1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains the implementation of the instruction decoder.
12 // Documentation for the disassembler can be found in X86Disassembler.h.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include <cstdarg> /* for va_*() */
17 #include <cstdio> /* for vsnprintf() */
18 #include <cstdlib> /* for exit() */
19 #include <cstring> /* for memset() */
20
21 #include "X86DisassemblerDecoder.h"
22
23 using namespace llvm::X86Disassembler;
24
25 /// Specifies whether a ModR/M byte is needed and (if so) which
26 /// instruction each possible value of the ModR/M byte corresponds to. Once
27 /// this information is known, we have narrowed down to a single instruction.
28 struct ModRMDecision {
29 uint8_t modrm_type;
30 uint16_t instructionIDs;
31 };
32
33 /// Specifies which set of ModR/M->instruction tables to look at
34 /// given a particular opcode.
35 struct OpcodeDecision {
36 ModRMDecision modRMDecisions[256];
37 };
38
39 /// Specifies which opcode->instruction tables to look at given
40 /// a particular context (set of attributes). Since there are many possible
41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
42 /// applies given a specific set of attributes. Hence there are only IC_max
43 /// entries in this table, rather than 2^(ATTR_max).
44 struct ContextDecision {
45 OpcodeDecision opcodeDecisions[IC_max];
46 };
47
48 #include "X86GenDisassemblerTables.inc"
49
50 #ifndef NDEBUG
51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
52 #else
53 #define debug(s) do { } while (0)
54 #endif
55
56
57 /*
58 * contextForAttrs - Client for the instruction context table. Takes a set of
59 * attributes and returns the appropriate decode context.
60 *
61 * @param attrMask - Attributes, from the enumeration attributeBits.
62 * @return - The InstructionContext to use when looking up an
63 * an instruction with these attributes.
64 */
contextForAttrs(uint16_t attrMask)65 static InstructionContext contextForAttrs(uint16_t attrMask) {
66 return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
67 }
68
69 /*
70 * modRMRequired - Reads the appropriate instruction table to determine whether
71 * the ModR/M byte is required to decode a particular instruction.
72 *
73 * @param type - The opcode type (i.e., how many bytes it has).
74 * @param insnContext - The context for the instruction, as returned by
75 * contextForAttrs.
76 * @param opcode - The last byte of the instruction's opcode, not counting
77 * ModR/M extensions and escapes.
78 * @return - true if the ModR/M byte is required, false otherwise.
79 */
modRMRequired(OpcodeType type,InstructionContext insnContext,uint16_t opcode)80 static int modRMRequired(OpcodeType type,
81 InstructionContext insnContext,
82 uint16_t opcode) {
83 const struct ContextDecision* decision = nullptr;
84
85 switch (type) {
86 case ONEBYTE:
87 decision = &ONEBYTE_SYM;
88 break;
89 case TWOBYTE:
90 decision = &TWOBYTE_SYM;
91 break;
92 case THREEBYTE_38:
93 decision = &THREEBYTE38_SYM;
94 break;
95 case THREEBYTE_3A:
96 decision = &THREEBYTE3A_SYM;
97 break;
98 case XOP8_MAP:
99 decision = &XOP8_MAP_SYM;
100 break;
101 case XOP9_MAP:
102 decision = &XOP9_MAP_SYM;
103 break;
104 case XOPA_MAP:
105 decision = &XOPA_MAP_SYM;
106 break;
107 }
108
109 return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
110 modrm_type != MODRM_ONEENTRY;
111 }
112
113 /*
114 * decode - Reads the appropriate instruction table to obtain the unique ID of
115 * an instruction.
116 *
117 * @param type - See modRMRequired().
118 * @param insnContext - See modRMRequired().
119 * @param opcode - See modRMRequired().
120 * @param modRM - The ModR/M byte if required, or any value if not.
121 * @return - The UID of the instruction, or 0 on failure.
122 */
decode(OpcodeType type,InstructionContext insnContext,uint8_t opcode,uint8_t modRM)123 static InstrUID decode(OpcodeType type,
124 InstructionContext insnContext,
125 uint8_t opcode,
126 uint8_t modRM) {
127 const struct ModRMDecision* dec = nullptr;
128
129 switch (type) {
130 case ONEBYTE:
131 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
132 break;
133 case TWOBYTE:
134 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
135 break;
136 case THREEBYTE_38:
137 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
138 break;
139 case THREEBYTE_3A:
140 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
141 break;
142 case XOP8_MAP:
143 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
144 break;
145 case XOP9_MAP:
146 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
147 break;
148 case XOPA_MAP:
149 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
150 break;
151 }
152
153 switch (dec->modrm_type) {
154 default:
155 debug("Corrupt table! Unknown modrm_type");
156 return 0;
157 case MODRM_ONEENTRY:
158 return modRMTable[dec->instructionIDs];
159 case MODRM_SPLITRM:
160 if (modFromModRM(modRM) == 0x3)
161 return modRMTable[dec->instructionIDs+1];
162 return modRMTable[dec->instructionIDs];
163 case MODRM_SPLITREG:
164 if (modFromModRM(modRM) == 0x3)
165 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
166 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
167 case MODRM_SPLITMISC:
168 if (modFromModRM(modRM) == 0x3)
169 return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
170 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
171 case MODRM_FULL:
172 return modRMTable[dec->instructionIDs+modRM];
173 }
174 }
175
176 /*
177 * specifierForUID - Given a UID, returns the name and operand specification for
178 * that instruction.
179 *
180 * @param uid - The unique ID for the instruction. This should be returned by
181 * decode(); specifierForUID will not check bounds.
182 * @return - A pointer to the specification for that instruction.
183 */
specifierForUID(InstrUID uid)184 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
185 return &INSTRUCTIONS_SYM[uid];
186 }
187
188 /*
189 * consumeByte - Uses the reader function provided by the user to consume one
190 * byte from the instruction's memory and advance the cursor.
191 *
192 * @param insn - The instruction with the reader function to use. The cursor
193 * for this instruction is advanced.
194 * @param byte - A pointer to a pre-allocated memory buffer to be populated
195 * with the data read.
196 * @return - 0 if the read was successful; nonzero otherwise.
197 */
consumeByte(struct InternalInstruction * insn,uint8_t * byte)198 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
199 int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
200
201 if (!ret)
202 ++(insn->readerCursor);
203
204 return ret;
205 }
206
207 /*
208 * lookAtByte - Like consumeByte, but does not advance the cursor.
209 *
210 * @param insn - See consumeByte().
211 * @param byte - See consumeByte().
212 * @return - See consumeByte().
213 */
lookAtByte(struct InternalInstruction * insn,uint8_t * byte)214 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
215 return insn->reader(insn->readerArg, byte, insn->readerCursor);
216 }
217
unconsumeByte(struct InternalInstruction * insn)218 static void unconsumeByte(struct InternalInstruction* insn) {
219 insn->readerCursor--;
220 }
221
222 #define CONSUME_FUNC(name, type) \
223 static int name(struct InternalInstruction* insn, type* ptr) { \
224 type combined = 0; \
225 unsigned offset; \
226 for (offset = 0; offset < sizeof(type); ++offset) { \
227 uint8_t byte; \
228 int ret = insn->reader(insn->readerArg, \
229 &byte, \
230 insn->readerCursor + offset); \
231 if (ret) \
232 return ret; \
233 combined = combined | ((uint64_t)byte << (offset * 8)); \
234 } \
235 *ptr = combined; \
236 insn->readerCursor += sizeof(type); \
237 return 0; \
238 }
239
240 /*
241 * consume* - Use the reader function provided by the user to consume data
242 * values of various sizes from the instruction's memory and advance the
243 * cursor appropriately. These readers perform endian conversion.
