1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86-specific support for the FastISel class. Much
11 // of the target-specific code is generated by tablegen in the file
12 // X86GenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "X86.h"
17 #include "X86CallingConv.h"
18 #include "X86InstrBuilder.h"
19 #include "X86InstrInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "X86RegisterInfo.h"
22 #include "X86Subtarget.h"
23 #include "X86TargetMachine.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Target/TargetOptions.h"
43 using namespace llvm;
44
45 namespace {
46
47 class X86FastISel final : public FastISel {
48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49 /// make the right decision when generating code for different targets.
50 const X86Subtarget *Subtarget;
51
52 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
53 /// floating point ops.
54 /// When SSE is available, use it for f32 operations.
55 /// When SSE2 is available, use it for f64 operations.
56 bool X86ScalarSSEf64;
57 bool X86ScalarSSEf32;
58
59 public:
X86FastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)60 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
61 const TargetLibraryInfo *libInfo)
62 : FastISel(funcInfo, libInfo) {
63 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
64 X86ScalarSSEf64 = Subtarget->hasSSE2();
65 X86ScalarSSEf32 = Subtarget->hasSSE1();
66 }
67
68 bool fastSelectInstruction(const Instruction *I) override;
69
70 /// \brief The specified machine instr operand is a vreg, and that
71 /// vreg is being provided by the specified load instruction. If possible,
72 /// try to fold the load as an operand to the instruction, returning true if
73 /// possible.
74 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
75 const LoadInst *LI) override;
76
77 bool fastLowerArguments() override;
78 bool fastLowerCall(CallLoweringInfo &CLI) override;
79 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
80
81 #include "X86GenFastISel.inc"
82
83 private:
84 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
85
86 bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, MachineMemOperand *MMO,
87 unsigned &ResultReg, unsigned Alignment = 1);
88
89 bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM,
90 MachineMemOperand *MMO = nullptr, bool Aligned = false);
91 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
92 const X86AddressMode &AM,
93 MachineMemOperand *MMO = nullptr, bool Aligned = false);
94
95 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
96 unsigned &ResultReg);
97
98 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
99 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
100
101 bool X86SelectLoad(const Instruction *I);
102
103 bool X86SelectStore(const Instruction *I);
104
105 bool X86SelectRet(const Instruction *I);
106
107 bool X86SelectCmp(const Instruction *I);
108
109 bool X86SelectZExt(const Instruction *I);
110
111 bool X86SelectBranch(const Instruction *I);
112
113 bool X86SelectShift(const Instruction *I);
114
115 bool X86SelectDivRem(const Instruction *I);
116
117 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
118
119 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
120
121 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
122
123 bool X86SelectSelect(const Instruction *I);
124
125 bool X86SelectTrunc(const Instruction *I);
126
127 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
128 const TargetRegisterClass *RC);
129
130 bool X86SelectFPExt(const Instruction *I);
131 bool X86SelectFPTrunc(const Instruction *I);
132 bool X86SelectSIToFP(const Instruction *I);
133
getInstrInfo() const134 const X86InstrInfo *getInstrInfo() const {
135 return Subtarget->getInstrInfo();
136 }
getTargetMachine() const137 const X86TargetMachine *getTargetMachine() const {
138 return static_cast<const X86TargetMachine *>(&TM);
139 }
140
141 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
142
143 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
144 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
145 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
146 unsigned fastMaterializeConstant(const Constant *C) override;
147
148 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
149
150 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
151
152 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
153 /// computed in an SSE register, not on the X87 floating point stack.
isScalarFPTypeInSSEReg(EVT VT) const154 bool isScalarFPTypeInSSEReg(EVT VT) const {
155 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
156 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
157 }
158
159 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
160
161 bool IsMemcpySmall(uint64_t Len);
162
163 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
164 X86AddressMode SrcAM, uint64_t Len);
165
166 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
167 const Value *Cond);
168 };
169
170 } // end anonymous namespace.
171
172 static std::pair<X86::CondCode, bool>
getX86ConditionCode(CmpInst::Predicate Predicate)173 getX86ConditionCode(CmpInst::Predicate Predicate) {
174 X86::CondCode CC = X86::COND_INVALID;
175 bool NeedSwap = false;
176 switch (Predicate) {
177 default: break;
178 // Floating-point Predicates
179 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
180 case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
181 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
182 case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
183 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
184 case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
185 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
186 case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
187 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
188 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
189 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
190 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
191 case CmpInst::FCMP_OEQ: // fall-through
192 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
193
194 // Integer Predicates
195 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
196 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
197 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
198 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
199 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
200 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
201 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
202 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
203 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
204 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
205 }
206
207 return std::make_pair(CC, NeedSwap);
208 }
209
210 static std::pair<unsigned, bool>
getX86SSEConditionCode(CmpInst::Predicate Predicate)211 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
212 unsigned CC;
213 bool NeedSwap = false;
214
215 // SSE Condition code mapping:
216 // 0 - EQ
217 // 1 - LT
218 // 2 - LE
219 // 3 - UNORD
220 // 4 - NEQ
221 // 5 - NLT
222 // 6 - NLE
223 // 7 - ORD
224 switch (Predicate) {
225 default: llvm_unreachable("Unexpected predicate");
226 case CmpInst::FCMP_OEQ: CC = 0; break;
227 case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
228 case CmpInst::FCMP_OLT: CC = 1; break;
229 case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
230 case CmpInst::FCMP_OLE: CC = 2; break;
231 case CmpInst::FCMP_UNO: CC = 3; break;
232 case CmpInst::FCMP_UNE: CC = 4; break;
233 case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
234 case CmpInst::FCMP_UGE: CC = 5; break;
235 case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
236 case CmpInst::FCMP_UGT: CC = 6; break;
237 case CmpInst::FCMP_ORD: CC = 7; break;
238 case CmpInst::FCMP_UEQ:
239 case CmpInst::FCMP_ONE: CC = 8; break;
240 }
241
242 return std::make_pair(CC, NeedSwap);
243 }
244
245 /// \brief Check if it is possible to fold the condition from the XALU intrinsic
246 /// into the user. The condition code will only be updated on success.
foldX86XALUIntrinsic(X86::CondCode & CC,const Instruction * I,const Value * Cond)247 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
248 const Value *Cond) {
249 if (!isa<ExtractValueInst>(Cond))
250 return false;
251
252 const auto *EV = cast<ExtractValueInst>(Cond);
253 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
254 return false;
255
256 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
257 MVT RetVT;
258 const Function *Callee = II->getCalledFunction();
259 Type *RetTy =
260 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
261 if (!isTypeLegal(RetTy, RetVT))
262 return false;
263
264 if (RetVT != MVT::i32 && RetVT != MVT::i64)
265 return false;
266
267 X86::CondCode TmpCC;
268 switch (II->getIntrinsicID()) {
269 default: return false;
270 case Intrinsic::sadd_with_overflow:
271 case Intrinsic::ssub_with_overflow:
272 case Intrinsic::smul_with_overflow:
273 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
274 case Intrinsic::uadd_with_overflow:
275 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
276 }
277
278 // Check if both instructions are in the same basic block.
279 if (II->getParent() != I->getParent())
280 return false;
281
282 // Make sure nothing is in the way
283 BasicBlock::const_iterator Start = I;
284 BasicBlock::const_iterator End = II;
285 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
286 // We only expect extractvalue instructions between the intrinsic and the
287 // instruction to be selected.
288 if (!isa<ExtractValueInst>(Itr))
289 return false;
290
291 // Check that the extractvalue operand comes from the intrinsic.
292 const auto *EVI = cast<ExtractValueInst>(Itr);
293 if (EVI->getAggregateOperand() != II)
294 return false;
295 }
296
297 CC = TmpCC;
298 return true;
299 }
300
isTypeLegal(Type * Ty,MVT & VT,bool AllowI1)301 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
302 EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
303 if (evt == MVT::Other || !evt.isSimple())
304 // Unhandled type. Halt "fast" selection and bail.
305 return false;
306
307 VT = evt.getSimpleVT();
308 // For now, require SSE/SSE2 for performing floating-point operations,
309 // since x87 requires additional work.
310 if (VT == MVT::f64 && !X86ScalarSSEf64)
311 return false;
312 if (VT == MVT::f32 && !X86ScalarSSEf32)
313 return false;
314 // Similarly, no f80 support yet.
315 if (VT == MVT::f80)
316 return false;
317 // We only handle legal types. For example, on x86-32 the instruction
318 // selector contains all of the 64-bit instructions from x86-64,
319 // under the assumption that i64 won't be used if the target doesn't
320 // support it.
321 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
322 }
323
324 #include "X86GenCallingConv.inc"
325
326 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
327 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
328 /// Return true and the result register by reference if it is possible.
X86FastEmitLoad(EVT VT,const X86AddressMode & AM,MachineMemOperand * MMO,unsigned & ResultReg,unsigned Alignment)329 bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
330 MachineMemOperand *MMO, unsigned &ResultReg,
331 unsigned Alignment) {
332 // Get opcode and regclass of the output for the given load instruction.
333 unsigned Opc = 0;
334 const TargetRegisterClass *RC = nullptr;
335 switch (VT.getSimpleVT().SimpleTy) {
336 default: return false;
337 case MVT::i1:
338 case MVT::i8:
339 Opc = X86::MOV8rm;
340 RC = &X86::GR8RegClass;
341 break;
342 case MVT::i16:
343 Opc = X86::MOV16rm;
344 RC = &X86::GR16RegClass;
345 break;
346 case MVT::i32:
347 Opc = X86::MOV32rm;
348 RC = &X86::GR32RegClass;
349 break;
350 case MVT::i64:
351 // Must be in x86-64 mode.
352 Opc = X86::MOV64rm;
353 RC = &X86::GR64RegClass;
354 break;
355 case MVT::f32:
356 if (X86ScalarSSEf32) {
357 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
358 RC = &X86::FR32RegClass;
359 } else {
360 Opc = X86::LD_Fp32m;
361 RC = &X86::RFP32RegClass;
362 }
363 break;
364 case MVT::f64:
365 if (X86ScalarSSEf64) {
366 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
367 RC = &X86::FR64RegClass;
368 } else {
369 Opc = X86::LD_Fp64m;
370 RC = &X86::RFP64RegClass;
371 }
372 break;
373 case MVT::f80:
374 // No f80 support yet.
375 return false;
376 case MVT::v4f32:
377 if (Alignment >= 16)
378 Opc = Subtarget->hasAVX() ? X86::VMOVAPSrm : X86::MOVAPSrm;
379 else
380 Opc = Subtarget->hasAVX() ? X86::VMOVUPSrm : X86::MOVUPSrm;
381 RC = &X86::VR128RegClass;
382 break;
383 case MVT::v2f64:
384 if (Alignment >= 16)
385 Opc = Subtarget->hasAVX() ? X86::VMOVAPDrm : X86::MOVAPDrm;
386 else
387 Opc = Subtarget->hasAVX() ? X86::VMOVUPDrm : X86::MOVUPDrm;
388 RC = &X86::VR128RegClass;
389 break;
390 case MVT::v4i32:
391 case MVT::v2i64:
392 case MVT::v8i16:
393 case MVT::v16i8:
394 if (Alignment >= 16)
395 Opc = Subtarget->hasAVX() ? X86::VMOVDQArm : X86::MOVDQArm;
396 else
397 Opc = Subtarget->hasAVX() ? X86::VMOVDQUrm : X86::MOVDQUrm;
398 RC = &X86::VR128RegClass;
399 break;
400 }
401
402 ResultReg = createResultReg(RC);
403 MachineInstrBuilder MIB =
404 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
405 addFullAddress(MIB, AM);
406 if (MMO)
407 MIB->addMemOperand(*FuncInfo.MF, MMO);
408 return true;
409 }
410
411 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
412 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
413 /// and a displacement offset, or a GlobalAddress,
414 /// i.e. V. Return true if it is possible.
X86FastEmitStore(EVT VT,unsigned ValReg,bool ValIsKill,const X86AddressMode & AM,MachineMemOperand * MMO,bool Aligned)415 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
416 const X86AddressMode &AM,
417 MachineMemOperand *MMO, bool Aligned) {
418 // Get opcode and regclass of the output for the given store instruction.
419 unsigned Opc = 0;
420 switch (VT.getSimpleVT().SimpleTy) {
421 case MVT::f80: // No f80 support yet.
422 default: return false;
423 case MVT::i1: {
424 // Mask out all but lowest bit.
425 unsigned AndResult = createResultReg(&X86::GR8RegClass);
426 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
427 TII.get(X86::AND8ri), AndResult)
428 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
429 ValReg = AndResult;
430 }
431 // FALLTHROUGH, handling i1 as i8.
432 case MVT::i8: Opc = X86::MOV8mr; break;
433 case MVT::i16: Opc = X86::MOV16mr; break;
434 case MVT::i32: Opc = X86::MOV32mr; break;
435 case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
436 case MVT::f32:
437 Opc = X86ScalarSSEf32 ?
438 (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
439 break;
440 case MVT::f64:
441 Opc = X86ScalarSSEf64 ?
442 (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
443 break;
444 case MVT::v4f32:
445 if (Aligned)
446 Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
447 else
448 Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
449 break;
450 case MVT::v2f64:
451 if (Aligned)
452 Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr;
453 else
454 Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr;
455 break;
456 case MVT::v4i32:
457 case MVT::v2i64:
458 case MVT::v8i16:
459 case MVT::v16i8:
460 if (Aligned)
461 Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr;
462 else
463 Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
464 break;
465 }
466
467 MachineInstrBuilder MIB =
468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
469 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
470 if (MMO)
471 MIB->addMemOperand(*FuncInfo.MF, MMO);
472
473 return true;
474 }
475
X86FastEmitStore(EVT VT,const Value * Val,const X86AddressMode & AM,MachineMemOperand * MMO,bool Aligned)476 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
477 const X86AddressMode &AM,
478 MachineMemOperand *MMO, bool Aligned) {
479 // Handle 'null' like i32/i64 0.
