1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86InstrInfo.h"
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/StackMaps.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCExpr.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include <limits>
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "x86-instr-info"
44
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "X86GenInstrInfo.inc"
47
48 static cl::opt<bool>
49 NoFusing("disable-spill-fusing",
50 cl::desc("Disable fusing of spill code into instructions"));
51 static cl::opt<bool>
52 PrintFailedFusing("print-failed-fuse-candidates",
53 cl::desc("Print instructions that the allocator wants to"
54 " fuse, but the X86 backend currently can't"),
55 cl::Hidden);
56 static cl::opt<bool>
57 ReMatPICStubLoad("remat-pic-stub-load",
58 cl::desc("Re-materialize load from stub in PIC mode"),
59 cl::init(false), cl::Hidden);
60
61 enum {
62 // Select which memory operand is being unfolded.
63 // (stored in bits 0 - 3)
64 TB_INDEX_0 = 0,
65 TB_INDEX_1 = 1,
66 TB_INDEX_2 = 2,
67 TB_INDEX_3 = 3,
68 TB_INDEX_4 = 4,
69 TB_INDEX_MASK = 0xf,
70
71 // Do not insert the reverse map (MemOp -> RegOp) into the table.
72 // This may be needed because there is a many -> one mapping.
73 TB_NO_REVERSE = 1 << 4,
74
75 // Do not insert the forward map (RegOp -> MemOp) into the table.
76 // This is needed for Native Client, which prohibits branch
77 // instructions from using a memory operand.
78 TB_NO_FORWARD = 1 << 5,
79
80 TB_FOLDED_LOAD = 1 << 6,
81 TB_FOLDED_STORE = 1 << 7,
82
83 // Minimum alignment required for load/store.
84 // Used for RegOp->MemOp conversion.
85 // (stored in bits 8 - 15)
86 TB_ALIGN_SHIFT = 8,
87 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
88 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
89 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
90 TB_ALIGN_64 = 64 << TB_ALIGN_SHIFT,
91 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT
92 };
93
94 struct X86MemoryFoldTableEntry {
95 uint16_t RegOp;
96 uint16_t MemOp;
97 uint16_t Flags;
98 };
99
100 // Pin the vtable to this file.
anchor()101 void X86InstrInfo::anchor() {}
102
X86InstrInfo(X86Subtarget & STI)103 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
104 : X86GenInstrInfo(
105 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
106 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
107 Subtarget(STI), RI(STI.getTargetTriple()) {
108
109 static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
110 { X86::ADC32ri, X86::ADC32mi, 0 },
111 { X86::ADC32ri8, X86::ADC32mi8, 0 },
112 { X86::ADC32rr, X86::ADC32mr, 0 },
113 { X86::ADC64ri32, X86::ADC64mi32, 0 },
114 { X86::ADC64ri8, X86::ADC64mi8, 0 },
115 { X86::ADC64rr, X86::ADC64mr, 0 },
116 { X86::ADD16ri, X86::ADD16mi, 0 },
117 { X86::ADD16ri8, X86::ADD16mi8, 0 },
118 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
119 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
120 { X86::ADD16rr, X86::ADD16mr, 0 },
121 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
122 { X86::ADD32ri, X86::ADD32mi, 0 },
123 { X86::ADD32ri8, X86::ADD32mi8, 0 },
124 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
125 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
126 { X86::ADD32rr, X86::ADD32mr, 0 },
127 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
128 { X86::ADD64ri32, X86::ADD64mi32, 0 },
129 { X86::ADD64ri8, X86::ADD64mi8, 0 },
130 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
131 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
132 { X86::ADD64rr, X86::ADD64mr, 0 },
133 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
134 { X86::ADD8ri, X86::ADD8mi, 0 },
135 { X86::ADD8rr, X86::ADD8mr, 0 },
136 { X86::AND16ri, X86::AND16mi, 0 },
137 { X86::AND16ri8, X86::AND16mi8, 0 },
138 { X86::AND16rr, X86::AND16mr, 0 },
139 { X86::AND32ri, X86::AND32mi, 0 },
140 { X86::AND32ri8, X86::AND32mi8, 0 },
141 { X86::AND32rr, X86::AND32mr, 0 },
142 { X86::AND64ri32, X86::AND64mi32, 0 },
143 { X86::AND64ri8, X86::AND64mi8, 0 },
144 { X86::AND64rr, X86::AND64mr, 0 },
145 { X86::AND8ri, X86::AND8mi, 0 },
146 { X86::AND8rr, X86::AND8mr, 0 },
147 { X86::DEC16r, X86::DEC16m, 0 },
148 { X86::DEC32r, X86::DEC32m, 0 },
149 { X86::DEC64r, X86::DEC64m, 0 },
150 { X86::DEC8r, X86::DEC8m, 0 },
151 { X86::INC16r, X86::INC16m, 0 },
152 { X86::INC32r, X86::INC32m, 0 },
153 { X86::INC64r, X86::INC64m, 0 },
154 { X86::INC8r, X86::INC8m, 0 },
155 { X86::NEG16r, X86::NEG16m, 0 },
156 { X86::NEG32r, X86::NEG32m, 0 },
157 { X86::NEG64r, X86::NEG64m, 0 },
158 { X86::NEG8r, X86::NEG8m, 0 },
159 { X86::NOT16r, X86::NOT16m, 0 },
160 { X86::NOT32r, X86::NOT32m, 0 },
161 { X86::NOT64r, X86::NOT64m, 0 },
162 { X86::NOT8r, X86::NOT8m, 0 },
163 { X86::OR16ri, X86::OR16mi, 0 },
164 { X86::OR16ri8, X86::OR16mi8, 0 },
165 { X86::OR16rr, X86::OR16mr, 0 },
166 { X86::OR32ri, X86::OR32mi, 0 },
167 { X86::OR32ri8, X86::OR32mi8, 0 },
168 { X86::OR32rr, X86::OR32mr, 0 },
169 { X86::OR64ri32, X86::OR64mi32, 0 },
170 { X86::OR64ri8, X86::OR64mi8, 0 },
171 { X86::OR64rr, X86::OR64mr, 0 },
172 { X86::OR8ri, X86::OR8mi, 0 },
173 { X86::OR8rr, X86::OR8mr, 0 },
174 { X86::ROL16r1, X86::ROL16m1, 0 },
175 { X86::ROL16rCL, X86::ROL16mCL, 0 },
176 { X86::ROL16ri, X86::ROL16mi, 0 },
177 { X86::ROL32r1, X86::ROL32m1, 0 },
178 { X86::ROL32rCL, X86::ROL32mCL, 0 },
179 { X86::ROL32ri, X86::ROL32mi, 0 },
180 { X86::ROL64r1, X86::ROL64m1, 0 },
181 { X86::ROL64rCL, X86::ROL64mCL, 0 },
182 { X86::ROL64ri, X86::ROL64mi, 0 },
183 { X86::ROL8r1, X86::ROL8m1, 0 },
184 { X86::ROL8rCL, X86::ROL8mCL, 0 },
185 { X86::ROL8ri, X86::ROL8mi, 0 },
186 { X86::ROR16r1, X86::ROR16m1, 0 },
187 { X86::ROR16rCL, X86::ROR16mCL, 0 },
188 { X86::ROR16ri, X86::ROR16mi, 0 },
189 { X86::ROR32r1, X86::ROR32m1, 0 },
190 { X86::ROR32rCL, X86::ROR32mCL, 0 },
191 { X86::ROR32ri, X86::ROR32mi, 0 },
192 { X86::ROR64r1, X86::ROR64m1, 0 },
193 { X86::ROR64rCL, X86::ROR64mCL, 0 },
194 { X86::ROR64ri, X86::ROR64mi, 0 },
195 { X86::ROR8r1, X86::ROR8m1, 0 },
196 { X86::ROR8rCL, X86::ROR8mCL, 0 },
197 { X86::ROR8ri, X86::ROR8mi, 0 },
198 { X86::SAR16r1, X86::SAR16m1, 0 },
199 { X86::SAR16rCL, X86::SAR16mCL, 0 },
200 { X86::SAR16ri, X86::SAR16mi, 0 },
201 { X86::SAR32r1, X86::SAR32m1, 0 },
202 { X86::SAR32rCL, X86::SAR32mCL, 0 },
203 { X86::SAR32ri, X86::SAR32mi, 0 },
204 { X86::SAR64r1, X86::SAR64m1, 0 },
205 { X86::SAR64rCL, X86::SAR64mCL, 0 },
206 { X86::SAR64ri, X86::SAR64mi, 0 },
207 { X86::SAR8r1, X86::SAR8m1, 0 },
208 { X86::SAR8rCL, X86::SAR8mCL, 0 },
209 { X86::SAR8ri, X86::SAR8mi, 0 },
210 { X86::SBB32ri, X86::SBB32mi, 0 },
211 { X86::SBB32ri8, X86::SBB32mi8, 0 },
212 { X86::SBB32rr, X86::SBB32mr, 0 },
213 { X86::SBB64ri32, X86::SBB64mi32, 0 },
214 { X86::SBB64ri8, X86::SBB64mi8, 0 },
215 { X86::SBB64rr, X86::SBB64mr, 0 },
216 { X86::SHL16rCL, X86::SHL16mCL, 0 },
217 { X86::SHL16ri, X86::SHL16mi, 0 },
218 { X86::SHL32rCL, X86::SHL32mCL, 0 },
219 { X86::SHL32ri, X86::SHL32mi, 0 },
220 { X86::SHL64rCL, X86::SHL64mCL, 0 },
221 { X86::SHL64ri, X86::SHL64mi, 0 },
222 { X86::SHL8rCL, X86::SHL8mCL, 0 },
223 { X86::SHL8ri, X86::SHL8mi, 0 },
224 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
225 { X86::SHLD16rri8, X86::SHLD16mri8, 0 },
226 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
227 { X86::SHLD32rri8, X86::SHLD32mri8, 0 },
228 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
229 { X86::SHLD64rri8, X86::SHLD64mri8, 0 },
230 { X86::SHR16r1, X86::SHR16m1, 0 },
231 { X86::SHR16rCL, X86::SHR16mCL, 0 },
232 { X86::SHR16ri, X86::SHR16mi, 0 },
233 { X86::SHR32r1, X86::SHR32m1, 0 },
234 { X86::SHR32rCL, X86::SHR32mCL, 0 },
235 { X86::SHR32ri, X86::SHR32mi, 0 },
236 { X86::SHR64r1, X86::SHR64m1, 0 },
237 { X86::SHR64rCL, X86::SHR64mCL, 0 },
238 { X86::SHR64ri, X86::SHR64mi, 0 },
239 { X86::SHR8r1, X86::SHR8m1, 0 },
240 { X86::SHR8rCL, X86::SHR8mCL, 0 },
241 { X86::SHR8ri, X86::SHR8mi, 0 },
242 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
243 { X86::SHRD16rri8, X86::SHRD16mri8, 0 },
244 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
245 { X86::SHRD32rri8, X86::SHRD32mri8, 0 },
246 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
247 { X86::SHRD64rri8, X86::SHRD64mri8, 0 },
248 { X86::SUB16ri, X86::SUB16mi, 0 },
249 { X86::SUB16ri8, X86::SUB16mi8, 0 },
250 { X86::SUB16rr, X86::SUB16mr, 0 },
251 { X86::SUB32ri, X86::SUB32mi, 0 },
252 { X86::SUB32ri8, X86::SUB32mi8, 0 },
253 { X86::SUB32rr, X86::SUB32mr, 0 },
254 { X86::SUB64ri32, X86::SUB64mi32, 0 },
255 { X86::SUB64ri8, X86::SUB64mi8, 0 },
256 { X86::SUB64rr, X86::SUB64mr, 0 },
257 { X86::SUB8ri, X86::SUB8mi, 0 },
258 { X86::SUB8rr, X86::SUB8mr, 0 },
259 { X86::XOR16ri, X86::XOR16mi, 0 },
260 { X86::XOR16ri8, X86::XOR16mi8, 0 },
261 { X86::XOR16rr, X86::XOR16mr, 0 },
262 { X86::XOR32ri, X86::XOR32mi, 0 },
263 { X86::XOR32ri8, X86::XOR32mi8, 0 },
264 { X86::XOR32rr, X86::XOR32mr, 0 },
265 { X86::XOR64ri32, X86::XOR64mi32, 0 },
266 { X86::XOR64ri8, X86::XOR64mi8, 0 },
267 { X86::XOR64rr, X86::XOR64mr, 0 },
268 { X86::XOR8ri, X86::XOR8mi, 0 },
269 { X86::XOR8rr, X86::XOR8mr, 0 }
270 };
271
272 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2Addr); i != e; ++i) {
273 unsigned RegOp = MemoryFoldTable2Addr[i].RegOp;
274 unsigned MemOp = MemoryFoldTable2Addr[i].MemOp;
275 unsigned Flags = MemoryFoldTable2Addr[i].Flags;
276 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
277 RegOp, MemOp,
278 // Index 0, folded load and store, no alignment requirement.