244 *
245 * @param insn - See consumeByte().
246 * @param ptr - A pointer to a pre-allocated memory of appropriate size to
247 * be populated with the data read.
248 * @return - See consumeByte().
249 */
CONSUME_FUNC(consumeInt8,int8_t)250 CONSUME_FUNC(consumeInt8, int8_t)
251 CONSUME_FUNC(consumeInt16, int16_t)
252 CONSUME_FUNC(consumeInt32, int32_t)
253 CONSUME_FUNC(consumeUInt16, uint16_t)
254 CONSUME_FUNC(consumeUInt32, uint32_t)
255 CONSUME_FUNC(consumeUInt64, uint64_t)
256
257 /*
258 * dbgprintf - Uses the logging function provided by the user to log a single
259 * message, typically without a carriage-return.
260 *
261 * @param insn - The instruction containing the logging function.
262 * @param format - See printf().
263 * @param ... - See printf().
264 */
265 static void dbgprintf(struct InternalInstruction* insn,
266 const char* format,
267 ...) {
268 char buffer[256];
269 va_list ap;
270
271 if (!insn->dlog)
272 return;
273
274 va_start(ap, format);
275 (void)vsnprintf(buffer, sizeof(buffer), format, ap);
276 va_end(ap);
277
278 insn->dlog(insn->dlogArg, buffer);
279
280 return;
281 }
282
283 /*
284 * setPrefixPresent - Marks that a particular prefix is present at a particular
285 * location.
286 *
287 * @param insn - The instruction to be marked as having the prefix.
288 * @param prefix - The prefix that is present.
289 * @param location - The location where the prefix is located (in the address
290 * space of the instruction's reader).
291 */
setPrefixPresent(struct InternalInstruction * insn,uint8_t prefix,uint64_t location)292 static void setPrefixPresent(struct InternalInstruction* insn,
293 uint8_t prefix,
294 uint64_t location)
295 {
296 insn->prefixPresent[prefix] = 1;
297 insn->prefixLocations[prefix] = location;
298 }
299
300 /*
301 * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
302 * present at a given location.
303 *
304 * @param insn - The instruction to be queried.
305 * @param prefix - The prefix.
306 * @param location - The location to query.
307 * @return - Whether the prefix is at that location.
308 */
isPrefixAtLocation(struct InternalInstruction * insn,uint8_t prefix,uint64_t location)309 static bool isPrefixAtLocation(struct InternalInstruction* insn,
310 uint8_t prefix,
311 uint64_t location)
312 {
313 return insn->prefixPresent[prefix] == 1 &&
314 insn->prefixLocations[prefix] == location;
315 }
316
317 /*
318 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
319 * instruction as having them. Also sets the instruction's default operand,
320 * address, and other relevant data sizes to report operands correctly.
321 *
322 * @param insn - The instruction whose prefixes are to be read.
323 * @return - 0 if the instruction could be read until the end of the prefix
324 * bytes, and no prefixes conflicted; nonzero otherwise.
325 */
readPrefixes(struct InternalInstruction * insn)326 static int readPrefixes(struct InternalInstruction* insn) {
327 bool isPrefix = true;
328 bool prefixGroups[4] = { false };
329 uint64_t prefixLocation;
330 uint8_t byte = 0;
331 uint8_t nextByte;
332
333 bool hasAdSize = false;
334 bool hasOpSize = false;
335
336 dbgprintf(insn, "readPrefixes()");
337
338 while (isPrefix) {
339 prefixLocation = insn->readerCursor;
340
341 /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
342 if (consumeByte(insn, &byte))
343 break;
344
345 /*
346 * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
347 * break and let it be disassembled as a normal "instruction".
348 */
349 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
350 break;
351
352 if (insn->readerCursor - 1 == insn->startLocation
353 && (byte == 0xf2 || byte == 0xf3)
354 && !lookAtByte(insn, &nextByte))
355 {
356 /*
357 * If the byte is 0xf2 or 0xf3, and any of the following conditions are
358 * met:
359 * - it is followed by a LOCK (0xf0) prefix
360 * - it is followed by an xchg instruction
361 * then it should be disassembled as a xacquire/xrelease not repne/rep.
362 */
363 if ((byte == 0xf2 || byte == 0xf3) &&
364 ((nextByte == 0xf0) |
365 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
366 insn->xAcquireRelease = true;
367 /*
368 * Also if the byte is 0xf3, and the following condition is met:
369 * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
370 * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
371 * then it should be disassembled as an xrelease not rep.
372 */
373 if (byte == 0xf3 &&
374 (nextByte == 0x88 || nextByte == 0x89 ||
375 nextByte == 0xc6 || nextByte == 0xc7))
376 insn->xAcquireRelease = true;
377 if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
378 if (consumeByte(insn, &nextByte))
379 return -1;
380 if (lookAtByte(insn, &nextByte))
381 return -1;
382 unconsumeByte(insn);
383 }
384 if (nextByte != 0x0f && nextByte != 0x90)
385 break;
386 }
387
388 switch (byte) {
389 case 0xf0: /* LOCK */
390 case 0xf2: /* REPNE/REPNZ */
391 case 0xf3: /* REP or REPE/REPZ */
392 if (prefixGroups[0])
393 dbgprintf(insn, "Redundant Group 1 prefix");
394 prefixGroups[0] = true;
395 setPrefixPresent(insn, byte, prefixLocation);
396 break;
397 case 0x2e: /* CS segment override -OR- Branch not taken */
398 case 0x36: /* SS segment override -OR- Branch taken */
399 case 0x3e: /* DS segment override */
400 case 0x26: /* ES segment override */
401 case 0x64: /* FS segment override */
402 case 0x65: /* GS segment override */
403 switch (byte) {
404 case 0x2e:
405 insn->segmentOverride = SEG_OVERRIDE_CS;
406 break;
407 case 0x36:
408 insn->segmentOverride = SEG_OVERRIDE_SS;
409 break;
410 case 0x3e:
411 insn->segmentOverride = SEG_OVERRIDE_DS;
412 break;
413 case 0x26:
414 insn->segmentOverride = SEG_OVERRIDE_ES;
415 break;
416 case 0x64:
417 insn->segmentOverride = SEG_OVERRIDE_FS;
418 break;
419 case 0x65:
420 insn->segmentOverride = SEG_OVERRIDE_GS;
421 break;
422 default:
423 debug("Unhandled override");
424 return -1;
425 }
426 if (prefixGroups[1])
427 dbgprintf(insn, "Redundant Group 2 prefix");
428 prefixGroups[1] = true;
429 setPrefixPresent(insn, byte, prefixLocation);
430 break;
431 case 0x66: /* Operand-size override */
432 if (prefixGroups[2])
433 dbgprintf(insn, "Redundant Group 3 prefix");
434 prefixGroups[2] = true;
435 hasOpSize = true;
436 setPrefixPresent(insn, byte, prefixLocation);
437 break;
438 case 0x67: /* Address-size override */
439 if (prefixGroups[3])
440 dbgprintf(insn, "Redundant Group 4 prefix");
441 prefixGroups[3] = true;
442 hasAdSize = true;
443 setPrefixPresent(insn, byte, prefixLocation);
444 break;
445 default: /* Not a prefix byte */
446 isPrefix = false;
447 break;
448 }
449
450 if (isPrefix)
451 dbgprintf(insn, "Found prefix 0x%hhx", byte);
452 }
453
454 insn->vectorExtensionType = TYPE_NO_VEX_XOP;
455
456 if (byte == 0x62) {
457 uint8_t byte1, byte2;
458
459 if (consumeByte(insn, &byte1)) {
460 dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
461 return -1;