480 if (isa<ConstantPointerNull>(Val))
481 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
482
483 // If this is a store of a simple constant, fold the constant into the store.
484 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
485 unsigned Opc = 0;
486 bool Signed = true;
487 switch (VT.getSimpleVT().SimpleTy) {
488 default: break;
489 case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
490 case MVT::i8: Opc = X86::MOV8mi; break;
491 case MVT::i16: Opc = X86::MOV16mi; break;
492 case MVT::i32: Opc = X86::MOV32mi; break;
493 case MVT::i64:
494 // Must be a 32-bit sign extended value.
495 if (isInt<32>(CI->getSExtValue()))
496 Opc = X86::MOV64mi32;
497 break;
498 }
499
500 if (Opc) {
501 MachineInstrBuilder MIB =
502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
503 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
504 : CI->getZExtValue());
505 if (MMO)
506 MIB->addMemOperand(*FuncInfo.MF, MMO);
507 return true;
508 }
509 }
510
511 unsigned ValReg = getRegForValue(Val);
512 if (ValReg == 0)
513 return false;
514
515 bool ValKill = hasTrivialKill(Val);
516 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
517 }
518
519 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
520 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
521 /// ISD::SIGN_EXTEND).
X86FastEmitExtend(ISD::NodeType Opc,EVT DstVT,unsigned Src,EVT SrcVT,unsigned & ResultReg)522 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
523 unsigned Src, EVT SrcVT,
524 unsigned &ResultReg) {
525 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
526 Src, /*TODO: Kill=*/false);
527 if (RR == 0)
528 return false;
529
530 ResultReg = RR;
531 return true;
532 }
533
handleConstantAddresses(const Value * V,X86AddressMode & AM)534 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
535 // Handle constant address.
536 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
537 // Can't handle alternate code models yet.
538 if (TM.getCodeModel() != CodeModel::Small)
539 return false;
540
541 // Can't handle TLS yet.
542 if (GV->isThreadLocal())
543 return false;
544
545 // RIP-relative addresses can't have additional register operands, so if
546 // we've already folded stuff into the addressing mode, just force the
547 // global value into its own register, which we can use as the basereg.
548 if (!Subtarget->isPICStyleRIPRel() ||
549 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
550 // Okay, we've committed to selecting this global. Set up the address.
551 AM.GV = GV;
552
553 // Allow the subtarget to classify the global.
554 unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
555
556 // If this reference is relative to the pic base, set it now.
557 if (isGlobalRelativeToPICBase(GVFlags)) {
558 // FIXME: How do we know Base.Reg is free??
559 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
560 }
561
562 // Unless the ABI requires an extra load, return a direct reference to
563 // the global.
564 if (!isGlobalStubReference(GVFlags)) {
565 if (Subtarget->isPICStyleRIPRel()) {
566 // Use rip-relative addressing if we can. Above we verified that the
567 // base and index registers are unused.
568 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
569 AM.Base.Reg = X86::RIP;
570 }
571 AM.GVOpFlags = GVFlags;
572 return true;
573 }
574
575 // Ok, we need to do a load from a stub. If we've already loaded from
576 // this stub, reuse the loaded pointer, otherwise emit the load now.
577 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
578 unsigned LoadReg;
579 if (I != LocalValueMap.end() && I->second != 0) {
580 LoadReg = I->second;
581 } else {
582 // Issue load from stub.
583 unsigned Opc = 0;
584 const TargetRegisterClass *RC = nullptr;
585 X86AddressMode StubAM;
586 StubAM.Base.Reg = AM.Base.Reg;
587 StubAM.GV = GV;
588 StubAM.GVOpFlags = GVFlags;
589
590 // Prepare for inserting code in the local-value area.
591 SavePoint SaveInsertPt = enterLocalValueArea();
592
593 if (TLI.getPointerTy() == MVT::i64) {
594 Opc = X86::MOV64rm;
595 RC = &X86::GR64RegClass;
596
597 if (Subtarget->isPICStyleRIPRel())
598 StubAM.Base.Reg = X86::RIP;
599 } else {
600 Opc = X86::MOV32rm;
601 RC = &X86::GR32RegClass;
602 }
603
604 LoadReg = createResultReg(RC);
605 MachineInstrBuilder LoadMI =
606 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
607 addFullAddress(LoadMI, StubAM);
608
609 // Ok, back to normal mode.
610 leaveLocalValueArea(SaveInsertPt);
611
612 // Prevent loading GV stub multiple times in same MBB.
613 LocalValueMap[V] = LoadReg;
614 }
615
616 // Now construct the final address. Note that the Disp, Scale,
617 // and Index values may already be set here.
618 AM.Base.Reg = LoadReg;
619 AM.GV = nullptr;
620 return true;
621 }
622 }
623
624 // If all else fails, try to materialize the value in a register.
625 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
626 if (AM.Base.Reg == 0) {
627 AM.Base.Reg = getRegForValue(V);
628 return AM.Base.Reg != 0;
629 }
630 if (AM.IndexReg == 0) {
631 assert(AM.Scale == 1 && "Scale with no index!");
632 AM.IndexReg = getRegForValue(V);
633 return AM.IndexReg != 0;
634 }
635 }
636
637 return false;
638 }
639
640 /// X86SelectAddress - Attempt to fill in an address from the given value.
641 ///
X86SelectAddress(const Value * V,X86AddressMode & AM)642 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
643 SmallVector<const Value *, 32> GEPs;
644 redo_gep:
645 const User *U = nullptr;
646 unsigned Opcode = Instruction::UserOp1;
647 if (const Instruction *I = dyn_cast<Instruction>(V)) {
648 // Don't walk into other basic blocks; it's possible we haven't
649 // visited them yet, so the instructions may not yet be assigned
650 // virtual registers.
651 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
652 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
653 Opcode = I->getOpcode();
654 U = I;
655 }
656 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
657 Opcode = C->getOpcode();
658 U = C;
659 }
660
661 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
662 if (Ty->getAddressSpace() > 255)
663 // Fast instruction selection doesn't support the special
664 // address spaces.
665 return false;
666
667 switch (Opcode) {
668 default: break;
669 case Instruction::BitCast:
670 // Look past bitcasts.
671 return X86SelectAddress(U->getOperand(0), AM);
672
673 case Instruction::IntToPtr:
674 // Look past no-op inttoptrs.
675 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
676 return X86SelectAddress(U->getOperand(0), AM);
677 break;
678
679 case Instruction::PtrToInt:
680 // Look past no-op ptrtoints.
681 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
682 return X86SelectAddress(U->getOperand(0), AM);
683 break;
684
685 case Instruction::Alloca: {
686 // Do static allocas.
687 const AllocaInst *A = cast<AllocaInst>(V);
688 DenseMap<const AllocaInst *, int>::iterator SI =
689 FuncInfo.StaticAllocaMap.find(A);
690 if (SI != FuncInfo.StaticAllocaMap.end()) {
691 AM.BaseType = X86AddressMode::FrameIndexBase;
692 AM.Base.FrameIndex = SI->second;
693 return true;
694 }
695 break;
696 }
697
698 case Instruction::Add: {
699 // Adds of constants are common and easy enough.
700 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
701 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
702 // They have to fit in the 32-bit signed displacement field though.
703 if (isInt<32>(Disp)) {
704 AM.Disp = (uint32_t)Disp;
705 return X86SelectAddress(U->getOperand(0), AM);
706 }
707 }
708 break;
709 }
710
711 case Instruction::GetElementPtr: {
712 X86AddressMode SavedAM = AM;
713
714 // Pattern-match simple GEPs.
715 uint64_t Disp = (int32_t)AM.Disp;
716 unsigned IndexReg = AM.IndexReg;
717 unsigned Scale = AM.Scale;
718 gep_type_iterator GTI = gep_type_begin(U);
719 // Iterate through the indices, folding what we can. Constants can be
720 // folded, and one dynamic index can be handled, if the scale is supported.
721 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
722 i != e; ++i, ++GTI) {
723 const Value *Op = *i;
724 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
725 const StructLayout *SL = DL.getStructLayout(STy);
726 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
727 continue;
728 }
729
730 // A array/variable index is always of the form i*S where S is the
731 // constant scale size. See if we can push the scale into immediates.
732 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
733 for (;;) {
734 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
735 // Constant-offset addressing.
736 Disp += CI->getSExtValue() * S;
737 break;
738 }
739 if (canFoldAddIntoGEP(U, Op)) {
740 // A compatible add with a constant operand. Fold the constant.
741 ConstantInt *CI =
742 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
743 Disp += CI->getSExtValue() * S;
744 // Iterate on the other operand.
745 Op = cast<AddOperator>(Op)->getOperand(0);
746 continue;
747 }
748 if (IndexReg == 0 &&
749 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
750 (S == 1 || S == 2 || S == 4 || S == 8)) {
751 // Scaled-index addressing.
752 Scale = S;
753 IndexReg = getRegForGEPIndex(Op).first;
754 if (IndexReg == 0)
755 return false;
756 break;
757 }
758 // Unsupported.
759 goto unsupported_gep;
760 }
761 }
762
763 // Check for displacement overflow.
764 if (!isInt<32>(Disp))
765 break;
766
767 AM.IndexReg = IndexReg;
768 AM.Scale = Scale;
769 AM.Disp = (uint32_t)Disp;
770 GEPs.push_back(V);
771
772 if (const GetElementPtrInst *GEP =
773 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
774 // Ok, the GEP indices were covered by constant-offset and scaled-index
775 // addressing. Update the address state and move on to examining the base.
776 V = GEP;
777 goto redo_gep;
778 } else if (X86SelectAddress(U->getOperand(0), AM)) {
779 return true;
780 }
781
782 // If we couldn't merge the gep value into this addr mode, revert back to
783 // our address and just match the value instead of completely failing.
784 AM = SavedAM;
785
786 for (SmallVectorImpl<const Value *>::reverse_iterator
787 I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
788 if (handleConstantAddresses(*I, AM))
789 return true;
790
791 return false;
792 unsupported_gep:
793 // Ok, the GEP indices weren't all covered.
794 break;
795 }
796 }
797
798 return handleConstantAddresses(V, AM);
799 }
800
801 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
802 ///
X86SelectCallAddress(const Value * V,X86AddressMode & AM)803 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
804 const User *U = nullptr;
805 unsigned Opcode = Instruction::UserOp1;
806 const Instruction *I = dyn_cast<Instruction>(V);
807 // Record if the value is defined in the same basic block.
808 //
809 // This information is crucial to know whether or not folding an
810 // operand is valid.
811 // Indeed, FastISel generates or reuses a virtual register for all
812 // operands of all instructions it selects. Obviously, the definition and
813 // its uses must use the same virtual register otherwise the produced
814 // code is incorrect.
815 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
816 // registers for values that are alive across basic blocks. This ensures
817 // that the values are consistently set between across basic block, even
818 // if different instruction selection mechanisms are used (e.g., a mix of
819 // SDISel and FastISel).
820 // For values local to a basic block, the instruction selection process
821 // generates these virtual registers with whatever method is appropriate
822 // for its needs. In particular, FastISel and SDISel do not share the way
823 // local virtual registers are set.
824 // Therefore, this is impossible (or at least unsafe) to share values
825 // between basic blocks unless they use the same instruction selection
826 // method, which is not guarantee for X86.
827 // Moreover, things like hasOneUse could not be used accurately, if we
828 // allow to reference values across basic blocks whereas they are not
829 // alive across basic blocks initially.
830 bool InMBB = true;
831 if (I) {
832 Opcode = I->getOpcode();
833 U = I;
834 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
835 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
836 Opcode = C->getOpcode();
837 U = C;
838 }
839
840 switch (Opcode) {
841 default: break;
842 case Instruction::BitCast:
843 // Look past bitcasts if its operand is in the same BB.
844 if (InMBB)
845 return X86SelectCallAddress(U->getOperand(0), AM);
846 break;
847
848 case Instruction::IntToPtr:
849 // Look past no-op inttoptrs if its operand is in the same BB.
850 if (InMBB &&
851 TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
852 return X86SelectCallAddress(U->getOperand(0), AM);
853 break;
854
855 case Instruction::PtrToInt:
856 // Look past no-op ptrtoints if its operand is in the same BB.
857 if (InMBB &&
858 TLI.getValueType(U->getType()) == TLI.getPointerTy())
859 return X86SelectCallAddress(U->getOperand(0), AM);
860 break;
861 }
862
863 // Handle constant address.
864 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
865 // Can't handle alternate code models yet.
866 if (TM.getCodeModel() != CodeModel::Small)
867 return false;
868
869 // RIP-relative addresses can't have additional register operands.
870 if (Subtarget->isPICStyleRIPRel() &&
871 (AM.Base.Reg != 0 || AM.IndexReg != 0))
872 return false;
873
874 // Can't handle DLL Import.
875 if (GV->hasDLLImportStorageClass())
876 return false;
877
878 // Can't handle TLS.
879 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
880 if (GVar->isThreadLocal())
881 return false;
882
883 // Okay, we've committed to selecting this global. Set up the basic address.
884 AM.GV = GV;
885
886 // No ABI requires an extra load for anything other than DLLImport, which
887 // we rejected above. Return a direct reference to the global.
888 if (Subtarget->isPICStyleRIPRel()) {
889 // Use rip-relative addressing if we can. Above we verified that the
890 // base and index registers are unused.
891 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
892 AM.Base.Reg = X86::RIP;
893 } else if (Subtarget->isPICStyleStubPIC()) {
894 AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
895 } else if (Subtarget->isPICStyleGOT()) {
896 AM.GVOpFlags = X86II::MO_GOTOFF;
897 }
898
899 return true;
900 }
901
902 // If all else fails, try to materialize the value in a register.