279 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
280 }
281
282 static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
283 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
284 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
285 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
286 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
287 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
288 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
289 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
290 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
291 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
292 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
293 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
294 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
295 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
296 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
297 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
298 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
299 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
300 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
301 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
302 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
303 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE },
304 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
305 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
306 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
307 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
308 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
309 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
310 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
311 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
312 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
313 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
314 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
315 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
316 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
317 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
318 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
319 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
320 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
321 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
322 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
323 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
324 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
325 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
326 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
327 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
328 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
329 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
330 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
331 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
332 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
333 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
334 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
335 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
336 { X86::PEXTRDrr, X86::PEXTRDmr, TB_FOLDED_STORE },
337 { X86::PEXTRQrr, X86::PEXTRQmr, TB_FOLDED_STORE },
338 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
339 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
340 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
341 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
342 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
343 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
344 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
345 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
346 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
347 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
348 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
349 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
350 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
351 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
352 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
353 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
354 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
355 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
356 { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
357 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
358 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
359 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
360 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
361
362 // AVX 128-bit versions of foldable instructions
363 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE },
364 { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
365 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
366 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
367 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
368 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
369 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
370 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
371 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
372 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
373 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
374 { X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE },
375 { X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE },
376
377 // AVX 256-bit foldable instructions
378 { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
379 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
380 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
381 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
382 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
383 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE },
384
385 // AVX-512 foldable instructions
386 { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
387 { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
388 { X86::VMOVAPSZrr, X86::VMOVAPSZmr, TB_FOLDED_STORE | TB_ALIGN_64 },
389 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
390 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zmr, TB_FOLDED_STORE | TB_ALIGN_64 },
391 { X86::VMOVUPDZrr, X86::VMOVUPDZmr, TB_FOLDED_STORE },
392 { X86::VMOVUPSZrr, X86::VMOVUPSZmr, TB_FOLDED_STORE },
393 { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zmr, TB_FOLDED_STORE },
394 { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE },
395 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE },
396 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE },
397
398 // AVX-512 foldable instructions (256-bit versions)
399 { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
400 { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
401 { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
402 { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256mr, TB_FOLDED_STORE | TB_ALIGN_32 },
403 { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256mr, TB_FOLDED_STORE },
404 { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256mr, TB_FOLDED_STORE },
405 { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256mr, TB_FOLDED_STORE },
406 { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE },
407 { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE },
408 { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE },
409
410 // AVX-512 foldable instructions (128-bit versions)
411 { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
412 { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
413 { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
414 { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
415 { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128mr, TB_FOLDED_STORE },
416 { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128mr, TB_FOLDED_STORE },
417 { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128mr, TB_FOLDED_STORE },
418 { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE },
419 { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE },
420 { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE },
421
422 // F16C foldable instructions
423 { X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE },
424 { X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE }
425 };
426
427 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable0); i != e; ++i) {
428 unsigned RegOp = MemoryFoldTable0[i].RegOp;
429 unsigned MemOp = MemoryFoldTable0[i].MemOp;
430 unsigned Flags = MemoryFoldTable0[i].Flags;
431 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
432 RegOp, MemOp, TB_INDEX_0 | Flags);
433 }
434
435 static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
436 { X86::CMP16rr, X86::CMP16rm, 0 },
437 { X86::CMP32rr, X86::CMP32rm, 0 },
438 { X86::CMP64rr, X86::CMP64rm, 0 },
439 { X86::CMP8rr, X86::CMP8rm, 0 },
440 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
441 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
442 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
443 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
444 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
445 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
446 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
447 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
448 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
449 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
450 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
451 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
452 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
453 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
454 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
455 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
456 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
457 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
458 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
459 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
460 { X86::CVTSS2SI64rr, X86::CVTSS2SI64rm, 0 },
461 { X86::CVTSS2SIrr, X86::CVTSS2SIrm, 0 },
462 { X86::CVTDQ2PDrr, X86::CVTDQ2PDrm, TB_ALIGN_16 },
463 { X86::CVTDQ2PSrr, X86::CVTDQ2PSrm, TB_ALIGN_16 },
464 { X86::CVTPD2DQrr, X86::CVTPD2DQrm, TB_ALIGN_16 },
465 { X86::CVTPD2PSrr, X86::CVTPD2PSrm, TB_ALIGN_16 },
466 { X86::CVTPS2DQrr, X86::CVTPS2DQrm, TB_ALIGN_16 },
467 { X86::CVTPS2PDrr, X86::CVTPS2PDrm, TB_ALIGN_16 },
468 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
469 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
470 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
471 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
472 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
473 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
474 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
475 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
476 { X86::MOV16rr, X86::MOV16rm, 0 },
477 { X86::MOV32rr, X86::MOV32rm, 0 },
478 { X86::MOV64rr, X86::MOV64rm, 0 },
479 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
480 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
481 { X86::MOV8rr, X86::MOV8rm, 0 },
482 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
483 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
484 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
485 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
486 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
487 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
488 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
489 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
490 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
491 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
492 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
493 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
494 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
495 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
496 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
497 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
498 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
499 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
500 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
501 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
502 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
503 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
504 { X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
505 { X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
506 { X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
507 { X86::PCMPESTRIrr, X86::PCMPESTRIrm, TB_ALIGN_16 },
508 { X86::PCMPESTRM128rr, X86::PCMPESTRM128rm, TB_ALIGN_16 },
509 { X86::PCMPISTRIrr, X86::PCMPISTRIrm, TB_ALIGN_16 },
510 { X86::PCMPISTRM128rr, X86::PCMPISTRM128rm, TB_ALIGN_16 },
511 { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128, TB_ALIGN_16 },
512 { X86::PMOVSXBDrr, X86::PMOVSXBDrm, TB_ALIGN_16 },
513 { X86::PMOVSXBQrr, X86::PMOVSXBQrm, TB_ALIGN_16 },
514 { X86::PMOVSXBWrr, X86::PMOVSXBWrm, TB_ALIGN_16 },
515 { X86::PMOVSXDQrr, X86::PMOVSXDQrm, TB_ALIGN_16 },
516 { X86::PMOVSXWDrr, X86::PMOVSXWDrm, TB_ALIGN_16 },
517 { X86::PMOVSXWQrr, X86::PMOVSXWQrm, TB_ALIGN_16 },
518 { X86::PMOVZXBDrr, X86::PMOVZXBDrm, TB_ALIGN_16 },
519 { X86::PMOVZXBQrr, X86::PMOVZXBQrm, TB_ALIGN_16 },
520 { X86::PMOVZXBWrr, X86::PMOVZXBWrm, TB_ALIGN_16 },
521 { X86::PMOVZXDQrr, X86::PMOVZXDQrm, TB_ALIGN_16 },
522 { X86::PMOVZXWDrr, X86::PMOVZXWDrm, TB_ALIGN_16 },
523 { X86::PMOVZXWQrr, X86::PMOVZXWQrm, TB_ALIGN_16 },
524 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
525 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
526 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
527 { X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 },
528 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
529 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
530 { X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 },
531 { X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 },
532 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
533 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
534 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
535 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
536 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
537 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
538 { X86::SQRTSDr, X86::SQRTSDm, 0 },
539 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
540 { X86::SQRTSSr, X86::SQRTSSm, 0 },
541 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
542 { X86::TEST16rr, X86::TEST16rm, 0 },
543 { X86::TEST32rr, X86::TEST32rm, 0 },
544 { X86::TEST64rr, X86::TEST64rm, 0 },
545 { X86::TEST8rr, X86::TEST8rm, 0 },
546 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
547 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
548 { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
549
550 // MMX version of foldable instructions
551 { X86::MMX_CVTPD2PIirr, X86::MMX_CVTPD2PIirm, 0 },
552 { X86::MMX_CVTPI2PDirr, X86::MMX_CVTPI2PDirm, 0 },
553 { X86::MMX_CVTPS2PIirr, X86::MMX_CVTPS2PIirm, 0 },
554 { X86::MMX_CVTTPD2PIirr, X86::MMX_CVTTPD2PIirm, 0 },
555 { X86::MMX_CVTTPS2PIirr, X86::MMX_CVTTPS2PIirm, 0 },
556 { X86::MMX_MOVD64to64rr, X86::MMX_MOVQ64rm, 0 },
557 { X86::MMX_PABSBrr64, X86::MMX_PABSBrm64, 0 },
558 { X86::MMX_PABSDrr64, X86::MMX_PABSDrm64, 0 },
559 { X86::MMX_PABSWrr64, X86::MMX_PABSWrm64, 0 },
560 { X86::MMX_PSHUFWri, X86::MMX_PSHUFWmi, 0 },
561
562 // 3DNow! version of foldable instructions
563 { X86::PF2IDrr, X86::PF2IDrm, 0 },
564 { X86::PF2IWrr, X86::PF2IWrm, 0 },
565 { X86::PFRCPrr, X86::PFRCPrm, 0 },
566 { X86::PFRSQRTrr, X86::PFRSQRTrm, 0 },
567 { X86::PI2FDrr, X86::PI2FDrm, 0 },
568 { X86::PI2FWrr, X86::PI2FWrm, 0 },
569 { X86::PSWAPDrr, X86::PSWAPDrm, 0 },
570
571 // AVX 128-bit versions of foldable instructions
572 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
573 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
574 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
575 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
576 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
577 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
578 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
579 { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm, 0 },
580 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
581 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
582 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
583 { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm, 0 },
584 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
585 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
586 { X86::VCVTSS2SI64rr, X86::VCVTSS2SI64rm, 0 },
587 { X86::VCVTSS2SIrr, X86::VCVTSS2SIrm, 0 },
588 { X86::VCVTDQ2PDrr, X86::VCVTDQ2PDrm, 0 },
589 { X86::VCVTDQ2PSrr, X86::VCVTDQ2PSrm, 0 },
590 { X86::VCVTPD2DQrr, X86::VCVTPD2DQXrm, 0 },
591 { X86::VCVTPD2PSrr, X86::VCVTPD2PSXrm, 0 },
592 { X86::VCVTPS2DQrr, X86::VCVTPS2DQrm, 0 },
593 { X86::VCVTPS2PDrr, X86::VCVTPS2PDrm, 0 },
594 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 },
595 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 },
596 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
597 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
598 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
599 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
600 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
601 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
602 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
603 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
604 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, 0 },
605 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, 0 },
606 { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 },
607 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
608 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
609 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
610 { X86::VPABSBrr128, X86::VPABSBrm128, 0 },
611 { X86::VPABSDrr128, X86::VPABSDrm128, 0 },
612 { X86::VPABSWrr128, X86::VPABSWrm128, 0 },
613 { X86::VPCMPESTRIrr, X86::VPCMPESTRIrm, 0 },
614 { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm, 0 },
615 { X86::VPCMPISTRIrr, X86::VPCMPISTRIrm, 0 },
616 { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm, 0 },
617 { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128, 0 },
618 { X86::VPERMILPDri, X86::VPERMILPDmi, 0 },
619 { X86::VPERMILPSri, X86::VPERMILPSmi, 0 },
620 { X86::VPMOVSXBDrr, X86::VPMOVSXBDrm, 0 },
621 { X86::VPMOVSXBQrr, X86::VPMOVSXBQrm, 0 },
622 { X86::VPMOVSXBWrr, X86::VPMOVSXBWrm, 0 },
623 { X86::VPMOVSXDQrr, X86::VPMOVSXDQrm, 0 },
624 { X86::VPMOVSXWDrr, X86::VPMOVSXWDrm, 0 },
625 { X86::VPMOVSXWQrr, X86::VPMOVSXWQrm, 0 },
626 { X86::VPMOVZXBDrr, X86::VPMOVZXBDrm, 0 },
627 { X86::VPMOVZXBQrr, X86::VPMOVZXBQrm, 0 },
628 { X86::VPMOVZXBWrr, X86::VPMOVZXBWrm, 0 },
629 { X86::VPMOVZXDQrr, X86::VPMOVZXDQrm, 0 },
630 { X86::VPMOVZXWDrr, X86::VPMOVZXWDrm, 0 },
631 { X86::VPMOVZXWQrr, X86::VPMOVZXWQrm, 0 },
632 { X86::VPSHUFDri, X86::VPSHUFDmi, 0 },
633 { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 },
634 { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 },
635 { X86::VPTESTrr, X86::VPTESTrm, 0 },
636 { X86::VRCPPSr, X86::VRCPPSm, 0 },
637 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 },
638 { X86::VROUNDPDr, X86::VROUNDPDm, 0 },
639 { X86::VROUNDPSr, X86::VROUNDPSm, 0 },
640 { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 },
641 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 },
642 { X86::VSQRTPDr, X86::VSQRTPDm, 0 },
643 { X86::VSQRTPSr, X86::VSQRTPSm, 0 },
644 { X86::VTESTPDrr, X86::VTESTPDrm, 0 },
645 { X86::VTESTPSrr, X86::VTESTPSrm, 0 },
646 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
647 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
648
649 // AVX 256-bit foldable instructions
650 { X86::VCVTDQ2PDYrr, X86::VCVTDQ2PDYrm, 0 },
651 { X86::VCVTDQ2PSYrr, X86::VCVTDQ2PSYrm, 0 },
652 { X86::VCVTPD2DQYrr, X86::VCVTPD2DQYrm, 0 },
653 { X86::VCVTPD2PSYrr, X86::VCVTPD2PSYrm, 0 },
654 { X86::VCVTPS2DQYrr, X86::VCVTPS2DQYrm, 0 },
655 { X86::VCVTPS2PDYrr, X86::VCVTPS2PDYrm, 0 },
656 { X86::VCVTTPD2DQYrr, X86::VCVTTPD2DQYrm, 0 },
657 { X86::VCVTTPS2DQYrr, X86::VCVTTPS2DQYrm, 0 },
658 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
659 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
660 { X86::VMOVDDUPYrr, X86::VMOVDDUPYrm, 0 },
661 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 },
662 { X86::VMOVSLDUPYrr, X86::VMOVSLDUPYrm, 0 },
663 { X86::VMOVSHDUPYrr, X86::VMOVSHDUPYrm, 0 },
664 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
665 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
666 { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 },
667 { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 },
668 { X86::VPTESTYrr, X86::VPTESTYrm, 0 },
669 { X86::VRCPPSYr, X86::VRCPPSYm, 0 },
670 { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 },
671 { X86::VROUNDYPDr, X86::VROUNDYPDm, 0 },
672 { X86::VROUNDYPSr, X86::VROUNDYPSm, 0 },
673 { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 },
674 { X86::VRSQRTPSYr_Int, X86::VRSQRTPSYm_Int, 0 },
675 { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 },
676 { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 },
677 { X86::VTESTPDYrr, X86::VTESTPDYrm, 0 },
678 { X86::VTESTPSYrr, X86::VTESTPSYrm, 0 },
679
680 // AVX2 foldable instructions
681
682 // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
683 // VBROADCASTS{SD}rm memory instructions were available from AVX1.
