1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86RegisterInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <stdint.h>
38 using namespace llvm;
39
40 #define DEBUG_TYPE "x86-isel"
41
42 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44 //===----------------------------------------------------------------------===//
45 // Pattern Matcher Implementation
46 //===----------------------------------------------------------------------===//
47
48 namespace {
49 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50 /// SDValue's instead of register numbers for the leaves of the matched
51 /// tree.
52 struct X86ISelAddressMode {
53 enum {
54 RegBase,
55 FrameIndexBase
56 } BaseType;
57
58 // This is really a union, discriminated by BaseType!
59 SDValue Base_Reg;
60 int Base_FrameIndex;
61
62 unsigned Scale;
63 SDValue IndexReg;
64 int32_t Disp;
65 SDValue Segment;
66 const GlobalValue *GV;
67 const Constant *CP;
68 const BlockAddress *BlockAddr;
69 const char *ES;
70 int JT;
71 unsigned Align; // CP alignment.
72 unsigned char SymbolFlags; // X86II::MO_*
73
X86ISelAddressMode__anonfec1f42b0111::X86ISelAddressMode74 X86ISelAddressMode()
75 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76 Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
77 JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {
78 }
79
hasSymbolicDisplacement__anonfec1f42b0111::X86ISelAddressMode80 bool hasSymbolicDisplacement() const {
81 return GV != nullptr || CP != nullptr || ES != nullptr ||
82 JT != -1 || BlockAddr != nullptr;
83 }
84
hasBaseOrIndexReg__anonfec1f42b0111::X86ISelAddressMode85 bool hasBaseOrIndexReg() const {
86 return BaseType == FrameIndexBase ||
87 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
88 }
89
90 /// isRIPRelative - Return true if this addressing mode is already RIP
91 /// relative.
isRIPRelative__anonfec1f42b0111::X86ISelAddressMode92 bool isRIPRelative() const {
93 if (BaseType != RegBase) return false;
94 if (RegisterSDNode *RegNode =
95 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
96 return RegNode->getReg() == X86::RIP;
97 return false;
98 }
99
setBaseReg__anonfec1f42b0111::X86ISelAddressMode100 void setBaseReg(SDValue Reg) {
101 BaseType = RegBase;
102 Base_Reg = Reg;
103 }
104
105 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump__anonfec1f42b0111::X86ISelAddressMode106 void dump() {
107 dbgs() << "X86ISelAddressMode " << this << '\n';
108 dbgs() << "Base_Reg ";
109 if (Base_Reg.getNode())
110 Base_Reg.getNode()->dump();
111 else
112 dbgs() << "nul";
113 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
114 << " Scale" << Scale << '\n'
115 << "IndexReg ";
116 if (IndexReg.getNode())
117 IndexReg.getNode()->dump();
118 else
119 dbgs() << "nul";
120 dbgs() << " Disp " << Disp << '\n'
121 << "GV ";
122 if (GV)
123 GV->dump();
124 else
125 dbgs() << "nul";
126 dbgs() << " CP ";
127 if (CP)
128 CP->dump();
129 else
130 dbgs() << "nul";
131 dbgs() << '\n'
132 << "ES ";
133 if (ES)
134 dbgs() << ES;
135 else
136 dbgs() << "nul";
137 dbgs() << " JT" << JT << " Align" << Align << '\n';
138 }
139 #endif
140 };
141 }
142
143 namespace {
144 //===--------------------------------------------------------------------===//
145 /// ISel - X86 specific code to select X86 machine instructions for
146 /// SelectionDAG operations.
147 ///
148 class X86DAGToDAGISel final : public SelectionDAGISel {
149 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
150 /// make the right decision when generating code for different targets.
151 const X86Subtarget *Subtarget;
152
153 /// OptForSize - If true, selector should try to optimize for code size
154 /// instead of performance.
155 bool OptForSize;
156
157 public:
X86DAGToDAGISel(X86TargetMachine & tm,CodeGenOpt::Level OptLevel)158 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
159 : SelectionDAGISel(tm, OptLevel), OptForSize(false) {}
160
getPassName() const161 const char *getPassName() const override {
162 return "X86 DAG->DAG Instruction Selection";
163 }
164
runOnMachineFunction(MachineFunction & MF)165 bool runOnMachineFunction(MachineFunction &MF) override {
166 // Reset the subtarget each time through.
167 Subtarget = &MF.getSubtarget<X86Subtarget>();
168 SelectionDAGISel::runOnMachineFunction(MF);
169 return true;
170 }
171
172 void EmitFunctionEntryCode() override;
173
174 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
175
176 void PreprocessISelDAG() override;
177
immSext8(SDNode * N) const178 inline bool immSext8(SDNode *N) const {
179 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
180 }
181
182 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
183 // sign extended field.
i64immSExt32(SDNode * N) const184 inline bool i64immSExt32(SDNode *N) const {
185 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
186 return (int64_t)v == (int32_t)v;
187 }
188
189 // Include the pieces autogenerated from the target description.
190 #include "X86GenDAGISel.inc"
191
192 private:
193 SDNode *Select(SDNode *N) override;
194 SDNode *SelectGather(SDNode *N, unsigned Opc);
195 SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
196
197 bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
198 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
199 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
200 bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
201 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
202 unsigned Depth);
203 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
204 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
205 SDValue &Scale, SDValue &Index, SDValue &Disp,
206 SDValue &Segment);
207 bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
208 bool SelectLEAAddr(SDValue N, SDValue &Base,
209 SDValue &Scale, SDValue &Index, SDValue &Disp,
210 SDValue &Segment);
211 bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
212 SDValue &Scale, SDValue &Index, SDValue &Disp,
213 SDValue &Segment);
214 bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
215 SDValue &Scale, SDValue &Index, SDValue &Disp,
216 SDValue &Segment);
217 bool SelectScalarSSELoad(SDNode *Root, SDValue N,
218 SDValue &Base, SDValue &Scale,
219 SDValue &Index, SDValue &Disp,
220 SDValue &Segment,
221 SDValue &NodeWithChain);
222
223 bool TryFoldLoad(SDNode *P, SDValue N,
224 SDValue &Base, SDValue &Scale,
225 SDValue &Index, SDValue &Disp,
226 SDValue &Segment);
227
228 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
229 /// inline asm expressions.
230 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
231 unsigned ConstraintID,
232 std::vector<SDValue> &OutOps) override;
233
234 void EmitSpecialCodeForMain();
235
getAddressOperands(X86ISelAddressMode & AM,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)236 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
237 SDValue &Scale, SDValue &Index,
238 SDValue &Disp, SDValue &Segment) {
239 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
240 ? CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
241 TLI->getPointerTy())
242 : AM.Base_Reg;
243 Scale = getI8Imm(AM.Scale);
244 Index = AM.IndexReg;
245 // These are 32-bit even in 64-bit mode since RIP relative offset
246 // is 32-bit.
247 if (AM.GV)
248 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
249 MVT::i32, AM.Disp,
250 AM.SymbolFlags);
251 else if (AM.CP)
252 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
253 AM.Align, AM.Disp, AM.SymbolFlags);
254 else if (AM.ES) {
255 assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
256 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
257 } else if (AM.JT != -1) {
258 assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
259 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
260 } else if (AM.BlockAddr)
261 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
262 AM.SymbolFlags);
263 else
264 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
265
266 if (AM.Segment.getNode())
267 Segment = AM.Segment;
268 else
269 Segment = CurDAG->getRegister(0, MVT::i32);
270 }
271
272 /// getI8Imm - Return a target constant with the specified value, of type
273 /// i8.
getI8Imm(unsigned Imm)274 inline SDValue getI8Imm(unsigned Imm) {
275 return CurDAG->getTargetConstant(Imm, MVT::i8);
276 }
277
278 /// getI32Imm - Return a target constant with the specified value, of type
279 /// i32.
getI32Imm(unsigned Imm)280 inline SDValue getI32Imm(unsigned Imm) {
281 return CurDAG->getTargetConstant(Imm, MVT::i32);
282 }
283
284 /// getGlobalBaseReg - Return an SDNode that returns the value of
285 /// the global base register. Output instructions required to
286 /// initialize the global base register, if necessary.
287 ///
288 SDNode *getGlobalBaseReg();
289
290 /// getTargetMachine - Return a reference to the TargetMachine, casted
291 /// to the target-specific type.
getTargetMachine() const292 const X86TargetMachine &getTargetMachine() const {
293 return static_cast<const X86TargetMachine &>(TM);
294 }
295
296 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
297 /// to the target-specific type.
getInstrInfo() const298 const X86InstrInfo *getInstrInfo() const {
299 return Subtarget->getInstrInfo();
300 }
301
302 /// \brief Address-mode matching performs shift-of-and to and-of-shift
303 /// reassociation in order to expose more scaled addressing
304 /// opportunities.
ComplexPatternFuncMutatesDAG() const305 bool ComplexPatternFuncMutatesDAG() const override {
306 return true;
307 }
308 };
309 }
310
311
312 bool
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const313 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
314 if (OptLevel == CodeGenOpt::None) return false;
315
316 if (!N.hasOneUse())
317 return false;
318
319 if (N.getOpcode() != ISD::LOAD)
320 return true;
321
322 // If N is a load, do additional profitability checks.
323 if (U == Root) {
324 switch (U->getOpcode()) {
325 default: break;
326 case X86ISD::ADD:
327 case X86ISD::SUB:
328 case X86ISD::AND:
329 case X86ISD::XOR:
330 case X86ISD::OR:
331 case ISD::ADD:
332 case ISD::ADDC:
333 case ISD::ADDE:
334 case ISD::AND:
335 case ISD::OR:
336 case ISD::XOR: {
337 SDValue Op1 = U->getOperand(1);
338
339 // If the other operand is a 8-bit immediate we should fold the immediate
340 // instead. This reduces code size.
341 // e.g.
342 // movl 4(%esp), %eax
343 // addl $4, %eax
344 // vs.
345 // movl $4, %eax
346 // addl 4(%esp), %eax
347 // The former is 2 bytes shorter. In case where the increment is 1, then
348 // the saving can be 4 bytes (by using incl %eax).
349 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
350 if (Imm->getAPIntValue().isSignedIntN(8))
351 return false;
352
353 // If the other operand is a TLS address, we should fold it instead.
354 // This produces
355 // movl %gs:0, %eax
356 // leal i@NTPOFF(%eax), %eax
357 // instead of
358 // movl $i@NTPOFF, %eax
359 // addl %gs:0, %eax
360 // if the block also has an access to a second TLS address this will save
361 // a load.
362 // FIXME: This is probably also true for non-TLS addresses.
363 if (Op1.getOpcode() == X86ISD::Wrapper) {
364 SDValue Val = Op1.getOperand(0);
365 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
366 return false;
367 }
368 }
369 }
370 }
371
372 return true;
373 }
374
375 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
376 /// load's chain operand and move load below the call's chain operand.
MoveBelowOrigChain(SelectionDAG * CurDAG,SDValue Load,SDValue Call,SDValue OrigChain)377 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
378 SDValue Call, SDValue OrigChain) {
379 SmallVector<SDValue, 8> Ops;
380 SDValue Chain = OrigChain.getOperand(0);
381 if (Chain.getNode() == Load.getNode())
382 Ops.push_back(Load.getOperand(0));
383 else {
384 assert(Chain.getOpcode() == ISD::TokenFactor &&
385 "Unexpected chain operand");
386 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
387 if (Chain.getOperand(i).getNode() == Load.getNode())
388 Ops.push_back(Load.getOperand(0));
389 else
390 Ops.push_back(Chain.getOperand(i));
391 SDValue NewChain =
392 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
393 Ops.clear();
394 Ops.push_back(NewChain);
395 }
396 Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
397 CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
398 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
399 Load.getOperand(1), Load.getOperand(2));
400
401 Ops.clear();
402 Ops.push_back(SDValue(Load.getNode(), 1));
403 Ops.append(Call->op_begin() + 1, Call->op_end());
404 CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
405 }
406
407 /// isCalleeLoad - Return true if call address is a load and it can be
408 /// moved below CALLSEQ_START and the chains leading up to the call.