903 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
904 if (AM.Base.Reg == 0) {
905 AM.Base.Reg = getRegForValue(V);
906 return AM.Base.Reg != 0;
907 }
908 if (AM.IndexReg == 0) {
909 assert(AM.Scale == 1 && "Scale with no index!");
910 AM.IndexReg = getRegForValue(V);
911 return AM.IndexReg != 0;
912 }
913 }
914
915 return false;
916 }
917
918
919 /// X86SelectStore - Select and emit code to implement store instructions.
X86SelectStore(const Instruction * I)920 bool X86FastISel::X86SelectStore(const Instruction *I) {
921 // Atomic stores need special handling.
922 const StoreInst *S = cast<StoreInst>(I);
923
924 if (S->isAtomic())
925 return false;
926
927 const Value *Val = S->getValueOperand();
928 const Value *Ptr = S->getPointerOperand();
929
930 MVT VT;
931 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
932 return false;
933
934 unsigned Alignment = S->getAlignment();
935 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
936 if (Alignment == 0) // Ensure that codegen never sees alignment 0
937 Alignment = ABIAlignment;
938 bool Aligned = Alignment >= ABIAlignment;
939
940 X86AddressMode AM;
941 if (!X86SelectAddress(Ptr, AM))
942 return false;
943
944 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
945 }
946
947 /// X86SelectRet - Select and emit code to implement ret instructions.
X86SelectRet(const Instruction * I)948 bool X86FastISel::X86SelectRet(const Instruction *I) {
949 const ReturnInst *Ret = cast<ReturnInst>(I);
950 const Function &F = *I->getParent()->getParent();
951 const X86MachineFunctionInfo *X86MFInfo =
952 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
953
954 if (!FuncInfo.CanLowerReturn)
955 return false;
956
957 CallingConv::ID CC = F.getCallingConv();
958 if (CC != CallingConv::C &&
959 CC != CallingConv::Fast &&
960 CC != CallingConv::X86_FastCall &&
961 CC != CallingConv::X86_64_SysV)
962 return false;
963
964 if (Subtarget->isCallingConvWin64(CC))
965 return false;
966
967 // Don't handle popping bytes on return for now.
968 if (X86MFInfo->getBytesToPopOnReturn() != 0)
969 return false;
970
971 // fastcc with -tailcallopt is intended to provide a guaranteed
972 // tail call optimization. Fastisel doesn't know how to do that.
973 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
974 return false;
975
976 // Let SDISel handle vararg functions.
977 if (F.isVarArg())
978 return false;
979
980 // Build a list of return value registers.
981 SmallVector<unsigned, 4> RetRegs;
982
983 if (Ret->getNumOperands() > 0) {
984 SmallVector<ISD::OutputArg, 4> Outs;
985 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
986
987 // Analyze operands of the call, assigning locations to each operand.
988 SmallVector<CCValAssign, 16> ValLocs;
989 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
990 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
991
992 const Value *RV = Ret->getOperand(0);
993 unsigned Reg = getRegForValue(RV);
994 if (Reg == 0)
995 return false;
996
997 // Only handle a single return value for now.
998 if (ValLocs.size() != 1)
999 return false;
1000
1001 CCValAssign &VA = ValLocs[0];
1002
1003 // Don't bother handling odd stuff for now.
1004 if (VA.getLocInfo() != CCValAssign::Full)
1005 return false;
1006 // Only handle register returns for now.
1007 if (!VA.isRegLoc())
1008 return false;
1009
1010 // The calling-convention tables for x87 returns don't tell
1011 // the whole story.
1012 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1013 return false;
1014
1015 unsigned SrcReg = Reg + VA.getValNo();
1016 EVT SrcVT = TLI.getValueType(RV->getType());
1017 EVT DstVT = VA.getValVT();
1018 // Special handling for extended integers.
1019 if (SrcVT != DstVT) {
1020 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1021 return false;
1022
1023 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1024 return false;
1025
1026 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1027
1028 if (SrcVT == MVT::i1) {
1029 if (Outs[0].Flags.isSExt())
1030 return false;
1031 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1032 SrcVT = MVT::i8;
1033 }
1034 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1035 ISD::SIGN_EXTEND;
1036 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1037 SrcReg, /*TODO: Kill=*/false);
1038 }
1039
1040 // Make the copy.
1041 unsigned DstReg = VA.getLocReg();
1042 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1043 // Avoid a cross-class copy. This is very unlikely.
1044 if (!SrcRC->contains(DstReg))
1045 return false;
1046 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1047 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1048
1049 // Add register to return instruction.
1050 RetRegs.push_back(VA.getLocReg());
1051 }
1052
1053 // The x86-64 ABI for returning structs by value requires that we copy
1054 // the sret argument into %rax for the return. We saved the argument into
1055 // a virtual register in the entry block, so now we copy the value out
1056 // and into %rax. We also do the same with %eax for Win32.
1057 if (F.hasStructRetAttr() &&
1058 (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
1059 unsigned Reg = X86MFInfo->getSRetReturnReg();
1060 assert(Reg &&
1061 "SRetReturnReg should have been set in LowerFormalArguments()!");
1062 unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1063 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1064 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1065 RetRegs.push_back(RetReg);
1066 }
1067
1068 // Now emit the RET.
1069 MachineInstrBuilder MIB =
1070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1071 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1072 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1073 MIB.addReg(RetRegs[i], RegState::Implicit);
1074 return true;
1075 }
1076
1077 /// X86SelectLoad - Select and emit code to implement load instructions.
1078 ///
X86SelectLoad(const Instruction * I)1079 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1080 const LoadInst *LI = cast<LoadInst>(I);
1081
1082 // Atomic loads need special handling.
1083 if (LI->isAtomic())
1084 return false;
1085
1086 MVT VT;
1087 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1088 return false;
1089
1090 const Value *Ptr = LI->getPointerOperand();
1091
1092 X86AddressMode AM;
1093 if (!X86SelectAddress(Ptr, AM))
1094 return false;
1095
1096 unsigned Alignment = LI->getAlignment();
1097 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1098 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1099 Alignment = ABIAlignment;
1100
1101 unsigned ResultReg = 0;
1102 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1103 Alignment))
1104 return false;
1105
1106 updateValueMap(I, ResultReg);
1107 return true;
1108 }
1109
X86ChooseCmpOpcode(EVT VT,const X86Subtarget * Subtarget)1110 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1111 bool HasAVX = Subtarget->hasAVX();
1112 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1113 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1114
1115 switch (VT.getSimpleVT().SimpleTy) {
1116 default: return 0;
1117 case MVT::i8: return X86::CMP8rr;
1118 case MVT::i16: return X86::CMP16rr;
1119 case MVT::i32: return X86::CMP32rr;
1120 case MVT::i64: return X86::CMP64rr;
1121 case MVT::f32:
1122 return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
1123 case MVT::f64:
1124 return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
1125 }
1126 }
1127
1128 /// If we have a comparison with RHS as the RHS of the comparison, return an
1129 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
X86ChooseCmpImmediateOpcode(EVT VT,const ConstantInt * RHSC)1130 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1131 int64_t Val = RHSC->getSExtValue();
1132 switch (VT.getSimpleVT().SimpleTy) {
1133 // Otherwise, we can't fold the immediate into this comparison.
1134 default:
1135 return 0;
1136 case MVT::i8:
1137 return X86::CMP8ri;
1138 case MVT::i16:
1139 if (isInt<8>(Val))
1140 return X86::CMP16ri8;
1141 return X86::CMP16ri;
1142 case MVT::i32:
1143 if (isInt<8>(Val))
1144 return X86::CMP32ri8;
1145 return X86::CMP32ri;
1146 case MVT::i64:
1147 if (isInt<8>(Val))
1148 return X86::CMP64ri8;
1149 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1150 // field.
1151 if (isInt<32>(Val))
1152 return X86::CMP64ri32;
1153 return 0;
1154 }
1155 }
1156
X86FastEmitCompare(const Value * Op0,const Value * Op1,EVT VT,DebugLoc CurDbgLoc)1157 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
1158 EVT VT, DebugLoc CurDbgLoc) {
1159 unsigned Op0Reg = getRegForValue(Op0);
1160 if (Op0Reg == 0) return false;
1161
1162 // Handle 'null' like i32/i64 0.
1163 if (isa<ConstantPointerNull>(Op1))
1164 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1165
1166 // We have two options: compare with register or immediate. If the RHS of
1167 // the compare is an immediate that we can fold into this compare, use
1168 // CMPri, otherwise use CMPrr.
1169 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1170 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1171 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1172 .addReg(Op0Reg)
1173 .addImm(Op1C->getSExtValue());
1174 return true;
1175 }
1176 }
1177
1178 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1179 if (CompareOpc == 0) return false;
1180
1181 unsigned Op1Reg = getRegForValue(Op1);
1182 if (Op1Reg == 0) return false;
1183 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1184 .addReg(Op0Reg)
1185 .addReg(Op1Reg);
1186
1187 return true;
1188 }
1189
X86SelectCmp(const Instruction * I)1190 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1191 const CmpInst *CI = cast<CmpInst>(I);
1192
1193 MVT VT;
1194 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1195 return false;
1196
1197 // Try to optimize or fold the cmp.
1198 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1199 unsigned ResultReg = 0;
1200 switch (Predicate) {
1201 default: break;
1202 case CmpInst::FCMP_FALSE: {
1203 ResultReg = createResultReg(&X86::GR32RegClass);
1204 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1205 ResultReg);
1206 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1207 X86::sub_8bit);
1208 if (!ResultReg)
1209 return false;
1210 break;
1211 }
1212 case CmpInst::FCMP_TRUE: {
1213 ResultReg = createResultReg(&X86::GR8RegClass);
1214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1215 ResultReg).addImm(1);
1216 break;
1217 }
1218 }
1219
1220 if (ResultReg) {
1221 updateValueMap(I, ResultReg);
1222 return true;
1223 }
1224
1225 const Value *LHS = CI->getOperand(0);
1226 const Value *RHS = CI->getOperand(1);
1227
1228 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1229 // We don't have to materialize a zero constant for this case and can just use
1230 // %x again on the RHS.
1231 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1232 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1233 if (RHSC && RHSC->isNullValue())
1234 RHS = LHS;
1235 }
1236
1237 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1238 static unsigned SETFOpcTable[2][3] = {
1239 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1240 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1241 };
1242 unsigned *SETFOpc = nullptr;
1243 switch (Predicate) {
1244 default: break;
1245 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1246 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1247 }
1248
1249 ResultReg = createResultReg(&X86::GR8RegClass);
1250 if (SETFOpc) {
1251 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1252 return false;
1253
1254 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1255 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1256 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1257 FlagReg1);
1258 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1259 FlagReg2);
1260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1261 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1262 updateValueMap(I, ResultReg);
1263 return true;
1264 }
1265
1266 X86::CondCode CC;
1267 bool SwapArgs;
1268 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1269 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1270 unsigned Opc = X86::getSETFromCond(CC);
1271
1272 if (SwapArgs)
1273 std::swap(LHS, RHS);
1274
1275 // Emit a compare of LHS/RHS.
1276 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1277 return false;
1278
1279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1280 updateValueMap(I, ResultReg);
1281 return true;
1282 }
1283
X86SelectZExt(const Instruction * I)1284 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1285 EVT DstVT = TLI.getValueType(I->getType());
1286 if (!TLI.isTypeLegal(DstVT))
1287 return false;
1288
1289 unsigned ResultReg = getRegForValue(I->getOperand(0));
1290 if (ResultReg == 0)
1291 return false;
1292
1293 // Handle zero-extension from i1 to i8, which is common.
1294 MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType());
1295 if (SrcVT.SimpleTy == MVT::i1) {
1296 // Set the high bits to zero.
1297 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1298 SrcVT = MVT::i8;
1299
1300 if (ResultReg == 0)
1301 return false;
1302 }
1303
1304 if (DstVT == MVT::i64) {
1305 // Handle extension to 64-bits via sub-register shenanigans.
1306 unsigned MovInst;
1307
1308 switch (SrcVT.SimpleTy) {
1309 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1310 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1311 case MVT::i32: MovInst = X86::MOV32rr; break;
1312 default: llvm_unreachable("Unexpected zext to i64 source type");
1313 }
1314
1315 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1316 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1317 .addReg(ResultReg);
1318
1319 ResultReg = createResultReg(&X86::GR64RegClass);
1320 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1321 ResultReg)
1322 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1323 } else if (DstVT != MVT::i8) {
1324 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1325 ResultReg, /*Kill=*/true);
1326 if (ResultReg == 0)
1327 return false;
1328 }
1329
1330 updateValueMap(I, ResultReg);
1331 return true;
1332 }
1333
X86SelectBranch(const Instruction * I)1334 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1335 // Unconditional branches are selected by tablegen-generated code.
1336 // Handle a conditional branch.
1337 const BranchInst *BI = cast<BranchInst>(I);
1338 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1339 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1340
1341 // Fold the common case of a conditional branch with a comparison
1342 // in the same block (values defined on other blocks may not have
1343 // initialized registers).
1344 X86::CondCode CC;
1345 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1346 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1347 EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
1348
1349 // Try to optimize or fold the cmp.
1350 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1351 switch (Predicate) {
1352 default: break;
1353 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1354 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1355 }
1356
1357 const Value *CmpLHS = CI->getOperand(0);
1358 const Value *CmpRHS = CI->getOperand(1);
1359
1360 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1361 // 0.0.
1362 // We don't have to materialize a zero constant for this case and can just
1363 // use %x again on the RHS.
1364 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1365 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1366 if (CmpRHSC && CmpRHSC->isNullValue())
1367 CmpRHS = CmpLHS;
1368 }
1369
1370 // Try to take advantage of fallthrough opportunities.
1371 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1372 std::swap(TrueMBB, FalseMBB);
1373 Predicate = CmpInst::getInversePredicate(Predicate);
1374 }
1375
1376 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1377 // code check. Instead two branch instructions are required to check all
1378 // the flags. First we change the predicate to a supported condition code,
1379 // which will be the first branch. Later one we will emit the second
1380 // branch.
