1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the X86 x87 FPU instruction set, defining the
11// instructions, and properties of the instructions which are needed for code
12// generation, machine code emission, and analysis.
13//
14//===----------------------------------------------------------------------===//
15
16//===----------------------------------------------------------------------===//
17// FPStack specific DAG Nodes.
18//===----------------------------------------------------------------------===//
19
20def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
21                                           SDTCisVT<1, f80>]>;
22def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
23                                           SDTCisPtrTy<1>,
24                                           SDTCisVT<2, OtherVT>]>;
25def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
26                                           SDTCisPtrTy<1>,
27                                           SDTCisVT<2, OtherVT>]>;
28def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
29                                           SDTCisVT<2, OtherVT>]>;
30def SDTX86Fnstsw    : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
31def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
32
33def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
34
35def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
36                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
37def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
38                             [SDNPHasChain, SDNPInGlue, SDNPMayStore,
39                              SDNPMemOperand]>;
40def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
41                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
42def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
43                             [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
44                              SDNPMemOperand]>;
45def X86fp_stsw      : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
46def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
47                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
48def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
49                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
50def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
51                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
52def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
53                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
54                              SDNPMemOperand]>;
55
56//===----------------------------------------------------------------------===//
57// FPStack pattern fragments
58//===----------------------------------------------------------------------===//
59
60def fpimm0 : PatLeaf<(fpimm), [{
61  return N->isExactlyValue(+0.0);
62}]>;
63
64def fpimmneg0 : PatLeaf<(fpimm), [{
65  return N->isExactlyValue(-0.0);
66}]>;
67
68def fpimm1 : PatLeaf<(fpimm), [{
69  return N->isExactlyValue(+1.0);
70}]>;
71
72def fpimmneg1 : PatLeaf<(fpimm), [{
73  return N->isExactlyValue(-1.0);
74}]>;
75
76// Some 'special' instructions
77let usesCustomInserter = 1 in {  // Expanded after instruction selection.
78  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
79                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
80  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
81                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
82  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
83                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
84  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
85                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
86  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
87                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
88  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
89                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
90  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
91                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
92  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
93                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
94  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
95                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
96}
97
98// All FP Stack operations are represented with four instructions here.  The
99// first three instructions, generated by the instruction selector, use "RFP32"
100// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
101// 64-bit or 80-bit floating point values.  These sizes apply to the values,
102// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
103// copied to each other without losing information.  These instructions are all
104// pseudo instructions and use the "_Fp" suffix.
105// In some cases there are additional variants with a mixture of different
106// register sizes.
107// The second instruction is defined with FPI, which is the actual instruction
108// emitted by the assembler.  These use "RST" registers, although frequently
109// the actual register(s) used are implicit.  These are always 80 bits.
110// The FP stackifier pass converts one to the other after register allocation
111// occurs.
112//
113// Note that the FpI instruction should have instruction selection info (e.g.
114// a pattern) and the FPI instruction should have emission info (e.g. opcode
115// encoding and asm printing info).
116
117// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
118// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
119// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
120// f80 instructions cannot use SSE and use neither of these.
121class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
122  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
123class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
124  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
125
126// Factoring for arithmetic.
127multiclass FPBinary_rr<SDNode OpNode> {
128// Register op register -> register
129// These are separated out because they have no reversed form.
130def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
131                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
132def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
133                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
134def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
135                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
136}
137// The FopST0 series are not included here because of the irregularities
138// in where the 'r' goes in assembly output.
139// These instructions cannot address 80-bit memory.
140multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
141// ST(0) = ST(0) + [mem]
142def _Fp32m  : FpIf32<(outs RFP32:$dst),
143                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
144                  [(set RFP32:$dst,
145                    (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
146def _Fp64m  : FpIf64<(outs RFP64:$dst),
147                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
148                  [(set RFP64:$dst,
149                    (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
150def _Fp64m32: FpIf64<(outs RFP64:$dst),
151                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
152                  [(set RFP64:$dst,
153                    (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
154def _Fp80m32: FpI_<(outs RFP80:$dst),
155                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
156                  [(set RFP80:$dst,
157                    (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
158def _Fp80m64: FpI_<(outs RFP80:$dst),
159                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
160                  [(set RFP80:$dst,
161                    (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
162def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
163                 !strconcat("f", asmstring, "{s}\t$src")> {
164  let mayLoad = 1;
165}
166def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
167                 !strconcat("f", asmstring, "{l}\t$src")> {
168  let mayLoad = 1;
169}
170// ST(0) = ST(0) + [memint]
171def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
172                       OneArgFPRW,
173                    [(set RFP32:$dst, (OpNode RFP32:$src1,
174                                       (X86fild addr:$src2, i16)))]>;
175def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
176                       OneArgFPRW,
177                    [(set RFP32:$dst, (OpNode RFP32:$src1,
178                                       (X86fild addr:$src2, i32)))]>;
179def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
180                       OneArgFPRW,
181                    [(set RFP64:$dst, (OpNode RFP64:$src1,
182                                       (X86fild addr:$src2, i16)))]>;
183def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
184                       OneArgFPRW,
185                    [(set RFP64:$dst, (OpNode RFP64:$src1,
186                                       (X86fild addr:$src2, i32)))]>;
187def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
188                       OneArgFPRW,
189                    [(set RFP80:$dst, (OpNode RFP80:$src1,
190                                       (X86fild addr:$src2, i16)))]>;
191def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
192                       OneArgFPRW,
193                    [(set RFP80:$dst, (OpNode RFP80:$src1,
194                                       (X86fild addr:$src2, i32)))]>;
195def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
196                  !strconcat("fi", asmstring, "{s}\t$src")> {
197  let mayLoad = 1;
198}
199def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
200                  !strconcat("fi", asmstring, "{l}\t$src")> {
201  let mayLoad = 1;
202}
203}
204
205let Defs = [FPSW] in {
206// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
207// resources.
208defm ADD : FPBinary_rr<fadd>;
209defm SUB : FPBinary_rr<fsub>;
210defm MUL : FPBinary_rr<fmul>;
211defm DIV : FPBinary_rr<fdiv>;
212// Sets the scheduling resources for the actual NAME#_F<size>m defintions.
213let SchedRW = [WriteFAddLd] in {
214defm ADD : FPBinary<fadd, MRM0m, "add">;
215defm SUB : FPBinary<fsub, MRM4m, "sub">;
216defm SUBR: FPBinary<fsub ,MRM5m, "subr">;
217}
218let SchedRW = [WriteFMulLd] in {
219defm MUL : FPBinary<fmul, MRM1m, "mul">;
220}
221let SchedRW = [WriteFDivLd] in {
222defm DIV : FPBinary<fdiv, MRM6m, "div">;
223defm DIVR: FPBinary<fdiv, MRM7m, "divr">;
224}
225}
226
227class FPST0rInst<Format fp, string asm>
228  : FPI<0xD8, fp, (outs), (ins RST:$op), asm>;
229class FPrST0Inst<Format fp, string asm>
230  : FPI<0xDC, fp, (outs), (ins RST:$op), asm>;
231class FPrST0PInst<Format fp, string asm>
232  : FPI<0xDE, fp, (outs), (ins RST:$op), asm>;
233
234// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
235// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
236// we have to put some 'r's in and take them out of weird places.
237let SchedRW = [WriteFAdd] in {
238def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t$op">;
239def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">;
240def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t$op">;
241def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t$op">;
242def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">;
243def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t$op">;
244def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t$op">;
245def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">;
246def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">;
247} // SchedRW
248let SchedRW = [WriteFMul] in {
249def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t$op">;
250def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">;
251def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t$op">;
252} // SchedRW
253let SchedRW = [WriteFDiv] in {
254def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t$op">;
255def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">;
256def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">;
257def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t$op">;
258def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">;
259def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">;
260} // SchedRW
261
262def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
263def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
264
265// Unary operations.
266multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
267def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
268                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
269def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
270                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
271def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
272                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
273def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
274}
275
276let Defs = [FPSW] in {
277defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
278defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
279let SchedRW = [WriteFSqrt] in {
280defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;
281}
282defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
283defm COS : FPUnary<fcos, MRM_FF, "fcos">;
284
285let hasSideEffects = 0 in {
286def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
287def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
288def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
289}
290def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
291} // Defs = [FPSW]
292
293// Versions of FP instructions that take a single memory operand.  Added for the
294//   disassembler; remove as they are included with patterns elsewhere.
