameSetup = I++;
254 
255   // How much do we adjust the stack? This puts an upper bound on
256   // the number of parameters actually passed on it.
257   unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
258 
259   // A zero adjustment means no stack parameters
260   if (!MaxAdjust) {
261     Context.NoStackParams = true;
262     return;
263   }
264 
265   // For globals in PIC mode, we can have some LEAs here.
266   // Ignore them, they don't bother us.
267   // TODO: Extend this to something that covers more cases.
268   while (I->getOpcode() == X86::LEA32r)
269     ++I;
270 
271   // We expect a copy instruction here.
272   // TODO: The copy instruction is a lowering artifact.
273   //       We should also support a copy-less version, where the stack
274   //       pointer is used directly.
275   if (!I->isCopy() || !I->getOperand(0).isReg())
276     return;
277   Context.SPCopy = I++;
278   StackPtr = Context.SPCopy->getOperand(0).getReg();
279 
280   // Scan the call setup sequence for the pattern we're looking for.
281   // We only handle a simple case - a sequence of MOV32mi or MOV32mr
282   // instructions, that push a sequence of 32-bit values onto the stack, with
283   // no gaps between them.
284   if (MaxAdjust > 4)
285     Context.MovVector.resize(MaxAdjust, nullptr);
286 
287   do {
288     int Opcode = I->getOpcode();
289     if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr)
290       break;
291 
292     // We only want movs of the form:
293     // movl imm/r32, k(%esp)
294     // If we run into something else, bail.
295     // Note that AddrBaseReg may, counter to its name, not be a register,
296     // but rather a frame index.
297     // TODO: Support the fi case. This should probably work now that we
298     // have the infrastructure to track the stack pointer within a call
299     // sequence.
300     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
301         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
302         !I->getOperand(X86::AddrScaleAmt).isImm() ||
303         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
304         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
305         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
306         !I->getOperand(X86::AddrDisp).isImm())
307       return;
308 
309     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
310     assert(StackDisp >= 0 &&
311            "Negative stack displacement when passing parameters");
312 
313     // We really don't want to consider the unaligned case.
314     if (StackDisp % 4)
315       return;
316     StackDisp /= 4;
317 
318     assert((size_t)StackDisp < Context.MovVector.size() &&
319            "Function call has more parameters than the stack is adjusted for.");
320 
321     // If the same stack slot is being filled twice, something's fishy.
322     if (Context.MovVector[StackDisp] != nullptr)
323       return;
324     Context.MovVector[StackDisp] = I;
325 
326     ++I;
327   } while (I != MBB.end());
328 
329   // We now expect the end of the sequence - a call and a stack adjust.
330   if (I == MBB.end())
331     return;
332 
333   // For PCrel calls, we expect an additional COPY of the basereg.
334   // If we find one, skip it.
335   if (I->isCopy()) {
336     if (I->getOperand(1).getReg() ==
337         MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg())
338       ++I;
339     else
340       return;
341   }
342 
343   if (!I->isCall())
344     return;
345 
346   Context.Call = I;
347   if ((++I)->getOpcode() != FrameDestroyOpcode)
348     return;
349 
350   // Now, go through the vector, and see that we don't have any gaps,
351   // but only a series of 32-bit MOVs.
352   auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
353   for (; MMI != MME; ++MMI, Context.ExpectedDist += 4)
354     if (*MMI == nullptr)
355       break;
356 
357   // If the call had no parameters, do nothing
358   if (MMI == Context.MovVector.begin())
359     return;
360 
361   // We are either at the last parameter, or a gap.
362   // Make sure it's not a gap
363   for (; MMI != MME; ++MMI)
364     if (*MMI != nullptr)
365       return;
366 
367   Context.UsePush = true;
368   return;
369 }
370 
adjustCallSequence(MachineFunction & MF,MachineBasicBlock::iterator I,const CallContext & Context)371 bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
372                                                   MachineBasicBlock::iterator I,
373                                                   const CallContext &Context) {
374   // Ok, we can in fact do the transformation for this call.
375   // Do not remove the FrameSetup instruction, but adjust the parameters.
376   // PEI will end up finalizing the handling of this.
377   MachineBasicBlock::iterator FrameSetup = I;
378   MachineBasicBlock &MBB = *(I->getParent());
379   FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
380 
381   DebugLoc DL = I->getDebugLoc();
382   // Now, iterate through the vector in reverse order, and replace the movs
383   // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
384   // replace uses.
385   for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
386     MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
387     MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
388     if (MOV->getOpcode() == X86::MOV32mi) {
389       unsigned PushOpcode = X86::PUSHi32;
390       // If the operand is a small (8-bit) immediate, we can use a
391       // PUSH instruction with a shorter encoding.
392       // Note that isImm() may fail even though this is a MOVmi, because
393       // the operand can also be a symbol.
394       if (PushOp.isImm()) {
395         int64_t Val = PushOp.getImm();
396         if (isInt<8>(Val))
397           PushOpcode = X86::PUSH32i8;
398       }
399       BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
400     } else {
401       unsigned int Reg = PushOp.getReg();
402 
403       // If PUSHrmm is not slow on this target, try to fold the source of the
404       // push into the instruction.
405       const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
406       bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();
407 
408       // Check that this is legal to fold. Right now, we're extremely
409       // conservative about that.
410       MachineInstr *DefMov = nullptr;
411       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
412         MachineInstr *Push =
413             BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));
414 
415         unsigned NumOps = DefMov->getDesc().getNumOperands();
416         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
417           Push->addOperand(DefMov->getOperand(i));
418 
419         DefMov->eraseFromParent();
420       } else {
421         BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
422             .addReg(Reg)
423             .getInstr();
424       }
425     }
426 
427     MBB.erase(MOV);
428   }
429 
430   // The stack-pointer copy is no longer used in the call sequences.
431   // There should not be any other users, but we can't commit to that, so:
432   if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
433     Context.SPCopy->eraseFromParent();
434 
435   // Once we've done this, we need to make sure PEI doesn't assume a reserved
436   // frame.
437   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
438   FuncInfo->setHasPushSequences(true);
439 
440   return true;
441 }
442 
canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,unsigned Reg)443 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
444     MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
445   // Do an extremely restricted form of load folding.
446   // ISel will often create patterns like:
447   // movl    4(%edi), %eax
448   // movl    8(%edi), %ecx
449   // movl    12(%edi), %edx
450   // movl    %edx, 8(%esp)
451   // movl    %ecx, 4(%esp)
452   // movl    %eax, (%esp)
453   // call
454   // Get rid of those with prejudice.
455   if (!TargetRegisterInfo::isVirtualRegister(Reg))
456     return nullptr;
457 
458   // Make sure this is the only use of Reg.
459   if (!MRI->hasOneNonDBGUse(Reg))
460     return nullptr;
461 
462   MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
463 
464   // Make sure the def is a MOV from memory.
465   // If the def is an another block, give up.
466   if (DefMI->getOpcode() != X86::MOV32rm ||
467       DefMI->getParent() != FrameSetup->getParent())
468     return nullptr;
469 
470   // Now, make sure everything else up until the ADJCALLSTACK is a sequence
471   // of MOVs. To be less conservative would require duplicating a lot of the
472   // logic from PeepholeOptimizer.
473   // FIXME: A possibly better approach would be to teach the PeepholeOptimizer
474   // to be smarter about folding into pushes.
475   for (auto I = DefMI; I != FrameSetup; ++I)
476     if (I->getOpcode() != X86::MOV32rm)
477       return nullptr;
478 
479   return DefMI;
480 }
481