409 /// Return the CALLSEQ_START by reference as a second output.
410 /// In the case of a tail call, there isn't a callseq node between the call
411 /// chain and the load.
isCalleeLoad(SDValue Callee,SDValue & Chain,bool HasCallSeq)412 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
413 // The transformation is somewhat dangerous if the call's chain was glued to
414 // the call. After MoveBelowOrigChain the load is moved between the call and
415 // the chain, this can create a cycle if the load is not folded. So it is
416 // *really* important that we are sure the load will be folded.
417 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
418 return false;
419 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
420 if (!LD ||
421 LD->isVolatile() ||
422 LD->getAddressingMode() != ISD::UNINDEXED ||
423 LD->getExtensionType() != ISD::NON_EXTLOAD)
424 return false;
425
426 // Now let's find the callseq_start.
427 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
428 if (!Chain.hasOneUse())
429 return false;
430 Chain = Chain.getOperand(0);
431 }
432
433 if (!Chain.getNumOperands())
434 return false;
435 // Since we are not checking for AA here, conservatively abort if the chain
436 // writes to memory. It's not safe to move the callee (a load) across a store.
437 if (isa<MemSDNode>(Chain.getNode()) &&
438 cast<MemSDNode>(Chain.getNode())->writeMem())
439 return false;
440 if (Chain.getOperand(0).getNode() == Callee.getNode())
441 return true;
442 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
443 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
444 Callee.getValue(1).hasOneUse())
445 return true;
446 return false;
447 }
448
PreprocessISelDAG()449 void X86DAGToDAGISel::PreprocessISelDAG() {
450 // OptForSize is used in pattern predicates that isel is matching.
451 OptForSize = MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize);
452
453 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
454 E = CurDAG->allnodes_end(); I != E; ) {
455 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
456
457 if (OptLevel != CodeGenOpt::None &&
458 // Only does this when target favors doesn't favor register indirect
459 // call.
460 ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
461 (N->getOpcode() == X86ISD::TC_RETURN &&
462 // Only does this if load can be folded into TC_RETURN.
463 (Subtarget->is64Bit() ||
464 getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
465 /// Also try moving call address load from outside callseq_start to just
466 /// before the call to allow it to be folded.
467 ///
468 /// [Load chain]
469 /// ^
470 /// |
471 /// [Load]
472 /// ^ ^
473 /// | |
474 /// / \--
475 /// / |
476 ///[CALLSEQ_START] |
477 /// ^ |
478 /// | |
479 /// [LOAD/C2Reg] |
480 /// | |
481 /// \ /
482 /// \ /
483 /// [CALL]
484 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
485 SDValue Chain = N->getOperand(0);
486 SDValue Load = N->getOperand(1);
487 if (!isCalleeLoad(Load, Chain, HasCallSeq))
488 continue;
489 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
490 ++NumLoadMoved;
491 continue;
492 }
493
494 // Lower fpround and fpextend nodes that target the FP stack to be store and
495 // load to the stack. This is a gross hack. We would like to simply mark
496 // these as being illegal, but when we do that, legalize produces these when
497 // it expands calls, then expands these in the same legalize pass. We would
498 // like dag combine to be able to hack on these between the call expansion
499 // and the node legalization. As such this pass basically does "really
500 // late" legalization of these inline with the X86 isel pass.
501 // FIXME: This should only happen when not compiled with -O0.
502 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
503 continue;
504
505 MVT SrcVT = N->getOperand(0).getSimpleValueType();
506 MVT DstVT = N->getSimpleValueType(0);
507
508 // If any of the sources are vectors, no fp stack involved.
509 if (SrcVT.isVector() || DstVT.isVector())
510 continue;
511
512 // If the source and destination are SSE registers, then this is a legal
513 // conversion that should not be lowered.
514 const X86TargetLowering *X86Lowering =
515 static_cast<const X86TargetLowering *>(TLI);
516 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
517 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
518 if (SrcIsSSE && DstIsSSE)
519 continue;
520
521 if (!SrcIsSSE && !DstIsSSE) {
522 // If this is an FPStack extension, it is a noop.
523 if (N->getOpcode() == ISD::FP_EXTEND)
524 continue;
525 // If this is a value-preserving FPStack truncation, it is a noop.
526 if (N->getConstantOperandVal(1))
527 continue;
528 }
529
530 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
531 // FPStack has extload and truncstore. SSE can fold direct loads into other
532 // operations. Based on this, decide what we want to do.
533 MVT MemVT;
534 if (N->getOpcode() == ISD::FP_ROUND)
535 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
536 else
537 MemVT = SrcIsSSE ? SrcVT : DstVT;
538
539 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
540 SDLoc dl(N);
541
542 // FIXME: optimize the case where the src/dest is a load or store?
543 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
544 N->getOperand(0),
545 MemTmp, MachinePointerInfo(), MemVT,
546 false, false, 0);
547 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
548 MachinePointerInfo(),
549 MemVT, false, false, false, 0);
550
551 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
552 // extload we created. This will cause general havok on the dag because
553 // anything below the conversion could be folded into other existing nodes.
554 // To avoid invalidating 'I', back it up to the convert node.
555 --I;
556 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
557
558 // Now that we did that, the node is dead. Increment the iterator to the
559 // next node to process, then delete N.
560 ++I;
561 CurDAG->DeleteNode(N);
562 }
563 }
564
565
566 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
567 /// the main function.
EmitSpecialCodeForMain()568 void X86DAGToDAGISel::EmitSpecialCodeForMain() {
569 if (Subtarget->isTargetCygMing()) {
570 TargetLowering::ArgListTy Args;
571
572 TargetLowering::CallLoweringInfo CLI(*CurDAG);
573 CLI.setChain(CurDAG->getRoot())
574 .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
575 CurDAG->getExternalSymbol("__main", TLI->getPointerTy()),
576 std::move(Args), 0);
577 const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
578 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
579 CurDAG->setRoot(Result.second);
580 }
581 }
582
EmitFunctionEntryCode()583 void X86DAGToDAGISel::EmitFunctionEntryCode() {
584 // If this is main, emit special code for main.
585 if (const Function *Fn = MF->getFunction())
586 if (Fn->hasExternalLinkage() && Fn->getName() == "main")
587 EmitSpecialCodeForMain();
588 }
589
isDispSafeForFrameIndex(int64_t Val)590 static bool isDispSafeForFrameIndex(int64_t Val) {
591 // On 64-bit platforms, we can run into an issue where a frame index
592 // includes a displacement that, when added to the explicit displacement,
593 // will overflow the displacement field. Assuming that the frame index
594 // displacement fits into a 31-bit integer (which is only slightly more
595 // aggressive than the current fundamental assumption that it fits into
596 // a 32-bit integer), a 31-bit disp should always be safe.
597 return isInt<31>(Val);
598 }
599
FoldOffsetIntoAddress(uint64_t Offset,X86ISelAddressMode & AM)600 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
601 X86ISelAddressMode &AM) {
602 int64_t Val = AM.Disp + Offset;
603 CodeModel::Model M = TM.getCodeModel();
604 if (Subtarget->is64Bit()) {
605 if (!X86::isOffsetSuitableForCodeModel(Val, M,
606 AM.hasSymbolicDisplacement()))
607 return true;
608 // In addition to the checks required for a register base, check that
609 // we do not try to use an unsafe Disp with a frame index.
610 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
611 !isDispSafeForFrameIndex(Val))
612 return true;
613 }
614 AM.Disp = Val;
615 return false;
616
617 }
618
MatchLoadInAddress(LoadSDNode * N,X86ISelAddressMode & AM)619 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
620 SDValue Address = N->getOperand(1);
621
622 // load gs:0 -> GS segment register.
623 // load fs:0 -> FS segment register.
624 //
625 // This optimization is valid because the GNU TLS model defines that
626 // gs:0 (or fs:0 on X86-64) contains its own address.
627 // For more information see http://people.redhat.com/drepper/tls.pdf
628 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
629 if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
630 Subtarget->isTargetLinux())
631 switch (N->getPointerInfo().getAddrSpace()) {
632 case 256:
633 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
634 return false;
635 case 257:
636 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
637 return false;
638 }
639
640 return true;
641 }
642
643 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
644 /// into an addressing mode. These wrap things that will resolve down into a
645 /// symbol reference. If no match is possible, this returns true, otherwise it
646 /// returns false.
MatchWrapper(SDValue N,X86ISelAddressMode & AM)647 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
648 // If the addressing mode already has a symbol as the displacement, we can
649 // never match another symbol.
650 if (AM.hasSymbolicDisplacement())
651 return true;
652
653 SDValue N0 = N.getOperand(0);
654 CodeModel::Model M = TM.getCodeModel();
655
656 // Handle X86-64 rip-relative addresses. We check this before checking direct
657 // folding because RIP is preferable to non-RIP accesses.
658 if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
659 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
660 // they cannot be folded into immediate fields.
661 // FIXME: This can be improved for kernel and other models?
662 (M == CodeModel::Small || M == CodeModel::Kernel)) {
663 // Base and index reg must be 0 in order to use %rip as base.
664 if (AM.hasBaseOrIndexReg())
665 return true;
666 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
667 X86ISelAddressMode Backup = AM;
668 AM.GV = G->getGlobal();
669 AM.SymbolFlags = G->getTargetFlags();
670 if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
671 AM = Backup;
672 return true;
673 }
674 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
675 X86ISelAddressMode Backup = AM;
676 AM.CP = CP->getConstVal();
677 AM.Align = CP->getAlignment();
678 AM.SymbolFlags = CP->getTargetFlags();
679 if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
680 AM = Backup;
681 return true;
682 }
683 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
684 AM.ES = S->getSymbol();
685 AM.SymbolFlags = S->getTargetFlags();
686 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
687 AM.JT = J->getIndex();
688 AM.SymbolFlags = J->getTargetFlags();
689 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
690 X86ISelAddressMode Backup = AM;
691 AM.BlockAddr = BA->getBlockAddress();
692 AM.SymbolFlags = BA->getTargetFlags();
693 if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
694 AM = Backup;
695 return true;
696 }
697 } else
698 llvm_unreachable("Unhandled symbol reference node.");
699
700 if (N.getOpcode() == X86ISD::WrapperRIP)
701 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
702 return false;
703 }
704
705 // Handle the case when globals fit in our immediate field: This is true for
706 // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit
707 // mode, this only applies to a non-RIP-relative computation.
708 if (!Subtarget->is64Bit() ||
709 M == CodeModel::Small || M == CodeModel::Kernel) {
710 assert(N.getOpcode() != X86ISD::WrapperRIP &&
711 "RIP-relative addressing already handled");
712 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
713 AM.GV = G->getGlobal();
714 AM.Disp += G->getOffset();
715 AM.SymbolFlags = G->getTargetFlags();
716 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
717 AM.CP = CP->getConstVal();
718 AM.Align = CP->getAlignment();
719 AM.Disp += CP->getOffset();
720 AM.SymbolFlags = CP->getTargetFlags();
721 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
722 AM.ES = S->getSymbol();
723 AM.SymbolFlags = S->getTargetFlags();
724 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
725 AM.JT = J->getIndex();
726 AM.SymbolFlags = J->getTargetFlags();
727 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
728 AM.BlockAddr = BA->getBlockAddress();
729 AM.Disp += BA->getOffset();
730 AM.SymbolFlags = BA->getTargetFlags();
731 } else
732 llvm_unreachable("Unhandled symbol reference node.");
733 return false;
734 }
735
736 return true;
737 }
738
739 /// MatchAddress - Add the specified node to the specified addressing mode,
740 /// returning true if it cannot be done. This just pattern matches for the
741 /// addressing mode.