295def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
296def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
297
298def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
299def FSTENVm  : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fnstenv\t$dst">;
300
301def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
302def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
303
304def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
305def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
306
307def FRSTORm  : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
308def FSAVEm   : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fnsave\t$dst">;
309def FNSTSWm  : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fnstsw\t$dst">;
310
311def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
312def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
313
314def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">;
315def FBSTPm   : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">;
316
317// Floating point cmovs.
318class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
319  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
320class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
321  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
322
323multiclass FPCMov<PatLeaf cc> {
324  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
325                       CondMovFP,
326                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
327                                        cc, EFLAGS))]>;
328  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
329                       CondMovFP,
330                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
331                                        cc, EFLAGS))]>;
332  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
333                     CondMovFP,
334                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
335                                        cc, EFLAGS))]>,
336                                        Requires<[HasCMov]>;
337}
338
339let Defs = [FPSW] in {
340let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
341defm CMOVB  : FPCMov<X86_COND_B>;
342defm CMOVBE : FPCMov<X86_COND_BE>;
343defm CMOVE  : FPCMov<X86_COND_E>;
344defm CMOVP  : FPCMov<X86_COND_P>;
345defm CMOVNB : FPCMov<X86_COND_AE>;
346defm CMOVNBE: FPCMov<X86_COND_A>;
347defm CMOVNE : FPCMov<X86_COND_NE>;
348defm CMOVNP : FPCMov<X86_COND_NP>;
349} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
350
351let Predicates = [HasCMov] in {
352// These are not factored because there's no clean way to pass DA/DB.
353def CMOVB_F  : FPI<0xDA, MRM0r, (outs RST:$op), (ins),
354                  "fcmovb\t{$op, %st(0)|st(0), $op}">;
355def CMOVBE_F : FPI<0xDA, MRM2r, (outs RST:$op), (ins),
356                  "fcmovbe\t{$op, %st(0)|st(0), $op}">;
357def CMOVE_F  : FPI<0xDA, MRM1r, (outs RST:$op), (ins),
358                  "fcmove\t{$op, %st(0)|st(0), $op}">;
359def CMOVP_F  : FPI<0xDA, MRM3r, (outs RST:$op), (ins),
360                  "fcmovu\t{$op, %st(0)|st(0), $op}">;
361def CMOVNB_F : FPI<0xDB, MRM0r, (outs RST:$op), (ins),
362                  "fcmovnb\t{$op, %st(0)|st(0), $op}">;
363def CMOVNBE_F: FPI<0xDB, MRM2r, (outs RST:$op), (ins),
364                  "fcmovnbe\t{$op, %st(0)|st(0), $op}">;
365def CMOVNE_F : FPI<0xDB, MRM1r, (outs RST:$op), (ins),
366                  "fcmovne\t{$op, %st(0)|st(0), $op}">;
367def CMOVNP_F : FPI<0xDB, MRM3r, (outs RST:$op), (ins),
368                  "fcmovnu\t{$op, %st(0)|st(0), $op}">;
369} // Predicates = [HasCMov]
370
371// Floating point loads & stores.
372let canFoldAsLoad = 1 in {
373def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
374                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
375let isReMaterializable = 1 in
376  def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
377                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
378def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
379                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
380}
381def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
382                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
383def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
384                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
385def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
386                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
387def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
388                  [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
389def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
390                  [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
391def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
392                  [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
393def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
394                  [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
395def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
396                  [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
397def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
398                  [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
399def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
400                  [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
401def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
402                  [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
403def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
404                  [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
405
406def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
407                  [(store RFP32:$src, addr:$op)]>;
408def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
409                  [(truncstoref32 RFP64:$src, addr:$op)]>;
410def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
411                  [(store RFP64:$src, addr:$op)]>;
412def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
413                  [(truncstoref32 RFP80:$src, addr:$op)]>;
414def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
415                  [(truncstoref64 RFP80:$src, addr:$op)]>;
416// FST does not support 80-bit memory target; FSTP must be used.