462 }
463
464 if (lookAtByte(insn, &byte2)) {
465 dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
466 return -1;
467 }
468
469 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
470 ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
471 insn->vectorExtensionType = TYPE_EVEX;
472 } else {
473 unconsumeByte(insn); /* unconsume byte1 */
474 unconsumeByte(insn); /* unconsume byte */
475 insn->necessaryPrefixLocation = insn->readerCursor - 2;
476 }
477
478 if (insn->vectorExtensionType == TYPE_EVEX) {
479 insn->vectorExtensionPrefix[0] = byte;
480 insn->vectorExtensionPrefix[1] = byte1;
481 if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
482 dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
483 return -1;
484 }
485 if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
486 dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
487 return -1;
488 }
489
490 /* We simulate the REX prefix for simplicity's sake */
491 if (insn->mode == MODE_64BIT) {
492 insn->rexPrefix = 0x40
493 | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
494 | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
495 | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
496 | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
497 }
498
499 dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
500 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
501 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
502 }
503 } else if (byte == 0xc4) {
504 uint8_t byte1;
505
506 if (lookAtByte(insn, &byte1)) {
507 dbgprintf(insn, "Couldn't read second byte of VEX");
508 return -1;
509 }
510
511 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
512 insn->vectorExtensionType = TYPE_VEX_3B;
513 insn->necessaryPrefixLocation = insn->readerCursor - 1;
514 } else {
515 unconsumeByte(insn);
516 insn->necessaryPrefixLocation = insn->readerCursor - 1;
517 }
518
519 if (insn->vectorExtensionType == TYPE_VEX_3B) {
520 insn->vectorExtensionPrefix[0] = byte;
521 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
522 consumeByte(insn, &insn->vectorExtensionPrefix[2]);
523
524 /* We simulate the REX prefix for simplicity's sake */
525
526 if (insn->mode == MODE_64BIT) {
527 insn->rexPrefix = 0x40
528 | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
529 | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
530 | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
531 | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
532 }
533
534 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
535 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
536 insn->vectorExtensionPrefix[2]);
537 }
538 } else if (byte == 0xc5) {
539 uint8_t byte1;
540
541 if (lookAtByte(insn, &byte1)) {
542 dbgprintf(insn, "Couldn't read second byte of VEX");
543 return -1;
544 }
545
546 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
547 insn->vectorExtensionType = TYPE_VEX_2B;
548 } else {
549 unconsumeByte(insn);
550 }
551
552 if (insn->vectorExtensionType == TYPE_VEX_2B) {
553 insn->vectorExtensionPrefix[0] = byte;
554 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
555
556 if (insn->mode == MODE_64BIT) {
557 insn->rexPrefix = 0x40
558 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
559 }
560
561 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
562 default:
563 break;
564 case VEX_PREFIX_66:
565 hasOpSize = true;
566 break;
567 }
568
569 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
570 insn->vectorExtensionPrefix[0],
571 insn->vectorExtensionPrefix[1]);
572 }
573 } else if (byte == 0x8f) {
574 uint8_t byte1;
575
576 if (lookAtByte(insn, &byte1)) {
577 dbgprintf(insn, "Couldn't read second byte of XOP");
578 return -1;
579 }
580
581 if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
582 insn->vectorExtensionType = TYPE_XOP;
583 insn->necessaryPrefixLocation = insn->readerCursor - 1;
584 } else {
585 unconsumeByte(insn);
586 insn->necessaryPrefixLocation = insn->readerCursor - 1;
587 }
588
589 if (insn->vectorExtensionType == TYPE_XOP) {
590 insn->vectorExtensionPrefix[0] = byte;
591 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
592 consumeByte(insn, &insn->vectorExtensionPrefix[2]);
593
594 /* We simulate the REX prefix for simplicity's sake */
595
596 if (insn->mode == MODE_64BIT) {
597 insn->rexPrefix = 0x40
598 | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
599 | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
600 | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
601 | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
602 }
603
604 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
605 default:
606 break;
607 case VEX_PREFIX_66:
608 hasOpSize = true;
609 break;
610 }
611
612 dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
613 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
614 insn->vectorExtensionPrefix[2]);
615 }
616 } else {
617 if (insn->mode == MODE_64BIT) {
618 if ((byte & 0xf0) == 0x40) {
619 uint8_t opcodeByte;
620
621 if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
622 dbgprintf(insn, "Redundant REX prefix");
623 return -1;
624 }
625
626 insn->rexPrefix = byte;
627 insn->necessaryPrefixLocation = insn->readerCursor - 2;
628
629 dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
630 } else {
631 unconsumeByte(insn);
632 insn->necessaryPrefixLocation = insn->readerCursor - 1;
633 }
634 } else {
635 unconsumeByte(insn);
636 insn->necessaryPrefixLocation = insn->readerCursor - 1;
637 }
638 }
639
640 if (insn->mode == MODE_16BIT) {
641 insn->registerSize = (hasOpSize ? 4 : 2);
642 insn->addressSize = (hasAdSize ? 4 : 2);
643 insn->displacementSize = (hasAdSize ? 4 : 2);
644 insn->immediateSize = (hasOpSize ? 4 : 2);
645 } else if (insn->mode == MODE_32BIT) {
646 insn->registerSize = (hasOpSize ? 2 : 4);
647 insn->addressSize = (hasAdSize ? 2 : 4);
648 insn->displacementSize = (hasAdSize ? 2 : 4);
649 insn->immediateSize = (hasOpSize ? 2 : 4);
650 } else if (insn->mode == MODE_64BIT) {
651 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
652 insn->registerSize = 8;
653 insn->addressSize = (hasAdSize ? 4 : 8);
654 insn->displacementSize = 4;
655 insn->immediateSize = 4;
656 } else if (insn->rexPrefix) {
657 insn->registerSize = (hasOpSize ? 2 : 4);
658 insn->addressSize = (hasAdSize ? 4 : 8);
659 insn->displacementSize = (hasOpSize ? 2 : 4);
660 insn->immediateSize = (hasOpSize ? 2 : 4);
661 } else {
662 insn->registerSize = (hasOpSize ? 2 : 4);
663 insn->addressSize = (hasAdSize ? 4 : 8);
664 insn->displacementSize = (hasOpSize ? 2 : 4);
665 insn->immediateSize = (hasOpSize ? 2 : 4);
666 }
667 }
668
669 return 0;
670 }
671
672 /*
673 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
674 * extended or escape opcodes).
675 *
676 * @param insn - The instruction whose opcode is to be read.
677 * @return - 0 if the opcode could be read successfully; nonzero otherwise.