684 // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
685 // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
686 // so they don't need an equivalent limitation.
687 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE },
688 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE },
689 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE },
690 { X86::VPABSBrr256, X86::VPABSBrm256, 0 },
691 { X86::VPABSDrr256, X86::VPABSDrm256, 0 },
692 { X86::VPABSWrr256, X86::VPABSWrm256, 0 },
693 { X86::VPBROADCASTBrr, X86::VPBROADCASTBrm, 0 },
694 { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm, 0 },
695 { X86::VPBROADCASTDrr, X86::VPBROADCASTDrm, 0 },
696 { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm, 0 },
697 { X86::VPBROADCASTQrr, X86::VPBROADCASTQrm, 0 },
698 { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm, 0 },
699 { X86::VPBROADCASTWrr, X86::VPBROADCASTWrm, 0 },
700 { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm, 0 },
701 { X86::VPERMPDYri, X86::VPERMPDYmi, 0 },
702 { X86::VPERMQYri, X86::VPERMQYmi, 0 },
703 { X86::VPMOVSXBDYrr, X86::VPMOVSXBDYrm, 0 },
704 { X86::VPMOVSXBQYrr, X86::VPMOVSXBQYrm, 0 },
705 { X86::VPMOVSXBWYrr, X86::VPMOVSXBWYrm, 0 },
706 { X86::VPMOVSXDQYrr, X86::VPMOVSXDQYrm, 0 },
707 { X86::VPMOVSXWDYrr, X86::VPMOVSXWDYrm, 0 },
708 { X86::VPMOVSXWQYrr, X86::VPMOVSXWQYrm, 0 },
709 { X86::VPMOVZXBDYrr, X86::VPMOVZXBDYrm, 0 },
710 { X86::VPMOVZXBQYrr, X86::VPMOVZXBQYrm, 0 },
711 { X86::VPMOVZXBWYrr, X86::VPMOVZXBWYrm, 0 },
712 { X86::VPMOVZXDQYrr, X86::VPMOVZXDQYrm, 0 },
713 { X86::VPMOVZXWDYrr, X86::VPMOVZXWDYrm, 0 },
714 { X86::VPMOVZXWQYrr, X86::VPMOVZXWQYrm, 0 },
715 { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 },
716 { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 },
717 { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 },
718
719 // XOP foldable instructions
720 { X86::VFRCZPDrr, X86::VFRCZPDrm, 0 },
721 { X86::VFRCZPDrrY, X86::VFRCZPDrmY, 0 },
722 { X86::VFRCZPSrr, X86::VFRCZPSrm, 0 },
723 { X86::VFRCZPSrrY, X86::VFRCZPSrmY, 0 },
724 { X86::VFRCZSDrr, X86::VFRCZSDrm, 0 },
725 { X86::VFRCZSSrr, X86::VFRCZSSrm, 0 },
726 { X86::VPHADDBDrr, X86::VPHADDBDrm, 0 },
727 { X86::VPHADDBQrr, X86::VPHADDBQrm, 0 },
728 { X86::VPHADDBWrr, X86::VPHADDBWrm, 0 },
729 { X86::VPHADDDQrr, X86::VPHADDDQrm, 0 },
730 { X86::VPHADDWDrr, X86::VPHADDWDrm, 0 },
731 { X86::VPHADDWQrr, X86::VPHADDWQrm, 0 },
732 { X86::VPHADDUBDrr, X86::VPHADDUBDrm, 0 },
733 { X86::VPHADDUBQrr, X86::VPHADDUBQrm, 0 },
734 { X86::VPHADDUBWrr, X86::VPHADDUBWrm, 0 },
735 { X86::VPHADDUDQrr, X86::VPHADDUDQrm, 0 },
736 { X86::VPHADDUWDrr, X86::VPHADDUWDrm, 0 },
737 { X86::VPHADDUWQrr, X86::VPHADDUWQrm, 0 },
738 { X86::VPHSUBBWrr, X86::VPHSUBBWrm, 0 },
739 { X86::VPHSUBDQrr, X86::VPHSUBDQrm, 0 },
740 { X86::VPHSUBWDrr, X86::VPHSUBWDrm, 0 },
741 { X86::VPROTBri, X86::VPROTBmi, 0 },
742 { X86::VPROTBrr, X86::VPROTBmr, 0 },
743 { X86::VPROTDri, X86::VPROTDmi, 0 },
744 { X86::VPROTDrr, X86::VPROTDmr, 0 },
745 { X86::VPROTQri, X86::VPROTQmi, 0 },
746 { X86::VPROTQrr, X86::VPROTQmr, 0 },
747 { X86::VPROTWri, X86::VPROTWmi, 0 },
748 { X86::VPROTWrr, X86::VPROTWmr, 0 },
749 { X86::VPSHABrr, X86::VPSHABmr, 0 },
750 { X86::VPSHADrr, X86::VPSHADmr, 0 },
751 { X86::VPSHAQrr, X86::VPSHAQmr, 0 },
752 { X86::VPSHAWrr, X86::VPSHAWmr, 0 },
753 { X86::VPSHLBrr, X86::VPSHLBmr, 0 },
754 { X86::VPSHLDrr, X86::VPSHLDmr, 0 },
755 { X86::VPSHLQrr, X86::VPSHLQmr, 0 },
756 { X86::VPSHLWrr, X86::VPSHLWmr, 0 },
757
758 // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
759 { X86::BEXTR32rr, X86::BEXTR32rm, 0 },
760 { X86::BEXTR64rr, X86::BEXTR64rm, 0 },
761 { X86::BEXTRI32ri, X86::BEXTRI32mi, 0 },
762 { X86::BEXTRI64ri, X86::BEXTRI64mi, 0 },
763 { X86::BLCFILL32rr, X86::BLCFILL32rm, 0 },
764 { X86::BLCFILL64rr, X86::BLCFILL64rm, 0 },
765 { X86::BLCI32rr, X86::BLCI32rm, 0 },
766 { X86::BLCI64rr, X86::BLCI64rm, 0 },
767 { X86::BLCIC32rr, X86::BLCIC32rm, 0 },
768 { X86::BLCIC64rr, X86::BLCIC64rm, 0 },
769 { X86::BLCMSK32rr, X86::BLCMSK32rm, 0 },
770 { X86::BLCMSK64rr, X86::BLCMSK64rm, 0 },
771 { X86::BLCS32rr, X86::BLCS32rm, 0 },
772 { X86::BLCS64rr, X86::BLCS64rm, 0 },
773 { X86::BLSFILL32rr, X86::BLSFILL32rm, 0 },
774 { X86::BLSFILL64rr, X86::BLSFILL64rm, 0 },
775 { X86::BLSI32rr, X86::BLSI32rm, 0 },
776 { X86::BLSI64rr, X86::BLSI64rm, 0 },
777 { X86::BLSIC32rr, X86::BLSIC32rm, 0 },
778 { X86::BLSIC64rr, X86::BLSIC64rm, 0 },
779 { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 },
780 { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 },
781 { X86::BLSR32rr, X86::BLSR32rm, 0 },
782 { X86::BLSR64rr, X86::BLSR64rm, 0 },
783 { X86::BZHI32rr, X86::BZHI32rm, 0 },
784 { X86::BZHI64rr, X86::BZHI64rm, 0 },
785 { X86::LZCNT16rr, X86::LZCNT16rm, 0 },
786 { X86::LZCNT32rr, X86::LZCNT32rm, 0 },
787 { X86::LZCNT64rr, X86::LZCNT64rm, 0 },
788 { X86::POPCNT16rr, X86::POPCNT16rm, 0 },
789 { X86::POPCNT32rr, X86::POPCNT32rm, 0 },
790 { X86::POPCNT64rr, X86::POPCNT64rm, 0 },
791 { X86::RORX32ri, X86::RORX32mi, 0 },
792 { X86::RORX64ri, X86::RORX64mi, 0 },
793 { X86::SARX32rr, X86::SARX32rm, 0 },
794 { X86::SARX64rr, X86::SARX64rm, 0 },
795 { X86::SHRX32rr, X86::SHRX32rm, 0 },
796 { X86::SHRX64rr, X86::SHRX64rm, 0 },
797 { X86::SHLX32rr, X86::SHLX32rm, 0 },
798 { X86::SHLX64rr, X86::SHLX64rm, 0 },
799 { X86::T1MSKC32rr, X86::T1MSKC32rm, 0 },
800 { X86::T1MSKC64rr, X86::T1MSKC64rm, 0 },
801 { X86::TZCNT16rr, X86::TZCNT16rm, 0 },
802 { X86::TZCNT32rr, X86::TZCNT32rm, 0 },
803 { X86::TZCNT64rr, X86::TZCNT64rm, 0 },
804 { X86::TZMSK32rr, X86::TZMSK32rm, 0 },
805 { X86::TZMSK64rr, X86::TZMSK64rm, 0 },
806
807 // AVX-512 foldable instructions
808 { X86::VMOV64toPQIZrr, X86::VMOVQI2PQIZrm, 0 },
809 { X86::VMOVDI2SSZrr, X86::VMOVDI2SSZrm, 0 },
810 { X86::VMOVAPDZrr, X86::VMOVAPDZrm, TB_ALIGN_64 },
811 { X86::VMOVAPSZrr, X86::VMOVAPSZrm, TB_ALIGN_64 },
812 { X86::VMOVDQA32Zrr, X86::VMOVDQA32Zrm, TB_ALIGN_64 },
813 { X86::VMOVDQA64Zrr, X86::VMOVDQA64Zrm, TB_ALIGN_64 },
814 { X86::VMOVDQU8Zrr, X86::VMOVDQU8Zrm, 0 },
815 { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zrm, 0 },
816 { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zrm, 0 },
817 { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zrm, 0 },
818 { X86::VMOVUPDZrr, X86::VMOVUPDZrm, 0 },
819 { X86::VMOVUPSZrr, X86::VMOVUPSZrm, 0 },
820 { X86::VPABSDZrr, X86::VPABSDZrm, 0 },
821 { X86::VPABSQZrr, X86::VPABSQZrm, 0 },
822 { X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE },
823 { X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE },
824
825 // AVX-512 foldable instructions (256-bit versions)
826 { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 },
827 { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 },
828 { X86::VMOVDQA32Z256rr, X86::VMOVDQA32Z256rm, TB_ALIGN_32 },
829 { X86::VMOVDQA64Z256rr, X86::VMOVDQA64Z256rm, TB_ALIGN_32 },
830 { X86::VMOVDQU8Z256rr, X86::VMOVDQU8Z256rm, 0 },
831 { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256rm, 0 },
832 { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256rm, 0 },
833 { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256rm, 0 },
834 { X86::VMOVUPDZ256rr, X86::VMOVUPDZ256rm, 0 },
835 { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 },
836 { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE },
837 { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE },
838
839 // AVX-512 foldable instructions (256-bit versions)
840 { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 },
841 { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 },
842 { X86::VMOVDQA32Z128rr, X86::VMOVDQA32Z128rm, TB_ALIGN_16 },
843 { X86::VMOVDQA64Z128rr, X86::VMOVDQA64Z128rm, TB_ALIGN_16 },
844 { X86::VMOVDQU8Z128rr, X86::VMOVDQU8Z128rm, 0 },
845 { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128rm, 0 },
846 { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128rm, 0 },
847 { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128rm, 0 },
848 { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 },
849 { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 },
850 { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE },
851
852 // F16C foldable instructions
853 { X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 },
854 { X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 },
855
856 // AES foldable instructions
857 { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 },
858 { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 },
859 { X86::VAESIMCrr, X86::VAESIMCrm, 0 },
860 { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
861 };
862
863 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable1); i != e; ++i) {
864 unsigned RegOp = MemoryFoldTable1[i].RegOp;
865 unsigned MemOp = MemoryFoldTable1[i].MemOp;
866 unsigned Flags = MemoryFoldTable1[i].Flags;
867 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
868 RegOp, MemOp,
869 // Index 1, folded load
870 Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
871 }
872
873 static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
874 { X86::ADC32rr, X86::ADC32rm, 0 },
875 { X86::ADC64rr, X86::ADC64rm, 0 },
876 { X86::ADD16rr, X86::ADD16rm, 0 },
877 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
878 { X86::ADD32rr, X86::ADD32rm, 0 },
879 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
880 { X86::ADD64rr, X86::ADD64rm, 0 },
881 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
882 { X86::ADD8rr, X86::ADD8rm, 0 },
883 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
884 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
885 { X86::ADDSDrr, X86::ADDSDrm, 0 },
886 { X86::ADDSDrr_Int, X86::ADDSDrm_Int, 0 },
887 { X86::ADDSSrr, X86::ADDSSrm, 0 },
888 { X86::ADDSSrr_Int, X86::ADDSSrm_Int, 0 },
889 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
890 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
891 { X86::AND16rr, X86::AND16rm, 0 },
892 { X86::AND32rr, X86::AND32rm, 0 },
893 { X86::AND64rr, X86::AND64rm, 0 },
894 { X86::AND8rr, X86::AND8rm, 0 },
895 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
896 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
897 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
898 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
899 { X86::BLENDPDrri, X86::BLENDPDrmi, TB_ALIGN_16 },
900 { X86::BLENDPSrri, X86::BLENDPSrmi, TB_ALIGN_16 },
901 { X86::BLENDVPDrr0, X86::BLENDVPDrm0, TB_ALIGN_16 },
902 { X86::BLENDVPSrr0, X86::BLENDVPSrm0, TB_ALIGN_16 },
903 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
904 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
905 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
906 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
907 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
908 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
909 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
910 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
911 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
912 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
913 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
914 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
915 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
916 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
917 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
918 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
919 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
920 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
921 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