MatchAddress(SDValue N,X86ISelAddressMode & AM)742 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
743 if (MatchAddressRecursively(N, AM, 0))
744 return true;
745
746 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
747 // a smaller encoding and avoids a scaled-index.
748 if (AM.Scale == 2 &&
749 AM.BaseType == X86ISelAddressMode::RegBase &&
750 AM.Base_Reg.getNode() == nullptr) {
751 AM.Base_Reg = AM.IndexReg;
752 AM.Scale = 1;
753 }
754
755 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
756 // because it has a smaller encoding.
757 // TODO: Which other code models can use this?
758 if (TM.getCodeModel() == CodeModel::Small &&
759 Subtarget->is64Bit() &&
760 AM.Scale == 1 &&
761 AM.BaseType == X86ISelAddressMode::RegBase &&
762 AM.Base_Reg.getNode() == nullptr &&
763 AM.IndexReg.getNode() == nullptr &&
764 AM.SymbolFlags == X86II::MO_NO_FLAG &&
765 AM.hasSymbolicDisplacement())
766 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
767
768 return false;
769 }
770
771 // Insert a node into the DAG at least before the Pos node's position. This
772 // will reposition the node as needed, and will assign it a node ID that is <=
773 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
774 // IDs! The selection DAG must no longer depend on their uniqueness when this
775 // is used.
InsertDAGNode(SelectionDAG & DAG,SDValue Pos,SDValue N)776 static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
777 if (N.getNode()->getNodeId() == -1 ||
778 N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
779 DAG.RepositionNode(Pos.getNode(), N.getNode());
780 N.getNode()->setNodeId(Pos.getNode()->getNodeId());
781 }
782 }
783
784 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
785 // safe. This allows us to convert the shift and and into an h-register
786 // extract and a scaled index. Returns false if the simplification is
787 // performed.
FoldMaskAndShiftToExtract(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)788 static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
789 uint64_t Mask,
790 SDValue Shift, SDValue X,
791 X86ISelAddressMode &AM) {
792 if (Shift.getOpcode() != ISD::SRL ||
793 !isa<ConstantSDNode>(Shift.getOperand(1)) ||
794 !Shift.hasOneUse())
795 return true;
796
797 int ScaleLog = 8 - Shift.getConstantOperandVal(1);
798 if (ScaleLog <= 0 || ScaleLog >= 4 ||
799 Mask != (0xffu << ScaleLog))
800 return true;
801
802 MVT VT = N.getSimpleValueType();
803 SDLoc DL(N);
804 SDValue Eight = DAG.getConstant(8, MVT::i8);
805 SDValue NewMask = DAG.getConstant(0xff, VT);
806 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
807 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
808 SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
809 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
810
811 // Insert the new nodes into the topological ordering. We must do this in
812 // a valid topological ordering as nothing is going to go back and re-sort
813 // these nodes. We continually insert before 'N' in sequence as this is
814 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
815 // hierarchy left to express.
816 InsertDAGNode(DAG, N, Eight);
817 InsertDAGNode(DAG, N, Srl);
818 InsertDAGNode(DAG, N, NewMask);
819 InsertDAGNode(DAG, N, And);
820 InsertDAGNode(DAG, N, ShlCount);
821 InsertDAGNode(DAG, N, Shl);
822 DAG.ReplaceAllUsesWith(N, Shl);
823 AM.IndexReg = And;
824 AM.Scale = (1 << ScaleLog);
825 return false;
826 }
827
828 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
829 // allows us to fold the shift into this addressing mode. Returns false if the
830 // transform succeeded.
FoldMaskedShiftToScaledMask(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)831 static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
832 uint64_t Mask,
833 SDValue Shift, SDValue X,
834 X86ISelAddressMode &AM) {
835 if (Shift.getOpcode() != ISD::SHL ||
836 !isa<ConstantSDNode>(Shift.getOperand(1)))
837 return true;
838
839 // Not likely to be profitable if either the AND or SHIFT node has more
840 // than one use (unless all uses are for address computation). Besides,
841 // isel mechanism requires their node ids to be reused.
842 if (!N.hasOneUse() || !Shift.hasOneUse())
843 return true;
844
845 // Verify that the shift amount is something we can fold.
846 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
847 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
848 return true;
849
850 MVT VT = N.getSimpleValueType();
851 SDLoc DL(N);
852 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
853 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
854 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
855
856 // Insert the new nodes into the topological ordering. We must do this in
857 // a valid topological ordering as nothing is going to go back and re-sort
858 // these nodes. We continually insert before 'N' in sequence as this is
859 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
860 // hierarchy left to express.
861 InsertDAGNode(DAG, N, NewMask);
862 InsertDAGNode(DAG, N, NewAnd);
863 InsertDAGNode(DAG, N, NewShift);
864 DAG.ReplaceAllUsesWith(N, NewShift);
865
866 AM.Scale = 1 << ShiftAmt;
867 AM.IndexReg = NewAnd;
868 return false;
869 }
870
871 // Implement some heroics to detect shifts of masked values where the mask can
872 // be replaced by extending the shift and undoing that in the addressing mode
873 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
874 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
875 // the addressing mode. This results in code such as:
876 //
877 // int f(short *y, int *lookup_table) {
878 // ...
879 // return *y + lookup_table[*y >> 11];
880 // }
881 //
882 // Turning into:
883 // movzwl (%rdi), %eax
884 // movl %eax, %ecx
885 // shrl $11, %ecx
886 // addl (%rsi,%rcx,4), %eax
887 //
888 // Instead of:
889 // movzwl (%rdi), %eax
890 // movl %eax, %ecx
891 // shrl $9, %ecx
892 // andl $124, %rcx
893 // addl (%rsi,%rcx), %eax
894 //
895 // Note that this function assumes the mask is provided as a mask *after* the
896 // value is shifted. The input chain may or may not match that, but computing
897 // such a mask is trivial.
FoldMaskAndShiftToScale(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)898 static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
899 uint64_t Mask,
900 SDValue Shift, SDValue X,
901 X86ISelAddressMode &AM) {
902 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
903 !isa<ConstantSDNode>(Shift.getOperand(1)))
904 return true;
905
906 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
907 unsigned MaskLZ = countLeadingZeros(Mask);
908 unsigned MaskTZ = countTrailingZeros(Mask);
909
910 // The amount of shift we're trying to fit into the addressing mode is taken
911 // from the trailing zeros of the mask.
912 unsigned AMShiftAmt = MaskTZ;
913
914 // There is nothing we can do here unless the mask is removing some bits.
915 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
916 if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
917
918 // We also need to ensure that mask is a continuous run of bits.
919 if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
920
921 // Scale the leading zero count down based on the actual size of the value.
922 // Also scale it down based on the size of the shift.
923 MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
924
925 // The final check is to ensure that any masked out high bits of X are
926 // already known to be zero. Otherwise, the mask has a semantic impact
927 // other than masking out a couple of low bits. Unfortunately, because of
928 // the mask, zero extensions will be removed from operands in some cases.
929 // This code works extra hard to look through extensions because we can
930 // replace them with zero extensions cheaply if necessary.
931 bool ReplacingAnyExtend = false;
932 if (X.getOpcode() == ISD::ANY_EXTEND) {
933 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
934 X.getOperand(0).getSimpleValueType().getSizeInBits();
935 // Assume that we'll replace the any-extend with a zero-extend, and
936 // narrow the search to the extended value.
937 X = X.getOperand(0);
938 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
939 ReplacingAnyExtend = true;
940 }
941 APInt MaskedHighBits =
942 APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
943 APInt KnownZero, KnownOne;
944 DAG.computeKnownBits(X, KnownZero, KnownOne);
945 if (MaskedHighBits != KnownZero) return true;
946
947 // We've identified a pattern that can be transformed into a single shift
948 // and an addressing mode. Make it so.
949 MVT VT = N.getSimpleValueType();
950 if (ReplacingAnyExtend) {
951 assert(X.getValueType() != VT);
952 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
953 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
954 InsertDAGNode(DAG, N, NewX);
955 X = NewX;
956 }
957 SDLoc DL(N);
958 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
959 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
960 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
961 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
962
963 // Insert the new nodes into the topological ordering. We must do this in
964 // a valid topological ordering as nothing is going to go back and re-sort
965 // these nodes. We continually insert before 'N' in sequence as this is
966 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
967 // hierarchy left to express.
968 InsertDAGNode(DAG, N, NewSRLAmt);
969 InsertDAGNode(DAG, N, NewSRL);
970 InsertDAGNode(DAG, N, NewSHLAmt);
971 InsertDAGNode(DAG, N, NewSHL);
972 DAG.ReplaceAllUsesWith(N, NewSHL);
973
974 AM.Scale = 1 << AMShiftAmt;
975 AM.IndexReg = NewSRL;
976 return false;
977 }
978
MatchAddressRecursively(SDValue N,X86ISelAddressMode & AM,unsigned Depth)979 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
980 unsigned Depth) {
981 SDLoc dl(N);
982 DEBUG({
983 dbgs() << "MatchAddress: ";
984 AM.dump();
985 });
986 // Limit recursion.
987 if (Depth > 5)
988 return MatchAddressBase(N, AM);
989
990 // If this is already a %rip relative address, we can only merge immediates
991 // into it. Instead of handling this in every case, we handle it here.
992 // RIP relative addressing: %rip + 32-bit displacement!
993 if (AM.isRIPRelative()) {
994 // FIXME: JumpTable and ExternalSymbol address currently don't like
995 // displacements. It isn't very important, but this should be fixed for
996 // consistency.
997 if (!AM.ES && AM.JT != -1) return true;
998
999 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
1000 if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
1001 return false;
1002 return true;
1003 }
1004
1005 switch (N.getOpcode()) {
1006 default: break;
1007 case ISD::FRAME_ALLOC_RECOVER: {
1008 if (!AM.hasSymbolicDisplacement())
1009 if (const auto *ESNode = dyn_cast<ExternalSymbolSDNode>(N.getOperand(0)))
1010 if (ESNode->getOpcode() == ISD::TargetExternalSymbol) {
1011 AM.ES = ESNode->getSymbol();
1012 return false;
1013 }
1014 break;
1015 }
1016 case ISD::Constant: {
1017 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1018 if (!FoldOffsetIntoAddress(Val, AM))
1019 return false;
1020 break;
1021 }
1022
1023 case X86ISD::Wrapper:
1024 case X86ISD::WrapperRIP:
1025 if (!MatchWrapper(N, AM))
1026 return false;
1027 break;
1028
1029 case ISD::LOAD:
1030 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1031 return false;
1032 break;
1033
1034 case ISD::FrameIndex:
1035 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1036 AM.Base_Reg.getNode() == nullptr &&
1037 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1038 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1039 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1040 return false;
1041 }
1042 break;
1043
1044 case ISD::SHL:
1045 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
1046 break;
1047
1048 if (ConstantSDNode
1049 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1050 unsigned Val = CN->getZExtValue();
1051 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1052 // that the base operand remains free for further matching. If
1053 // the base doesn't end up getting used, a post-processing step
1054 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1055 if (Val == 1 || Val == 2 || Val == 3) {
1056 AM.Scale = 1 << Val;
1057 SDValue ShVal = N.getNode()->getOperand(0);
1058
1059 // Okay, we know that we have a scale by now. However, if the scaled
1060 // value is an add of something and a constant, we can fold the
1061 // constant into the disp field here.