678 */
readOpcode(struct InternalInstruction * insn)679 static int readOpcode(struct InternalInstruction* insn) {
680 /* Determine the length of the primary opcode */
681
682 uint8_t current;
683
684 dbgprintf(insn, "readOpcode()");
685
686 insn->opcodeType = ONEBYTE;
687
688 if (insn->vectorExtensionType == TYPE_EVEX) {
689 switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
690 default:
691 dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
692 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
693 return -1;
694 case VEX_LOB_0F:
695 insn->opcodeType = TWOBYTE;
696 return consumeByte(insn, &insn->opcode);
697 case VEX_LOB_0F38:
698 insn->opcodeType = THREEBYTE_38;
699 return consumeByte(insn, &insn->opcode);
700 case VEX_LOB_0F3A:
701 insn->opcodeType = THREEBYTE_3A;
702 return consumeByte(insn, &insn->opcode);
703 }
704 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
705 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
706 default:
707 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
708 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
709 return -1;
710 case VEX_LOB_0F:
711 insn->opcodeType = TWOBYTE;
712 return consumeByte(insn, &insn->opcode);
713 case VEX_LOB_0F38:
714 insn->opcodeType = THREEBYTE_38;
715 return consumeByte(insn, &insn->opcode);
716 case VEX_LOB_0F3A:
717 insn->opcodeType = THREEBYTE_3A;
718 return consumeByte(insn, &insn->opcode);
719 }
720 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
721 insn->opcodeType = TWOBYTE;
722 return consumeByte(insn, &insn->opcode);
723 } else if (insn->vectorExtensionType == TYPE_XOP) {
724 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
725 default:
726 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
727 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
728 return -1;
729 case XOP_MAP_SELECT_8:
730 insn->opcodeType = XOP8_MAP;
731 return consumeByte(insn, &insn->opcode);
732 case XOP_MAP_SELECT_9:
733 insn->opcodeType = XOP9_MAP;
734 return consumeByte(insn, &insn->opcode);
735 case XOP_MAP_SELECT_A:
736 insn->opcodeType = XOPA_MAP;
737 return consumeByte(insn, &insn->opcode);
738 }
739 }
740
741 if (consumeByte(insn, ¤t))
742 return -1;
743
744 if (current == 0x0f) {
745 dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
746
747 if (consumeByte(insn, ¤t))
748 return -1;
749
750 if (current == 0x38) {
751 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
752
753 if (consumeByte(insn, ¤t))
754 return -1;
755
756 insn->opcodeType = THREEBYTE_38;
757 } else if (current == 0x3a) {
758 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
759
760 if (consumeByte(insn, ¤t))
761 return -1;
762
763 insn->opcodeType = THREEBYTE_3A;
764 } else {
765 dbgprintf(insn, "Didn't find a three-byte escape prefix");
766
767 insn->opcodeType = TWOBYTE;
768 }
769 }
770
771 /*
772 * At this point we have consumed the full opcode.
773 * Anything we consume from here on must be unconsumed.
774 */
775
776 insn->opcode = current;
777
778 return 0;
779 }
780
781 static int readModRM(struct InternalInstruction* insn);
782
783 /*
784 * getIDWithAttrMask - Determines the ID of an instruction, consuming
785 * the ModR/M byte as appropriate for extended and escape opcodes,
786 * and using a supplied attribute mask.
787 *
788 * @param instructionID - A pointer whose target is filled in with the ID of the
789 * instruction.
790 * @param insn - The instruction whose ID is to be determined.
791 * @param attrMask - The attribute mask to search.
792 * @return - 0 if the ModR/M could be read when needed or was not
793 * needed; nonzero otherwise.
794 */
getIDWithAttrMask(uint16_t * instructionID,struct InternalInstruction * insn,uint16_t attrMask)795 static int getIDWithAttrMask(uint16_t* instructionID,
796 struct InternalInstruction* insn,
797 uint16_t attrMask) {
798 bool hasModRMExtension;
799
800 InstructionContext instructionClass = contextForAttrs(attrMask);
801
802 hasModRMExtension = modRMRequired(insn->opcodeType,
803 instructionClass,
804 insn->opcode);
805
806 if (hasModRMExtension) {
807 if (readModRM(insn))
808 return -1;
809
810 *instructionID = decode(insn->opcodeType,
811 instructionClass,
812 insn->opcode,
813 insn->modRM);
814 } else {
815 *instructionID = decode(insn->opcodeType,
816 instructionClass,
817 insn->opcode,
818 0);
819 }
820
821 return 0;
822 }
823
824 /*
825 * is16BitEquivalent - Determines whether two instruction names refer to
826 * equivalent instructions but one is 16-bit whereas the other is not.
827 *
828 * @param orig - The instruction that is not 16-bit
829 * @param equiv - The instruction that is 16-bit
830 */
is16BitEquivalent(const char * orig,const char * equiv)831 static bool is16BitEquivalent(const char* orig, const char* equiv) {
832 off_t i;
833
834 for (i = 0;; i++) {
835 if (orig[i] == '\0' && equiv[i] == '\0')
836 return true;
837 if (orig[i] == '\0' || equiv[i] == '\0')
838 return false;
839 if (orig[i] != equiv[i]) {
840 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
841 continue;
842 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
843 continue;
844 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
845 continue;
846 return false;
847 }
848 }
849 }
850
851 /*
852 * is64Bit - Determines whether this instruction is a 64-bit instruction.
853 *
854 * @param name - The instruction that is not 16-bit
855 */
is64Bit(const char * name)856 static bool is64Bit(const char* name) {
857 off_t i;
858
859 for (i = 0;; ++i) {
860 if (name[i] == '\0')
861 return false;
862 if (name[i] == '6' && name[i+1] == '4')
863 return true;
864 }
865 }
866
867 /*
868 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
869 * appropriate for extended and escape opcodes. Determines the attributes and
870 * context for the instruction before doing so.
871 *
872 * @param insn - The instruction whose ID is to be determined.
873 * @return - 0 if the ModR/M could be read when needed or was not needed;
874 * nonzero otherwise.
875 */
getID(struct InternalInstruction * insn,const void * miiArg)876 static int getID(struct InternalInstruction* insn, const void *miiArg) {
877 uint16_t attrMask;
878 uint16_t instructionID;
879
880 dbgprintf(insn, "getID()");
881
882 attrMask = ATTR_NONE;
883
884 if (insn->mode == MODE_64BIT)
885 attrMask |= ATTR_64BIT;
886
887 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
888 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
889
890 if (insn->vectorExtensionType == TYPE_EVEX) {
891 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
892 case VEX_PREFIX_66:
893 attrMask |= ATTR_OPSIZE;
894 break;
895 case VEX_PREFIX_F3:
896 attrMask |= ATTR_XS;
897 break;
898 case VEX_PREFIX_F2:
899 attrMask |= ATTR_XD;
900 break;
901 }
902
903 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
904 attrMask |= ATTR_EVEXKZ;
905 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
906 attrMask |= ATTR_EVEXB;
907 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
908 attrMask |= ATTR_EVEXK;
909 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
910 attrMask |= ATTR_EVEXL;
911 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
912 attrMask |= ATTR_EVEXL2;
913 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
914 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
915 case VEX_PREFIX_66:
916 attrMask |= ATTR_OPSIZE;
917 break;
918 case VEX_PREFIX_F3:
919 attrMask |= ATTR_XS;
920 break;
921 case VEX_PREFIX_F2:
922 attrMask |= ATTR_XD;
923 break;
924 }
925
926 if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
927 attrMask |= ATTR_VEXL;
928 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
929 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
930 case VEX_PREFIX_66:
931 attrMask |= ATTR_OPSIZE;
932 break;
933 case VEX_PREFIX_F3:
934 attrMask |= ATTR_XS;
935 break;
936 case VEX_PREFIX_F2:
937 attrMask |= ATTR_XD;
938 break;
939 }
940
941 if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
942 attrMask |= ATTR_VEXL;
943 } else if (insn->vectorExtensionType == TYPE_XOP) {
944 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
945 case VEX_PREFIX_66:
946 attrMask |= ATTR_OPSIZE;
947 break;
948 case VEX_PREFIX_F3:
949 attrMask |= ATTR_XS;
950 break;
951 case VEX_PREFIX_F2:
952 attrMask |= ATTR_XD;
953 break;
954 }
955
956 if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
957 attrMask |= ATTR_VEXL;
958 } else {
959 return -1;
960 }
961 } else {
962 if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
963 attrMask |= ATTR_OPSIZE;
964 else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
965 attrMask |= ATTR_ADSIZE;
966 else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
967 attrMask |= ATTR_XS;
968 else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
969 attrMask |= ATTR_XD;
970 }
971
972 if (insn->rexPrefix & 0x08)
973 attrMask |= ATTR_REXW;
974
975 /*
976 * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
977 * of the AdSize prefix is inverted w.r.t. 32-bit mode.