922 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
923 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
924 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
925 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
926 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
927 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
928 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
929 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
930 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
931 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
932 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
933 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
934 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
935 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
936 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
937 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
938 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
939 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
940 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
941 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
942 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
943 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
944 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
945 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
946 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
947 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
948 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
949 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
950 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
951 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
952 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
953 { X86::CMPSDrr, X86::CMPSDrm, 0 },
954 { X86::CMPSSrr, X86::CMPSSrm, 0 },
955 { X86::CRC32r32r32, X86::CRC32r32m32, 0 },
956 { X86::CRC32r64r64, X86::CRC32r64m64, 0 },
957 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
958 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
959 { X86::DIVSDrr, X86::DIVSDrm, 0 },
960 { X86::DIVSDrr_Int, X86::DIVSDrm_Int, 0 },
961 { X86::DIVSSrr, X86::DIVSSrm, 0 },
962 { X86::DIVSSrr_Int, X86::DIVSSrm_Int, 0 },
963 { X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 },
964 { X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 },
965
966 // FIXME: We should not be folding Fs* scalar loads into vector
967 // instructions because the vector instructions require vector-sized
968 // loads. Lowering should create vector-sized instructions (the Fv*
969 // variants below) to allow load folding.
970 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
971 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
972 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
973 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
974 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
975 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
976 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
977 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
978
979 { X86::FvANDNPDrr, X86::FvANDNPDrm, TB_ALIGN_16 },
980 { X86::FvANDNPSrr, X86::FvANDNPSrm, TB_ALIGN_16 },
981 { X86::FvANDPDrr, X86::FvANDPDrm, TB_ALIGN_16 },
982 { X86::FvANDPSrr, X86::FvANDPSrm, TB_ALIGN_16 },
983 { X86::FvORPDrr, X86::FvORPDrm, TB_ALIGN_16 },
984 { X86::FvORPSrr, X86::FvORPSrm, TB_ALIGN_16 },
985 { X86::FvXORPDrr, X86::FvXORPDrm, TB_ALIGN_16 },
986 { X86::FvXORPSrr, X86::FvXORPSrm, TB_ALIGN_16 },
987 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
988 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
989 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
990 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
991 { X86::IMUL16rr, X86::IMUL16rm, 0 },
992 { X86::IMUL32rr, X86::IMUL32rm, 0 },
993 { X86::IMUL64rr, X86::IMUL64rm, 0 },
994 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
995 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
996 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
997 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
998 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
999 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
1000 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
1001 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
1002 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
1003 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
1004 { X86::MAXSDrr, X86::MAXSDrm, 0 },
1005 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
1006 { X86::MAXSSrr, X86::MAXSSrm, 0 },
1007 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
1008 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
1009 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
1010 { X86::MINSDrr, X86::MINSDrm, 0 },
1011 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
1012 { X86::MINSSrr, X86::MINSSrm, 0 },
1013 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
1014 { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
1015 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
1016 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
1017 { X86::MULSDrr, X86::MULSDrm, 0 },
1018 { X86::MULSDrr_Int, X86::MULSDrm_Int, 0 },
1019 { X86::MULSSrr, X86::MULSSrm, 0 },
1020 { X86::MULSSrr_Int, X86::MULSSrm_Int, 0 },
1021 { X86::OR16rr, X86::OR16rm, 0 },
1022 { X86::OR32rr, X86::OR32rm, 0 },
1023 { X86::OR64rr, X86::OR64rm, 0 },
1024 { X86::OR8rr, X86::OR8rm, 0 },
1025 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
1026 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
1027 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
1028 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
1029 { X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
1030 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
1031 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
1032 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
1033 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
1034 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
1035 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
1036 { X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
1037 { X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
1038 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
1039 { X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
1040 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
1041 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
1042 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
1043 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
1044 { X86::PBLENDVBrr0, X86::PBLENDVBrm0, TB_ALIGN_16 },
1045 { X86::PBLENDWrri, X86::PBLENDWrmi, TB_ALIGN_16 },
1046 { X86::PCLMULQDQrr, X86::PCLMULQDQrm, TB_ALIGN_16 },
1047 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
1048 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
1049 { X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
1050 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
1051 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
1052 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
1053 { X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
1054 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
1055 { X86::PHADDDrr, X86::PHADDDrm, TB_ALIGN_16 },
1056 { X86::PHADDWrr, X86::PHADDWrm, TB_ALIGN_16 },
1057 { X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
1058 { X86::PHSUBDrr, X86::PHSUBDrm, TB_ALIGN_16 },
1059 { X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
1060 { X86::PHSUBWrr, X86::PHSUBWrm, TB_ALIGN_16 },
1061 { X86::PINSRBrr, X86::PINSRBrm, 0 },
1062 { X86::PINSRDrr, X86::PINSRDrm, 0 },
1063 { X86::PINSRQrr, X86::PINSRQrm, 0 },
1064 { X86::PINSRWrri, X86::PINSRWrmi, 0 },
1065 { X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
1066 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
1067 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
1068 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
1069 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
1070 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
1071 { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 },
1072 { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 },
1073 { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 },
1074 { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 },
1075 { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 },
1076 { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 },
1077 { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 },
1078 { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 },
1079 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
1080 { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
1081 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
1082 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
1083 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
1084 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
1085 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
1086 { X86::PORrr, X86::PORrm, TB_ALIGN_16 },
1087 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
1088 { X86::PSHUFBrr, X86::PSHUFBrm, TB_ALIGN_16 },
1089 { X86::PSIGNBrr, X86::PSIGNBrm, TB_ALIGN_16 },
1090 { X86::PSIGNWrr, X86::PSIGNWrm, TB_ALIGN_16 },
1091 { X86::PSIGNDrr, X86::PSIGNDrm, TB_ALIGN_16 },
1092 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
1093 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
1094 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
1095 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
1096 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
1097 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
1098 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
1099 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
1100 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
1101 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
1102 { X86::PSUBQrr, X86::PSUBQrm, TB_ALIGN_16 },
1103 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
1104 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
1105 { X86::PSUBUSBrr, X86::PSUBUSBrm, TB_ALIGN_16 },
1106 { X86::PSUBUSWrr, X86::PSUBUSWrm, TB_ALIGN_16 },
1107 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
1108 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
1109 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
1110 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
1111 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
1112 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
1113 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
1114 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
1115 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
1116 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
1117 { X86::SBB32rr, X86::SBB32rm, 0 },
1118 { X86::SBB64rr, X86::SBB64rm, 0 },
1119 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
1120 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
1121 { X86::SUB16rr, X86::SUB16rm, 0 },
1122 { X86::SUB32rr, X86::SUB32rm, 0 },
1123 { X86::SUB64rr, X86::SUB64rm, 0 },
1124 { X86::SUB8rr, X86::SUB8rm, 0 },
1125 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
1126 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
1127 { X86::SUBSDrr, X86::SUBSDrm, 0 },
1128 { X86::SUBSDrr_Int, X86::SUBSDrm_Int, 0 },
1129 { X86::SUBSSrr, X86::SUBSSrm, 0 },
1130 { X86::SUBSSrr_Int, X86::SUBSSrm_Int, 0 },
1131 // FIXME: TEST*rr -> swapped operand of TEST*mr.