1381 bool NeedExtraBranch = false;
1382 switch (Predicate) {
1383 default: break;
1384 case CmpInst::FCMP_OEQ:
1385 std::swap(TrueMBB, FalseMBB); // fall-through
1386 case CmpInst::FCMP_UNE:
1387 NeedExtraBranch = true;
1388 Predicate = CmpInst::FCMP_ONE;
1389 break;
1390 }
1391
1392 bool SwapArgs;
1393 unsigned BranchOpc;
1394 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1395 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1396
1397 BranchOpc = X86::GetCondBranchFromCond(CC);
1398 if (SwapArgs)
1399 std::swap(CmpLHS, CmpRHS);
1400
1401 // Emit a compare of the LHS and RHS, setting the flags.
1402 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1403 return false;
1404
1405 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1406 .addMBB(TrueMBB);
1407
1408 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1409 // to UNE above).
1410 if (NeedExtraBranch) {
1411 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1412 .addMBB(TrueMBB);
1413 }
1414
1415 // Obtain the branch weight and add the TrueBB to the successor list.
1416 uint32_t BranchWeight = 0;
1417 if (FuncInfo.BPI)
1418 BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
1419 TrueMBB->getBasicBlock());
1420 FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
1421
1422 // Emits an unconditional branch to the FalseBB, obtains the branch
1423 // weight, and adds it to the successor list.
1424 fastEmitBranch(FalseMBB, DbgLoc);
1425
1426 return true;
1427 }
1428 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1429 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1430 // typically happen for _Bool and C++ bools.
1431 MVT SourceVT;
1432 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1433 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1434 unsigned TestOpc = 0;
1435 switch (SourceVT.SimpleTy) {
1436 default: break;
1437 case MVT::i8: TestOpc = X86::TEST8ri; break;
1438 case MVT::i16: TestOpc = X86::TEST16ri; break;
1439 case MVT::i32: TestOpc = X86::TEST32ri; break;
1440 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1441 }
1442 if (TestOpc) {
1443 unsigned OpReg = getRegForValue(TI->getOperand(0));
1444 if (OpReg == 0) return false;
1445 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1446 .addReg(OpReg).addImm(1);
1447
1448 unsigned JmpOpc = X86::JNE_1;
1449 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1450 std::swap(TrueMBB, FalseMBB);
1451 JmpOpc = X86::JE_1;
1452 }
1453
1454 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1455 .addMBB(TrueMBB);
1456 fastEmitBranch(FalseMBB, DbgLoc);
1457 uint32_t BranchWeight = 0;
1458 if (FuncInfo.BPI)
1459 BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
1460 TrueMBB->getBasicBlock());
1461 FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
1462 return true;
1463 }
1464 }
1465 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1466 // Fake request the condition, otherwise the intrinsic might be completely
1467 // optimized away.
1468 unsigned TmpReg = getRegForValue(BI->getCondition());
1469 if (TmpReg == 0)
1470 return false;
1471
1472 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1473
1474 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1475 .addMBB(TrueMBB);
1476 fastEmitBranch(FalseMBB, DbgLoc);
1477 uint32_t BranchWeight = 0;
1478 if (FuncInfo.BPI)
1479 BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
1480 TrueMBB->getBasicBlock());
1481 FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
1482 return true;
1483 }
1484
1485 // Otherwise do a clumsy setcc and re-test it.
1486 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1487 // in an explicit cast, so make sure to handle that correctly.
1488 unsigned OpReg = getRegForValue(BI->getCondition());
1489 if (OpReg == 0) return false;
1490
1491 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1492 .addReg(OpReg).addImm(1);
1493 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1494 .addMBB(TrueMBB);
1495 fastEmitBranch(FalseMBB, DbgLoc);
1496 uint32_t BranchWeight = 0;
1497 if (FuncInfo.BPI)
1498 BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
1499 TrueMBB->getBasicBlock());
1500 FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
1501 return true;
1502 }
1503
X86SelectShift(const Instruction * I)1504 bool X86FastISel::X86SelectShift(const Instruction *I) {
1505 unsigned CReg = 0, OpReg = 0;
1506 const TargetRegisterClass *RC = nullptr;
1507 if (I->getType()->isIntegerTy(8)) {
1508 CReg = X86::CL;
1509 RC = &X86::GR8RegClass;
1510 switch (I->getOpcode()) {
1511 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1512 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1513 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1514 default: return false;
1515 }
1516 } else if (I->getType()->isIntegerTy(16)) {
1517 CReg = X86::CX;
1518 RC = &X86::GR16RegClass;
1519 switch (I->getOpcode()) {
1520 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1521 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1522 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1523 default: return false;
1524 }
1525 } else if (I->getType()->isIntegerTy(32)) {
1526 CReg = X86::ECX;
1527 RC = &X86::GR32RegClass;
1528 switch (I->getOpcode()) {
1529 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1530 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1531 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1532 default: return false;
1533 }
1534 } else if (I->getType()->isIntegerTy(64)) {
1535 CReg = X86::RCX;
1536 RC = &X86::GR64RegClass;
1537 switch (I->getOpcode()) {
1538 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1539 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1540 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1541 default: return false;
1542 }
1543 } else {
1544 return false;
1545 }
1546
1547 MVT VT;
1548 if (!isTypeLegal(I->getType(), VT))
1549 return false;
1550
1551 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1552 if (Op0Reg == 0) return false;
1553
1554 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1555 if (Op1Reg == 0) return false;
1556 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1557 CReg).addReg(Op1Reg);
1558
1559 // The shift instruction uses X86::CL. If we defined a super-register
1560 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1561 if (CReg != X86::CL)
1562 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1563 TII.get(TargetOpcode::KILL), X86::CL)
1564 .addReg(CReg, RegState::Kill);
1565
1566 unsigned ResultReg = createResultReg(RC);
1567 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1568 .addReg(Op0Reg);
1569 updateValueMap(I, ResultReg);
1570 return true;
1571 }
1572
X86SelectDivRem(const Instruction * I)1573 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1574 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1575 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1576 const static bool S = true; // IsSigned
1577 const static bool U = false; // !IsSigned
1578 const static unsigned Copy = TargetOpcode::COPY;
1579 // For the X86 DIV/IDIV instruction, in most cases the dividend
1580 // (numerator) must be in a specific register pair highreg:lowreg,
1581 // producing the quotient in lowreg and the remainder in highreg.
1582 // For most data types, to set up the instruction, the dividend is
1583 // copied into lowreg, and lowreg is sign-extended or zero-extended
1584 // into highreg. The exception is i8, where the dividend is defined
1585 // as a single register rather than a register pair, and we
1586 // therefore directly sign-extend or zero-extend the dividend into
1587 // lowreg, instead of copying, and ignore the highreg.
1588 const static struct DivRemEntry {
1589 // The following portion depends only on the data type.
1590 const TargetRegisterClass *RC;
1591 unsigned LowInReg; // low part of the register pair
1592 unsigned HighInReg; // high part of the register pair
1593 // The following portion depends on both the data type and the operation.
1594 struct DivRemResult {
1595 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1596 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1597 // highreg, or copying a zero into highreg.
1598 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1599 // zero/sign-extending into lowreg for i8.
1600 unsigned DivRemResultReg; // Register containing the desired result.
1601 bool IsOpSigned; // Whether to use signed or unsigned form.
1602 } ResultTable[NumOps];
1603 } OpTable[NumTypes] = {
1604 { &X86::GR8RegClass, X86::AX, 0, {
1605 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1606 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1607 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1608 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1609 }
1610 }, // i8
1611 { &X86::GR16RegClass, X86::AX, X86::DX, {
1612 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1613 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1614 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1615 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1616 }
1617 }, // i16
1618 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1619 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1620 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1621 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1622 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1623 }
1624 }, // i32
1625 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1626 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1627 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1628 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1629 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1630 }
1631 }, // i64
1632 };
1633
1634 MVT VT;
1635 if (!isTypeLegal(I->getType(), VT))
1636 return false;
1637
1638 unsigned TypeIndex, OpIndex;
1639 switch (VT.SimpleTy) {
1640 default: return false;
1641 case MVT::i8: TypeIndex = 0; break;
1642 case MVT::i16: TypeIndex = 1; break;
1643 case MVT::i32: TypeIndex = 2; break;
1644 case MVT::i64: TypeIndex = 3;
1645 if (!Subtarget->is64Bit())
1646 return false;
1647 break;
1648 }
1649
1650 switch (I->getOpcode()) {
1651 default: llvm_unreachable("Unexpected div/rem opcode");
1652 case Instruction::SDiv: OpIndex = 0; break;
1653 case Instruction::SRem: OpIndex = 1; break;
1654 case Instruction::UDiv: OpIndex = 2; break;
1655 case Instruction::URem: OpIndex = 3; break;
1656 }
1657
1658 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1659 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1660 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1661 if (Op0Reg == 0)
1662 return false;
1663 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1664 if (Op1Reg == 0)
1665 return false;
1666
1667 // Move op0 into low-order input register.
1668 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1669 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1670 // Zero-extend or sign-extend into high-order input register.
1671 if (OpEntry.OpSignExtend) {
1672 if (OpEntry.IsOpSigned)
1673 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1674 TII.get(OpEntry.OpSignExtend));
1675 else {
1676 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1677 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1678 TII.get(X86::MOV32r0), Zero32);
1679
1680 // Copy the zero into the appropriate sub/super/identical physical
1681 // register. Unfortunately the operations needed are not uniform enough
1682 // to fit neatly into the table above.
1683 if (VT.SimpleTy == MVT::i16) {
1684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1685 TII.get(Copy), TypeEntry.HighInReg)
1686 .addReg(Zero32, 0, X86::sub_16bit);
1687 } else if (VT.SimpleTy == MVT::i32) {
1688 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1689 TII.get(Copy), TypeEntry.HighInReg)
1690 .addReg(Zero32);
1691 } else if (VT.SimpleTy == MVT::i64) {
1692 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1693 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1694 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1695 }
1696 }
1697 }
1698 // Generate the DIV/IDIV instruction.
1699 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1700 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1701 // For i8 remainder, we can't reference AH directly, as we'll end
1702 // up with bogus copies like %R9B = COPY %AH. Reference AX
1703 // instead to prevent AH references in a REX instruction.
1704 //
1705 // The current assumption of the fast register allocator is that isel
1706 // won't generate explicit references to the GPR8_NOREX registers. If
1707 // the allocator and/or the backend get enhanced to be more robust in
1708 // that regard, this can be, and should be, removed.
1709 unsigned ResultReg = 0;
1710 if ((I->getOpcode() == Instruction::SRem ||
1711 I->getOpcode() == Instruction::URem) &&
1712 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1713 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1714 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1715 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1716 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1717
1718 // Shift AX right by 8 bits instead of using AH.
1719 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1720 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1721
1722 // Now reference the 8-bit subreg of the result.
1723 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1724 /*Kill=*/true, X86::sub_8bit);
1725 }
1726 // Copy the result out of the physreg if we haven't already.
1727 if (!ResultReg) {
1728 ResultReg = createResultReg(TypeEntry.RC);
1729 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
1730 .addReg(OpEntry.DivRemResultReg);
1731 }
1732 updateValueMap(I, ResultReg);
1733
1734 return true;
1735 }
1736
1737 /// \brief Emit a conditional move instruction (if the are supported) to lower
1738 /// the select.
X86FastEmitCMoveSelect(MVT RetVT,const Instruction * I)1739 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
1740 // Check if the subtarget supports these instructions.
1741 if (!Subtarget->hasCMov())
1742 return false;
1743
1744 // FIXME: Add support for i8.
1745 if (RetVT < MVT::i16 || RetVT > MVT::i64)
1746 return false;
1747
1748 const Value *Cond = I->getOperand(0);
1749 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1750 bool NeedTest = true;
1751 X86::CondCode CC = X86::COND_NE;
1752
1753 // Optimize conditions coming from a compare if both instructions are in the
1754 // same basic block (values defined in other basic blocks may not have
1755 // initialized registers).
1756 const auto *CI = dyn_cast<CmpInst>(Cond);
1757 if (CI && (CI->getParent() == I->getParent())) {
1758 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1759
1760 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1761 static unsigned SETFOpcTable[2][3] = {
1762 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
1763 { X86::SETPr, X86::SETNEr, X86::OR8rr }
1764 };
1765 unsigned *SETFOpc = nullptr;
1766 switch (Predicate) {
1767 default: break;
1768 case CmpInst::FCMP_OEQ:
1769 SETFOpc = &SETFOpcTable[0][0];
1770 Predicate = CmpInst::ICMP_NE;
1771 break;
1772 case CmpInst::FCMP_UNE:
1773 SETFOpc = &SETFOpcTable[1][0];
1774 Predicate = CmpInst::ICMP_NE;
1775 break;
1776 }
1777
1778 bool NeedSwap;
1779 std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
1780 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1781
1782 const Value *CmpLHS = CI->getOperand(0);
1783 const Value *CmpRHS = CI->getOperand(1);
1784 if (NeedSwap)
1785 std::swap(CmpLHS, CmpRHS);
1786
1787 EVT CmpVT = TLI.getValueType(CmpLHS->getType());
1788 // Emit a compare of the LHS and RHS, setting the flags.
1789 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
1790 return false;
1791
1792 if (SETFOpc) {
1793 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1794 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1795 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1796 FlagReg1);
1797 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1798 FlagReg2);
1799 auto const &II = TII.get(SETFOpc[2]);
1800 if (II.getNumDefs()) {
1801 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
1802 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
1803 .addReg(FlagReg2).addReg(FlagReg1);
1804 } else {
1805 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1806 .addReg(FlagReg2).addReg(FlagReg1);
1807 }
1808 }
1809 NeedTest = false;
1810 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
1811 // Fake request the condition, otherwise the intrinsic might be completely
1812 // optimized away.