978 */
979 if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
980 insn->opcode == 0xE3)
981 attrMask ^= ATTR_ADSIZE;
982
983 if (getIDWithAttrMask(&instructionID, insn, attrMask))
984 return -1;
985
986 /* The following clauses compensate for limitations of the tables. */
987
988 if (insn->mode != MODE_64BIT &&
989 insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
990 /*
991 * The tables can't distinquish between cases where the W-bit is used to
992 * select register size and cases where its a required part of the opcode.
993 */
994 if ((insn->vectorExtensionType == TYPE_EVEX &&
995 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
996 (insn->vectorExtensionType == TYPE_VEX_3B &&
997 wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
998 (insn->vectorExtensionType == TYPE_XOP &&
999 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1000
1001 uint16_t instructionIDWithREXW;
1002 if (getIDWithAttrMask(&instructionIDWithREXW,
1003 insn, attrMask | ATTR_REXW)) {
1004 insn->instructionID = instructionID;
1005 insn->spec = specifierForUID(instructionID);
1006 return 0;
1007 }
1008
1009 const char *SpecName = GetInstrName(instructionIDWithREXW, miiArg);
1010 // If not a 64-bit instruction. Switch the opcode.
1011 if (!is64Bit(SpecName)) {
1012 insn->instructionID = instructionIDWithREXW;
1013 insn->spec = specifierForUID(instructionIDWithREXW);
1014 return 0;
1015 }
1016 }
1017 }
1018
1019 /*
1020 * Absolute moves need special handling.
1021 * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1022 * inverted w.r.t.
1023 * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1024 * any position.
1025 */
1026 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) {
1027 /* Make sure we observed the prefixes in any position. */
1028 if (insn->prefixPresent[0x67])
1029 attrMask |= ATTR_ADSIZE;
1030 if (insn->prefixPresent[0x66])
1031 attrMask |= ATTR_OPSIZE;
1032
1033 /* In 16-bit, invert the attributes. */
1034 if (insn->mode == MODE_16BIT)
1035 attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE;
1036
1037 if (getIDWithAttrMask(&instructionID, insn, attrMask))
1038 return -1;
1039
1040 insn->instructionID = instructionID;
1041 insn->spec = specifierForUID(instructionID);
1042 return 0;
1043 }
1044
1045 if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
1046 !(attrMask & ATTR_OPSIZE)) {
1047 /*
1048 * The instruction tables make no distinction between instructions that
1049 * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1050 * particular spot (i.e., many MMX operations). In general we're
1051 * conservative, but in the specific case where OpSize is present but not
1052 * in the right place we check if there's a 16-bit operation.
1053 */
1054
1055 const struct InstructionSpecifier *spec;
1056 uint16_t instructionIDWithOpsize;
1057 const char *specName, *specWithOpSizeName;
1058
1059 spec = specifierForUID(instructionID);
1060
1061 if (getIDWithAttrMask(&instructionIDWithOpsize,
1062 insn,
1063 attrMask | ATTR_OPSIZE)) {
1064 /*
1065 * ModRM required with OpSize but not present; give up and return version
1066 * without OpSize set
1067 */
1068
1069 insn->instructionID = instructionID;
1070 insn->spec = spec;
1071 return 0;
1072 }
1073
1074 specName = GetInstrName(instructionID, miiArg);
1075 specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
1076
1077 if (is16BitEquivalent(specName, specWithOpSizeName) &&
1078 (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
1079 insn->instructionID = instructionIDWithOpsize;
1080 insn->spec = specifierForUID(instructionIDWithOpsize);
1081 } else {
1082 insn->instructionID = instructionID;
1083 insn->spec = spec;
1084 }
1085 return 0;
1086 }
1087
1088 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1089 insn->rexPrefix & 0x01) {
1090 /*
1091 * NOOP shouldn't decode as NOOP if REX.b is set. Instead
1092 * it should decode as XCHG %r8, %eax.
1093 */
1094
1095 const struct InstructionSpecifier *spec;
1096 uint16_t instructionIDWithNewOpcode;
1097 const struct InstructionSpecifier *specWithNewOpcode;
1098
1099 spec = specifierForUID(instructionID);
1100
1101 /* Borrow opcode from one of the other XCHGar opcodes */
1102 insn->opcode = 0x91;
1103
1104 if (getIDWithAttrMask(&instructionIDWithNewOpcode,
1105 insn,
1106 attrMask)) {
1107 insn->opcode = 0x90;
1108
1109 insn->instructionID = instructionID;
1110 insn->spec = spec;
1111 return 0;
1112 }
1113
1114 specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
1115
1116 /* Change back */
1117 insn->opcode = 0x90;
1118
1119 insn->instructionID = instructionIDWithNewOpcode;
1120 insn->spec = specWithNewOpcode;
1121
1122 return 0;
1123 }
1124
1125 insn->instructionID = instructionID;
1126 insn->spec = specifierForUID(insn->instructionID);
1127
1128 return 0;
1129 }
1130
1131 /*
1132 * readSIB - Consumes the SIB byte to determine addressing information for an
1133 * instruction.
1134 *
1135 * @param insn - The instruction whose SIB byte is to be read.
1136 * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
1137 */
readSIB(struct InternalInstruction * insn)1138 static int readSIB(struct InternalInstruction* insn) {
1139 SIBIndex sibIndexBase = SIB_INDEX_NONE;
1140 SIBBase sibBaseBase = SIB_BASE_NONE;
1141 uint8_t index, base;
1142
1143 dbgprintf(insn, "readSIB()");
1144
1145 if (insn->consumedSIB)
1146 return 0;
1147
1148 insn->consumedSIB = true;
1149
1150 switch (insn->addressSize) {
1151 case 2:
1152 dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1153 return -1;
1154 case 4:
1155 sibIndexBase = SIB_INDEX_EAX;
1156 sibBaseBase = SIB_BASE_EAX;
1157 break;
1158 case 8:
1159 sibIndexBase = SIB_INDEX_RAX;
1160 sibBaseBase = SIB_BASE_RAX;
1161 break;
1162 }
1163
1164 if (consumeByte(insn, &insn->sib))
1165 return -1;
1166
1167 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1168 if (insn->vectorExtensionType == TYPE_EVEX)
1169 index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
1170
1171 switch (index) {
1172 case 0x4:
1173 insn->sibIndex = SIB_INDEX_NONE;
1174 break;
1175 default:
1176 insn->sibIndex = (SIBIndex)(sibIndexBase + index);
1177 if (insn->sibIndex == SIB_INDEX_sib ||
1178 insn->sibIndex == SIB_INDEX_sib64)
1179 insn->sibIndex = SIB_INDEX_NONE;
1180 break;
1181 }
1182
1183 switch (scaleFromSIB(insn->sib)) {
1184 case 0:
1185 insn->sibScale = 1;
1186 break;
1187 case 1:
1188 insn->sibScale = 2;
1189 break;
1190 case 2:
1191 insn->sibScale = 4;
1192 break;
1193 case 3:
1194 insn->sibScale = 8;
1195 break;
1196 }
1197
1198 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1199
1200 switch (base) {
1201 case 0x5:
1202 case 0xd:
1203 switch (modFromModRM(insn->modRM)) {
1204 case 0x0:
1205 insn->eaDisplacement = EA_DISP_32;
1206 insn->sibBase = SIB_BASE_NONE;
1207 break;
1208 case 0x1:
1209 insn->eaDisplacement = EA_DISP_8;
1210 insn->sibBase = (SIBBase)(sibBaseBase + base);
1211 break;
1212 case 0x2:
1213 insn->eaDisplacement = EA_DISP_32;
1214 insn->sibBase = (SIBBase)(sibBaseBase + base);
1215 break;
1216 case 0x3:
1217 debug("Cannot have Mod = 0b11 and a SIB byte");
1218 return -1;
1219 }
1220 break;
1221 default:
1222 insn->sibBase = (SIBBase)(sibBaseBase + base);
1223 break;
1224 }
1225
1226 return 0;
1227 }
1228
1229 /*
1230 * readDisplacement - Consumes the displacement of an instruction.