417
418let mayStore = 1, hasSideEffects = 0 in {
419def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
420def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
421def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
422def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
423def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
424}
425def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
426                    [(store RFP80:$src, addr:$op)]>;
427let mayStore = 1, hasSideEffects = 0 in {
428def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
429def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
430def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
431def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
432def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
433def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
434def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
435def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
436def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
437}
438
439let mayLoad = 1, SchedRW = [WriteLoad] in {
440def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src",
441                    IIC_FLD>;
442def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src",
443                    IIC_FLD>;
444def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src",
445                    IIC_FLD80>;
446def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src",
447                    IIC_FILD>;
448def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src",
449                    IIC_FILD>;
450def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src",
451                    IIC_FILD>;
452}
453let mayStore = 1, SchedRW = [WriteStore] in {
454def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst",
455                    IIC_FST>;
456def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst",
457                    IIC_FST>;
458def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst",
459                    IIC_FST>;
460def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst",
461                    IIC_FST>;
462def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst",
463                    IIC_FST80>;
464def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst",
465                    IIC_FIST>;
466def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst",
467                    IIC_FIST>;
468def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst",
469                    IIC_FIST>;
470def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst",
471                    IIC_FIST>;
472def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst",
473                    IIC_FIST>;
474}
475
476// FISTTP requires SSE3 even though it's a FPStack op.
477let Predicates = [HasSSE3] in {
478def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
479                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
480def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
481                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
482def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
483                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
484def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
485                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
486def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
487                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
488def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
489                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
490def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
491                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
492def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
493                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
494def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
495                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
496} // Predicates = [HasSSE3]
497
498let mayStore = 1, SchedRW = [WriteStore] in {
499def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst",
500  IIC_FST>;
501def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst",
502  IIC_FST>;
503def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst),
504  "fisttp{ll}\t$dst", IIC_FST>;
505}
506
507// FP Stack manipulation instructions.
508let SchedRW = [WriteMove] in {
509def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op", IIC_FLD>;
510def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op", IIC_FST>;
511def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op", IIC_FST>;
512def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op", IIC_FXCH>;
513}
514
515// Floating point constant loads.
516let isReMaterializable = 1 in {
517def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
518                [(set RFP32:$dst, fpimm0)]>;
519def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
520                [(set RFP32:$dst, fpimm1)]>;
521def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
522                [(set RFP64:$dst, fpimm0)]>;
523def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
524                [(set RFP64:$dst, fpimm1)]>;
525def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
526                [(set RFP80:$dst, fpimm0)]>;
527def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
528                [(set RFP80:$dst, fpimm1)]>;
529}
530
531let SchedRW = [WriteZero] in {
532def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz", IIC_FLDZ>;
533def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1", IIC_FIST>;
534}
535
536// Floating point compares.
537let SchedRW = [WriteFAdd] in {
538def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
539                        [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
540def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
541                        [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
542def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
543                        [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
544} // SchedRW
545} // Defs = [FPSW]
546
547let SchedRW = [WriteFAdd] in {
548// CC = ST(0) cmp ST(i)
549let Defs = [EFLAGS, FPSW] in {
550def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
551                  [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>;
552def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
553                  [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>;
554def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
555                  [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
556}
557
558let Defs = [FPSW], Uses = [ST0] in {
559def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
560                    (outs), (ins RST:$reg), "fucom\t$reg", IIC_FUCOM>;
561def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
562                    (outs), (ins RST:$reg), "fucomp\t$reg", IIC_FUCOM>;
563def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
564                    (outs), (ins), "fucompp", IIC_FUCOM>;
565}
566
567let Defs = [EFLAGS, FPSW], Uses = [ST0] in {
568def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
569                    (outs), (ins RST:$reg), "fucomi\t$reg", IIC_FUCOMI>;
570def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
571                    (outs), (ins RST:$reg), "fucompi\t$reg", IIC_FUCOMI>;
572}
573
574let Defs = [EFLAGS, FPSW] in {
575def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg),
576                  "fcomi\t$reg", IIC_FCOMI>;
577def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg),
578                   "fcompi\t$reg", IIC_FCOMI>;
579}
580} // SchedRW
581
582// Floating point flag ops.