1132 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
1133 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
1134 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
1135 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
1136 { X86::XOR16rr, X86::XOR16rm, 0 },
1137 { X86::XOR32rr, X86::XOR32rm, 0 },
1138 { X86::XOR64rr, X86::XOR64rm, 0 },
1139 { X86::XOR8rr, X86::XOR8rm, 0 },
1140 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
1141 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
1142
1143 // MMX version of foldable instructions
1144 { X86::MMX_CVTPI2PSirr, X86::MMX_CVTPI2PSirm, 0 },
1145 { X86::MMX_PACKSSDWirr, X86::MMX_PACKSSDWirm, 0 },
1146 { X86::MMX_PACKSSWBirr, X86::MMX_PACKSSWBirm, 0 },
1147 { X86::MMX_PACKUSWBirr, X86::MMX_PACKUSWBirm, 0 },
1148 { X86::MMX_PADDBirr, X86::MMX_PADDBirm, 0 },
1149 { X86::MMX_PADDDirr, X86::MMX_PADDDirm, 0 },
1150 { X86::MMX_PADDQirr, X86::MMX_PADDQirm, 0 },
1151 { X86::MMX_PADDSBirr, X86::MMX_PADDSBirm, 0 },
1152 { X86::MMX_PADDSWirr, X86::MMX_PADDSWirm, 0 },
1153 { X86::MMX_PADDUSBirr, X86::MMX_PADDUSBirm, 0 },
1154 { X86::MMX_PADDUSWirr, X86::MMX_PADDUSWirm, 0 },
1155 { X86::MMX_PADDWirr, X86::MMX_PADDWirm, 0 },
1156 { X86::MMX_PALIGNR64irr, X86::MMX_PALIGNR64irm, 0 },
1157 { X86::MMX_PANDNirr, X86::MMX_PANDNirm, 0 },
1158 { X86::MMX_PANDirr, X86::MMX_PANDirm, 0 },
1159 { X86::MMX_PAVGBirr, X86::MMX_PAVGBirm, 0 },
1160 { X86::MMX_PAVGWirr, X86::MMX_PAVGWirm, 0 },
1161 { X86::MMX_PCMPEQBirr, X86::MMX_PCMPEQBirm, 0 },
1162 { X86::MMX_PCMPEQDirr, X86::MMX_PCMPEQDirm, 0 },
1163 { X86::MMX_PCMPEQWirr, X86::MMX_PCMPEQWirm, 0 },
1164 { X86::MMX_PCMPGTBirr, X86::MMX_PCMPGTBirm, 0 },
1165 { X86::MMX_PCMPGTDirr, X86::MMX_PCMPGTDirm, 0 },
1166 { X86::MMX_PCMPGTWirr, X86::MMX_PCMPGTWirm, 0 },
1167 { X86::MMX_PHADDSWrr64, X86::MMX_PHADDSWrm64, 0 },
1168 { X86::MMX_PHADDWrr64, X86::MMX_PHADDWrm64, 0 },
1169 { X86::MMX_PHADDrr64, X86::MMX_PHADDrm64, 0 },
1170 { X86::MMX_PHSUBDrr64, X86::MMX_PHSUBDrm64, 0 },
1171 { X86::MMX_PHSUBSWrr64, X86::MMX_PHSUBSWrm64, 0 },
1172 { X86::MMX_PHSUBWrr64, X86::MMX_PHSUBWrm64, 0 },
1173 { X86::MMX_PINSRWirri, X86::MMX_PINSRWirmi, 0 },
1174 { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
1175 { X86::MMX_PMADDWDirr, X86::MMX_PMADDWDirm, 0 },
1176 { X86::MMX_PMAXSWirr, X86::MMX_PMAXSWirm, 0 },
1177 { X86::MMX_PMAXUBirr, X86::MMX_PMAXUBirm, 0 },
1178 { X86::MMX_PMINSWirr, X86::MMX_PMINSWirm, 0 },
1179 { X86::MMX_PMINUBirr, X86::MMX_PMINUBirm, 0 },
1180 { X86::MMX_PMULHRSWrr64, X86::MMX_PMULHRSWrm64, 0 },
1181 { X86::MMX_PMULHUWirr, X86::MMX_PMULHUWirm, 0 },
1182 { X86::MMX_PMULHWirr, X86::MMX_PMULHWirm, 0 },
1183 { X86::MMX_PMULLWirr, X86::MMX_PMULLWirm, 0 },
1184 { X86::MMX_PMULUDQirr, X86::MMX_PMULUDQirm, 0 },
1185 { X86::MMX_PORirr, X86::MMX_PORirm, 0 },
1186 { X86::MMX_PSADBWirr, X86::MMX_PSADBWirm, 0 },
1187 { X86::MMX_PSHUFBrr64, X86::MMX_PSHUFBrm64, 0 },
1188 { X86::MMX_PSIGNBrr64, X86::MMX_PSIGNBrm64, 0 },
1189 { X86::MMX_PSIGNDrr64, X86::MMX_PSIGNDrm64, 0 },
1190 { X86::MMX_PSIGNWrr64, X86::MMX_PSIGNWrm64, 0 },
1191 { X86::MMX_PSLLDrr, X86::MMX_PSLLDrm, 0 },
1192 { X86::MMX_PSLLQrr, X86::MMX_PSLLQrm, 0 },
1193 { X86::MMX_PSLLWrr, X86::MMX_PSLLWrm, 0 },
1194 { X86::MMX_PSRADrr, X86::MMX_PSRADrm, 0 },
1195 { X86::MMX_PSRAWrr, X86::MMX_PSRAWrm, 0 },
1196 { X86::MMX_PSRLDrr, X86::MMX_PSRLDrm, 0 },
1197 { X86::MMX_PSRLQrr, X86::MMX_PSRLQrm, 0 },
1198 { X86::MMX_PSRLWrr, X86::MMX_PSRLWrm, 0 },
1199 { X86::MMX_PSUBBirr, X86::MMX_PSUBBirm, 0 },
1200 { X86::MMX_PSUBDirr, X86::MMX_PSUBDirm, 0 },
1201 { X86::MMX_PSUBQirr, X86::MMX_PSUBQirm, 0 },
1202 { X86::MMX_PSUBSBirr, X86::MMX_PSUBSBirm, 0 },
1203 { X86::MMX_PSUBSWirr, X86::MMX_PSUBSWirm, 0 },
1204 { X86::MMX_PSUBUSBirr, X86::MMX_PSUBUSBirm, 0 },
1205 { X86::MMX_PSUBUSWirr, X86::MMX_PSUBUSWirm, 0 },
1206 { X86::MMX_PSUBWirr, X86::MMX_PSUBWirm, 0 },
1207 { X86::MMX_PUNPCKHBWirr, X86::MMX_PUNPCKHBWirm, 0 },
1208 { X86::MMX_PUNPCKHDQirr, X86::MMX_PUNPCKHDQirm, 0 },
1209 { X86::MMX_PUNPCKHWDirr, X86::MMX_PUNPCKHWDirm, 0 },
1210 { X86::MMX_PUNPCKLBWirr, X86::MMX_PUNPCKLBWirm, 0 },
1211 { X86::MMX_PUNPCKLDQirr, X86::MMX_PUNPCKLDQirm, 0 },
1212 { X86::MMX_PUNPCKLWDirr, X86::MMX_PUNPCKLWDirm, 0 },
1213 { X86::MMX_PXORirr, X86::MMX_PXORirm, 0 },
1214
1215 // 3DNow! version of foldable instructions
1216 { X86::PAVGUSBrr, X86::PAVGUSBrm, 0 },
1217 { X86::PFACCrr, X86::PFACCrm, 0 },
1218 { X86::PFADDrr, X86::PFADDrm, 0 },
1219 { X86::PFCMPEQrr, X86::PFCMPEQrm, 0 },
1220 { X86::PFCMPGErr, X86::PFCMPGErm, 0 },
1221 { X86::PFCMPGTrr, X86::PFCMPGTrm, 0 },
1222 { X86::PFMAXrr, X86::PFMAXrm, 0 },
1223 { X86::PFMINrr, X86::PFMINrm, 0 },
1224 { X86::PFMULrr, X86::PFMULrm, 0 },
1225 { X86::PFNACCrr, X86::PFNACCrm, 0 },
1226 { X86::PFPNACCrr, X86::PFPNACCrm, 0 },
1227 { X86::PFRCPIT1rr, X86::PFRCPIT1rm, 0 },
1228 { X86::PFRCPIT2rr, X86::PFRCPIT2rm, 0 },
1229 { X86::PFRSQIT1rr, X86::PFRSQIT1rm, 0 },
1230 { X86::PFSUBrr, X86::PFSUBrm, 0 },
1231 { X86::PFSUBRrr, X86::PFSUBRrm, 0 },
1232 { X86::PMULHRWrr, X86::PMULHRWrm, 0 },
1233
1234 // AVX 128-bit versions of foldable instructions
1235 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
1236 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
1237 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
1238 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
1239 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
1240 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
1241 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
1242 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
1243 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
1244 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
1245 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
1246 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
1247 { X86::VRCPSSr, X86::VRCPSSm, 0 },
1248 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
1249 { X86::VSQRTSDr, X86::VSQRTSDm, 0 },
1250 { X86::VSQRTSSr, X86::VSQRTSSm, 0 },
1251 { X86::VADDPDrr, X86::VADDPDrm, 0 },
1252 { X86::VADDPSrr, X86::VADDPSrm, 0 },
1253 { X86::VADDSDrr, X86::VADDSDrm, 0 },
1254 { X86::VADDSDrr_Int, X86::VADDSDrm_Int, 0 },
1255 { X86::VADDSSrr, X86::VADDSSrm, 0 },
1256 { X86::VADDSSrr_Int, X86::VADDSSrm_Int, 0 },
1257 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 },
1258 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 },
1259 { X86::VANDNPDrr, X86::VANDNPDrm, 0 },
1260 { X86::VANDNPSrr, X86::VANDNPSrm, 0 },
1261 { X86::VANDPDrr, X86::VANDPDrm, 0 },
1262 { X86::VANDPSrr, X86::VANDPSrm, 0 },
1263 { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 },
1264 { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 },
1265 { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 },
1266 { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 },
1267 { X86::VCMPPDrri, X86::VCMPPDrmi, 0 },
1268 { X86::VCMPPSrri, X86::VCMPPSrmi, 0 },
1269 { X86::VCMPSDrr, X86::VCMPSDrm, 0 },
1270 { X86::VCMPSSrr, X86::VCMPSSrm, 0 },
1271 { X86::VDIVPDrr, X86::VDIVPDrm, 0 },
1272 { X86::VDIVPSrr, X86::VDIVPSrm, 0 },
1273 { X86::VDIVSDrr, X86::VDIVSDrm, 0 },
1274 { X86::VDIVSDrr_Int, X86::VDIVSDrm_Int, 0 },
1275 { X86::VDIVSSrr, X86::VDIVSSrm, 0 },
1276 { X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, 0 },
1277 { X86::VDPPDrri, X86::VDPPDrmi, 0 },
1278 { X86::VDPPSrri, X86::VDPPSrmi, 0 },
1279 // Do not fold VFs* loads because there are no scalar load variants for
1280 // these instructions. When folded, the load is required to be 128-bits, so
1281 // the load size would not match.