1231 *
1232 * @param insn - The instruction whose displacement is to be read.
1233 * @return - 0 if the displacement byte was successfully read; nonzero
1234 * otherwise.
1235 */
readDisplacement(struct InternalInstruction * insn)1236 static int readDisplacement(struct InternalInstruction* insn) {
1237 int8_t d8;
1238 int16_t d16;
1239 int32_t d32;
1240
1241 dbgprintf(insn, "readDisplacement()");
1242
1243 if (insn->consumedDisplacement)
1244 return 0;
1245
1246 insn->consumedDisplacement = true;
1247 insn->displacementOffset = insn->readerCursor - insn->startLocation;
1248
1249 switch (insn->eaDisplacement) {
1250 case EA_DISP_NONE:
1251 insn->consumedDisplacement = false;
1252 break;
1253 case EA_DISP_8:
1254 if (consumeInt8(insn, &d8))
1255 return -1;
1256 insn->displacement = d8;
1257 break;
1258 case EA_DISP_16:
1259 if (consumeInt16(insn, &d16))
1260 return -1;
1261 insn->displacement = d16;
1262 break;
1263 case EA_DISP_32:
1264 if (consumeInt32(insn, &d32))
1265 return -1;
1266 insn->displacement = d32;
1267 break;
1268 }
1269
1270 insn->consumedDisplacement = true;
1271 return 0;
1272 }
1273
1274 /*
1275 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1276 * displacement) for an instruction and interprets it.
1277 *
1278 * @param insn - The instruction whose addressing information is to be read.
1279 * @return - 0 if the information was successfully read; nonzero otherwise.
1280 */
readModRM(struct InternalInstruction * insn)1281 static int readModRM(struct InternalInstruction* insn) {
1282 uint8_t mod, rm, reg;
1283
1284 dbgprintf(insn, "readModRM()");
1285
1286 if (insn->consumedModRM)
1287 return 0;
1288
1289 if (consumeByte(insn, &insn->modRM))
1290 return -1;
1291 insn->consumedModRM = true;
1292
1293 mod = modFromModRM(insn->modRM);
1294 rm = rmFromModRM(insn->modRM);
1295 reg = regFromModRM(insn->modRM);
1296
1297 /*
1298 * This goes by insn->registerSize to pick the correct register, which messes
1299 * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
1300 * fixupReg().
1301 */
1302 switch (insn->registerSize) {
1303 case 2:
1304 insn->regBase = MODRM_REG_AX;
1305 insn->eaRegBase = EA_REG_AX;
1306 break;
1307 case 4:
1308 insn->regBase = MODRM_REG_EAX;
1309 insn->eaRegBase = EA_REG_EAX;
1310 break;
1311 case 8:
1312 insn->regBase = MODRM_REG_RAX;
1313 insn->eaRegBase = EA_REG_RAX;
1314 break;
1315 }
1316
1317 reg |= rFromREX(insn->rexPrefix) << 3;
1318 rm |= bFromREX(insn->rexPrefix) << 3;
1319 if (insn->vectorExtensionType == TYPE_EVEX) {
1320 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1321 rm |= xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1322 }
1323
1324 insn->reg = (Reg)(insn->regBase + reg);
1325
1326 switch (insn->addressSize) {
1327 case 2:
1328 insn->eaBaseBase = EA_BASE_BX_SI;
1329
1330 switch (mod) {
1331 case 0x0:
1332 if (rm == 0x6) {
1333 insn->eaBase = EA_BASE_NONE;
1334 insn->eaDisplacement = EA_DISP_16;
1335 if (readDisplacement(insn))
1336 return -1;
1337 } else {
1338 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1339 insn->eaDisplacement = EA_DISP_NONE;
1340 }
1341 break;
1342 case 0x1:
1343 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1344 insn->eaDisplacement = EA_DISP_8;
1345 insn->displacementSize = 1;
1346 if (readDisplacement(insn))
1347 return -1;
1348 break;
1349 case 0x2:
1350 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1351 insn->eaDisplacement = EA_DISP_16;
1352 if (readDisplacement(insn))
1353 return -1;
1354 break;
1355 case 0x3:
1356 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1357 if (readDisplacement(insn))
1358 return -1;
1359 break;
1360 }
1361 break;
1362 case 4:
1363 case 8:
1364 insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1365
1366 switch (mod) {
1367 case 0x0:
1368 insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1369 switch (rm) {
1370 case 0x14:
1371 case 0x4:
1372 case 0xc: /* in case REXW.b is set */
1373 insn->eaBase = (insn->addressSize == 4 ?