1813 unsigned TmpReg = getRegForValue(Cond);
1814 if (TmpReg == 0)
1815 return false;
1816
1817 NeedTest = false;
1818 }
1819
1820 if (NeedTest) {
1821 // Selects operate on i1, however, CondReg is 8 bits width and may contain
1822 // garbage. Indeed, only the less significant bit is supposed to be
1823 // accurate. If we read more than the lsb, we may see non-zero values
1824 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
1825 // the select. This is achieved by performing TEST against 1.
1826 unsigned CondReg = getRegForValue(Cond);
1827 if (CondReg == 0)
1828 return false;
1829 bool CondIsKill = hasTrivialKill(Cond);
1830
1831 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1832 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
1833 }
1834
1835 const Value *LHS = I->getOperand(1);
1836 const Value *RHS = I->getOperand(2);
1837
1838 unsigned RHSReg = getRegForValue(RHS);
1839 bool RHSIsKill = hasTrivialKill(RHS);
1840
1841 unsigned LHSReg = getRegForValue(LHS);
1842 bool LHSIsKill = hasTrivialKill(LHS);
1843
1844 if (!LHSReg || !RHSReg)
1845 return false;
1846
1847 unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
1848 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
1849 LHSReg, LHSIsKill);
1850 updateValueMap(I, ResultReg);
1851 return true;
1852 }
1853
1854 /// \brief Emit SSE or AVX instructions to lower the select.
1855 ///
1856 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
1857 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
1858 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
X86FastEmitSSESelect(MVT RetVT,const Instruction * I)1859 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
1860 // Optimize conditions coming from a compare if both instructions are in the
1861 // same basic block (values defined in other basic blocks may not have
1862 // initialized registers).
1863 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
1864 if (!CI || (CI->getParent() != I->getParent()))
1865 return false;
1866
1867 if (I->getType() != CI->getOperand(0)->getType() ||
1868 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
1869 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
1870 return false;
1871
1872 const Value *CmpLHS = CI->getOperand(0);
1873 const Value *CmpRHS = CI->getOperand(1);
1874 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1875
1876 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1877 // We don't have to materialize a zero constant for this case and can just use
1878 // %x again on the RHS.
1879 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1880 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1881 if (CmpRHSC && CmpRHSC->isNullValue())
1882 CmpRHS = CmpLHS;
1883 }
1884
1885 unsigned CC;
1886 bool NeedSwap;
1887 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
1888 if (CC > 7)
1889 return false;
1890
1891 if (NeedSwap)
1892 std::swap(CmpLHS, CmpRHS);
1893
1894 // Choose the SSE instruction sequence based on data type (float or double).
1895 static unsigned OpcTable[2][4] = {
1896 { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr },
1897 { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr }
1898 };
1899
1900 unsigned *Opc = nullptr;
1901 switch (RetVT.SimpleTy) {
1902 default: return false;
1903 case MVT::f32: Opc = &OpcTable[0][0]; break;
1904 case MVT::f64: Opc = &OpcTable[1][0]; break;
1905 }
1906
1907 const Value *LHS = I->getOperand(1);
1908 const Value *RHS = I->getOperand(2);
1909
1910 unsigned LHSReg = getRegForValue(LHS);
1911 bool LHSIsKill = hasTrivialKill(LHS);
1912
1913 unsigned RHSReg = getRegForValue(RHS);
1914 bool RHSIsKill = hasTrivialKill(RHS);
1915
1916 unsigned CmpLHSReg = getRegForValue(CmpLHS);
1917 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
1918
1919 unsigned CmpRHSReg = getRegForValue(CmpRHS);
1920 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
1921
1922 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
1923 return false;
1924
1925 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1926 unsigned ResultReg;
1927
1928 if (Subtarget->hasAVX()) {
1929 // If we have AVX, create 1 blendv instead of 3 logic instructions.
1930 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
1931 // uses XMM0 as the selection register. That may need just as many
1932 // instructions as the AND/ANDN/OR sequence due to register moves, so
1933 // don't bother.
1934 unsigned CmpOpcode =
1935 (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
1936 unsigned BlendOpcode =
1937 (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
1938
1939 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
1940 CmpRHSReg, CmpRHSIsKill, CC);
1941 ResultReg = fastEmitInst_rrr(BlendOpcode, RC, RHSReg, RHSIsKill,
1942 LHSReg, LHSIsKill, CmpReg, true);
1943 } else {
1944 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
1945 CmpRHSReg, CmpRHSIsKill, CC);
1946 unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
1947 LHSReg, LHSIsKill);
1948 unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
1949 RHSReg, RHSIsKill);
1950 ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
1951 AndReg, /*IsKill=*/true);
1952 }
1953 updateValueMap(I, ResultReg);
1954 return true;
1955 }
1956
X86FastEmitPseudoSelect(MVT RetVT,const Instruction * I)1957 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
1958 // These are pseudo CMOV instructions and will be later expanded into control-
1959 // flow.
1960 unsigned Opc;
1961 switch (RetVT.SimpleTy) {
1962 default: return false;
1963 case MVT::i8: Opc = X86::CMOV_GR8; break;
1964 case MVT::i16: Opc = X86::CMOV_GR16; break;
1965 case MVT::i32: Opc = X86::CMOV_GR32; break;
1966 case MVT::f32: Opc = X86::CMOV_FR32; break;
1967 case MVT::f64: Opc = X86::CMOV_FR64; break;
1968 }
1969
1970 const Value *Cond = I->getOperand(0);
1971 X86::CondCode CC = X86::COND_NE;
1972
1973 // Optimize conditions coming from a compare if both instructions are in the
1974 // same basic block (values defined in other basic blocks may not have
1975 // initialized registers).
1976 const auto *CI = dyn_cast<CmpInst>(Cond);
1977 if (CI && (CI->getParent() == I->getParent())) {
1978 bool NeedSwap;
1979 std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
1980 if (CC > X86::LAST_VALID_COND)
1981 return false;
1982
1983 const Value *CmpLHS = CI->getOperand(0);
1984 const Value *CmpRHS = CI->getOperand(1);
1985
1986 if (NeedSwap)
1987 std::swap(CmpLHS, CmpRHS);
1988
1989 EVT CmpVT = TLI.getValueType(CmpLHS->getType());
1990 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
1991 return false;
1992 } else {
1993 unsigned CondReg = getRegForValue(Cond);
1994 if (CondReg == 0)
1995 return false;
1996 bool CondIsKill = hasTrivialKill(Cond);
1997 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1998 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
1999 }
2000
2001 const Value *LHS = I->getOperand(1);
2002 const Value *RHS = I->getOperand(2);
2003
2004 unsigned LHSReg = getRegForValue(LHS);
2005 bool LHSIsKill = hasTrivialKill(LHS);
2006
2007 unsigned RHSReg = getRegForValue(RHS);
2008 bool RHSIsKill = hasTrivialKill(RHS);
2009
2010 if (!LHSReg || !RHSReg)
2011 return false;
2012
2013 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2014
2015 unsigned ResultReg =
2016 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2017 updateValueMap(I, ResultReg);
2018 return true;
2019 }
2020
X86SelectSelect(const Instruction * I)2021 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2022 MVT RetVT;
2023 if (!isTypeLegal(I->getType(), RetVT))
2024 return false;
2025
2026 // Check if we can fold the select.
2027 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2028 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2029 const Value *Opnd = nullptr;
2030 switch (Predicate) {
2031 default: break;
2032 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2033 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2034 }
2035 // No need for a select anymore - this is an unconditional move.
2036 if (Opnd) {
2037 unsigned OpReg = getRegForValue(Opnd);
2038 if (OpReg == 0)
2039 return false;
2040 bool OpIsKill = hasTrivialKill(Opnd);
2041 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2042 unsigned ResultReg = createResultReg(RC);
2043 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2044 TII.get(TargetOpcode::COPY), ResultReg)
2045 .addReg(OpReg, getKillRegState(OpIsKill));
2046 updateValueMap(I, ResultReg);
2047 return true;
2048 }
2049 }
2050
2051 // First try to use real conditional move instructions.
2052 if (X86FastEmitCMoveSelect(RetVT, I))
2053 return true;
2054
2055 // Try to use a sequence of SSE instructions to simulate a conditional move.
2056 if (X86FastEmitSSESelect(RetVT, I))
2057 return true;
2058
2059 // Fall-back to pseudo conditional move instructions, which will be later
2060 // converted to control-flow.
2061 if (X86FastEmitPseudoSelect(RetVT, I))
2062 return true;
2063
2064 return false;
2065 }
2066
X86SelectSIToFP(const Instruction * I)2067 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2068 if (!I->getOperand(0)->getType()->isIntegerTy(32))
2069 return false;
2070
2071 // Select integer to float/double conversion.
2072 unsigned OpReg = getRegForValue(I->getOperand(0));
2073 if (OpReg == 0)
2074 return false;
2075
2076 const TargetRegisterClass *RC = nullptr;
2077 unsigned Opcode;
2078
2079 if (I->getType()->isDoubleTy()) {
2080 // sitofp int -> double
2081 Opcode = X86::VCVTSI2SDrr;
2082 RC = &X86::FR64RegClass;
2083 } else if (I->getType()->isFloatTy()) {
2084 // sitofp int -> float
2085 Opcode = X86::VCVTSI2SSrr;
2086 RC = &X86::FR32RegClass;
2087 } else
2088 return false;
2089
2090 // The target-independent selection algorithm in FastISel already knows how
2091 // to select a SINT_TO_FP if the target is SSE but not AVX. This code is only
2092 // reachable if the subtarget has AVX.
2093 assert(Subtarget->hasAVX() && "Expected a subtarget with AVX!");
2094
2095 unsigned ImplicitDefReg = createResultReg(RC);
2096 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2097 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2098 unsigned ResultReg =
2099 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2100 updateValueMap(I, ResultReg);
2101 return true;
2102 }
2103
2104 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
X86SelectFPExtOrFPTrunc(const Instruction * I,unsigned TargetOpc,const TargetRegisterClass * RC)2105 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2106 unsigned TargetOpc,
2107 const TargetRegisterClass *RC) {
2108 assert((I->getOpcode() == Instruction::FPExt ||
2109 I->getOpcode() == Instruction::FPTrunc) &&
2110 "Instruction must be an FPExt or FPTrunc!");
2111
2112 unsigned OpReg = getRegForValue(I->getOperand(0));
2113 if (OpReg == 0)
2114 return false;
2115
2116 unsigned ResultReg = createResultReg(RC);
2117 MachineInstrBuilder MIB;
2118 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2119 ResultReg);
2120 if (Subtarget->hasAVX())
2121 MIB.addReg(OpReg);
2122 MIB.addReg(OpReg);
2123 updateValueMap(I, ResultReg);
2124 return true;
2125 }
2126
X86SelectFPExt(const Instruction * I)2127 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2128 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2129 I->getOperand(0)->getType()->isFloatTy()) {
2130 // fpext from float to double.
2131 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2132 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
2133 }
2134
2135 return false;
2136 }
2137
X86SelectFPTrunc(const Instruction * I)2138 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2139 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2140 I->getOperand(0)->getType()->isDoubleTy()) {
2141 // fptrunc from double to float.
2142 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2143 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
2144 }
2145
2146 return false;
2147 }
2148
X86SelectTrunc(const Instruction * I)2149 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2150 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
2151 EVT DstVT = TLI.getValueType(I->getType());
2152
2153 // This code only handles truncation to byte.
2154 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2155 return false;
2156 if (!TLI.isTypeLegal(SrcVT))
2157 return false;
2158
2159 unsigned InputReg = getRegForValue(I->getOperand(0));
2160 if (!InputReg)
2161 // Unhandled operand. Halt "fast" selection and bail.
2162 return false;
2163
2164 if (SrcVT == MVT::i8) {
2165 // Truncate from i8 to i1; no code needed.
2166 updateValueMap(I, InputReg);
2167 return true;
2168 }
2169
2170 if (!Subtarget->is64Bit()) {
2171 // If we're on x86-32; we can't extract an i8 from a general register.
2172 // First issue a copy to GR16_ABCD or GR32_ABCD.
2173 const TargetRegisterClass *CopyRC =
2174 (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
2175 unsigned CopyReg = createResultReg(CopyRC);
2176 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2177 TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
2178 InputReg = CopyReg;
2179 }
2180
2181 // Issue an extract_subreg.
2182 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2183 InputReg, /*Kill=*/true,
2184 X86::sub_8bit);
2185 if (!ResultReg)
2186 return false;
2187
2188 updateValueMap(I, ResultReg);
2189 return true;
2190 }
2191
IsMemcpySmall(uint64_t Len)2192 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2193 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2194 }
2195
TryEmitSmallMemcpy(X86AddressMode DestAM,X86AddressMode SrcAM,uint64_t Len)2196 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2197 X86AddressMode SrcAM, uint64_t Len) {
2198
2199 // Make sure we don't bloat code by inlining very large memcpy's.
2200 if (!IsMemcpySmall(Len))
2201 return false;
2202
2203 bool i64Legal = Subtarget->is64Bit();
2204
2205 // We don't care about alignment here since we just emit integer accesses.
2206 while (Len) {
2207 MVT VT;
2208 if (Len >= 8 && i64Legal)
2209 VT = MVT::i64;
2210 else if (Len >= 4)
2211 VT = MVT::i32;
2212 else if (Len >= 2)
2213 VT = MVT::i16;
2214 else
2215 VT = MVT::i8;
2216
2217 unsigned Reg;
2218 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2219 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2220 assert(RV && "Failed to emit load or store??");
2221
2222 unsigned Size = VT.getSizeInBits()/8;
2223 Len -= Size;
2224 DestAM.Disp += Size;
2225 SrcAM.Disp += Size;
2226 }
2227
2228 return true;
2229 }
2230
fastLowerIntrinsicCall(const IntrinsicInst * II)2231 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2232 // FIXME: Handle more intrinsics.
