1 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass that finds instructions that can be
11 // re-written as LEA instructions in order to reduce pipeline delays.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86.h"
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveVariables.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 using namespace llvm;
28
29 #define DEBUG_TYPE "x86-fixup-LEAs"
30
31 STATISTIC(NumLEAs, "Number of LEA instructions created");
32
33 namespace {
34 class FixupLEAPass : public MachineFunctionPass {
35 enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
36 static char ID;
37 /// \brief Loop over all of the instructions in the basic block
38 /// replacing applicable instructions with LEA instructions,
39 /// where appropriate.
40 bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
41
getPassName() const42 const char *getPassName() const override { return "X86 LEA Fixup"; }
43
44 /// \brief Given a machine register, look for the instruction
45 /// which writes it in the current basic block. If found,
46 /// try to replace it with an equivalent LEA instruction.
47 /// If replacement succeeds, then also process the the newly created
48 /// instruction.
49 void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
50 MachineFunction::iterator MFI);
51
52 /// \brief Given a memory access or LEA instruction
53 /// whose address mode uses a base and/or index register, look for
54 /// an opportunity to replace the instruction which sets the base or index
55 /// register with an equivalent LEA instruction.
56 void processInstruction(MachineBasicBlock::iterator &I,
57 MachineFunction::iterator MFI);
58
59 /// \brief Given a LEA instruction which is unprofitable
60 /// on Silvermont try to replace it with an equivalent ADD instruction
61 void processInstructionForSLM(MachineBasicBlock::iterator &I,
62 MachineFunction::iterator MFI);
63
64 /// \brief Determine if an instruction references a machine register
65 /// and, if so, whether it reads or writes the register.
66 RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
67
68 /// \brief Step backwards through a basic block, looking
69 /// for an instruction which writes a register within
70 /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
71 MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
72 MachineBasicBlock::iterator &I,
73 MachineFunction::iterator MFI);
74
75 /// \brief if an instruction can be converted to an
76 /// equivalent LEA, insert the new instruction into the basic block
77 /// and return a pointer to it. Otherwise, return zero.
78 MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
79 MachineBasicBlock::iterator &MBBI) const;
80
81 public:
FixupLEAPass()82 FixupLEAPass() : MachineFunctionPass(ID) {}
83
84 /// \brief Loop over all of the basic blocks,
85 /// replacing instructions by equivalent LEA instructions
86 /// if needed and when possible.
87 bool runOnMachineFunction(MachineFunction &MF) override;
88
89 private:
90 MachineFunction *MF;
91 const X86InstrInfo *TII; // Machine instruction info.
92 };
93 char FixupLEAPass::ID = 0;
94 }
95
96 MachineInstr *
postRAConvertToLEA(MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI) const97 FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
98 MachineBasicBlock::iterator &MBBI) const {
99 MachineInstr *MI = MBBI;
100 MachineInstr *NewMI;
101 switch (MI->getOpcode()) {
102 case X86::MOV32rr:
103 case X86::MOV64rr: {
104 const MachineOperand &Src = MI->getOperand(1);
105 const MachineOperand &Dest = MI->getOperand(0);
106 NewMI = BuildMI(*MF, MI->getDebugLoc(),
107 TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r
108 : X86::LEA64r))
109 .addOperand(Dest)
110 .addOperand(Src)
111 .addImm(1)
112 .addReg(0)
113 .addImm(0)
114 .addReg(0);
115 MFI->insert(MBBI, NewMI); // Insert the new inst
116 return NewMI;
117 }
118 case X86::ADD64ri32:
119 case X86::ADD64ri8:
120 case X86::ADD64ri32_DB:
121 case X86::ADD64ri8_DB:
122 case X86::ADD32ri:
123 case X86::ADD32ri8:
124 case X86::ADD32ri_DB:
125 case X86::ADD32ri8_DB:
126 case X86::ADD16ri:
127 case X86::ADD16ri8:
128 case X86::ADD16ri_DB:
129 case X86::ADD16ri8_DB:
130 if (!MI->getOperand(2).isImm()) {
131 // convertToThreeAddress will call getImm()
132 // which requires isImm() to be true
133 return nullptr;
134 }
135 break;
136 case X86::ADD16rr:
137 case X86::ADD16rr_DB:
138 if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
139 // if src1 != src2, then convertToThreeAddress will
140 // need to create a Virtual register, which we cannot do
141 // after register allocation.
142 return nullptr;
143 }
144 }
145 return TII->convertToThreeAddress(MFI, MBBI, nullptr);
146 }
147
createX86FixupLEAs()148 FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
149
runOnMachineFunction(MachineFunction & Func)150 bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
151 MF = &Func;
152 const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>();
153 if (!ST.LEAusesAG() && !ST.slowLEA())
154 return false;
155
156 TII = ST.getInstrInfo();
157
158 DEBUG(dbgs() << "Start X86FixupLEAs\n";);
159 // Process all basic blocks.