1374 EA_BASE_sib : EA_BASE_sib64);
1375 if (readSIB(insn) || readDisplacement(insn))
1376 return -1;
1377 break;
1378 case 0x5:
1379 insn->eaBase = EA_BASE_NONE;
1380 insn->eaDisplacement = EA_DISP_32;
1381 if (readDisplacement(insn))
1382 return -1;
1383 break;
1384 default:
1385 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1386 break;
1387 }
1388 break;
1389 case 0x1:
1390 insn->displacementSize = 1;
1391 /* FALLTHROUGH */
1392 case 0x2:
1393 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1394 switch (rm) {
1395 case 0x14:
1396 case 0x4:
1397 case 0xc: /* in case REXW.b is set */
1398 insn->eaBase = EA_BASE_sib;
1399 if (readSIB(insn) || readDisplacement(insn))
1400 return -1;
1401 break;
1402 default:
1403 insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1404 if (readDisplacement(insn))
1405 return -1;
1406 break;
1407 }
1408 break;
1409 case 0x3:
1410 insn->eaDisplacement = EA_DISP_NONE;
1411 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1412 break;
1413 }
1414 break;
1415 } /* switch (insn->addressSize) */
1416
1417 return 0;
1418 }
1419
1420 #define GENERIC_FIXUP_FUNC(name, base, prefix) \
1421 static uint8_t name(struct InternalInstruction *insn, \
1422 OperandType type, \
1423 uint8_t index, \
1424 uint8_t *valid) { \
1425 *valid = 1; \
1426 switch (type) { \
1427 default: \
1428 debug("Unhandled register type"); \
1429 *valid = 0; \
1430 return 0; \
1431 case TYPE_Rv: \
1432 return base + index; \
1433 case TYPE_R8: \
1434 if (insn->rexPrefix && \
1435 index >= 4 && index <= 7) { \
1436 return prefix##_SPL + (index - 4); \
1437 } else { \
1438 return prefix##_AL + index; \
1439 } \
1440 case TYPE_R16: \
1441 return prefix##_AX + index; \
1442 case TYPE_R32: \
1443 return prefix##_EAX + index; \
1444 case TYPE_R64: \
1445 return prefix##_RAX + index; \
1446 case TYPE_XMM512: \
1447 return prefix##_ZMM0 + index; \
1448 case TYPE_XMM256: \
1449 return prefix##_YMM0 + index; \
1450 case TYPE_XMM128: \
1451 case TYPE_XMM64: \
1452 case TYPE_XMM32: \
1453 case TYPE_XMM: \
1454 return prefix##_XMM0 + index; \
1455 case TYPE_VK1: \
1456 case TYPE_VK8: \
1457 case TYPE_VK16: \
1458 if (index > 7) \
1459 *valid = 0; \
1460 return prefix##_K0 + index; \
1461 case TYPE_MM64: \
1462 return prefix##_MM0 + (index & 0x7); \
1463 case TYPE_SEGMENTREG: \
1464 if (index > 5) \
1465 *valid = 0; \
1466 return prefix##_ES + index; \
1467 case TYPE_DEBUGREG: \
1468 return prefix##_DR0 + index; \
1469 case TYPE_CONTROLREG: \
1470 return prefix##_CR0 + index; \
1471 } \
1472 }
1473
1474 /*
1475 * fixup*Value - Consults an operand type to determine the meaning of the
1476 * reg or R/M field. If the operand is an XMM operand, for example, an
1477 * operand would be XMM0 instead of AX, which readModRM() would otherwise
1478 * misinterpret it as.
1479 *
1480 * @param insn - The instruction containing the operand.
1481 * @param type - The operand type.
1482 * @param index - The existing value of the field as reported by readModRM().
1483 * @param valid - The address of a uint8_t. The target is set to 1 if the
1484 * field is valid for the register class; 0 if not.
1485 * @return - The proper value.
1486 */
1487 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
1488 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
1489
1490 /*
1491 * fixupReg - Consults an operand specifier to determine which of the
1492 * fixup*Value functions to use in correcting readModRM()'ss interpretation.
1493 *
1494 * @param insn - See fixup*Value().
1495 * @param op - The operand specifier.
1496 * @return - 0 if fixup was successful; -1 if the register returned was
1497 * invalid for its class.
1498 */
fixupReg(struct InternalInstruction * insn,const struct OperandSpecifier * op)1499 static int fixupReg(struct InternalInstruction *insn,
1500 const struct OperandSpecifier *op) {
1501 uint8_t valid;
1502
1503 dbgprintf(insn, "fixupReg()");
1504
1505 switch ((OperandEncoding)op->encoding) {
1506 default:
1507 debug("Expected a REG or R/M encoding in fixupReg");
1508 return -1;
1509 case ENCODING_VVVV:
1510 insn->vvvv = (Reg)fixupRegValue(insn,
1511 (OperandType)op->type,
1512 insn->vvvv,
1513 &valid);
1514 if (!valid)
1515 return -1;
1516 break;
1517 case ENCODING_REG:
1518 insn->reg = (Reg)fixupRegValue(insn,
1519 (OperandType)op->type,
1520 insn->reg - insn->regBase,
1521 &valid);
1522 if (!valid)
1523 return -1;
1524 break;
1525 CASE_ENCODING_RM:
1526 if (insn->eaBase >= insn->eaRegBase) {
1527 insn->eaBase = (EABase)fixupRMValue(insn,
1528 (OperandType)op->type,
1529 insn->eaBase - insn->eaRegBase,
1530 &valid);
1531 if (!valid)
1532 return -1;
1533 }
1534 break;
1535 }
1536
1537 return 0;
1538 }
1539
1540 /*
1541 * readOpcodeRegister - Reads an operand from the opcode field of an
1542 * instruction and interprets it appropriately given the operand width.
1543 * Handles AddRegFrm instructions.
1544 *
1545 * @param insn - the instruction whose opcode field is to be read.
1546 * @param size - The width (in bytes) of the register being specified.
1547 * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1548 * RAX.
1549 * @return - 0 on success; nonzero otherwise.
1550 */
readOpcodeRegister(struct InternalInstruction * insn,uint8_t size)1551 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1552 dbgprintf(insn, "readOpcodeRegister()");
1553
1554 if (size == 0)
1555 size = insn->registerSize;
1556
1557 switch (size) {
1558 case 1:
1559 insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1560 | (insn->opcode & 7)));
1561 if (insn->rexPrefix &&
1562 insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1563 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1564 insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1565 + (insn->opcodeRegister - MODRM_REG_AL - 4));
1566 }
1567
1568 break;
1569 case 2:
1570 insn->opcodeRegister = (Reg)(MODRM_REG_AX
1571 + ((bFromREX(insn->rexPrefix) << 3)
1572 | (insn->opcode & 7)));
1573 break;
1574 case 4:
1575 insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1576 + ((bFromREX(insn->rexPrefix) << 3)
1577 | (insn->opcode & 7)));
1578 break;
1579 case 8:
1580 insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1581 + ((bFromREX(insn->rexPrefix) << 3)
1582 | (insn->opcode & 7)));
1583 break;
1584 }
1585
1586 return 0;
1587 }
1588
1589 /*
1590 * readImmediate - Consumes an immediate operand from an instruction, given the
1591 * desired operand size.
1592 *
1593 * @param insn - The instruction whose operand is to be read.
1594 * @param size - The width (in bytes) of the operand.
1595 * @return - 0 if the immediate was successfully consumed; nonzero
1596 * otherwise.
1597 */
readImmediate(struct InternalInstruction * insn,uint8_t size)1598 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1599 uint8_t imm8;
1600 uint16_t imm16;
1601 uint32_t imm32;
1602 uint64_t imm64;
1603
1604 dbgprintf(insn, "readImmediate()");
1605
1606 if (insn->numImmediatesConsumed == 2) {
1607 debug("Already consumed two immediates");
1608 return -1;
1609 }
1610
1611 if (size == 0)
1612 size = insn->immediateSize;
1613 else
1614 insn->immediateSize = size;
1615 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1616
1617 switch (size) {
1618 case 1:
1619 if (consumeByte(insn, &imm8))
1620 return -1;
1621 insn->immediates[insn->numImmediatesConsumed] = imm8;
1622 break;
1623 case 2:
1624 if (consumeUInt16(insn, &imm16))
1625 return -1;
1626 insn->immediates[insn->numImmediatesConsumed] = imm16;
1627 break;
1628 case 4:
1629 if (consumeUInt32(insn, &imm32))
1630 return -1;
1631 insn->immediates[insn->numImmediatesConsumed] = imm32;
1632 break;
1633 case 8:
1634 if (consumeUInt64(insn, &imm64))
1635 return -1;
1636 insn->immediates[insn->numImmediatesConsumed] = imm64;
1637 break;
1638 }
1639
1640 insn->numImmediatesConsumed++;
1641
1642 return 0;
1643 }
1644
1645 /*
1646 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1647 *
1648 * @param insn - The instruction whose operand is to be read.
1649 * @return - 0 if the vvvv was successfully consumed; nonzero
1650 * otherwise.