2233 switch (II->getIntrinsicID()) {
2234 default: return false;
2235 case Intrinsic::convert_from_fp16:
2236 case Intrinsic::convert_to_fp16: {
2237 if (TM.Options.UseSoftFloat || !Subtarget->hasF16C())
2238 return false;
2239
2240 const Value *Op = II->getArgOperand(0);
2241 unsigned InputReg = getRegForValue(Op);
2242 if (InputReg == 0)
2243 return false;
2244
2245 // F16C only allows converting from float to half and from half to float.
2246 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2247 if (IsFloatToHalf) {
2248 if (!Op->getType()->isFloatTy())
2249 return false;
2250 } else {
2251 if (!II->getType()->isFloatTy())
2252 return false;
2253 }
2254
2255 unsigned ResultReg = 0;
2256 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2257 if (IsFloatToHalf) {
2258 // 'InputReg' is implicitly promoted from register class FR32 to
2259 // register class VR128 by method 'constrainOperandRegClass' which is
2260 // directly called by 'fastEmitInst_ri'.
2261 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2262 // used to provide rounding control.
2263 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 0);
2264
2265 // Move the lower 32-bits of ResultReg to another register of class GR32.
2266 ResultReg = createResultReg(&X86::GR32RegClass);
2267 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2268 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2269 .addReg(InputReg, RegState::Kill);
2270
2271 // The result value is in the lower 16-bits of ResultReg.
2272 unsigned RegIdx = X86::sub_16bit;
2273 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2274 } else {
2275 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2276 // Explicitly sign-extend the input to 32-bit.
2277 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2278 /*Kill=*/false);
2279
2280 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2281 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2282 InputReg, /*Kill=*/true);
2283
2284 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2285
2286 // The result value is in the lower 32-bits of ResultReg.
2287 // Emit an explicit copy from register class VR128 to register class FR32.
2288 ResultReg = createResultReg(&X86::FR32RegClass);
2289 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2290 TII.get(TargetOpcode::COPY), ResultReg)
2291 .addReg(InputReg, RegState::Kill);
2292 }
2293
2294 updateValueMap(II, ResultReg);
2295 return true;
2296 }
2297 case Intrinsic::frameaddress: {
2298 MachineFunction *MF = FuncInfo.MF;
2299 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2300 return false;
2301
2302 Type *RetTy = II->getCalledFunction()->getReturnType();
2303
2304 MVT VT;
2305 if (!isTypeLegal(RetTy, VT))
2306 return false;
2307
2308 unsigned Opc;
2309 const TargetRegisterClass *RC = nullptr;
2310
2311 switch (VT.SimpleTy) {
2312 default: llvm_unreachable("Invalid result type for frameaddress.");
2313 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2314 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2315 }
2316
2317 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2318 // we get the wrong frame register.
2319 MachineFrameInfo *MFI = MF->getFrameInfo();
2320 MFI->setFrameAddressIsTaken(true);
2321
2322 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2323 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2324 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2325 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2326 "Invalid Frame Register!");
2327
2328 // Always make a copy of the frame register to to a vreg first, so that we
2329 // never directly reference the frame register (the TwoAddressInstruction-
2330 // Pass doesn't like that).
2331 unsigned SrcReg = createResultReg(RC);
2332 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2333 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2334
2335 // Now recursively load from the frame address.
2336 // movq (%rbp), %rax
2337 // movq (%rax), %rax
2338 // movq (%rax), %rax
2339 // ...
2340 unsigned DestReg;
2341 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2342 while (Depth--) {
2343 DestReg = createResultReg(RC);
2344 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2345 TII.get(Opc), DestReg), SrcReg);
2346 SrcReg = DestReg;
2347 }
2348
2349 updateValueMap(II, SrcReg);
2350 return true;
2351 }
2352 case Intrinsic::memcpy: {
2353 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2354 // Don't handle volatile or variable length memcpys.
2355 if (MCI->isVolatile())
2356 return false;
2357
2358 if (isa<ConstantInt>(MCI->getLength())) {
2359 // Small memcpy's are common enough that we want to do them
2360 // without a call if possible.
2361 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2362 if (IsMemcpySmall(Len)) {
2363 X86AddressMode DestAM, SrcAM;
2364 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2365 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2366 return false;
2367 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2368 return true;
2369 }
2370 }
2371
2372 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2373 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2374 return false;
2375
2376 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2377 return false;
2378
2379 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
2380 }
2381 case Intrinsic::memset: {
2382 const MemSetInst *MSI = cast<MemSetInst>(II);
2383
2384 if (MSI->isVolatile())
2385 return false;
2386
2387 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2388 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2389 return false;
2390
2391 if (MSI->getDestAddressSpace() > 255)
2392 return false;
2393
2394 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
2395 }
2396 case Intrinsic::stackprotector: {
2397 // Emit code to store the stack guard onto the stack.
2398 EVT PtrTy = TLI.getPointerTy();
2399
2400 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2401 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2402
2403 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2404
2405 // Grab the frame index.
2406 X86AddressMode AM;
2407 if (!X86SelectAddress(Slot, AM)) return false;
2408 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2409 return true;
2410 }
2411 case Intrinsic::dbg_declare: {
2412 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2413 X86AddressMode AM;
2414 assert(DI->getAddress() && "Null address should be checked earlier!");
2415 if (!X86SelectAddress(DI->getAddress(), AM))
2416 return false;
2417 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2418 // FIXME may need to add RegState::Debug to any registers produced,
2419 // although ESP/EBP should be the only ones at the moment.
2420 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2421 "Expected inlined-at fields to agree");
2422 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2423 .addImm(0)
2424 .addMetadata(DI->getVariable())
2425 .addMetadata(DI->getExpression());
2426 return true;
2427 }
2428 case Intrinsic::trap: {
2429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2430 return true;
2431 }
2432 case Intrinsic::sqrt: {
2433 if (!Subtarget->hasSSE1())
2434 return false;
2435
2436 Type *RetTy = II->getCalledFunction()->getReturnType();
2437
2438 MVT VT;
2439 if (!isTypeLegal(RetTy, VT))
2440 return false;
2441
2442 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2443 // is not generated by FastISel yet.
2444 // FIXME: Update this code once tablegen can handle it.
2445 static const unsigned SqrtOpc[2][2] = {
2446 {X86::SQRTSSr, X86::VSQRTSSr},
2447 {X86::SQRTSDr, X86::VSQRTSDr}
2448 };
2449 bool HasAVX = Subtarget->hasAVX();
2450 unsigned Opc;
2451 const TargetRegisterClass *RC;
2452 switch (VT.SimpleTy) {
2453 default: return false;
2454 case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
2455 case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
2456 }
2457
2458 const Value *SrcVal = II->getArgOperand(0);
2459 unsigned SrcReg = getRegForValue(SrcVal);
2460
2461 if (SrcReg == 0)
2462 return false;
2463
2464 unsigned ImplicitDefReg = 0;
2465 if (HasAVX) {
2466 ImplicitDefReg = createResultReg(RC);
2467 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2468 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2469 }
2470
2471 unsigned ResultReg = createResultReg(RC);
2472 MachineInstrBuilder MIB;
2473 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2474 ResultReg);
2475
2476 if (ImplicitDefReg)
2477 MIB.addReg(ImplicitDefReg);
2478
2479 MIB.addReg(SrcReg);
2480
2481 updateValueMap(II, ResultReg);
2482 return true;
2483 }
2484 case Intrinsic::sadd_with_overflow:
2485 case Intrinsic::uadd_with_overflow:
2486 case Intrinsic::ssub_with_overflow:
2487 case Intrinsic::usub_with_overflow:
2488 case Intrinsic::smul_with_overflow:
2489 case Intrinsic::umul_with_overflow: {
2490 // This implements the basic lowering of the xalu with overflow intrinsics
2491 // into add/sub/mul followed by either seto or setb.
2492 const Function *Callee = II->getCalledFunction();
2493 auto *Ty = cast<StructType>(Callee->getReturnType());
2494 Type *RetTy = Ty->getTypeAtIndex(0U);
2495 Type *CondTy = Ty->getTypeAtIndex(1);
2496
2497 MVT VT;
2498 if (!isTypeLegal(RetTy, VT))
2499 return false;
2500
2501 if (VT < MVT::i8 || VT > MVT::i64)
2502 return false;
2503
2504 const Value *LHS = II->getArgOperand(0);
2505 const Value *RHS = II->getArgOperand(1);
2506
2507 // Canonicalize immediate to the RHS.
2508 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2509 isCommutativeIntrinsic(II))
2510 std::swap(LHS, RHS);
2511
2512 bool UseIncDec = false;
2513 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2514 UseIncDec = true;
2515
2516 unsigned BaseOpc, CondOpc;
2517 switch (II->getIntrinsicID()) {
2518 default: llvm_unreachable("Unexpected intrinsic!");
2519 case Intrinsic::sadd_with_overflow:
2520 BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2521 CondOpc = X86::SETOr;
2522 break;
2523 case Intrinsic::uadd_with_overflow:
2524 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2525 case Intrinsic::ssub_with_overflow:
2526 BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2527 CondOpc = X86::SETOr;
2528 break;
2529 case Intrinsic::usub_with_overflow:
2530 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2531 case Intrinsic::smul_with_overflow:
2532 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2533 case Intrinsic::umul_with_overflow:
2534 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2535 }
2536
2537 unsigned LHSReg = getRegForValue(LHS);
2538 if (LHSReg == 0)
2539 return false;
2540 bool LHSIsKill = hasTrivialKill(LHS);
2541
2542 unsigned ResultReg = 0;
2543 // Check if we have an immediate version.
2544 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2545 static const unsigned Opc[2][4] = {
2546 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2547 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2548 };
2549
2550 if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2551 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2552 bool IsDec = BaseOpc == X86ISD::DEC;
2553 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2554 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2555 .addReg(LHSReg, getKillRegState(LHSIsKill));
2556 } else
2557 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2558 CI->getZExtValue());
2559 }
2560
2561 unsigned RHSReg;
2562 bool RHSIsKill;
2563 if (!ResultReg) {
2564 RHSReg = getRegForValue(RHS);
2565 if (RHSReg == 0)
2566 return false;
2567 RHSIsKill = hasTrivialKill(RHS);
2568 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2569 RHSIsKill);
2570 }
2571
2572 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2573 // it manually.
2574 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2575 static const unsigned MULOpc[] =
2576 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2577 static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2578 // First copy the first operand into RAX, which is an implicit input to
2579 // the X86::MUL*r instruction.
2580 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2581 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2582 .addReg(LHSReg, getKillRegState(LHSIsKill));
2583 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2584 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2585 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2586 static const unsigned MULOpc[] =
2587 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2588 if (VT == MVT::i8) {
2589 // Copy the first operand into AL, which is an implicit input to the
2590 // X86::IMUL8r instruction.
2591 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2592 TII.get(TargetOpcode::COPY), X86::AL)
2593 .addReg(LHSReg, getKillRegState(LHSIsKill));
2594 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2595 RHSIsKill);
2596 } else
2597 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2598 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2599 RHSReg, RHSIsKill);
2600 }
2601
2602 if (!ResultReg)
2603 return false;
2604
2605 unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
2606 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2607 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2608 ResultReg2);
2609
2610 updateValueMap(II, ResultReg, 2);
2611 return true;
2612 }
2613 case Intrinsic::x86_sse_cvttss2si:
2614 case Intrinsic::x86_sse_cvttss2si64:
2615 case Intrinsic::x86_sse2_cvttsd2si:
2616 case Intrinsic::x86_sse2_cvttsd2si64: {
2617 bool IsInputDouble;
2618 switch (II->getIntrinsicID()) {
2619 default: llvm_unreachable("Unexpected intrinsic.");
2620 case Intrinsic::x86_sse_cvttss2si:
2621 case Intrinsic::x86_sse_cvttss2si64:
2622 if (!Subtarget->hasSSE1())
2623 return false;
2624 IsInputDouble = false;
2625 break;
2626 case Intrinsic::x86_sse2_cvttsd2si:
2627 case Intrinsic::x86_sse2_cvttsd2si64:
2628 if (!Subtarget->hasSSE2())
2629 return false;
2630 IsInputDouble = true;
2631 break;
2632 }
2633
2634 Type *RetTy = II->getCalledFunction()->getReturnType();
2635 MVT VT;
2636 if (!isTypeLegal(RetTy, VT))
2637 return false;
2638
2639 static const unsigned CvtOpc[2][2][2] = {
2640 { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
2641 { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
2642 { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
2643 { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
2644 };
2645 bool HasAVX = Subtarget->hasAVX();
2646 unsigned Opc;
2647 switch (VT.SimpleTy) {
2648 default: llvm_unreachable("Unexpected result type.");
2649 case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
2650 case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
2651 }
2652
2653 // Check if we can fold insertelement instructions into the convert.
2654 const Value *Op = II->getArgOperand(0);
2655 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
2656 const Value *Index = IE->getOperand(2);
2657 if (!isa<ConstantInt>(Index))
2658 break;
2659 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
2660
2661 if (Idx == 0) {
2662 Op = IE->getOperand(1);
2663 break;
2664 }
2665 Op = IE->getOperand(0);
2666 }
2667
2668 unsigned Reg = getRegForValue(Op);
2669 if (Reg == 0)
2670 return false;
2671
2672 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
2673 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2674 .addReg(Reg);
2675
2676 updateValueMap(II, ResultReg);
2677 return true;
2678 }
2679 }
2680 }
2681
fastLowerArguments()2682 bool X86FastISel::fastLowerArguments() {
2683 if (!FuncInfo.CanLowerReturn)
2684 return false;
2685
2686 const Function *F = FuncInfo.Fn;
2687 if (F->isVarArg())
2688 return false;
2689
2690 CallingConv::ID CC = F->getCallingConv();
2691 if (CC != CallingConv::C)
2692 return false;
2693
2694 if (Subtarget->isCallingConvWin64(CC))
2695 return false;
2696
2697 if (!Subtarget->is64Bit())
2698 return false;
2699
2700 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
2701 unsigned GPRCnt = 0;
2702 unsigned FPRCnt = 0;
2703 unsigned Idx = 0;
2704 for (auto const &Arg : F->args()) {
2705 // The first argument is at index 1.