1062 if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1063 AM.IndexReg = ShVal.getNode()->getOperand(0);
1064 ConstantSDNode *AddVal =
1065 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1066 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1067 if (!FoldOffsetIntoAddress(Disp, AM))
1068 return false;
1069 }
1070
1071 AM.IndexReg = ShVal;
1072 return false;
1073 }
1074 }
1075 break;
1076
1077 case ISD::SRL: {
1078 // Scale must not be used already.
1079 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1080
1081 SDValue And = N.getOperand(0);
1082 if (And.getOpcode() != ISD::AND) break;
1083 SDValue X = And.getOperand(0);
1084
1085 // We only handle up to 64-bit values here as those are what matter for
1086 // addressing mode optimizations.
1087 if (X.getSimpleValueType().getSizeInBits() > 64) break;
1088
1089 // The mask used for the transform is expected to be post-shift, but we
1090 // found the shift first so just apply the shift to the mask before passing
1091 // it down.
1092 if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1093 !isa<ConstantSDNode>(And.getOperand(1)))
1094 break;
1095 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1096
1097 // Try to fold the mask and shift into the scale, and return false if we
1098 // succeed.
1099 if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1100 return false;
1101 break;
1102 }
1103
1104 case ISD::SMUL_LOHI:
1105 case ISD::UMUL_LOHI:
1106 // A mul_lohi where we need the low part can be folded as a plain multiply.
1107 if (N.getResNo() != 0) break;
1108 // FALL THROUGH
1109 case ISD::MUL:
1110 case X86ISD::MUL_IMM:
1111 // X*[3,5,9] -> X+X*[2,4,8]
1112 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1113 AM.Base_Reg.getNode() == nullptr &&
1114 AM.IndexReg.getNode() == nullptr) {
1115 if (ConstantSDNode
1116 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1117 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1118 CN->getZExtValue() == 9) {
1119 AM.Scale = unsigned(CN->getZExtValue())-1;
1120
1121 SDValue MulVal = N.getNode()->getOperand(0);
1122 SDValue Reg;
1123
1124 // Okay, we know that we have a scale by now. However, if the scaled
1125 // value is an add of something and a constant, we can fold the
1126 // constant into the disp field here.
1127 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1128 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1129 Reg = MulVal.getNode()->getOperand(0);
1130 ConstantSDNode *AddVal =
1131 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1132 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1133 if (FoldOffsetIntoAddress(Disp, AM))
1134 Reg = N.getNode()->getOperand(0);
1135 } else {
1136 Reg = N.getNode()->getOperand(0);
1137 }
1138
1139 AM.IndexReg = AM.Base_Reg = Reg;
1140 return false;
1141 }
1142 }
1143 break;
1144
1145 case ISD::SUB: {
1146 // Given A-B, if A can be completely folded into the address and
1147 // the index field with the index field unused, use -B as the index.
1148 // This is a win if a has multiple parts that can be folded into
1149 // the address. Also, this saves a mov if the base register has
1150 // other uses, since it avoids a two-address sub instruction, however
1151 // it costs an additional mov if the index register has other uses.
1152
1153 // Add an artificial use to this node so that we can keep track of
1154 // it if it gets CSE'd with a different node.
1155 HandleSDNode Handle(N);
1156
1157 // Test if the LHS of the sub can be folded.
1158 X86ISelAddressMode Backup = AM;
1159 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1160 AM = Backup;
1161 break;
1162 }
1163 // Test if the index field is free for use.
1164 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1165 AM = Backup;
1166 break;
1167 }
1168
1169 int Cost = 0;
1170 SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1171 // If the RHS involves a register with multiple uses, this
1172 // transformation incurs an extra mov, due to the neg instruction
1173 // clobbering its operand.
1174 if (!RHS.getNode()->hasOneUse() ||
1175 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1176 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1177 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1178 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1179 RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1180 ++Cost;
1181 // If the base is a register with multiple uses, this
1182 // transformation may save a mov.
1183 if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1184 AM.Base_Reg.getNode() &&
1185 !AM.Base_Reg.getNode()->hasOneUse()) ||
1186 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1187 --Cost;
1188 // If the folded LHS was interesting, this transformation saves
1189 // address arithmetic.
1190 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1191 ((AM.Disp != 0) && (Backup.Disp == 0)) +
1192 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1193 --Cost;
1194 // If it doesn't look like it may be an overall win, don't do it.
1195 if (Cost >= 0) {
1196 AM = Backup;
1197 break;
1198 }
1199
1200 // Ok, the transformation is legal and appears profitable. Go for it.
1201 SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1202 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1203 AM.IndexReg = Neg;
1204 AM.Scale = 1;
1205
1206 // Insert the new nodes into the topological ordering.
1207 InsertDAGNode(*CurDAG, N, Zero);
1208 InsertDAGNode(*CurDAG, N, Neg);
1209 return false;
1210 }
1211
1212 case ISD::ADD: {
1213 // Add an artificial use to this node so that we can keep track of
1214 // it if it gets CSE'd with a different node.
1215 HandleSDNode Handle(N);
1216
1217 X86ISelAddressMode Backup = AM;
1218 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1219 !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1220 return false;
1221 AM = Backup;
1222
1223 // Try again after commuting the operands.
1224 if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1225 !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1226 return false;
1227 AM = Backup;
1228
1229 // If we couldn't fold both operands into the address at the same time,
1230 // see if we can just put each operand into a register and fold at least
1231 // the add.
1232 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1233 !AM.Base_Reg.getNode() &&
1234 !AM.IndexReg.getNode()) {
1235 N = Handle.getValue();
1236 AM.Base_Reg = N.getOperand(0);
1237 AM.IndexReg = N.getOperand(1);
1238 AM.Scale = 1;
1239 return false;
1240 }
1241 N = Handle.getValue();
1242 break;
1243 }
1244
1245 case ISD::OR:
1246 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1247 if (CurDAG->isBaseWithConstantOffset(N)) {
1248 X86ISelAddressMode Backup = AM;
1249 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1250
1251 // Start with the LHS as an addr mode.
1252 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1253 !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1254 return false;
1255 AM = Backup;
1256 }
1257 break;
1258
1259 case ISD::AND: {
1260 // Perform some heroic transforms on an and of a constant-count shift
1261 // with a constant to enable use of the scaled offset field.
1262
1263 // Scale must not be used already.
1264 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1265
1266 SDValue Shift = N.getOperand(0);
1267 if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1268 SDValue X = Shift.getOperand(0);
1269
1270 // We only handle up to 64-bit values here as those are what matter for
1271 // addressing mode optimizations.
1272 if (X.getSimpleValueType().getSizeInBits() > 64) break;
1273
1274 if (!isa<ConstantSDNode>(N.getOperand(1)))
1275 break;
1276 uint64_t Mask = N.getConstantOperandVal(1);
1277
1278 // Try to fold the mask and shift into an extract and scale.
1279 if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1280 return false;
1281
1282 // Try to fold the mask and shift directly into the scale.
1283 if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1284 return false;
1285
1286 // Try to swap the mask and shift to place shifts which can be done as
1287 // a scale on the outside of the mask.
1288 if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1289 return false;
1290 break;
1291 }
1292 }
1293
1294 return MatchAddressBase(N, AM);
1295 }
1296
1297 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1298 /// specified addressing mode without any further recursion.
MatchAddressBase(SDValue N,X86ISelAddressMode & AM)1299 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1300 // Is the base register already occupied?
1301 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1302 // If so, check to see if the scale index register is set.
1303 if (!AM.IndexReg.getNode()) {
1304 AM.IndexReg = N;
1305 AM.Scale = 1;
1306 return false;
1307 }
1308
1309 // Otherwise, we cannot select it.
1310 return true;
1311 }
1312
1313 // Default, generate it as a register.
1314 AM.BaseType = X86ISelAddressMode::RegBase;
1315 AM.Base_Reg = N;
1316 return false;
1317 }
1318
1319 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1320 /// It returns the operands which make up the maximal addressing mode it can
1321 /// match by reference.
1322 ///
1323 /// Parent is the parent node of the addr operand that is being matched. It
1324 /// is always a load, store, atomic node, or null. It is only null when
1325 /// checking memory operands for inline asm nodes.
SelectAddr(SDNode * Parent,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1326 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1327 SDValue &Scale, SDValue &Index,
1328 SDValue &Disp, SDValue &Segment) {
1329 X86ISelAddressMode AM;
1330
1331 if (Parent &&
1332 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1333 // that are not a MemSDNode, and thus don't have proper addrspace info.
1334 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1335 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1336 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1337 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1338 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1339 unsigned AddrSpace =
1340 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1341 // AddrSpace 256 -> GS, 257 -> FS.
1342 if (AddrSpace == 256)
1343 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1344 if (AddrSpace == 257)
1345 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1346 }
1347
1348 if (MatchAddress(N, AM))
1349 return false;
1350
1351 MVT VT = N.getSimpleValueType();
1352 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1353 if (!AM.Base_Reg.getNode())
1354 AM.Base_Reg = CurDAG->getRegister(0, VT);
1355 }
1356
1357 if (!AM.IndexReg.getNode())
1358 AM.IndexReg = CurDAG->getRegister(0, VT);
1359
1360 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1361 return true;
1362 }
1363
1364 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1365 /// match a load whose top elements are either undef or zeros. The load flavor
1366 /// is derived from the type of N, which is either v4f32 or v2f64.
1367 ///
1368 /// We also return:
1369 /// PatternChainNode: this is the matched node that has a chain input and
1370 /// output.
SelectScalarSSELoad(SDNode * Root,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment,SDValue & PatternNodeWithChain)1371 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1372 SDValue N, SDValue &Base,
1373 SDValue &Scale, SDValue &Index,
1374 SDValue &Disp, SDValue &Segment,
1375 SDValue &PatternNodeWithChain) {
1376 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1377 PatternNodeWithChain = N.getOperand(0);
1378 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1379 PatternNodeWithChain.hasOneUse() &&
1380 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1381 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1382 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1383 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1384 return false;
1385 return true;
1386 }
1387 }
1388
1389 // Also handle the case where we explicitly require zeros in the top
1390 // elements. This is a vector shuffle from the zero vector.
1391 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1392 // Check to see if the top elements are all zeros (or bitcast of zeros).
1393 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1394 N.getOperand(0).getNode()->hasOneUse() &&
1395 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1396 N.getOperand(0).getOperand(0).hasOneUse() &&
1397 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1398 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1399 // Okay, this is a zero extending load. Fold it.
1400 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1401 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1402 return false;
1403 PatternNodeWithChain = SDValue(LD, 0);
1404 return true;
1405 }
1406 return false;
1407 }
1408
1409
SelectMOV64Imm32(SDValue N,SDValue & Imm)1410 bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
1411 if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1412 uint64_t ImmVal = CN->getZExtValue();
1413 if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1414 return false;
1415
1416 Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
1417 return true;
1418 }
1419
1420 // In static codegen with small code model, we can get the address of a label
1421 // into a register with 'movl'. TableGen has already made sure we're looking
1422 // at a label of some kind.
1423 assert(N->getOpcode() == X86ISD::Wrapper &&
1424 "Unexpected node type for MOV32ri64");
1425 N = N.getOperand(0);
1426
1427 if (N->getOpcode() != ISD::TargetConstantPool &&
1428 N->getOpcode() != ISD::TargetJumpTable &&
1429 N->getOpcode() != ISD::TargetGlobalAddress &&
1430 N->getOpcode() != ISD::TargetExternalSymbol &&
1431 N->getOpcode() != ISD::TargetBlockAddress)
1432 return false;
1433
1434 Imm = N;
1435 return TM.getCodeModel() == CodeModel::Small;
1436 }
1437
SelectLEA64_32Addr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1438 bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
1439 SDValue &Scale, SDValue &Index,
1440 SDValue &Disp, SDValue &Segment) {
1441 if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1442 return false;
1443
1444 SDLoc DL(N);
1445 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1446 if (RN && RN->getReg() == 0)
1447 Base = CurDAG->getRegister(0, MVT::i64);
1448 else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) {
1449 // Base could already be %rip, particularly in the x32 ABI.