1651 */
readVVVV(struct InternalInstruction * insn)1652 static int readVVVV(struct InternalInstruction* insn) {
1653 dbgprintf(insn, "readVVVV()");
1654
1655 int vvvv;
1656 if (insn->vectorExtensionType == TYPE_EVEX)
1657 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1658 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1659 else if (insn->vectorExtensionType == TYPE_VEX_3B)
1660 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1661 else if (insn->vectorExtensionType == TYPE_VEX_2B)
1662 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1663 else if (insn->vectorExtensionType == TYPE_XOP)
1664 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1665 else
1666 return -1;
1667
1668 if (insn->mode != MODE_64BIT)
1669 vvvv &= 0x7;
1670
1671 insn->vvvv = static_cast<Reg>(vvvv);
1672 return 0;
1673 }
1674
1675 /*
1676 * readMaskRegister - Reads an mask register from the opcode field of an
1677 * instruction.
1678 *
1679 * @param insn - The instruction whose opcode field is to be read.
1680 * @return - 0 on success; nonzero otherwise.
1681 */
readMaskRegister(struct InternalInstruction * insn)1682 static int readMaskRegister(struct InternalInstruction* insn) {
1683 dbgprintf(insn, "readMaskRegister()");
1684
1685 if (insn->vectorExtensionType != TYPE_EVEX)
1686 return -1;
1687
1688 insn->writemask =
1689 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1690 return 0;
1691 }
1692
1693 /*
1694 * readOperands - Consults the specifier for an instruction and consumes all
1695 * operands for that instruction, interpreting them as it goes.
1696 *
1697 * @param insn - The instruction whose operands are to be read and interpreted.
1698 * @return - 0 if all operands could be read; nonzero otherwise.
1699 */
readOperands(struct InternalInstruction * insn)1700 static int readOperands(struct InternalInstruction* insn) {
1701 int hasVVVV, needVVVV;
1702 int sawRegImm = 0;
1703
1704 dbgprintf(insn, "readOperands()");
1705
1706 /* If non-zero vvvv specified, need to make sure one of the operands
1707 uses it. */
1708 hasVVVV = !readVVVV(insn);
1709 needVVVV = hasVVVV && (insn->vvvv != 0);
1710
1711 for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1712 switch (Op.encoding) {
1713 case ENCODING_NONE:
1714 case ENCODING_SI:
1715 case ENCODING_DI:
1716 break;
1717 case ENCODING_REG:
1718 CASE_ENCODING_RM:
1719 if (readModRM(insn))
1720 return -1;
1721 if (fixupReg(insn, &Op))
1722 return -1;
1723 // Apply the AVX512 compressed displacement scaling factor.
1724 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1725 insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1726 break;
1727 case ENCODING_CB:
1728 case ENCODING_CW:
1729 case ENCODING_CD:
1730 case ENCODING_CP:
1731 case ENCODING_CO:
1732 case ENCODING_CT:
1733 dbgprintf(insn, "We currently don't hande code-offset encodings");
1734 return -1;
1735 case ENCODING_IB:
1736 if (sawRegImm) {
1737 /* Saw a register immediate so don't read again and instead split the
1738 previous immediate. FIXME: This is a hack. */
1739 insn->immediates[insn->numImmediatesConsumed] =
1740 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1741 ++insn->numImmediatesConsumed;
1742 break;
1743 }
1744 if (readImmediate(insn, 1))
1745 return -1;
1746 if (Op.type == TYPE_XMM128 ||
1747 Op.type == TYPE_XMM256)
1748 sawRegImm = 1;
1749 break;
1750 case ENCODING_IW:
1751 if (readImmediate(insn, 2))
1752 return -1;
1753 break;
1754 case ENCODING_ID:
1755 if (readImmediate(insn, 4))
1756 return -1;
1757 break;
1758 case ENCODING_IO:
1759 if (readImmediate(insn, 8))
1760 return -1;
1761 break;
1762 case ENCODING_Iv:
1763 if (readImmediate(insn, insn->immediateSize))
1764 return -1;
1765 break;
1766 case ENCODING_Ia:
1767 if (readImmediate(insn, insn->addressSize))
1768 return -1;
1769 break;
1770 case ENCODING_RB:
1771 if (readOpcodeRegister(insn, 1))
1772 return -1;
1773 break;
1774 case ENCODING_RW:
1775 if (readOpcodeRegister(insn, 2))
1776 return -1;
1777 break;
1778 case ENCODING_RD:
1779 if (readOpcodeRegister(insn, 4))
1780 return -1;
1781 break;
1782 case ENCODING_RO:
1783 if (readOpcodeRegister(insn, 8))
1784 return -1;
1785 break;
1786 case ENCODING_Rv:
1787 if (readOpcodeRegister(insn, 0))
1788 return -1;
1789 break;
1790 case ENCODING_FP:
1791 break;
1792 case ENCODING_VVVV:
1793 needVVVV = 0; /* Mark that we have found a VVVV operand. */
1794 if (!hasVVVV)
1795 return -1;
1796 if (fixupReg(insn, &Op))
1797 return -1;
1798 break;
1799 case ENCODING_WRITEMASK:
1800 if (readMaskRegister(insn))
1801 return -1;
1802 break;
1803 case ENCODING_DUP:
1804 break;
1805 default:
1806 dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1807 return -1;
1808 }
1809 }
1810
1811 /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1812 if (needVVVV) return -1;
1813
1814 return 0;
1815 }
1816
1817 /*
1818 * decodeInstruction - Reads and interprets a full instruction provided by the
1819 * user.
1820 *
1821 * @param insn - A pointer to the instruction to be populated. Must be
1822 * pre-allocated.
1823 * @param reader - The function to be used to read the instruction's bytes.
1824 * @param readerArg - A generic argument to be passed to the reader to store
1825 * any internal state.
1826 * @param logger - If non-NULL, the function to be used to write log messages
1827 * and warnings.
1828 * @param loggerArg - A generic argument to be passed to the logger to store
1829 * any internal state.
1830 * @param startLoc - The address (in the reader's address space) of the first
1831 * byte in the instruction.
1832 * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1833 * decode the instruction in.
1834 * @return - 0 if the instruction's memory could be read; nonzero if
1835 * not.
1836 */
decodeInstruction(struct InternalInstruction * insn,byteReader_t reader,const void * readerArg,dlog_t logger,void * loggerArg,const void * miiArg,uint64_t startLoc,DisassemblerMode mode)1837 int llvm::X86Disassembler::decodeInstruction(
1838 struct InternalInstruction *insn, byteReader_t reader,
1839 const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
1840 uint64_t startLoc, DisassemblerMode mode) {
1841 memset(insn, 0, sizeof(struct InternalInstruction));
1842
1843 insn->reader = reader;
1844 insn->readerArg = readerArg;
1845 insn->dlog = logger;
1846 insn->dlogArg = loggerArg;
1847 insn->startLocation = startLoc;
1848 insn->readerCursor = startLoc;
1849 insn->mode = mode;
1850 insn->numImmediatesConsumed = 0;
1851
1852 if (readPrefixes(insn) ||
1853 readOpcode(insn) ||
1854 getID(insn, miiArg) ||
1855 insn->instructionID == 0 ||
1856 readOperands(insn))
1857 return -1;
1858
1859 insn->operands = x86OperandSets[insn->spec->operands];
1860
1861 insn->length = insn->readerCursor - insn->startLocation;
1862
1863 dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1864 startLoc, insn->readerCursor, insn->length);
1865
1866 if (insn->length > 15)
1867 dbgprintf(insn, "Instruction exceeds 15-byte limit");
1868
1869 return 0;
1870 }
1871