2706 ++Idx;
2707 if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2708 F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2709 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
2710 F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2711 return false;
2712
2713 Type *ArgTy = Arg.getType();
2714 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
2715 return false;
2716
2717 EVT ArgVT = TLI.getValueType(ArgTy);
2718 if (!ArgVT.isSimple()) return false;
2719 switch (ArgVT.getSimpleVT().SimpleTy) {
2720 default: return false;
2721 case MVT::i32:
2722 case MVT::i64:
2723 ++GPRCnt;
2724 break;
2725 case MVT::f32:
2726 case MVT::f64:
2727 if (!Subtarget->hasSSE1())
2728 return false;
2729 ++FPRCnt;
2730 break;
2731 }
2732
2733 if (GPRCnt > 6)
2734 return false;
2735
2736 if (FPRCnt > 8)
2737 return false;
2738 }
2739
2740 static const MCPhysReg GPR32ArgRegs[] = {
2741 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
2742 };
2743 static const MCPhysReg GPR64ArgRegs[] = {
2744 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
2745 };
2746 static const MCPhysReg XMMArgRegs[] = {
2747 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2748 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2749 };
2750
2751 unsigned GPRIdx = 0;
2752 unsigned FPRIdx = 0;
2753 for (auto const &Arg : F->args()) {
2754 MVT VT = TLI.getSimpleValueType(Arg.getType());
2755 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2756 unsigned SrcReg;
2757 switch (VT.SimpleTy) {
2758 default: llvm_unreachable("Unexpected value type.");
2759 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
2760 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
2761 case MVT::f32: // fall-through
2762 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
2763 }
2764 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2765 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2766 // Without this, EmitLiveInCopies may eliminate the livein if its only
2767 // use is a bitcast (which isn't turned into an instruction).
2768 unsigned ResultReg = createResultReg(RC);
2769 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2770 TII.get(TargetOpcode::COPY), ResultReg)
2771 .addReg(DstReg, getKillRegState(true));
2772 updateValueMap(&Arg, ResultReg);
2773 }
2774 return true;
2775 }
2776
computeBytesPoppedByCallee(const X86Subtarget * Subtarget,CallingConv::ID CC,ImmutableCallSite * CS)2777 static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
2778 CallingConv::ID CC,
2779 ImmutableCallSite *CS) {
2780 if (Subtarget->is64Bit())
2781 return 0;
2782 if (Subtarget->getTargetTriple().isOSMSVCRT())
2783 return 0;
2784 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2785 CC == CallingConv::HiPE)
2786 return 0;
2787 if (CS && !CS->paramHasAttr(1, Attribute::StructRet))
2788 return 0;
2789 if (CS && CS->paramHasAttr(1, Attribute::InReg))
2790 return 0;
2791 return 4;
2792 }
2793
fastLowerCall(CallLoweringInfo & CLI)2794 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
2795 auto &OutVals = CLI.OutVals;
2796 auto &OutFlags = CLI.OutFlags;
2797 auto &OutRegs = CLI.OutRegs;
2798 auto &Ins = CLI.Ins;
2799 auto &InRegs = CLI.InRegs;
2800 CallingConv::ID CC = CLI.CallConv;
2801 bool &IsTailCall = CLI.IsTailCall;
2802 bool IsVarArg = CLI.IsVarArg;
2803 const Value *Callee = CLI.Callee;
2804 const char *SymName = CLI.SymName;
2805
2806 bool Is64Bit = Subtarget->is64Bit();
2807 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
2808
2809 // Handle only C, fastcc, and webkit_js calling conventions for now.
2810 switch (CC) {
2811 default: return false;
2812 case CallingConv::C:
2813 case CallingConv::Fast:
2814 case CallingConv::WebKit_JS:
2815 case CallingConv::X86_FastCall:
2816 case CallingConv::X86_64_Win64:
2817 case CallingConv::X86_64_SysV:
2818 break;
2819 }
2820
2821 // Allow SelectionDAG isel to handle tail calls.
2822 if (IsTailCall)
2823 return false;
2824
2825 // fastcc with -tailcallopt is intended to provide a guaranteed
2826 // tail call optimization. Fastisel doesn't know how to do that.
2827 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
2828 return false;
2829
2830 // Don't know how to handle Win64 varargs yet. Nothing special needed for
2831 // x86-32. Special handling for x86-64 is implemented.
2832 if (IsVarArg && IsWin64)
2833 return false;
2834
2835 // Don't know about inalloca yet.
2836 if (CLI.CS && CLI.CS->hasInAllocaArgument())
2837 return false;
2838
2839 // Fast-isel doesn't know about callee-pop yet.
2840 if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
2841 TM.Options.GuaranteedTailCallOpt))
2842 return false;
2843
2844 SmallVector<MVT, 16> OutVTs;
2845 SmallVector<unsigned, 16> ArgRegs;
2846
2847 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
2848 // instruction. This is safe because it is common to all FastISel supported
2849 // calling conventions on x86.
2850 for (int i = 0, e = OutVals.size(); i != e; ++i) {
2851 Value *&Val = OutVals[i];
2852 ISD::ArgFlagsTy Flags = OutFlags[i];
2853 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
2854 if (CI->getBitWidth() < 32) {
2855 if (Flags.isSExt())
2856 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
2857 else
2858 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
2859 }
2860 }
2861
2862 // Passing bools around ends up doing a trunc to i1 and passing it.
2863 // Codegen this as an argument + "and 1".
2864 MVT VT;
2865 auto *TI = dyn_cast<TruncInst>(Val);
2866 unsigned ResultReg;
2867 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
2868 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
2869 TI->hasOneUse()) {
2870 Value *PrevVal = TI->getOperand(0);
2871 ResultReg = getRegForValue(PrevVal);
2872
2873 if (!ResultReg)
2874 return false;
2875
2876 if (!isTypeLegal(PrevVal->getType(), VT))
2877 return false;
2878
2879 ResultReg =
2880 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
2881 } else {
2882 if (!isTypeLegal(Val->getType(), VT))
2883 return false;
2884 ResultReg = getRegForValue(Val);
2885 }
2886
2887 if (!ResultReg)
2888 return false;
2889
2890 ArgRegs.push_back(ResultReg);
2891 OutVTs.push_back(VT);
2892 }
2893
2894 // Analyze operands of the call, assigning locations to each operand.
2895 SmallVector<CCValAssign, 16> ArgLocs;
2896 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
2897
2898 // Allocate shadow area for Win64
2899 if (IsWin64)
2900 CCInfo.AllocateStack(32, 8);
2901
2902 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
2903
2904 // Get a count of how many bytes are to be pushed on the stack.
2905 unsigned NumBytes = CCInfo.getNextStackOffset();
2906
2907 // Issue CALLSEQ_START
2908 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2909 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
2910 .addImm(NumBytes).addImm(0);
2911
2912 // Walk the register/memloc assignments, inserting copies/loads.
2913 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2914 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2915 CCValAssign const &VA = ArgLocs[i];
2916 const Value *ArgVal = OutVals[VA.getValNo()];
2917 MVT ArgVT = OutVTs[VA.getValNo()];
2918
2919 if (ArgVT == MVT::x86mmx)
2920 return false;
2921
2922 unsigned ArgReg = ArgRegs[VA.getValNo()];
2923
2924 // Promote the value if needed.
2925 switch (VA.getLocInfo()) {
2926 case CCValAssign::Full: break;
2927 case CCValAssign::SExt: {
2928 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2929 "Unexpected extend");
2930 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
2931 ArgVT, ArgReg);
2932 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
2933 ArgVT = VA.getLocVT();
2934 break;
2935 }
2936 case CCValAssign::ZExt: {
2937 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2938 "Unexpected extend");
2939 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
2940 ArgVT, ArgReg);
2941 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
2942 ArgVT = VA.getLocVT();
2943 break;
2944 }
2945 case CCValAssign::AExt: {
2946 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2947 "Unexpected extend");
2948 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
2949 ArgVT, ArgReg);
2950 if (!Emitted)
2951 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
2952 ArgVT, ArgReg);
2953 if (!Emitted)
2954 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
2955 ArgVT, ArgReg);
2956
2957 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
2958 ArgVT = VA.getLocVT();
2959 break;
2960 }
2961 case CCValAssign::BCvt: {
2962 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
2963 /*TODO: Kill=*/false);
2964 assert(ArgReg && "Failed to emit a bitcast!");
2965 ArgVT = VA.getLocVT();
2966 break;
2967 }
2968 case CCValAssign::VExt:
2969 // VExt has not been implemented, so this should be impossible to reach
2970 // for now. However, fallback to Selection DAG isel once implemented.
2971 return false;
2972 case CCValAssign::AExtUpper:
2973 case CCValAssign::SExtUpper:
2974 case CCValAssign::ZExtUpper:
2975 case CCValAssign::FPExt:
2976 llvm_unreachable("Unexpected loc info!");
2977 case CCValAssign::Indirect:
2978 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
2979 // support this.
2980 return false;
2981 }
2982
2983 if (VA.isRegLoc()) {
2984 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2985 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
2986 OutRegs.push_back(VA.getLocReg());
2987 } else {
2988 assert(VA.isMemLoc());
2989
2990 // Don't emit stores for undef values.
2991 if (isa<UndefValue>(ArgVal))
2992 continue;
2993
2994 unsigned LocMemOffset = VA.getLocMemOffset();
2995 X86AddressMode AM;
2996 AM.Base.Reg = RegInfo->getStackRegister();
2997 AM.Disp = LocMemOffset;
2998 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
2999 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3000 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3001 MachinePointerInfo::getStack(LocMemOffset), MachineMemOperand::MOStore,
3002 ArgVT.getStoreSize(), Alignment);
3003 if (Flags.isByVal()) {
3004 X86AddressMode SrcAM;
3005 SrcAM.Base.Reg = ArgReg;
3006 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3007 return false;
3008 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3009 // If this is a really simple value, emit this with the Value* version
3010 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3011 // as it can cause us to reevaluate the argument.
3012 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3013 return false;
3014 } else {
3015 bool ValIsKill = hasTrivialKill(ArgVal);
3016 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3017 return false;
3018 }
3019 }
3020 }
3021
3022 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3023 // GOT pointer.
3024 if (Subtarget->isPICStyleGOT()) {
3025 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3026 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3027 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3028 }
3029
3030 if (Is64Bit && IsVarArg && !IsWin64) {
3031 // From AMD64 ABI document:
3032 // For calls that may call functions that use varargs or stdargs
3033 // (prototype-less calls or calls to functions containing ellipsis (...) in
3034 // the declaration) %al is used as hidden argument to specify the number
3035 // of SSE registers used. The contents of %al do not need to match exactly
3036 // the number of registers, but must be an ubound on the number of SSE
3037 // registers used and is in the range 0 - 8 inclusive.
3038
3039 // Count the number of XMM registers allocated.
3040 static const MCPhysReg XMMArgRegs[] = {
3041 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3042 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3043 };
3044 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3045 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3046 && "SSE registers cannot be used when SSE is disabled");
3047 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3048 X86::AL).addImm(NumXMMRegs);
3049 }
3050
3051 // Materialize callee address in a register. FIXME: GV address can be
3052 // handled with a CALLpcrel32 instead.
3053 X86AddressMode CalleeAM;
3054 if (!X86SelectCallAddress(Callee, CalleeAM))
3055 return false;
3056
3057 unsigned CalleeOp = 0;
3058 const GlobalValue *GV = nullptr;
3059 if (CalleeAM.GV != nullptr) {
3060 GV = CalleeAM.GV;
3061 } else if (CalleeAM.Base.Reg != 0) {
3062 CalleeOp = CalleeAM.Base.Reg;
3063 } else
3064 return false;
3065
3066 // Issue the call.
3067 MachineInstrBuilder MIB;
3068 if (CalleeOp) {
3069 // Register-indirect call.
3070 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3071 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3072 .addReg(CalleeOp);
3073 } else {
3074 // Direct call.
3075 assert(GV && "Not a direct call");
3076 unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
3077
3078 // See if we need any target-specific flags on the GV operand.
3079 unsigned char OpFlags = 0;
3080
3081 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
3082 // external symbols most go through the PLT in PIC mode. If the symbol
3083 // has hidden or protected visibility, or if it is static or local, then
3084 // we don't need to use the PLT - we can directly call it.
3085 if (Subtarget->isTargetELF() &&
3086 TM.getRelocationModel() == Reloc::PIC_ &&
3087 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
3088 OpFlags = X86II::MO_PLT;
3089 } else if (Subtarget->isPICStyleStubAny() &&
3090 (GV->isDeclaration() || GV->isWeakForLinker()) &&
3091 (!Subtarget->getTargetTriple().isMacOSX() ||
3092 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3093 // PC-relative references to external symbols should go through $stub,
3094 // unless we're building with the leopard linker or later, which
3095 // automatically synthesizes these stubs.
3096 OpFlags = X86II::MO_DARWIN_STUB;
3097 }
3098
3099 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3100 if (SymName)
3101 MIB.addExternalSymbol(SymName, OpFlags);
3102 else
3103 MIB.addGlobalAddress(GV, 0, OpFlags);
3104 }
3105
3106 // Add a register mask operand representing the call-preserved registers.
3107 // Proper defs for return values will be added by setPhysRegsDeadExcept().
3108 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3109
3110 // Add an implicit use GOT pointer in EBX.
3111 if (Subtarget->isPICStyleGOT())
3112 MIB.addReg(X86::EBX, RegState::Implicit);
3113
3114 if (Is64Bit && IsVarArg && !IsWin64)
3115 MIB.addReg(X86::AL, RegState::Implicit);
3116
3117 // Add implicit physical register uses to the call.