1450 Base = SDValue(CurDAG->getMachineNode(
1451 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1452 CurDAG->getTargetConstant(0, MVT::i64),
1453 Base,
1454 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1455 0);
1456 }
1457
1458 RN = dyn_cast<RegisterSDNode>(Index);
1459 if (RN && RN->getReg() == 0)
1460 Index = CurDAG->getRegister(0, MVT::i64);
1461 else {
1462 assert(Index.getValueType() == MVT::i32 &&
1463 "Expect to be extending 32-bit registers for use in LEA");
1464 Index = SDValue(CurDAG->getMachineNode(
1465 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1466 CurDAG->getTargetConstant(0, MVT::i64),
1467 Index,
1468 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1469 0);
1470 }
1471
1472 return true;
1473 }
1474
1475 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1476 /// mode it matches can be cost effectively emitted as an LEA instruction.
SelectLEAAddr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1477 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1478 SDValue &Base, SDValue &Scale,
1479 SDValue &Index, SDValue &Disp,
1480 SDValue &Segment) {
1481 X86ISelAddressMode AM;
1482
1483 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1484 // segments.
1485 SDValue Copy = AM.Segment;
1486 SDValue T = CurDAG->getRegister(0, MVT::i32);
1487 AM.Segment = T;
1488 if (MatchAddress(N, AM))
1489 return false;
1490 assert (T == AM.Segment);
1491 AM.Segment = Copy;
1492
1493 MVT VT = N.getSimpleValueType();
1494 unsigned Complexity = 0;
1495 if (AM.BaseType == X86ISelAddressMode::RegBase)
1496 if (AM.Base_Reg.getNode())
1497 Complexity = 1;
1498 else
1499 AM.Base_Reg = CurDAG->getRegister(0, VT);
1500 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1501 Complexity = 4;
1502
1503 if (AM.IndexReg.getNode())
1504 Complexity++;
1505 else
1506 AM.IndexReg = CurDAG->getRegister(0, VT);
1507
1508 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1509 // a simple shift.
1510 if (AM.Scale > 1)
1511 Complexity++;
1512
1513 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1514 // to a LEA. This is determined with some expermentation but is by no means
1515 // optimal (especially for code size consideration). LEA is nice because of
1516 // its three-address nature. Tweak the cost function again when we can run
1517 // convertToThreeAddress() at register allocation time.
1518 if (AM.hasSymbolicDisplacement()) {
1519 // For X86-64, we should always use lea to materialize RIP relative
1520 // addresses.
1521 if (Subtarget->is64Bit())
1522 Complexity = 4;
1523 else
1524 Complexity += 2;
1525 }
1526
1527 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1528 Complexity++;
1529
1530 // If it isn't worth using an LEA, reject it.
1531 if (Complexity <= 2)
1532 return false;
1533
1534 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1535 return true;
1536 }
1537
1538 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
SelectTLSADDRAddr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1539 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1540 SDValue &Scale, SDValue &Index,
1541 SDValue &Disp, SDValue &Segment) {
1542 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1543 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1544
1545 X86ISelAddressMode AM;
1546 AM.GV = GA->getGlobal();
1547 AM.Disp += GA->getOffset();
1548 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1549 AM.SymbolFlags = GA->getTargetFlags();
1550
1551 if (N.getValueType() == MVT::i32) {
1552 AM.Scale = 1;
1553 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1554 } else {
1555 AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1556 }
1557
1558 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1559 return true;
1560 }
1561
1562
TryFoldLoad(SDNode * P,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1563 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1564 SDValue &Base, SDValue &Scale,
1565 SDValue &Index, SDValue &Disp,
1566 SDValue &Segment) {
1567 if (!ISD::isNON_EXTLoad(N.getNode()) ||
1568 !IsProfitableToFold(N, P, P) ||
1569 !IsLegalToFold(N, P, P, OptLevel))
1570 return false;
1571
1572 return SelectAddr(N.getNode(),
1573 N.getOperand(1), Base, Scale, Index, Disp, Segment);
1574 }
1575
1576 /// getGlobalBaseReg - Return an SDNode that returns the value of
1577 /// the global base register. Output instructions required to
1578 /// initialize the global base register, if necessary.
1579 ///
getGlobalBaseReg()1580 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1581 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1582 return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy()).getNode();
1583 }
1584
1585 /// Atomic opcode table
1586 ///
1587 enum AtomicOpc {
1588 ADD,
1589 SUB,
1590 INC,
1591 DEC,
1592 OR,
1593 AND,
1594 XOR,
1595 AtomicOpcEnd
1596 };
1597
1598 enum AtomicSz {
1599 ConstantI8,
1600 I8,
1601 SextConstantI16,
1602 ConstantI16,
1603 I16,
1604 SextConstantI32,
1605 ConstantI32,
1606 I32,
1607 SextConstantI64,
1608 ConstantI64,
1609 I64,
1610 AtomicSzEnd
1611 };
1612
1613 static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1614 {
1615 X86::LOCK_ADD8mi,
1616 X86::LOCK_ADD8mr,
1617 X86::LOCK_ADD16mi8,
1618 X86::LOCK_ADD16mi,
1619 X86::LOCK_ADD16mr,
1620 X86::LOCK_ADD32mi8,
1621 X86::LOCK_ADD32mi,
1622 X86::LOCK_ADD32mr,
1623 X86::LOCK_ADD64mi8,
1624 X86::LOCK_ADD64mi32,
1625 X86::LOCK_ADD64mr,
1626 },
1627 {
1628 X86::LOCK_SUB8mi,
1629 X86::LOCK_SUB8mr,
1630 X86::LOCK_SUB16mi8,
1631 X86::LOCK_SUB16mi,
1632 X86::LOCK_SUB16mr,
1633 X86::LOCK_SUB32mi8,
1634 X86::LOCK_SUB32mi,
1635 X86::LOCK_SUB32mr,
1636 X86::LOCK_SUB64mi8,
1637 X86::LOCK_SUB64mi32,
1638 X86::LOCK_SUB64mr,
1639 },
1640 {
1641 0,
1642 X86::LOCK_INC8m,
1643 0,
1644 0,
1645 X86::LOCK_INC16m,
1646 0,
1647 0,
1648 X86::LOCK_INC32m,
1649 0,
1650 0,
1651 X86::LOCK_INC64m,
1652 },
1653 {
1654 0,
1655 X86::LOCK_DEC8m,
1656 0,
1657 0,
1658 X86::LOCK_DEC16m,
1659 0,
1660 0,
1661 X86::LOCK_DEC32m,
1662 0,
1663 0,
1664 X86::LOCK_DEC64m,
1665 },
1666 {
1667 X86::LOCK_OR8mi,
1668 X86::LOCK_OR8mr,
1669 X86::LOCK_OR16mi8,
1670 X86::LOCK_OR16mi,
1671 X86::LOCK_OR16mr,
1672 X86::LOCK_OR32mi8,
1673 X86::LOCK_OR32mi,
1674 X86::LOCK_OR32mr,
1675 X86::LOCK_OR64mi8,
1676 X86::LOCK_OR64mi32,
1677 X86::LOCK_OR64mr,
1678 },
1679 {
1680 X86::LOCK_AND8mi,
1681 X86::LOCK_AND8mr,
1682 X86::LOCK_AND16mi8,
1683 X86::LOCK_AND16mi,
1684 X86::LOCK_AND16mr,
1685 X86::LOCK_AND32mi8,
1686 X86::LOCK_AND32mi,
1687 X86::LOCK_AND32mr,
1688 X86::LOCK_AND64mi8,
1689 X86::LOCK_AND64mi32,
1690 X86::LOCK_AND64mr,
1691 },
1692 {
1693 X86::LOCK_XOR8mi,
1694 X86::LOCK_XOR8mr,
1695 X86::LOCK_XOR16mi8,
1696 X86::LOCK_XOR16mi,
1697 X86::LOCK_XOR16mr,
1698 X86::LOCK_XOR32mi8,
1699 X86::LOCK_XOR32mi,
1700 X86::LOCK_XOR32mr,
1701 X86::LOCK_XOR64mi8,
1702 X86::LOCK_XOR64mi32,
1703 X86::LOCK_XOR64mr,
1704 }
1705 };
1706
1707 // Return the target constant operand for atomic-load-op and do simple
1708 // translations, such as from atomic-load-add to lock-sub. The return value is
1709 // one of the following 3 cases:
1710 // + target-constant, the operand could be supported as a target constant.
1711 // + empty, the operand is not needed any more with the new op selected.
1712 // + non-empty, otherwise.
getAtomicLoadArithTargetConstant(SelectionDAG * CurDAG,SDLoc dl,enum AtomicOpc & Op,MVT NVT,SDValue Val,const X86Subtarget * Subtarget)1713 static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1714 SDLoc dl,
1715 enum AtomicOpc &Op, MVT NVT,
1716 SDValue Val,
1717 const X86Subtarget *Subtarget) {
1718 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1719 int64_t CNVal = CN->getSExtValue();
1720 // Quit if not 32-bit imm.
1721 if ((int32_t)CNVal != CNVal)
1722 return Val;
1723 // Quit if INT32_MIN: it would be negated as it is negative and overflow,
1724 // producing an immediate that does not fit in the 32 bits available for
1725 // an immediate operand to sub. However, it still fits in 32 bits for the
1726 // add (since it is not negated) so we can return target-constant.
1727 if (CNVal == INT32_MIN)
1728 return CurDAG->getTargetConstant(CNVal, NVT);
1729 // For atomic-load-add, we could do some optimizations.
1730 if (Op == ADD) {
1731 // Translate to INC/DEC if ADD by 1 or -1.
1732 if (((CNVal == 1) || (CNVal == -1)) && !Subtarget->slowIncDec()) {
1733 Op = (CNVal == 1) ? INC : DEC;
1734 // No more constant operand after being translated into INC/DEC.
1735 return SDValue();
1736 }
1737 // Translate to SUB if ADD by negative value.
1738 if (CNVal < 0) {
1739 Op = SUB;
1740 CNVal = -CNVal;
1741 }
1742 }
1743 return CurDAG->getTargetConstant(CNVal, NVT);
1744 }
1745
1746 // If the value operand is single-used, try to optimize it.
1747 if (Op == ADD && Val.hasOneUse()) {
1748 // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1749 if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1750 Op = SUB;
1751 return Val.getOperand(1);
1752 }
1753 // A special case for i16, which needs truncating as, in most cases, it's
1754 // promoted to i32. We will translate
1755 // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1756 if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1757 Val.getOperand(0).getOpcode() == ISD::SUB &&
1758 X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1759 Op = SUB;
1760 Val = Val.getOperand(0);
1761 return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1762 Val.getOperand(1));
1763 }
1764 }
1765
1766 return Val;
1767 }
1768
SelectAtomicLoadArith(SDNode * Node,MVT NVT)1769 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
1770 if (Node->hasAnyUseOfValue(0))
1771 return nullptr;
1772
1773 SDLoc dl(Node);
1774
1775 // Optimize common patterns for __sync_or_and_fetch and similar arith
1776 // operations where the result is not used. This allows us to use the "lock"
1777 // version of the arithmetic instruction.