160 for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
161 processBasicBlock(Func, I);
162 DEBUG(dbgs() << "End X86FixupLEAs\n";);
163
164 return true;
165 }
166
167 FixupLEAPass::RegUsageState
usesRegister(MachineOperand & p,MachineBasicBlock::iterator I)168 FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
169 RegUsageState RegUsage = RU_NotUsed;
170 MachineInstr *MI = I;
171
172 for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
173 MachineOperand &opnd = MI->getOperand(i);
174 if (opnd.isReg() && opnd.getReg() == p.getReg()) {
175 if (opnd.isDef())
176 return RU_Write;
177 RegUsage = RU_Read;
178 }
179 }
180 return RegUsage;
181 }
182
183 /// getPreviousInstr - Given a reference to an instruction in a basic
184 /// block, return a reference to the previous instruction in the block,
185 /// wrapping around to the last instruction of the block if the block
186 /// branches to itself.
getPreviousInstr(MachineBasicBlock::iterator & I,MachineFunction::iterator MFI)187 static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
188 MachineFunction::iterator MFI) {
189 if (I == MFI->begin()) {
190 if (MFI->isPredecessor(MFI)) {
191 I = --MFI->end();
192 return true;
193 } else
194 return false;
195 }
196 --I;
197 return true;
198 }
199
200 MachineBasicBlock::iterator
searchBackwards(MachineOperand & p,MachineBasicBlock::iterator & I,MachineFunction::iterator MFI)201 FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
202 MachineFunction::iterator MFI) {
203 int InstrDistance = 1;
204 MachineBasicBlock::iterator CurInst;
205 static const int INSTR_DISTANCE_THRESHOLD = 5;
206
207 CurInst = I;
208 bool Found;
209 Found = getPreviousInstr(CurInst, MFI);
210 while (Found && I != CurInst) {
211 if (CurInst->isCall() || CurInst->isInlineAsm())
212 break;
213 if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
214 break; // too far back to make a difference
215 if (usesRegister(p, CurInst) == RU_Write) {
216 return CurInst;
217 }
218 InstrDistance += TII->getInstrLatency(
219 MF->getSubtarget().getInstrItineraryData(), CurInst);
220 Found = getPreviousInstr(CurInst, MFI);
221 }
222 return nullptr;
223 }
224
processInstruction(MachineBasicBlock::iterator & I,MachineFunction::iterator MFI)225 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
226 MachineFunction::iterator MFI) {
227 // Process a load, store, or LEA instruction.
228 MachineInstr *MI = I;
229 int opcode = MI->getOpcode();
230 const MCInstrDesc &Desc = MI->getDesc();
231 int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
232 if (AddrOffset >= 0) {
233 AddrOffset += X86II::getOperandBias(Desc);
234 MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
235 if (p.isReg() && p.getReg() != X86::ESP) {
236 seekLEAFixup(p, I, MFI);
237 }
238 MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
239 if (q.isReg() && q.getReg() != X86::ESP) {
240 seekLEAFixup(q, I, MFI);
241 }
242 }
243 }
244
seekLEAFixup(MachineOperand & p,MachineBasicBlock::iterator & I,MachineFunction::iterator MFI)245 void FixupLEAPass::seekLEAFixup(MachineOperand &p,
246 MachineBasicBlock::iterator &I,
247 MachineFunction::iterator MFI) {
248 MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
249 if (MBI) {
250 MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
251 if (NewMI) {
252 ++NumLEAs;
253 DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
254 // now to replace with an equivalent LEA...
255 DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
256 MFI->erase(MBI);
257 MachineBasicBlock::iterator J =
258 static_cast<MachineBasicBlock::iterator>(NewMI);
259 processInstruction(J, MFI);
260 }
261 }
262 }
263
processInstructionForSLM(MachineBasicBlock::iterator & I,MachineFunction::iterator MFI)264 void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
265 MachineFunction::iterator MFI) {
266 MachineInstr *MI = I;
267 const int opcode = MI->getOpcode();
268 if (opcode != X86::LEA16r && opcode != X86::LEA32r && opcode != X86::LEA64r &&
269 opcode != X86::LEA64_32r)
270 return;
271 if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
272 !TII->isSafeToClobberEFLAGS(*MFI, I))
273 return;
274 const unsigned DstR = MI->getOperand(0).getReg();
275 const unsigned SrcR1 = MI->getOperand(1).getReg();
276 const unsigned SrcR2 = MI->getOperand(3).getReg();
277 if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
278 return;
279 if (MI->getOperand(2).getImm() > 1)
280 return;
281 int addrr_opcode, addri_opcode;
282 switch (opcode) {
283 default: llvm_unreachable("Unexpected LEA instruction");
284 case X86::LEA16r:
285 addrr_opcode = X86::ADD16rr;
286 addri_opcode = X86::ADD16ri;
287 break;
288 case X86::LEA32r:
289 addrr_opcode = X86::ADD32rr;
290 addri_opcode = X86::ADD32ri;
291 break;
292 case X86::LEA64_32r:
293 case X86::LEA64r:
294 addrr_opcode = X86::ADD64rr;
295 addri_opcode = X86::ADD64ri32;
296 break;
297 }
298 DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
299 DEBUG(dbgs() << "FixLEA: Replaced by: ";);
300 MachineInstr *NewMI = nullptr;
301 const MachineOperand &Dst = MI->getOperand(0);
302 // Make ADD instruction for two registers writing to LEA's destination
303 if (SrcR1 != 0 && SrcR2 != 0) {
304 const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
305 const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
306 NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
307 .addOperand(Dst)
308 .addOperand(Src1)
309 .addOperand(Src2);
310 MFI->insert(I, NewMI);
311 DEBUG(NewMI->dump(););
312 }
313 // Make ADD instruction for immediate
314 if (MI->getOperand(4).getImm() != 0) {
315 const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
316 NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
317 .addOperand(Dst)
318 .addOperand(SrcR)
319 .addImm(MI->getOperand(4).getImm());
320 MFI->insert(I, NewMI);
321 DEBUG(NewMI->dump(););
322 }
323 if (NewMI) {
324 MFI->erase(I);
325 I = static_cast<MachineBasicBlock::iterator>(NewMI);
326 }
327 }
328
processBasicBlock(MachineFunction & MF,MachineFunction::iterator MFI)329 bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
330 MachineFunction::iterator MFI) {
331
332 for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
333 if (MF.getSubtarget<X86Subtarget>().isSLM())
334 processInstructionForSLM(I, MFI);
335 else
336 processInstruction(I, MFI);
337 }
338 return false;
339 }
340