3118 for (auto Reg : OutRegs)
3119 MIB.addReg(Reg, RegState::Implicit);
3120
3121 // Issue CALLSEQ_END
3122 unsigned NumBytesForCalleeToPop =
3123 computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
3124 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3125 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3126 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3127
3128 // Now handle call return values.
3129 SmallVector<CCValAssign, 16> RVLocs;
3130 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3131 CLI.RetTy->getContext());
3132 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3133
3134 // Copy all of the result registers out of their specified physreg.
3135 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3136 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3137 CCValAssign &VA = RVLocs[i];
3138 EVT CopyVT = VA.getValVT();
3139 unsigned CopyReg = ResultReg + i;
3140
3141 // If this is x86-64, and we disabled SSE, we can't return FP values
3142 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3143 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3144 report_fatal_error("SSE register return with SSE disabled");
3145 }
3146
3147 // If we prefer to use the value in xmm registers, copy it out as f80 and
3148 // use a truncate to move it from fp stack reg to xmm reg.
3149 if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
3150 isScalarFPTypeInSSEReg(VA.getValVT())) {
3151 CopyVT = MVT::f80;
3152 CopyReg = createResultReg(&X86::RFP80RegClass);
3153 }
3154
3155 // Copy out the result.
3156 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3157 TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
3158 InRegs.push_back(VA.getLocReg());
3159
3160 // Round the f80 to the right size, which also moves it to the appropriate
3161 // xmm register. This is accomplished by storing the f80 value in memory
3162 // and then loading it back.
3163 if (CopyVT != VA.getValVT()) {
3164 EVT ResVT = VA.getValVT();
3165 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3166 unsigned MemSize = ResVT.getSizeInBits()/8;
3167 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3168 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3169 TII.get(Opc)), FI)
3170 .addReg(CopyReg);
3171 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3172 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3173 TII.get(Opc), ResultReg + i), FI);
3174 }
3175 }
3176
3177 CLI.ResultReg = ResultReg;
3178 CLI.NumResultRegs = RVLocs.size();
3179 CLI.Call = MIB;
3180
3181 return true;
3182 }
3183
3184 bool
fastSelectInstruction(const Instruction * I)3185 X86FastISel::fastSelectInstruction(const Instruction *I) {
3186 switch (I->getOpcode()) {
3187 default: break;
3188 case Instruction::Load:
3189 return X86SelectLoad(I);
3190 case Instruction::Store:
3191 return X86SelectStore(I);
3192 case Instruction::Ret:
3193 return X86SelectRet(I);
3194 case Instruction::ICmp:
3195 case Instruction::FCmp:
3196 return X86SelectCmp(I);
3197 case Instruction::ZExt:
3198 return X86SelectZExt(I);
3199 case Instruction::Br:
3200 return X86SelectBranch(I);
3201 case Instruction::LShr:
3202 case Instruction::AShr:
3203 case Instruction::Shl:
3204 return X86SelectShift(I);
3205 case Instruction::SDiv:
3206 case Instruction::UDiv:
3207 case Instruction::SRem:
3208 case Instruction::URem:
3209 return X86SelectDivRem(I);
3210 case Instruction::Select:
3211 return X86SelectSelect(I);
3212 case Instruction::Trunc:
3213 return X86SelectTrunc(I);
3214 case Instruction::FPExt:
3215 return X86SelectFPExt(I);
3216 case Instruction::FPTrunc:
3217 return X86SelectFPTrunc(I);
3218 case Instruction::SIToFP:
3219 return X86SelectSIToFP(I);
3220 case Instruction::IntToPtr: // Deliberate fall-through.
3221 case Instruction::PtrToInt: {
3222 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
3223 EVT DstVT = TLI.getValueType(I->getType());
3224 if (DstVT.bitsGT(SrcVT))
3225 return X86SelectZExt(I);
3226 if (DstVT.bitsLT(SrcVT))
3227 return X86SelectTrunc(I);
3228 unsigned Reg = getRegForValue(I->getOperand(0));
3229 if (Reg == 0) return false;
3230 updateValueMap(I, Reg);
3231 return true;
3232 }
3233 }
3234
3235 return false;
3236 }
3237
X86MaterializeInt(const ConstantInt * CI,MVT VT)3238 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3239 if (VT > MVT::i64)
3240 return 0;
3241
3242 uint64_t Imm = CI->getZExtValue();
3243 if (Imm == 0) {
3244 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3245 switch (VT.SimpleTy) {
3246 default: llvm_unreachable("Unexpected value type");
3247 case MVT::i1:
3248 case MVT::i8:
3249 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3250 X86::sub_8bit);
3251 case MVT::i16:
3252 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3253 X86::sub_16bit);
3254 case MVT::i32:
3255 return SrcReg;
3256 case MVT::i64: {
3257 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3258 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3259 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3260 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3261 return ResultReg;
3262 }
3263 }
3264 }
3265
3266 unsigned Opc = 0;
3267 switch (VT.SimpleTy) {
3268 default: llvm_unreachable("Unexpected value type");
3269 case MVT::i1: VT = MVT::i8; // fall-through
3270 case MVT::i8: Opc = X86::MOV8ri; break;
3271 case MVT::i16: Opc = X86::MOV16ri; break;
3272 case MVT::i32: Opc = X86::MOV32ri; break;
3273 case MVT::i64: {
3274 if (isUInt<32>(Imm))
3275 Opc = X86::MOV32ri;
3276 else if (isInt<32>(Imm))
3277 Opc = X86::MOV64ri32;
3278 else
3279 Opc = X86::MOV64ri;
3280 break;
3281 }
3282 }
3283 if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3284 unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3285 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3286 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3287 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3288 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3289 return ResultReg;
3290 }
3291 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3292 }
3293
X86MaterializeFP(const ConstantFP * CFP,MVT VT)3294 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3295 if (CFP->isNullValue())
3296 return fastMaterializeFloatZero(CFP);
3297
3298 // Can't handle alternate code models yet.
3299 CodeModel::Model CM = TM.getCodeModel();
3300 if (CM != CodeModel::Small && CM != CodeModel::Large)
3301 return 0;
3302
3303 // Get opcode and regclass of the output for the given load instruction.
3304 unsigned Opc = 0;
3305 const TargetRegisterClass *RC = nullptr;
3306 switch (VT.SimpleTy) {
3307 default: return 0;
3308 case MVT::f32:
3309 if (X86ScalarSSEf32) {
3310 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3311 RC = &X86::FR32RegClass;
3312 } else {
3313 Opc = X86::LD_Fp32m;
3314 RC = &X86::RFP32RegClass;
3315 }
3316 break;
3317 case MVT::f64:
3318 if (X86ScalarSSEf64) {
3319 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3320 RC = &X86::FR64RegClass;
3321 } else {
3322 Opc = X86::LD_Fp64m;
3323 RC = &X86::RFP64RegClass;
3324 }
3325 break;
3326 case MVT::f80:
3327 // No f80 support yet.
3328 return 0;
3329 }
3330
3331 // MachineConstantPool wants an explicit alignment.
3332 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3333 if (Align == 0) {
3334 // Alignment of vector types. FIXME!
3335 Align = DL.getTypeAllocSize(CFP->getType());
3336 }
3337
3338 // x86-32 PIC requires a PIC base register for constant pools.
3339 unsigned PICBase = 0;
3340 unsigned char OpFlag = 0;
3341 if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
3342 OpFlag = X86II::MO_PIC_BASE_OFFSET;
3343 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3344 } else if (Subtarget->isPICStyleGOT()) {
3345 OpFlag = X86II::MO_GOTOFF;
3346 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3347 } else if (Subtarget->isPICStyleRIPRel() &&
3348 TM.getCodeModel() == CodeModel::Small) {
3349 PICBase = X86::RIP;
3350 }
3351
3352 // Create the load from the constant pool.
3353 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3354 unsigned ResultReg = createResultReg(RC);
3355
3356 if (CM == CodeModel::Large) {
3357 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3358 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3359 AddrReg)
3360 .addConstantPoolIndex(CPI, 0, OpFlag);
3361 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3362 TII.get(Opc), ResultReg);
3363 addDirectMem(MIB, AddrReg);
3364 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3365 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
3366 TM.getDataLayout()->getPointerSize(), Align);
3367 MIB->addMemOperand(*FuncInfo.MF, MMO);
3368 return ResultReg;
3369 }
3370
3371 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3372 TII.get(Opc), ResultReg),
3373 CPI, PICBase, OpFlag);
3374 return ResultReg;
3375 }
3376
X86MaterializeGV(const GlobalValue * GV,MVT VT)3377 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3378 // Can't handle alternate code models yet.
3379 if (TM.getCodeModel() != CodeModel::Small)
3380 return 0;
3381
3382 // Materialize addresses with LEA/MOV instructions.
3383 X86AddressMode AM;
3384 if (X86SelectAddress(GV, AM)) {
3385 // If the expression is just a basereg, then we're done, otherwise we need
3386 // to emit an LEA.
3387 if (AM.BaseType == X86AddressMode::RegBase &&
3388 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3389 return AM.Base.Reg;
3390
3391 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3392 if (TM.getRelocationModel() == Reloc::Static &&
3393 TLI.getPointerTy() == MVT::i64) {
3394 // The displacement code could be more than 32 bits away so we need to use
3395 // an instruction with a 64 bit immediate
3396 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3397 ResultReg)
3398 .addGlobalAddress(GV);
3399 } else {
3400 unsigned Opc = TLI.getPointerTy() == MVT::i32
3401 ? (Subtarget->isTarget64BitILP32()
3402 ? X86::LEA64_32r : X86::LEA32r)
3403 : X86::LEA64r;
3404 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3405 TII.get(Opc), ResultReg), AM);
3406 }
3407 return ResultReg;
3408 }
3409 return 0;
3410 }
3411
fastMaterializeConstant(const Constant * C)3412 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3413 EVT CEVT = TLI.getValueType(C->getType(), true);
3414
3415 // Only handle simple types.
3416 if (!CEVT.isSimple())
3417 return 0;
3418 MVT VT = CEVT.getSimpleVT();
3419
3420 if (const auto *CI = dyn_cast<ConstantInt>(C))
3421 return X86MaterializeInt(CI, VT);
3422 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3423 return X86MaterializeFP(CFP, VT);
3424 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3425 return X86MaterializeGV(GV, VT);
3426
3427 return 0;
3428 }
3429
fastMaterializeAlloca(const AllocaInst * C)3430 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3431 // Fail on dynamic allocas. At this point, getRegForValue has already
3432 // checked its CSE maps, so if we're here trying to handle a dynamic
3433 // alloca, we're not going to succeed. X86SelectAddress has a
3434 // check for dynamic allocas, because it's called directly from
3435 // various places, but targetMaterializeAlloca also needs a check
3436 // in order to avoid recursion between getRegForValue,
3437 // X86SelectAddrss, and targetMaterializeAlloca.
3438 if (!FuncInfo.StaticAllocaMap.count(C))
3439 return 0;
3440 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3441
3442 X86AddressMode AM;
3443 if (!X86SelectAddress(C, AM))
3444 return 0;
3445 unsigned Opc = TLI.getPointerTy() == MVT::i32
3446 ? (Subtarget->isTarget64BitILP32()
3447 ? X86::LEA64_32r : X86::LEA32r)
3448 : X86::LEA64r;
3449 const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
3450 unsigned ResultReg = createResultReg(RC);
3451 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3452 TII.get(Opc), ResultReg), AM);
3453 return ResultReg;
3454 }
3455
fastMaterializeFloatZero(const ConstantFP * CF)3456 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3457 MVT VT;
3458 if (!isTypeLegal(CF->getType(), VT))
3459 return 0;
3460
3461 // Get opcode and regclass for the given zero.
3462 unsigned Opc = 0;
3463 const TargetRegisterClass *RC = nullptr;
3464 switch (VT.SimpleTy) {
3465 default: return 0;
3466 case MVT::f32:
3467 if (X86ScalarSSEf32) {
3468 Opc = X86::FsFLD0SS;
3469 RC = &X86::FR32RegClass;
3470 } else {
3471 Opc = X86::LD_Fp032;
3472 RC = &X86::RFP32RegClass;
3473 }
3474 break;
3475 case MVT::f64:
3476 if (X86ScalarSSEf64) {
3477 Opc = X86::FsFLD0SD;
3478 RC = &X86::FR64RegClass;
3479 } else {
3480 Opc = X86::LD_Fp064;
3481 RC = &X86::RFP64RegClass;
3482 }
3483 break;
3484 case MVT::f80:
3485 // No f80 support yet.
3486 return 0;
3487 }
3488
3489 unsigned ResultReg = createResultReg(RC);
3490 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3491 return ResultReg;
3492 }
3493
3494
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)3495 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3496 const LoadInst *LI) {
3497 const Value *Ptr = LI->getPointerOperand();
3498 X86AddressMode AM;
3499 if (!X86SelectAddress(Ptr, AM))
3500 return false;
3501
3502 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3503
3504 unsigned Size = DL.getTypeAllocSize(LI->getType());
3505 unsigned Alignment = LI->getAlignment();
3506
3507 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3508 Alignment = DL.getABITypeAlignment(LI->getType());
3509
3510 SmallVector<MachineOperand, 8> AddrOps;
3511 AM.getFullAddress(AddrOps);
3512
3513 MachineInstr *Result =
3514 XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps,
3515 Size, Alignment, /*AllowCommute=*/true);
3516 if (!Result)
3517 return false;
3518
3519 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3520 FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
3521 MI->eraseFromParent();
3522 return true;
3523 }
3524
3525
3526 namespace llvm {
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)3527 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
3528 const TargetLibraryInfo *libInfo) {
3529 return new X86FastISel(funcInfo, libInfo);
3530 }
3531 }
3532