1282 { X86::VFvANDNPDrr, X86::VFvANDNPDrm, 0 },
1283 { X86::VFvANDNPSrr, X86::VFvANDNPSrm, 0 },
1284 { X86::VFvANDPDrr, X86::VFvANDPDrm, 0 },
1285 { X86::VFvANDPSrr, X86::VFvANDPSrm, 0 },
1286 { X86::VFvORPDrr, X86::VFvORPDrm, 0 },
1287 { X86::VFvORPSrr, X86::VFvORPSrm, 0 },
1288 { X86::VFvXORPDrr, X86::VFvXORPDrm, 0 },
1289 { X86::VFvXORPSrr, X86::VFvXORPSrm, 0 },
1290 { X86::VHADDPDrr, X86::VHADDPDrm, 0 },
1291 { X86::VHADDPSrr, X86::VHADDPSrm, 0 },
1292 { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 },
1293 { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 },
1294 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
1295 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
1296 { X86::VMAXPDrr, X86::VMAXPDrm, 0 },
1297 { X86::VMAXPSrr, X86::VMAXPSrm, 0 },
1298 { X86::VMAXSDrr, X86::VMAXSDrm, 0 },
1299 { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 },
1300 { X86::VMAXSSrr, X86::VMAXSSrm, 0 },
1301 { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 },
1302 { X86::VMINPDrr, X86::VMINPDrm, 0 },
1303 { X86::VMINPSrr, X86::VMINPSrm, 0 },
1304 { X86::VMINSDrr, X86::VMINSDrm, 0 },
1305 { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 },
1306 { X86::VMINSSrr, X86::VMINSSrm, 0 },
1307 { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 },
1308 { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 },
1309 { X86::VMULPDrr, X86::VMULPDrm, 0 },
1310 { X86::VMULPSrr, X86::VMULPSrm, 0 },
1311 { X86::VMULSDrr, X86::VMULSDrm, 0 },
1312 { X86::VMULSDrr_Int, X86::VMULSDrm_Int, 0 },
1313 { X86::VMULSSrr, X86::VMULSSrm, 0 },
1314 { X86::VMULSSrr_Int, X86::VMULSSrm_Int, 0 },
1315 { X86::VORPDrr, X86::VORPDrm, 0 },
1316 { X86::VORPSrr, X86::VORPSrm, 0 },
1317 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 },
1318 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 },
1319 { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 },
1320 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 },
1321 { X86::VPADDBrr, X86::VPADDBrm, 0 },
1322 { X86::VPADDDrr, X86::VPADDDrm, 0 },
1323 { X86::VPADDQrr, X86::VPADDQrm, 0 },
1324 { X86::VPADDSBrr, X86::VPADDSBrm, 0 },
1325 { X86::VPADDSWrr, X86::VPADDSWrm, 0 },
1326 { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 },
1327 { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 },
1328 { X86::VPADDWrr, X86::VPADDWrm, 0 },
1329 { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 },
1330 { X86::VPANDNrr, X86::VPANDNrm, 0 },
1331 { X86::VPANDrr, X86::VPANDrm, 0 },
1332 { X86::VPAVGBrr, X86::VPAVGBrm, 0 },
1333 { X86::VPAVGWrr, X86::VPAVGWrm, 0 },
1334 { X86::VPBLENDVBrr, X86::VPBLENDVBrm, 0 },
1335 { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 },
1336 { X86::VPCLMULQDQrr, X86::VPCLMULQDQrm, 0 },
1337 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 },
1338 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 },
1339 { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 },
1340 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 },
1341 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 },
1342 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 },
1343 { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 },
1344 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 },
1345 { X86::VPHADDDrr, X86::VPHADDDrm, 0 },
1346 { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 },
1347 { X86::VPHADDWrr, X86::VPHADDWrm, 0 },
1348 { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 },
1349 { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 },
1350 { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 },
1351 { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 },
1352 { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 },
1353 { X86::VPINSRBrr, X86::VPINSRBrm, 0 },
1354 { X86::VPINSRDrr, X86::VPINSRDrm, 0 },
1355 { X86::VPINSRQrr, X86::VPINSRQrm, 0 },
1356 { X86::VPINSRWrri, X86::VPINSRWrmi, 0 },
1357 { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 },
1358 { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 },
1359 { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 },
1360 { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 },
1361 { X86::VPMINSWrr, X86::VPMINSWrm, 0 },
1362 { X86::VPMINUBrr, X86::VPMINUBrm, 0 },
1363 { X86::VPMINSBrr, X86::VPMINSBrm, 0 },
1364 { X86::VPMINSDrr, X86::VPMINSDrm, 0 },
1365 { X86::VPMINUDrr, X86::VPMINUDrm, 0 },
1366 { X86::VPMINUWrr, X86::VPMINUWrm, 0 },
1367 { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 },
1368 { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 },
1369 { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 },
1370 { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 },
1371 { X86::VPMULDQrr, X86::VPMULDQrm, 0 },
1372 { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 },
1373 { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 },
1374 { X86::VPMULHWrr, X86::VPMULHWrm, 0 },
1375 { X86::VPMULLDrr, X86::VPMULLDrm, 0 },
1376 { X86::VPMULLWrr, X86::VPMULLWrm, 0 },
1377 { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 },
1378 { X86::VPORrr, X86::VPORrm, 0 },
1379 { X86::VPSADBWrr, X86::VPSADBWrm, 0 },
1380 { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 },
1381 { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 },
1382 { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 },
1383 { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 },
1384 { X86::VPSLLDrr, X86::VPSLLDrm, 0 },
1385 { X86::VPSLLQrr, X86::VPSLLQrm, 0 },
1386 { X86::VPSLLWrr, X86::VPSLLWrm, 0 },
1387 { X86::VPSRADrr, X86::VPSRADrm, 0 },
1388 { X86::VPSRAWrr, X86::VPSRAWrm, 0 },
1389 { X86::VPSRLDrr, X86::VPSRLDrm, 0 },
1390 { X86::VPSRLQrr, X86::VPSRLQrm, 0 },
1391 { X86::VPSRLWrr, X86::VPSRLWrm, 0 },
1392 { X86::VPSUBBrr, X86::VPSUBBrm, 0 },
1393 { X86::VPSUBDrr, X86::VPSUBDrm, 0 },
1394 { X86::VPSUBQrr, X86::VPSUBQrm, 0 },
1395 { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 },
1396 { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 },
1397 { X86::VPSUBUSBrr, X86::VPSUBUSBrm, 0 },
1398 { X86::VPSUBUSWrr, X86::VPSUBUSWrm, 0 },
1399 { X86::VPSUBWrr, X86::VPSUBWrm, 0 },
1400 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 },
1401 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 },
1402 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 },
1403 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 },
1404 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 },
1405 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 },
1406 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 },
1407 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 },
1408 { X86::VPXORrr, X86::VPXORrm, 0 },
1409 { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 },
1410 { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 },
1411 { X86::VSUBPDrr, X86::VSUBPDrm, 0 },
1412 { X86::VSUBPSrr, X86::VSUBPSrm, 0 },
1413 { X86::VSUBSDrr, X86::VSUBSDrm, 0 },
1414 { X86::VSUBSDrr_Int, X86::VSUBSDrm_Int, 0 },
1415 { X86::VSUBSSrr, X86::VSUBSSrm, 0 },
1416 { X86::VSUBSSrr_Int, X86::VSUBSSrm_Int, 0 },
1417 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 },
1418 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 },
1419 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 },
1420 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 },
1421 { X86::VXORPDrr, X86::VXORPDrm, 0 },
1422 { X86::VXORPSrr, X86::VXORPSrm, 0 },
1423
1424 // AVX 256-bit foldable instructions
1425 { X86::VADDPDYrr, X86::VADDPDYrm, 0 },
1426 { X86::VADDPSYrr, X86::VADDPSYrm, 0 },
1427 { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 },
1428 { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 },
1429 { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 },
1430 { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 },
1431 { X86::VANDPDYrr, X86::VANDPDYrm, 0 },
1432 { X86::VANDPSYrr, X86::VANDPSYrm, 0 },
1433 { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 },
1434 { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 },
1435 { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 },
1436 { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 },
1437 { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 },
1438 { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 },
1439 { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 },
1440 { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 },
1441 { X86::VDPPSYrri, X86::VDPPSYrmi, 0 },
1442 { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 },
1443 { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 },
1444 { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 },
1445 { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 },
1446 { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 },
1447 { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 },
1448 { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 },
1449 { X86::VMINPDYrr, X86::VMINPDYrm, 0 },
1450 { X86::VMINPSYrr, X86::VMINPSYrm, 0 },
1451 { X86::VMULPDYrr, X86::VMULPDYrm, 0 },
1452 { X86::VMULPSYrr, X86::VMULPSYrm, 0 },
1453 { X86::VORPDYrr, X86::VORPDYrm, 0 },
1454 { X86::VORPSYrr, X86::VORPSYrm, 0 },
1455 { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 },
1456 { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 },
1457 { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 },
1458 { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 },
1459 { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 },
1460 { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 },
1461 { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 },
1462 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 },
1463 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 },
1464 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 },
1465 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 },
1466 { X86::VXORPDYrr, X86::VXORPDYrm, 0 },
1467 { X86::VXORPSYrr, X86::VXORPSYrm, 0 },
1468
1469 // AVX2 foldable instructions
1470 { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 },
1471 { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 },
1472 { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 },
1473 { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 },
1474 { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 },
1475 { X86::VPADDBYrr, X86::VPADDBYrm, 0 },
1476 { X86::VPADDDYrr, X86::VPADDDYrm, 0 },
1477 { X86::VPADDQYrr, X86::VPADDQYrm, 0 },
1478 { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 },
1479 { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 },
1480 { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 },
1481 { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 },
1482 { X86::VPADDWYrr, X86::VPADDWYrm, 0 },
1483 { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 },
1484 { X86::VPANDNYrr, X86::VPANDNYrm, 0 },
1485 { X86::VPANDYrr, X86::VPANDYrm, 0 },
1486 { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 },
1487 { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 },
1488 { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 },
1489 { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 },
1490 { X86::VPBLENDVBYrr, X86::VPBLENDVBYrm, 0 },
1491 { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 },
1492 { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 },
1493 { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 },
1494 { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 },
1495 { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 },
1496 { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 },
1497 { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 },
1498 { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 },
1499 { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 },
1500 { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 },
1501 { X86::VPERMDYrr, X86::VPERMDYrm, 0 },
1502 { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 },