1778 SDValue Chain = Node->getOperand(0);
1779 SDValue Ptr = Node->getOperand(1);
1780 SDValue Val = Node->getOperand(2);
1781 SDValue Base, Scale, Index, Disp, Segment;
1782 if (!SelectAddr(Node, Ptr, Base, Scale, Index, Disp, Segment))
1783 return nullptr;
1784
1785 // Which index into the table.
1786 enum AtomicOpc Op;
1787 switch (Node->getOpcode()) {
1788 default:
1789 return nullptr;
1790 case ISD::ATOMIC_LOAD_OR:
1791 Op = OR;
1792 break;
1793 case ISD::ATOMIC_LOAD_AND:
1794 Op = AND;
1795 break;
1796 case ISD::ATOMIC_LOAD_XOR:
1797 Op = XOR;
1798 break;
1799 case ISD::ATOMIC_LOAD_ADD:
1800 Op = ADD;
1801 break;
1802 }
1803
1804 Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val, Subtarget);
1805 bool isUnOp = !Val.getNode();
1806 bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1807
1808 unsigned Opc = 0;
1809 switch (NVT.SimpleTy) {
1810 default: return nullptr;
1811 case MVT::i8:
1812 if (isCN)
1813 Opc = AtomicOpcTbl[Op][ConstantI8];
1814 else
1815 Opc = AtomicOpcTbl[Op][I8];
1816 break;
1817 case MVT::i16:
1818 if (isCN) {
1819 if (immSext8(Val.getNode()))
1820 Opc = AtomicOpcTbl[Op][SextConstantI16];
1821 else
1822 Opc = AtomicOpcTbl[Op][ConstantI16];
1823 } else
1824 Opc = AtomicOpcTbl[Op][I16];
1825 break;
1826 case MVT::i32:
1827 if (isCN) {
1828 if (immSext8(Val.getNode()))
1829 Opc = AtomicOpcTbl[Op][SextConstantI32];
1830 else
1831 Opc = AtomicOpcTbl[Op][ConstantI32];
1832 } else
1833 Opc = AtomicOpcTbl[Op][I32];
1834 break;
1835 case MVT::i64:
1836 if (isCN) {
1837 if (immSext8(Val.getNode()))
1838 Opc = AtomicOpcTbl[Op][SextConstantI64];
1839 else if (i64immSExt32(Val.getNode()))
1840 Opc = AtomicOpcTbl[Op][ConstantI64];
1841 else
1842 llvm_unreachable("True 64 bits constant in SelectAtomicLoadArith");
1843 } else
1844 Opc = AtomicOpcTbl[Op][I64];
1845 break;
1846 }
1847
1848 assert(Opc != 0 && "Invalid arith lock transform!");
1849
1850 // Building the new node.
1851 SDValue Ret;
1852 if (isUnOp) {
1853 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Chain };
1854 Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1855 } else {
1856 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Val, Chain };
1857 Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1858 }
1859
1860 // Copying the MachineMemOperand.
1861 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1862 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1863 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1864
1865 // We need to have two outputs as that is what the original instruction had.
1866 // So we add a dummy, undefined output. This is safe as we checked first
1867 // that no-one uses our output anyway.
1868 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1869 dl, NVT), 0);
1870 SDValue RetVals[] = { Undef, Ret };
1871 return CurDAG->getMergeValues(RetVals, dl).getNode();
1872 }
1873
1874 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1875 /// any uses which require the SF or OF bits to be accurate.
HasNoSignedComparisonUses(SDNode * N)1876 static bool HasNoSignedComparisonUses(SDNode *N) {
1877 // Examine each user of the node.
1878 for (SDNode::use_iterator UI = N->use_begin(),
1879 UE = N->use_end(); UI != UE; ++UI) {
1880 // Only examine CopyToReg uses.
1881 if (UI->getOpcode() != ISD::CopyToReg)
1882 return false;
1883 // Only examine CopyToReg uses that copy to EFLAGS.
1884 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1885 X86::EFLAGS)
1886 return false;
1887 // Examine each user of the CopyToReg use.
1888 for (SDNode::use_iterator FlagUI = UI->use_begin(),
1889 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1890 // Only examine the Flag result.
1891 if (FlagUI.getUse().getResNo() != 1) continue;
1892 // Anything unusual: assume conservatively.
1893 if (!FlagUI->isMachineOpcode()) return false;
1894 // Examine the opcode of the user.
1895 switch (FlagUI->getMachineOpcode()) {
1896 // These comparisons don't treat the most significant bit specially.
1897 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1898 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1899 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1900 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1901 case X86::JA_1: case X86::JAE_1: case X86::JB_1: case X86::JBE_1:
1902 case X86::JE_1: case X86::JNE_1: case X86::JP_1: case X86::JNP_1:
1903 case X86::CMOVA16rr: case X86::CMOVA16rm:
1904 case X86::CMOVA32rr: case X86::CMOVA32rm:
1905 case X86::CMOVA64rr: case X86::CMOVA64rm:
1906 case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1907 case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1908 case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1909 case X86::CMOVB16rr: case X86::CMOVB16rm:
1910 case X86::CMOVB32rr: case X86::CMOVB32rm:
1911 case X86::CMOVB64rr: case X86::CMOVB64rm:
1912 case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1913 case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1914 case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1915 case X86::CMOVE16rr: case X86::CMOVE16rm:
1916 case X86::CMOVE32rr: case X86::CMOVE32rm:
1917 case X86::CMOVE64rr: case X86::CMOVE64rm:
1918 case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1919 case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1920 case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1921 case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1922 case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1923 case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1924 case X86::CMOVP16rr: case X86::CMOVP16rm:
1925 case X86::CMOVP32rr: case X86::CMOVP32rm:
1926 case X86::CMOVP64rr: case X86::CMOVP64rm:
1927 continue;
1928 // Anything else: assume conservatively.
1929 default: return false;
1930 }
1931 }
1932 }
1933 return true;
1934 }
1935
1936 /// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1937 /// is suitable for doing the {load; increment or decrement; store} to modify
1938 /// transformation.
isLoadIncOrDecStore(StoreSDNode * StoreNode,unsigned Opc,SDValue StoredVal,SelectionDAG * CurDAG,LoadSDNode * & LoadNode,SDValue & InputChain)1939 static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1940 SDValue StoredVal, SelectionDAG *CurDAG,
1941 LoadSDNode* &LoadNode, SDValue &InputChain) {
1942
1943 // is the value stored the result of a DEC or INC?
1944 if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1945
1946 // is the stored value result 0 of the load?
1947 if (StoredVal.getResNo() != 0) return false;
1948
1949 // are there other uses of the loaded value than the inc or dec?
1950 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1951
1952 // is the store non-extending and non-indexed?
1953 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1954 return false;
1955
1956 SDValue Load = StoredVal->getOperand(0);
1957 // Is the stored value a non-extending and non-indexed load?
1958 if (!ISD::isNormalLoad(Load.getNode())) return false;
1959
1960 // Return LoadNode by reference.
1961 LoadNode = cast<LoadSDNode>(Load);
1962 // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1963 EVT LdVT = LoadNode->getMemoryVT();
1964 if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1965 LdVT != MVT::i8)
1966 return false;
1967
1968 // Is store the only read of the loaded value?
1969 if (!Load.hasOneUse())
1970 return false;
1971
1972 // Is the address of the store the same as the load?
1973 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1974 LoadNode->getOffset() != StoreNode->getOffset())
1975 return false;
1976
1977 // Check if the chain is produced by the load or is a TokenFactor with
1978 // the load output chain as an operand. Return InputChain by reference.
1979 SDValue Chain = StoreNode->getChain();
1980
1981 bool ChainCheck = false;
1982 if (Chain == Load.getValue(1)) {
1983 ChainCheck = true;
1984 InputChain = LoadNode->getChain();
1985 } else if (Chain.getOpcode() == ISD::TokenFactor) {
1986 SmallVector<SDValue, 4> ChainOps;
1987 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1988 SDValue Op = Chain.getOperand(i);
1989 if (Op == Load.getValue(1)) {
1990 ChainCheck = true;
1991 continue;
1992 }
1993
1994 // Make sure using Op as part of the chain would not cause a cycle here.
1995 // In theory, we could check whether the chain node is a predecessor of
1996 // the load. But that can be very expensive. Instead visit the uses and
1997 // make sure they all have smaller node id than the load.
1998 int LoadId = LoadNode->getNodeId();
1999 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
2000 UE = UI->use_end(); UI != UE; ++UI) {
2001 if (UI.getUse().getResNo() != 0)
2002 continue;
2003 if (UI->getNodeId() > LoadId)
2004 return false;
2005 }
2006
2007 ChainOps.push_back(Op);
2008 }
2009
2010 if (ChainCheck)
2011 // Make a new TokenFactor with all the other input chains except
2012 // for the load.
2013 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
2014 MVT::Other, ChainOps);
2015 }
2016 if (!ChainCheck)
2017 return false;
2018
2019 return true;
2020 }
2021
2022 /// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
2023 /// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
getFusedLdStOpcode(EVT & LdVT,unsigned Opc)2024 static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
2025 if (Opc == X86ISD::DEC) {
2026 if (LdVT == MVT::i64) return X86::DEC64m;
2027 if (LdVT == MVT::i32) return X86::DEC32m;
2028 if (LdVT == MVT::i16) return X86::DEC16m;
2029 if (LdVT == MVT::i8) return X86::DEC8m;
2030 } else {
2031 assert(Opc == X86ISD::INC && "unrecognized opcode");
2032 if (LdVT == MVT::i64) return X86::INC64m;
2033 if (LdVT == MVT::i32) return X86::INC32m;
2034 if (LdVT == MVT::i16) return X86::INC16m;
2035 if (LdVT == MVT::i8) return X86::INC8m;
2036 }
2037 llvm_unreachable("unrecognized size for LdVT");
2038 }
2039
2040 /// SelectGather - Customized ISel for GATHER operations.
2041 ///
SelectGather(SDNode * Node,unsigned Opc)2042 SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
2043 // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
2044 SDValue Chain = Node->getOperand(0);
2045 SDValue VSrc = Node->getOperand(2);
2046 SDValue Base = Node->getOperand(3);
2047 SDValue VIdx = Node->getOperand(4);
2048 SDValue VMask = Node->getOperand(5);
2049 ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
2050 if (!Scale)
2051 return nullptr;
2052
2053 SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
2054 MVT::Other);
2055
2056 // Memory Operands: Base, Scale, Index, Disp, Segment
2057 SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
2058 SDValue Segment = CurDAG->getRegister(0, MVT::i32);
2059 const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
2060 Disp, Segment, VMask, Chain};
2061 SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
2062 // Node has 2 outputs: VDst and MVT::Other.
2063 // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
2064 // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
2065 // of ResNode.
2066 ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
2067 ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
2068 return ResNode;
2069 }
2070
Select(SDNode * Node)2071 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
2072 MVT NVT = Node->getSimpleValueType(0);
2073 unsigned Opc, MOpc;
2074 unsigned Opcode = Node->getOpcode();
2075 SDLoc dl(Node);
2076
2077 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
2078
2079 if (Node->isMachineOpcode()) {
2080 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
2081 Node->setNodeId(-1);
2082 return nullptr; // Already selected.