583let SchedRW = [WriteALU] in {
584let Defs = [AX], Uses = [FPSW] in
585def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
586                  (outs), (ins), "fnstsw\t{%ax|ax}",
587                  [(set AX, (X86fp_stsw FPSW))], IIC_FNSTSW>;
588
589def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
590                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
591                  [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>;
592} // SchedRW
593let mayLoad = 1 in
594def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
595                  (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>,
596                Sched<[WriteLoad]>;
597
598// FPU control instructions
599let SchedRW = [WriteMicrocoded] in {
600let Defs = [FPSW] in
601def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", [], IIC_FNINIT>;
602def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg),
603                "ffree\t$reg", IIC_FFREE>;
604// Clear exceptions
605
606let Defs = [FPSW] in
607def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", [], IIC_FNCLEX>;
608} // SchedRW
609
610// Operandless floating-point instructions for the disassembler.
611let SchedRW = [WriteMicrocoded] in {
612def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>;
613
614def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", [], IIC_FNOP>;
615def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", [], IIC_FXAM>;
616def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", [], IIC_FLDL>;
617def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", [], IIC_FLDL>;
618def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", [], IIC_FLDL>;
619def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", [], IIC_FLDL>;
620def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", [], IIC_FLDL>;
621def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", [], IIC_F2XM1>;
622def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", [], IIC_FYL2X>;
623def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", [], IIC_FPTAN>;
624def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", [], IIC_FPATAN>;
625def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", [], IIC_FXTRACT>;
626def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", [], IIC_FPREM1>;
627def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", [], IIC_FPSTP>;
628def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", [], IIC_FPSTP>;
629def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", [], IIC_FPREM>;
630def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", [], IIC_FYL2XP1>;
631def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", [], IIC_FSINCOS>;
632def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", [], IIC_FRNDINT>;
633def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", [], IIC_FSCALE>;
634def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", [], IIC_FCOMPP>;
635
636def FXSAVE : I<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
637               "fxsave\t$dst", [], IIC_FXSAVE>, TB;
638def FXSAVE64 : RI<0xAE, MRM0m, (outs opaque512mem:$dst), (ins),
639                  "fxsave64\t$dst", [], IIC_FXSAVE>, TB,
640                  Requires<[In64BitMode]>;
641def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
642                "fxrstor\t$src", [], IIC_FXRSTOR>, TB;
643def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaque512mem:$src),
644                  "fxrstor64\t$src", [], IIC_FXRSTOR>, TB,
645                  Requires<[In64BitMode]>;
646} // SchedRW
647
648//===----------------------------------------------------------------------===//
649// Non-Instruction Patterns
650//===----------------------------------------------------------------------===//
651
652// Required for RET of f32 / f64 / f80 values.
653def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
654def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
655def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
656
657// Required for CALL which return f32 / f64 / f80 values.
658def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
659def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op,
660                                                          RFP64:$src)>;
661def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
662def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op,
663                                                          RFP80:$src)>;
664def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op,
665                                                          RFP80:$src)>;
666def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op,
667                                                         RFP80:$src)>;
668
669// Floating point constant -0.0 and -1.0
670def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
671def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
672def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
673def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
674def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
675def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
676
677// Used to conv. i64 to f64 since there isn't a SSE version.
678def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
679
680// FP extensions map onto simple pseudo-value conversions if they are to/from
681// the FP stack.
682def : Pat<(f64 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
683          Requires<[FPStackf32]>;
684def : Pat<(f80 (fextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
685           Requires<[FPStackf32]>;
686def : Pat<(f80 (fextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
687           Requires<[FPStackf64]>;
688
689// FP truncations map onto simple pseudo-value conversions if they are to/from
690// the FP stack.  We have validated that only value-preserving truncations make
691// it through isel.
692def : Pat<(f32 (fround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
693          Requires<[FPStackf32]>;
694def : Pat<(f32 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
695           Requires<[FPStackf32]>;
696def : Pat<(f64 (fround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
697           Requires<[FPStackf64]>;
698