1503 { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 },
1504 { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 },
1505 { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 },
1506 { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 },
1507 { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 },
1508 { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 },
1509 { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 },
1510 { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 },
1511 { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 },
1512 { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 },
1513 { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 },
1514 { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 },
1515 { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 },
1516 { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 },
1517 { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 },
1518 { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 },
1519 { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 },
1520 { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 },
1521 { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 },
1522 { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 },
1523 { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 },
1524 { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 },
1525 { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 },
1526 { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 },
1527 { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 },
1528 { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 },
1529 { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 },
1530 { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 },
1531 { X86::VPORYrr, X86::VPORYrm, 0 },
1532 { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 },
1533 { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 },
1534 { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 },
1535 { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 },
1536 { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 },
1537 { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 },
1538 { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 },
1539 { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 },
1540 { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 },
1541 { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 },
1542 { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 },
1543 { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 },
1544 { X86::VPSRADYrr, X86::VPSRADYrm, 0 },
1545 { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 },
1546 { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 },
1547 { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 },
1548 { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 },
1549 { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 },
1550 { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 },
1551 { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 },
1552 { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 },
1553 { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 },
1554 { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 },
1555 { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 },
1556 { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 },
1557 { X86::VPSUBQYrr, X86::VPSUBQYrm, 0 },
1558 { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 },
1559 { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 },
1560 { X86::VPSUBUSBYrr, X86::VPSUBUSBYrm, 0 },
1561 { X86::VPSUBUSWYrr, X86::VPSUBUSWYrm, 0 },
1562 { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 },
1563 { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 },
1564 { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 },
1565 { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 },
1566 { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 },
1567 { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 },
1568 { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 },
1569 { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 },
1570 { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 },
1571 { X86::VPXORYrr, X86::VPXORYrm, 0 },
1572
1573 // FMA4 foldable patterns
1574 { X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 },
1575 { X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 },
1576 { X86::VFMADDPS4rr, X86::VFMADDPS4mr, 0 },
1577 { X86::VFMADDPD4rr, X86::VFMADDPD4mr, 0 },
1578 { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, 0 },
1579 { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, 0 },
1580 { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 },
1581 { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 },
1582 { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, 0 },
1583 { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, 0 },
1584 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, 0 },
1585 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, 0 },
1586 { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 },
1587 { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 },
1588 { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, 0 },
1589 { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, 0 },
1590 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, 0 },
1591 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, 0 },
1592 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 },
1593 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 },
1594 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, 0 },
1595 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, 0 },
1596 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, 0 },
1597 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, 0 },
1598 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, 0 },
1599 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, 0 },
1600 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, 0 },
1601 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, 0 },
1602 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, 0 },
1603 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, 0 },
1604 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, 0 },
1605 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, 0 },
1606
1607 // XOP foldable instructions
1608 { X86::VPCMOVrr, X86::VPCMOVmr, 0 },
1609 { X86::VPCMOVrrY, X86::VPCMOVmrY, 0 },
1610 { X86::VPCOMBri, X86::VPCOMBmi, 0 },
1611 { X86::VPCOMDri, X86::VPCOMDmi, 0 },
1612 { X86::VPCOMQri, X86::VPCOMQmi, 0 },
1613 { X86::VPCOMWri, X86::VPCOMWmi, 0 },
1614 { X86::VPCOMUBri, X86::VPCOMUBmi, 0 },
1615 { X86::VPCOMUDri, X86::VPCOMUDmi, 0 },
1616 { X86::VPCOMUQri, X86::VPCOMUQmi, 0 },
1617 { X86::VPCOMUWri, X86::VPCOMUWmi, 0 },
1618 { X86::VPERMIL2PDrr, X86::VPERMIL2PDmr, 0 },
1619 { X86::VPERMIL2PDrrY, X86::VPERMIL2PDmrY, 0 },
1620 { X86::VPERMIL2PSrr, X86::VPERMIL2PSmr, 0 },
1621 { X86::VPERMIL2PSrrY, X86::VPERMIL2PSmrY, 0 },
1622 { X86::VPMACSDDrr, X86::VPMACSDDrm, 0 },
1623 { X86::VPMACSDQHrr, X86::VPMACSDQHrm, 0 },
1624 { X86::VPMACSDQLrr, X86::VPMACSDQLrm, 0 },
1625 { X86::VPMACSSDDrr, X86::VPMACSSDDrm, 0 },
1626 { X86::VPMACSSDQHrr, X86::VPMACSSDQHrm, 0 },
1627 { X86::VPMACSSDQLrr, X86::VPMACSSDQLrm, 0 },
1628 { X86::VPMACSSWDrr, X86::VPMACSSWDrm, 0 },
1629 { X86::VPMACSSWWrr, X86::VPMACSSWWrm, 0 },
1630 { X86::VPMACSWDrr, X86::VPMACSWDrm, 0 },
1631 { X86::VPMACSWWrr, X86::VPMACSWWrm, 0 },
1632 { X86::VPMADCSSWDrr, X86::VPMADCSSWDrm, 0 },
1633 { X86::VPMADCSWDrr, X86::VPMADCSWDrm, 0 },
1634 { X86::VPPERMrr, X86::VPPERMmr, 0 },
1635 { X86::VPROTBrr, X86::VPROTBrm, 0 },
1636 { X86::VPROTDrr, X86::VPROTDrm, 0 },
1637 { X86::VPROTQrr, X86::VPROTQrm, 0 },
1638 { X86::VPROTWrr, X86::VPROTWrm, 0 },
1639 { X86::VPSHABrr, X86::VPSHABrm, 0 },
1640 { X86::VPSHADrr, X86::VPSHADrm, 0 },
1641 { X86::VPSHAQrr, X86::VPSHAQrm, 0 },
1642 { X86::VPSHAWrr, X86::VPSHAWrm, 0 },
1643 { X86::VPSHLBrr, X86::VPSHLBrm, 0 },
1644 { X86::VPSHLDrr, X86::VPSHLDrm, 0 },
1645 { X86::VPSHLQrr, X86::VPSHLQrm, 0 },
1646 { X86::VPSHLWrr, X86::VPSHLWrm, 0 },
1647
1648 // BMI/BMI2 foldable instructions
1649 { X86::ANDN32rr, X86::ANDN32rm, 0 },
1650 { X86::ANDN64rr, X86::ANDN64rm, 0 },
1651 { X86::MULX32rr, X86::MULX32rm, 0 },
1652 { X86::MULX64rr, X86::MULX64rm, 0 },
1653 { X86::PDEP32rr, X86::PDEP32rm, 0 },
1654 { X86::PDEP64rr, X86::PDEP64rm, 0 },
1655 { X86::PEXT32rr, X86::PEXT32rm, 0 },
1656 { X86::PEXT64rr, X86::PEXT64rm, 0 },
1657
1658 // AVX-512 foldable instructions
1659 { X86::VADDPSZrr, X86::VADDPSZrm, 0 },
1660 { X86::VADDPDZrr, X86::VADDPDZrm, 0 },
1661 { X86::VSUBPSZrr, X86::VSUBPSZrm, 0 },
1662 { X86::VSUBPDZrr, X86::VSUBPDZrm, 0 },
1663 { X86::VMULPSZrr, X86::VMULPSZrm, 0 },
1664 { X86::VMULPDZrr, X86::VMULPDZrm, 0 },
1665 { X86::VDIVPSZrr, X86::VDIVPSZrm, 0 },
1666 { X86::VDIVPDZrr, X86::VDIVPDZrm, 0 },
1667 { X86::VMINPSZrr, X86::VMINPSZrm, 0 },
1668 { X86::VMINPDZrr, X86::VMINPDZrm, 0 },
1669 { X86::VMAXPSZrr, X86::VMAXPSZrm, 0 },
1670 { X86::VMAXPDZrr, X86::VMAXPDZrm, 0 },
1671 { X86::VPADDDZrr, X86::VPADDDZrm, 0 },
1672 { X86::VPADDQZrr, X86::VPADDQZrm, 0 },
1673 { X86::VPERMPDZri, X86::VPERMPDZmi, 0 },
1674 { X86::VPERMPSZrr, X86::VPERMPSZrm, 0 },
1675 { X86::VPMAXSDZrr, X86::VPMAXSDZrm, 0 },
1676 { X86::VPMAXSQZrr, X86::VPMAXSQZrm, 0 },
1677 { X86::VPMAXUDZrr, X86::VPMAXUDZrm, 0 },
1678 { X86::VPMAXUQZrr, X86::VPMAXUQZrm, 0 },
1679 { X86::VPMINSDZrr, X86::VPMINSDZrm, 0 },
1680 { X86::VPMINSQZrr, X86::VPMINSQZrm, 0 },
1681 { X86::VPMINUDZrr, X86::VPMINUDZrm, 0 },
1682 { X86::VPMINUQZrr, X86::VPMINUQZrm, 0 },
1683 { X86::VPMULDQZrr, X86::VPMULDQZrm, 0 },
1684 { X86::VPSLLVDZrr, X86::VPSLLVDZrm, 0 },
1685 { X86::VPSLLVQZrr, X86::VPSLLVQZrm, 0 },
1686 { X86::VPSRAVDZrr, X86::VPSRAVDZrm, 0 },
1687 { X86::VPSRLVDZrr, X86::VPSRLVDZrm, 0 },
1688 { X86::VPSRLVQZrr, X86::VPSRLVQZrm, 0 },
1689 { X86::VPSUBDZrr, X86::VPSUBDZrm, 0 },
1690 { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 },
1691 { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 },
1692 { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 },
1693 { X86::VALIGNQrri, X86::VALIGNQrmi, 0 },
1694 { X86::VALIGNDrri, X86::VALIGNDrmi, 0 },
1695 { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 },
1696 { X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE },
1697 { X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE },
1698
1699 // AVX-512{F,VL} foldable instructions
1700 { X86::VBROADCASTSSZ256rkz, X86::VBROADCASTSSZ256mkz, TB_NO_REVERSE },
1701 { X86::VBROADCASTSDZ256rkz, X86::VBROADCASTSDZ256mkz, TB_NO_REVERSE },
1702 { X86::VBROADCASTSSZ128rkz, X86::VBROADCASTSSZ128mkz, TB_NO_REVERSE },
1703
1704 // AVX-512{F,VL} foldable instructions
1705 { X86::VADDPDZ128rr, X86::VADDPDZ128rm, 0 },
1706 { X86::VADDPDZ256rr, X86::VADDPDZ256rm, 0 },
1707 { X86::VADDPSZ128rr, X86::VADDPSZ128rm, 0 },
1708 { X86::VADDPSZ256rr, X86::VADDPSZ256rm, 0 },
1709
1710 // AES foldable instructions
1711 { X86::AESDECLASTrr, X86::AESDECLASTrm, TB_ALIGN_16 },
1712 { X86::AESDECrr, X86::AESDECrm, TB_ALIGN_16 },
1713 { X86::AESENCLASTrr, X86::AESENCLASTrm, TB_ALIGN_16 },
1714 { X86::AESENCrr, X86::AESENCrm, TB_ALIGN_16 },
1715 { X86::VAESDECLASTrr, X86::VAESDECLASTrm, 0 },
1716 { X86::VAESDECrr, X86::VAESDECrm, 0 },
1717 { X86::VAESENCLASTrr, X86::VAESENCLASTrm, 0 },
1718 { X86::VAESENCrr, X86::VAESENCrm, 0 },
1719
1720 // SHA foldable instructions
1721 { X86::SHA1MSG1rr, X86::SHA1MSG1rm, TB_ALIGN_16 },
1722 { X86::SHA1MSG2rr, X86::SHA1MSG2rm, TB_ALIGN_16 },
1723 { X86::SHA1NEXTErr, X86::SHA1NEXTErm, TB_ALIGN_16 },
1724 { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 },
1725 { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 },
1726 { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 },
1727 { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 }