2083 }
2084
2085 switch (Opcode) {
2086 default: break;
2087 case ISD::INTRINSIC_W_CHAIN: {
2088 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2089 switch (IntNo) {
2090 default: break;
2091 case Intrinsic::x86_avx2_gather_d_pd:
2092 case Intrinsic::x86_avx2_gather_d_pd_256:
2093 case Intrinsic::x86_avx2_gather_q_pd:
2094 case Intrinsic::x86_avx2_gather_q_pd_256:
2095 case Intrinsic::x86_avx2_gather_d_ps:
2096 case Intrinsic::x86_avx2_gather_d_ps_256:
2097 case Intrinsic::x86_avx2_gather_q_ps:
2098 case Intrinsic::x86_avx2_gather_q_ps_256:
2099 case Intrinsic::x86_avx2_gather_d_q:
2100 case Intrinsic::x86_avx2_gather_d_q_256:
2101 case Intrinsic::x86_avx2_gather_q_q:
2102 case Intrinsic::x86_avx2_gather_q_q_256:
2103 case Intrinsic::x86_avx2_gather_d_d:
2104 case Intrinsic::x86_avx2_gather_d_d_256:
2105 case Intrinsic::x86_avx2_gather_q_d:
2106 case Intrinsic::x86_avx2_gather_q_d_256: {
2107 if (!Subtarget->hasAVX2())
2108 break;
2109 unsigned Opc;
2110 switch (IntNo) {
2111 default: llvm_unreachable("Impossible intrinsic");
2112 case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break;
2113 case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2114 case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break;
2115 case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2116 case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break;
2117 case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2118 case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break;
2119 case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2120 case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break;
2121 case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break;
2122 case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break;
2123 case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break;
2124 case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break;
2125 case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break;
2126 case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break;
2127 case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break;
2128 }
2129 SDNode *RetVal = SelectGather(Node, Opc);
2130 if (RetVal)
2131 // We already called ReplaceUses inside SelectGather.
2132 return nullptr;
2133 break;
2134 }
2135 }
2136 break;
2137 }
2138 case X86ISD::GlobalBaseReg:
2139 return getGlobalBaseReg();
2140
2141 case X86ISD::SHRUNKBLEND: {
2142 // SHRUNKBLEND selects like a regular VSELECT.
2143 SDValue VSelect = CurDAG->getNode(
2144 ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
2145 Node->getOperand(1), Node->getOperand(2));
2146 ReplaceUses(SDValue(Node, 0), VSelect);
2147 SelectCode(VSelect.getNode());
2148 // We already called ReplaceUses.
2149 return nullptr;
2150 }
2151
2152 case ISD::ATOMIC_LOAD_XOR:
2153 case ISD::ATOMIC_LOAD_AND:
2154 case ISD::ATOMIC_LOAD_OR:
2155 case ISD::ATOMIC_LOAD_ADD: {
2156 SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2157 if (RetVal)
2158 return RetVal;
2159 break;
2160 }
2161 case ISD::AND:
2162 case ISD::OR:
2163 case ISD::XOR: {
2164 // For operations of the form (x << C1) op C2, check if we can use a smaller
2165 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2166 SDValue N0 = Node->getOperand(0);
2167 SDValue N1 = Node->getOperand(1);
2168
2169 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2170 break;
2171
2172 // i8 is unshrinkable, i16 should be promoted to i32.
2173 if (NVT != MVT::i32 && NVT != MVT::i64)
2174 break;
2175
2176 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2177 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2178 if (!Cst || !ShlCst)
2179 break;
2180
2181 int64_t Val = Cst->getSExtValue();
2182 uint64_t ShlVal = ShlCst->getZExtValue();
2183
2184 // Make sure that we don't change the operation by removing bits.
2185 // This only matters for OR and XOR, AND is unaffected.
2186 uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2187 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2188 break;
2189
2190 unsigned ShlOp, AddOp, Op;
2191 MVT CstVT = NVT;
2192
2193 // Check the minimum bitwidth for the new constant.
2194 // TODO: AND32ri is the same as AND64ri32 with zext imm.
2195 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2196 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2197 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2198 CstVT = MVT::i8;
2199 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2200 CstVT = MVT::i32;
2201
2202 // Bail if there is no smaller encoding.
2203 if (NVT == CstVT)
2204 break;
2205
2206 switch (NVT.SimpleTy) {
2207 default: llvm_unreachable("Unsupported VT!");
2208 case MVT::i32:
2209 assert(CstVT == MVT::i8);
2210 ShlOp = X86::SHL32ri;
2211 AddOp = X86::ADD32rr;
2212
2213 switch (Opcode) {
2214 default: llvm_unreachable("Impossible opcode");
2215 case ISD::AND: Op = X86::AND32ri8; break;
2216 case ISD::OR: Op = X86::OR32ri8; break;
2217 case ISD::XOR: Op = X86::XOR32ri8; break;
2218 }
2219 break;
2220 case MVT::i64:
2221 assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2222 ShlOp = X86::SHL64ri;
2223 AddOp = X86::ADD64rr;
2224
2225 switch (Opcode) {
2226 default: llvm_unreachable("Impossible opcode");
2227 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2228 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break;
2229 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2230 }
2231 break;
2232 }
2233
2234 // Emit the smaller op and the shift.
2235 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2236 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2237 if (ShlVal == 1)
2238 return CurDAG->SelectNodeTo(Node, AddOp, NVT, SDValue(New, 0),
2239 SDValue(New, 0));
2240 return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2241 getI8Imm(ShlVal));
2242 }
2243 case X86ISD::UMUL8:
2244 case X86ISD::SMUL8: {
2245 SDValue N0 = Node->getOperand(0);
2246 SDValue N1 = Node->getOperand(1);
2247
2248 Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r);
2249
2250 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL,
2251 N0, SDValue()).getValue(1);
2252
2253 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32);
2254 SDValue Ops[] = {N1, InFlag};
2255 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2256
2257 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2258 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2259 return nullptr;
2260 }
2261
2262 case X86ISD::UMUL: {
2263 SDValue N0 = Node->getOperand(0);
2264 SDValue N1 = Node->getOperand(1);
2265
2266 unsigned LoReg;
2267 switch (NVT.SimpleTy) {
2268 default: llvm_unreachable("Unsupported VT!");
2269 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break;
2270 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break;
2271 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2272 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2273 }
2274
2275 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2276 N0, SDValue()).getValue(1);
2277
2278 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2279 SDValue Ops[] = {N1, InFlag};
2280 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2281
2282 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2283 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2284 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2285 return nullptr;
2286 }
2287
2288 case ISD::SMUL_LOHI:
2289 case ISD::UMUL_LOHI: {
2290 SDValue N0 = Node->getOperand(0);
2291 SDValue N1 = Node->getOperand(1);
2292
2293 bool isSigned = Opcode == ISD::SMUL_LOHI;
2294 bool hasBMI2 = Subtarget->hasBMI2();
2295 if (!isSigned) {
2296 switch (NVT.SimpleTy) {
2297 default: llvm_unreachable("Unsupported VT!");
2298 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
2299 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2300 case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2301 MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2302 case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2303 MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2304 }
2305 } else {
2306 switch (NVT.SimpleTy) {
2307 default: llvm_unreachable("Unsupported VT!");
2308 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
2309 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2310 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2311 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2312 }
2313 }
2314
2315 unsigned SrcReg, LoReg, HiReg;
2316 switch (Opc) {
2317 default: llvm_unreachable("Unknown MUL opcode!");
2318 case X86::IMUL8r:
2319 case X86::MUL8r:
2320 SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2321 break;
2322 case X86::IMUL16r:
2323 case X86::MUL16r:
2324 SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2325 break;
2326 case X86::IMUL32r:
2327 case X86::MUL32r:
2328 SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2329 break;
2330 case X86::IMUL64r:
2331 case X86::MUL64r:
2332 SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2333 break;
2334 case X86::MULX32rr:
2335 SrcReg = X86::EDX; LoReg = HiReg = 0;
2336 break;
2337 case X86::MULX64rr:
2338 SrcReg = X86::RDX; LoReg = HiReg = 0;
2339 break;
2340 }
2341
2342 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2343 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2344 // Multiply is commmutative.
2345 if (!foldedLoad) {
2346 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2347 if (foldedLoad)
2348 std::swap(N0, N1);
2349 }
2350
2351 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2352 N0, SDValue()).getValue(1);
2353 SDValue ResHi, ResLo;
2354
2355 if (foldedLoad) {
2356 SDValue Chain;
2357 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2358 InFlag };
2359 if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2360 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2361 SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2362 ResHi = SDValue(CNode, 0);
2363 ResLo = SDValue(CNode, 1);
2364 Chain = SDValue(CNode, 2);
2365 InFlag = SDValue(CNode, 3);
2366 } else {
2367 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2368 SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2369 Chain = SDValue(CNode, 0);
2370 InFlag = SDValue(CNode, 1);
2371 }
2372
2373 // Update the chain.
2374 ReplaceUses(N1.getValue(1), Chain);
2375 } else {
2376 SDValue Ops[] = { N1, InFlag };
2377 if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2378 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2379 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2380 ResHi = SDValue(CNode, 0);
2381 ResLo = SDValue(CNode, 1);
2382 InFlag = SDValue(CNode, 2);
2383 } else {
2384 SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2385 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2386 InFlag = SDValue(CNode, 0);
2387 }
2388 }
2389
2390 // Prevent use of AH in a REX instruction by referencing AX instead.
2391 if (HiReg == X86::AH && Subtarget->is64Bit() &&
2392 !SDValue(Node, 1).use_empty()) {
2393 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2394 X86::AX, MVT::i16, InFlag);
2395 InFlag = Result.getValue(2);
2396 // Get the low part if needed. Don't use getCopyFromReg for aliasing
2397 // registers.
2398 if (!SDValue(Node, 0).use_empty())
2399 ReplaceUses(SDValue(Node, 1),
2400 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2401
2402 // Shift AX down 8 bits.
2403 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2404 Result,
2405 CurDAG->getTargetConstant(8, MVT::i8)), 0);
2406 // Then truncate it down to i8.
2407 ReplaceUses(SDValue(Node, 1),
2408 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2409 }
2410 // Copy the low half of the result, if it is needed.
2411 if (!SDValue(Node, 0).use_empty()) {
2412 if (!ResLo.getNode()) {
2413 assert(LoReg && "Register for low half is not defined!");
2414 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2415 InFlag);
2416 InFlag = ResLo.getValue(2);
2417 }
2418 ReplaceUses(SDValue(Node, 0), ResLo);
2419 DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2420 }
2421 // Copy the high half of the result, if it is needed.
2422 if (!SDValue(Node, 1).use_empty()) {
2423 if (!ResHi.getNode()) {
2424 assert(HiReg && "Register for high half is not defined!");
2425 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2426 InFlag);
2427 InFlag = ResHi.getValue(2);
2428 }
2429 ReplaceUses(SDValue(Node, 1), ResHi);
2430 DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2431 }
2432
2433 return nullptr;
2434 }
2435
2436 case ISD::SDIVREM:
2437 case ISD::UDIVREM:
2438 case X86ISD::SDIVREM8_SEXT_HREG:
2439 case X86ISD::UDIVREM8_ZEXT_HREG: {
2440 SDValue N0 = Node->getOperand(0);
2441 SDValue N1 = Node->getOperand(1);
2442
2443 bool isSigned = (Opcode == ISD::SDIVREM ||
2444 Opcode == X86ISD::SDIVREM8_SEXT_HREG);
2445 if (!isSigned) {
2446 switch (NVT.SimpleTy) {
2447 default: llvm_unreachable("Unsupported VT!");
2448 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
2449 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2450 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2451 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2452 }
2453 } else {
2454 switch (NVT.SimpleTy) {
2455 default: llvm_unreachable("Unsupported VT!");
2456 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
2457 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2458 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2459 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2460 }
2461 }
2462
2463 unsigned LoReg, HiReg, ClrReg;
2464 unsigned SExtOpcode;
2465 switch (NVT.SimpleTy) {
2466 default: llvm_unreachable("Unsupported VT!");
2467 case MVT::i8:
2468 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
2469 SExtOpcode = X86::CBW;
2470 break;
2471 case MVT::i16:
2472 LoReg = X86::AX; HiReg = X86::DX;
2473 ClrReg = X86::DX;
2474 SExtOpcode = X86::CWD;
2475 break;
2476 case MVT::i32:
2477 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2478 SExtOpcode = X86::CDQ;
2479 break;
2480 case MVT::i64:
2481 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2482 SExtOpcode = X86::CQO;
2483 break;
2484 }
2485
2486 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2487 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2488 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2489
2490 SDValue InFlag;
2491 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2492 // Special case for div8, just use a move with zero extension to AX to
2493 // clear the upper 8 bits (AH).
2494 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2495 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2496 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2497 Move =
2498 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2499 MVT::Other, Ops), 0);
2500 Chain = Move.getValue(1);
2501 ReplaceUses(N0.getValue(1), Chain);
2502 } else {
2503 Move =
2504 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2505 Chain = CurDAG->getEntryNode();
2506 }
2507 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2508 InFlag = Chain.getValue(1);
2509 } else {
2510 InFlag =
2511 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2512 LoReg, N0, SDValue()).getValue(1);
2513 if (isSigned && !signBitIsZero) {
2514 // Sign extend the low part into the high part.
2515 InFlag =
2516 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2517 } else {
2518 // Zero out the high part, effectively zero extending the input.
2519 SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
2520 switch (NVT.SimpleTy) {
2521 case MVT::i16:
2522 ClrNode =
2523 SDValue(CurDAG->getMachineNode(
2524 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2525 CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
2526 0);
2527 break;
2528 case MVT::i32:
2529 break;
2530 case MVT::i64:
2531 ClrNode =
2532 SDValue(CurDAG->getMachineNode(
2533 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2534 CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
2535 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2536 0);
2537 break;
2538 default:
2539 llvm_unreachable("Unexpected division source");
2540 }
2541
2542 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2543 ClrNode, InFlag).getValue(1);
2544 }
2545 }
2546
2547 if (foldedLoad) {
2548 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2549 InFlag };
2550 SDNode *CNode =
2551 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2552 InFlag = SDValue(CNode, 1);
2553 // Update the chain.
2554 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2555 } else {
2556 InFlag =
2557 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2558 }
2559
2560 // Prevent use of AH in a REX instruction by explicitly copying it to
2561 // an ABCD_L register.
2562 //
2563 // The current assumption of the register allocator is that isel
2564 // won't generate explicit references to the GR8_ABCD_H registers. If
2565 // the allocator and/or the backend get enhanced to be more robust in
2566 // that regard, this can be, and should be, removed.
2567 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
2568 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
2569 unsigned AHExtOpcode =
2570 isSigned ? X86::MOVSX32_NOREXrr8 : X86::MOVZX32_NOREXrr8;
2571
2572 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
2573 MVT::Glue, AHCopy, InFlag);
2574 SDValue Result(RNode, 0);
2575 InFlag = SDValue(RNode, 1);
2576
2577 if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG ||
2578 Opcode == X86ISD::SDIVREM8_SEXT_HREG) {
2579 if (Node->getValueType(1) == MVT::i64) {
2580 // It's not possible to directly movsx AH to a 64bit register, because
2581 // the latter needs the REX prefix, but the former can't have it.
2582 assert(Opcode != X86ISD::SDIVREM8_SEXT_HREG &&
2583 "Unexpected i64 sext of h-register");
2584 Result =
2585 SDValue(CurDAG->getMachineNode(
2586 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2587 CurDAG->getTargetConstant(0, MVT::i64), Result,
2588 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2589 0);
2590 }
2591 } else {
2592 Result =
2593 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
2594 }
2595 ReplaceUses(SDValue(Node, 1), Result);
2596 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2597 }
2598 // Copy the division (low) result, if it is needed.
2599 if (!SDValue(Node, 0).use_empty()) {
2600 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2601 LoReg, NVT, InFlag);
2602 InFlag = Result.getValue(2);
2603 ReplaceUses(SDValue(Node, 0), Result);
2604 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2605 }
2606 // Copy the remainder (high) result, if it is needed.
2607 if (!SDValue(Node, 1).use_empty()) {
2608 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2609 HiReg, NVT, InFlag);
2610 InFlag = Result.getValue(2);
2611 ReplaceUses(SDValue(Node, 1), Result);
2612 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2613 }
2614 return nullptr;
2615 }
2616
2617 case X86ISD::CMP:
2618 case X86ISD::SUB: {
2619 // Sometimes a SUB is used to perform comparison.
2620 if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2621 // This node is not a CMP.
2622 break;
2623 SDValue N0 = Node->getOperand(0);
2624 SDValue N1 = Node->getOperand(1);
2625
2626 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2627 HasNoSignedComparisonUses(Node))
2628 N0 = N0.getOperand(0);
2629
2630 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2631 // use a smaller encoding.
2632 // Look past the truncate if CMP is the only use of it.
2633 if ((N0.getNode()->getOpcode() == ISD::AND ||
2634 (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2635 N0.getNode()->hasOneUse() &&
2636 N0.getValueType() != MVT::i8 &&
2637 X86::isZeroNode(N1)) {
2638 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2639 if (!C) break;
2640
2641 // For example, convert "testl %eax, $8" to "testb %al, $8"
2642 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2643 (!(C->getZExtValue() & 0x80) ||
2644 HasNoSignedComparisonUses(Node))) {
2645 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2646 SDValue Reg = N0.getNode()->getOperand(0);
2647
2648 // On x86-32, only the ABCD registers have 8-bit subregisters.
2649 if (!Subtarget->is64Bit()) {
2650 const TargetRegisterClass *TRC;
2651 switch (N0.getSimpleValueType().SimpleTy) {
2652 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2653 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2654 default: llvm_unreachable("Unsupported TEST operand type!");
2655 }
2656 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2657 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2658 Reg.getValueType(), Reg, RC), 0);
2659 }
2660
2661 // Extract the l-register.
2662 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2663 MVT::i8, Reg);
2664
2665 // Emit a testb.
2666 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2667 Subreg, Imm);
2668 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2669 // one, do not call ReplaceAllUsesWith.
2670 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2671 SDValue(NewNode, 0));
2672 return nullptr;
2673 }
2674
2675 // For example, "testl %eax, $2048" to "testb %ah, $8".
2676 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2677 (!(C->getZExtValue() & 0x8000) ||
2678 HasNoSignedComparisonUses(Node))) {
2679 // Shift the immediate right by 8 bits.
2680 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2681 MVT::i8);
2682 SDValue Reg = N0.getNode()->getOperand(0);
2683
2684 // Put the value in an ABCD register.
2685 const TargetRegisterClass *TRC;
2686 switch (N0.getSimpleValueType().SimpleTy) {
2687 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2688 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2689 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2690 default: llvm_unreachable("Unsupported TEST operand type!");
2691 }
2692 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2693 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2694 Reg.getValueType(), Reg, RC), 0);
2695
2696 // Extract the h-register.
2697 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2698 MVT::i8, Reg);
2699
2700 // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only
2701 // target GR8_NOREX registers, so make sure the register class is
2702 // forced.
2703 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2704 MVT::i32, Subreg, ShiftedImm);
2705 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2706 // one, do not call ReplaceAllUsesWith.
2707 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2708 SDValue(NewNode, 0));
2709 return nullptr;
2710 }
2711
2712 // For example, "testl %eax, $32776" to "testw %ax, $32776".
2713 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2714 N0.getValueType() != MVT::i16 &&
2715 (!(C->getZExtValue() & 0x8000) ||
2716 HasNoSignedComparisonUses(Node))) {
2717 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2718 SDValue Reg = N0.getNode()->getOperand(0);
2719
2720 // Extract the 16-bit subregister.
2721 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2722 MVT::i16, Reg);
2723
2724 // Emit a testw.
2725 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2726 Subreg, Imm);
2727 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2728 // one, do not call ReplaceAllUsesWith.
2729 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2730 SDValue(NewNode, 0));
2731 return nullptr;
2732 }
2733
2734 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2735 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2736 N0.getValueType() == MVT::i64 &&
2737 (!(C->getZExtValue() & 0x80000000) ||
2738 HasNoSignedComparisonUses(Node))) {
2739 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2740 SDValue Reg = N0.getNode()->getOperand(0);
2741
2742 // Extract the 32-bit subregister.
2743 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2744 MVT::i32, Reg);
2745
2746 // Emit a testl.
2747 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2748 Subreg, Imm);
2749 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2750 // one, do not call ReplaceAllUsesWith.
2751 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2752 SDValue(NewNode, 0));
2753 return nullptr;
2754 }
2755 }
2756 break;
2757 }
2758 case ISD::STORE: {
2759 // Change a chain of {load; incr or dec; store} of the same value into
2760 // a simple increment or decrement through memory of that value, if the
2761 // uses of the modified value and its address are suitable.
2762 // The DEC64m tablegen pattern is currently not able to match the case where
2763 // the EFLAGS on the original DEC are used. (This also applies to
2764 // {INC,DEC}X{64,32,16,8}.)
2765 // We'll need to improve tablegen to allow flags to be transferred from a
2766 // node in the pattern to the result node. probably with a new keyword
2767 // for example, we have this
2768 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2769 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2770 // (implicit EFLAGS)]>;
2771 // but maybe need something like this
2772 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2773 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2774 // (transferrable EFLAGS)]>;
2775
2776 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2777 SDValue StoredVal = StoreNode->getOperand(1);
2778 unsigned Opc = StoredVal->getOpcode();
2779
2780 LoadSDNode *LoadNode = nullptr;
2781 SDValue InputChain;
2782 if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2783 LoadNode, InputChain))
2784 break;
2785
2786 SDValue Base, Scale, Index, Disp, Segment;
2787 if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2788 Base, Scale, Index, Disp, Segment))
2789 break;
2790
2791 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2792 MemOp[0] = StoreNode->getMemOperand();
2793 MemOp[1] = LoadNode->getMemOperand();
2794 const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2795 EVT LdVT = LoadNode->getMemoryVT();
2796 unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2797 MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2798 SDLoc(Node),
2799 MVT::i32, MVT::Other, Ops);
2800 Result->setMemRefs(MemOp, MemOp + 2);
2801
2802 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2803 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2804
2805 return Result;
2806 }
2807 }
2808
2809 SDNode *ResNode = SelectCode(Node);
2810
2811 DEBUG(dbgs() << "=> ";
2812 if (ResNode == nullptr || ResNode == Node)
2813 Node->dump(CurDAG);
2814 else
2815 ResNode->dump(CurDAG);
2816 dbgs() << '\n');
2817
2818 return ResNode;
2819 }
2820
2821 bool X86DAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)2822 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
2823 std::vector<SDValue> &OutOps) {
2824 SDValue Op0, Op1, Op2, Op3, Op4;
2825 switch (ConstraintID) {
2826 case InlineAsm::Constraint_o: // offsetable ??
2827 case InlineAsm::Constraint_v: // not offsetable ??
2828 default: return true;
2829 case InlineAsm::Constraint_m: // memory
2830 if (!SelectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
2831 return true;
2832 break;
2833 }
2834
2835 OutOps.push_back(Op0);
2836 OutOps.push_back(Op1);
2837 OutOps.push_back(Op2);
2838 OutOps.push_back(Op3);
2839 OutOps.push_back(Op4);
2840 return false;
2841 }
2842
2843 /// createX86ISelDag - This pass converts a legalized DAG into a
2844 /// X86-specific DAG, ready for instruction scheduling.
2845 ///
createX86ISelDag(X86TargetMachine & TM,CodeGenOpt::Level OptLevel)2846 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2847 CodeGenOpt::Level OptLevel) {
2848 return new X86DAGToDAGISel(TM, OptLevel);
2849 }
2850