1728 };
1729
1730 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2); i != e; ++i) {
1731 unsigned RegOp = MemoryFoldTable2[i].RegOp;
1732 unsigned MemOp = MemoryFoldTable2[i].MemOp;
1733 unsigned Flags = MemoryFoldTable2[i].Flags;
1734 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1735 RegOp, MemOp,
1736 // Index 2, folded load
1737 Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1738 }
1739
1740 static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
1741 // FMA foldable instructions
1742 { X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE },
1743 { X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE },
1744 { X86::VFMADDSSr132r, X86::VFMADDSSr132m, TB_ALIGN_NONE },
1745 { X86::VFMADDSDr132r, X86::VFMADDSDr132m, TB_ALIGN_NONE },
1746 { X86::VFMADDSSr213r, X86::VFMADDSSr213m, TB_ALIGN_NONE },
1747 { X86::VFMADDSDr213r, X86::VFMADDSDr213m, TB_ALIGN_NONE },
1748
1749 { X86::VFMADDPSr231r, X86::VFMADDPSr231m, TB_ALIGN_NONE },
1750 { X86::VFMADDPDr231r, X86::VFMADDPDr231m, TB_ALIGN_NONE },
1751 { X86::VFMADDPSr132r, X86::VFMADDPSr132m, TB_ALIGN_NONE },
1752 { X86::VFMADDPDr132r, X86::VFMADDPDr132m, TB_ALIGN_NONE },
1753 { X86::VFMADDPSr213r, X86::VFMADDPSr213m, TB_ALIGN_NONE },
1754 { X86::VFMADDPDr213r, X86::VFMADDPDr213m, TB_ALIGN_NONE },
1755 { X86::VFMADDPSr231rY, X86::VFMADDPSr231mY, TB_ALIGN_NONE },
1756 { X86::VFMADDPDr231rY, X86::VFMADDPDr231mY, TB_ALIGN_NONE },
1757 { X86::VFMADDPSr132rY, X86::VFMADDPSr132mY, TB_ALIGN_NONE },
1758 { X86::VFMADDPDr132rY, X86::VFMADDPDr132mY, TB_ALIGN_NONE },
1759 { X86::VFMADDPSr213rY, X86::VFMADDPSr213mY, TB_ALIGN_NONE },
1760 { X86::VFMADDPDr213rY, X86::VFMADDPDr213mY, TB_ALIGN_NONE },
1761
1762 { X86::VFNMADDSSr231r, X86::VFNMADDSSr231m, TB_ALIGN_NONE },
1763 { X86::VFNMADDSDr231r, X86::VFNMADDSDr231m, TB_ALIGN_NONE },
1764 { X86::VFNMADDSSr132r, X86::VFNMADDSSr132m, TB_ALIGN_NONE },
1765 { X86::VFNMADDSDr132r, X86::VFNMADDSDr132m, TB_ALIGN_NONE },
1766 { X86::VFNMADDSSr213r, X86::VFNMADDSSr213m, TB_ALIGN_NONE },
1767 { X86::VFNMADDSDr213r, X86::VFNMADDSDr213m, TB_ALIGN_NONE },
1768
1769 { X86::VFNMADDPSr231r, X86::VFNMADDPSr231m, TB_ALIGN_NONE },
1770 { X86::VFNMADDPDr231r, X86::VFNMADDPDr231m, TB_ALIGN_NONE },
1771 { X86::VFNMADDPSr132r, X86::VFNMADDPSr132m, TB_ALIGN_NONE },
1772 { X86::VFNMADDPDr132r, X86::VFNMADDPDr132m, TB_ALIGN_NONE },
1773 { X86::VFNMADDPSr213r, X86::VFNMADDPSr213m, TB_ALIGN_NONE },
1774 { X86::VFNMADDPDr213r, X86::VFNMADDPDr213m, TB_ALIGN_NONE },
1775 { X86::VFNMADDPSr231rY, X86::VFNMADDPSr231mY, TB_ALIGN_NONE },
1776 { X86::VFNMADDPDr231rY, X86::VFNMADDPDr231mY, TB_ALIGN_NONE },
1777 { X86::VFNMADDPSr132rY, X86::VFNMADDPSr132mY, TB_ALIGN_NONE },
1778 { X86::VFNMADDPDr132rY, X86::VFNMADDPDr132mY, TB_ALIGN_NONE },
1779 { X86::VFNMADDPSr213rY, X86::VFNMADDPSr213mY, TB_ALIGN_NONE },
1780 { X86::VFNMADDPDr213rY, X86::VFNMADDPDr213mY, TB_ALIGN_NONE },
1781
1782 { X86::VFMSUBSSr231r, X86::VFMSUBSSr231m, TB_ALIGN_NONE },
1783 { X86::VFMSUBSDr231r, X86::VFMSUBSDr231m, TB_ALIGN_NONE },
1784 { X86::VFMSUBSSr132r, X86::VFMSUBSSr132m, TB_ALIGN_NONE },
1785 { X86::VFMSUBSDr132r, X86::VFMSUBSDr132m, TB_ALIGN_NONE },
1786 { X86::VFMSUBSSr213r, X86::VFMSUBSSr213m, TB_ALIGN_NONE },
1787 { X86::VFMSUBSDr213r, X86::VFMSUBSDr213m, TB_ALIGN_NONE },
1788
1789 { X86::VFMSUBPSr231r, X86::VFMSUBPSr231m, TB_ALIGN_NONE },
1790 { X86::VFMSUBPDr231r, X86::VFMSUBPDr231m, TB_ALIGN_NONE },
1791 { X86::VFMSUBPSr132r, X86::VFMSUBPSr132m, TB_ALIGN_NONE },
1792 { X86::VFMSUBPDr132r, X86::VFMSUBPDr132m, TB_ALIGN_NONE },
1793 { X86::VFMSUBPSr213r, X86::VFMSUBPSr213m, TB_ALIGN_NONE },
1794 { X86::VFMSUBPDr213r, X86::VFMSUBPDr213m, TB_ALIGN_NONE },
1795 { X86::VFMSUBPSr231rY, X86::VFMSUBPSr231mY, TB_ALIGN_NONE },
1796 { X86::VFMSUBPDr231rY, X86::VFMSUBPDr231mY, TB_ALIGN_NONE },
1797 { X86::VFMSUBPSr132rY, X86::VFMSUBPSr132mY, TB_ALIGN_NONE },
1798 { X86::VFMSUBPDr132rY, X86::VFMSUBPDr132mY, TB_ALIGN_NONE },
1799 { X86::VFMSUBPSr213rY, X86::VFMSUBPSr213mY, TB_ALIGN_NONE },
1800 { X86::VFMSUBPDr213rY, X86::VFMSUBPDr213mY, TB_ALIGN_NONE },
1801
1802 { X86::VFNMSUBSSr231r, X86::VFNMSUBSSr231m, TB_ALIGN_NONE },
1803 { X86::VFNMSUBSDr231r, X86::VFNMSUBSDr231m, TB_ALIGN_NONE },
1804 { X86::VFNMSUBSSr132r, X86::VFNMSUBSSr132m, TB_ALIGN_NONE },
1805 { X86::VFNMSUBSDr132r, X86::VFNMSUBSDr132m, TB_ALIGN_NONE },
1806 { X86::VFNMSUBSSr213r, X86::VFNMSUBSSr213m, TB_ALIGN_NONE },
1807 { X86::VFNMSUBSDr213r, X86::VFNMSUBSDr213m, TB_ALIGN_NONE },
1808
1809 { X86::VFNMSUBPSr231r, X86::VFNMSUBPSr231m, TB_ALIGN_NONE },
1810 { X86::VFNMSUBPDr231r, X86::VFNMSUBPDr231m, TB_ALIGN_NONE },
1811 { X86::VFNMSUBPSr132r, X86::VFNMSUBPSr132m, TB_ALIGN_NONE },
1812 { X86::VFNMSUBPDr132r, X86::VFNMSUBPDr132m, TB_ALIGN_NONE },
1813 { X86::VFNMSUBPSr213r, X86::VFNMSUBPSr213m, TB_ALIGN_NONE },
1814 { X86::VFNMSUBPDr213r, X86::VFNMSUBPDr213m, TB_ALIGN_NONE },
1815 { X86::VFNMSUBPSr231rY, X86::VFNMSUBPSr231mY, TB_ALIGN_NONE },
1816 { X86::VFNMSUBPDr231rY, X86::VFNMSUBPDr231mY, TB_ALIGN_NONE },
1817 { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr132mY, TB_ALIGN_NONE },
1818 { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr132mY, TB_ALIGN_NONE },
1819 { X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr213mY, TB_ALIGN_NONE },
1820 { X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr213mY, TB_ALIGN_NONE },
1821
1822 { X86::VFMADDSUBPSr231r, X86::VFMADDSUBPSr231m, TB_ALIGN_NONE },
1823 { X86::VFMADDSUBPDr231r, X86::VFMADDSUBPDr231m, TB_ALIGN_NONE },
1824 { X86::VFMADDSUBPSr132r, X86::VFMADDSUBPSr132m, TB_ALIGN_NONE },
1825 { X86::VFMADDSUBPDr132r, X86::VFMADDSUBPDr132m, TB_ALIGN_NONE },
1826 { X86::VFMADDSUBPSr213r, X86::VFMADDSUBPSr213m, TB_ALIGN_NONE },
1827 { X86::VFMADDSUBPDr213r, X86::VFMADDSUBPDr213m, TB_ALIGN_NONE },
1828 { X86::VFMADDSUBPSr231rY, X86::VFMADDSUBPSr231mY, TB_ALIGN_NONE },
1829 { X86::VFMADDSUBPDr231rY, X86::VFMADDSUBPDr231mY, TB_ALIGN_NONE },
1830 { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr132mY, TB_ALIGN_NONE },
1831 { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr132mY, TB_ALIGN_NONE },
1832 { X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr213mY, TB_ALIGN_NONE },
1833 { X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr213mY, TB_ALIGN_NONE },
1834
1835 { X86::VFMSUBADDPSr231r, X86::VFMSUBADDPSr231m, TB_ALIGN_NONE },
1836 { X86::VFMSUBADDPDr231r, X86::VFMSUBADDPDr231m, TB_ALIGN_NONE },
1837 { X86::VFMSUBADDPSr132r, X86::VFMSUBADDPSr132m, TB_ALIGN_NONE },
1838 { X86::VFMSUBADDPDr132r, X86::VFMSUBADDPDr132m, TB_ALIGN_NONE },
1839 { X86::VFMSUBADDPSr213r, X86::VFMSUBADDPSr213m, TB_ALIGN_NONE },
1840 { X86::VFMSUBADDPDr213r, X86::VFMSUBADDPDr213m, TB_ALIGN_NONE },
1841 { X86::VFMSUBADDPSr231rY, X86::VFMSUBADDPSr231mY, TB_ALIGN_NONE },
1842 { X86::VFMSUBADDPDr231rY, X86::VFMSUBADDPDr231mY, TB_ALIGN_NONE },
1843 { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr132mY, TB_ALIGN_NONE },
1844 { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr132mY, TB_ALIGN_NONE },
1845 { X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr213mY, TB_ALIGN_NONE },
1846 { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE },
1847
1848 // FMA4 foldable patterns
1849 { X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 },
1850 { X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 },
1851 { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 },
1852 { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 },
1853 { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 },
1854 { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 },
1855 { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 },
1856 { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 },
1857 { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 },
1858 { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 },
1859 { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 },
1860 { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 },
1861 { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 },
1862 { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 },
1863 { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 },
1864 { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 },
1865 { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 },
1866 { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 },
1867 { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 },
1868 { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 },
1869 { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 },
1870 { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 },
1871 { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 },
1872 { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 },
1873 { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 },
1874 { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 },
1875 { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 },
1876 { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 },
1877 { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 },
1878 { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 },
1879 { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 },
1880 { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 },
1881
1882 // XOP foldable instructions
1883 { X86::VPCMOVrr, X86::VPCMOVrm, 0 },
1884 { X86::VPCMOVrrY, X86::VPCMOVrmY, 0 },
1885 { X86::VPERMIL2PDrr, X86::VPERMIL2PDrm, 0 },
1886 { X86::VPERMIL2PDrrY, X86::VPERMIL2PDrmY, 0 },
1887 { X86::VPERMIL2PSrr, X86::VPERMIL2PSrm, 0 },
1888 { X86::VPERMIL2PSrrY, X86::VPERMIL2PSrmY, 0 },
1889 { X86::VPPERMrr, X86::VPPERMrm, 0 },
1890
1891 // AVX-512 VPERMI instructions with 3 source operands.
1892 { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 },
1893 { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 },
1894 { X86::VPERMI2PSrr, X86::VPERMI2PSrm, 0 },
1895 { X86::VPERMI2PDrr, X86::VPERMI2PDrm, 0 },
1896 { X86::VBLENDMPDZrr, X86::VBLENDMPDZrm, 0 },
1897 { X86::VBLENDMPSZrr, X86::VBLENDMPSZrm, 0 },
1898 { X86::VPBLENDMDZrr, X86::VPBLENDMDZrm, 0 },
1899 { X86::VPBLENDMQZrr, X86::VPBLENDMQZrm, 0 },
1900 { X86::VBROADCASTSSZrk, X86::VBROADCASTSSZmk, TB_NO_REVERSE },
1901 { X86::VBROADCASTSDZrk, X86::VBROADCASTSDZmk, TB_NO_REVERSE },
1902 { X86::VBROADCASTSSZ256rk, X86::VBROADCASTSSZ256mk, TB_NO_REVERSE },
1903 { X86::VBROADCASTSDZ256rk, X86::VBROADCASTSDZ256mk, TB_NO_REVERSE },
1904 { X86::VBROADCASTSSZ128rk, X86::VBROADCASTSSZ128mk, TB_NO_REVERSE },
1905 // AVX-512 arithmetic instructions
1906 { X86::VADDPSZrrkz, X86::VADDPSZrmkz, 0 },
1907 { X86::VADDPDZrrkz, X86::VADDPDZrmkz, 0 },
1908 { X86::VSUBPSZrrkz, X86::VSUBPSZrmkz, 0 },
1909 { X86::VSUBPDZrrkz, X86::VSUBPDZrmkz, 0 },
1910 { X86::VMULPSZrrkz, X86::VMULPSZrmkz, 0 },
1911 { X86::VMULPDZrrkz, X86::VMULPDZrmkz, 0 },
1912 { X86::VDIVPSZrrkz, X86::VDIVPSZrmkz, 0 },
1913 { X86::VDIVPDZrrkz, X86::VDIVPDZrmkz, 0 },
1914 { X86::VMINPSZrrkz, X86::VMINPSZrmkz, 0 },
1915 { X86::VMINPDZrrkz, X86::VMINPDZrmkz, 0 },
1916 { X86::VMAXPSZrrkz, X86::VMAXPSZrmkz, 0 },
1917 { X86::VMAXPDZrrkz, X86::VMAXPDZrmkz, 0 },
1918 // AVX-512{F,VL} arithmetic instructions 256-bit
1919 { X86::VADDPSZ256rrkz, X86::VADDPSZ256rmkz, 0 },
1920 { X86::VADDPDZ256rrkz, X86::VADDPDZ256rmkz, 0 },
1921 { X86::VSUBPSZ256rrkz, X86::VSUBPSZ256rmkz, 0 },
1922 { X86::VSUBPDZ256rrkz, X86::VSUBPDZ256rmkz, 0 },
1923 { X86::VMULPSZ256rrkz, X86::VMULPSZ256rmkz, 0 },
1924 { X86::VMULPDZ256rrkz, X86::VMULPDZ256rmkz, 0 },
1925 { X86::VDIVPSZ256rrkz, X86::VDIVPSZ256rmkz, 0 },
1926 { X86::VDIVPDZ256rrkz, X86::VDIVPDZ256rmkz, 0 },
1927 { X86::VMINPSZ256rrkz, X86::VMINPSZ256rmkz, 0 },
1928 { X86::VMINPDZ256rrkz, X86::VMINPDZ256rmkz, 0 },
1929 { X86::VMAXPSZ256rrkz, X86::VMAXPSZ256rmkz, 0 },
1930 { X86::VMAXPDZ256rrkz, X86::VMAXPDZ256rmkz, 0 },
1931 // AVX-512{F,VL} arithmetic instructions 128-bit
1932 { X86::VADDPSZ128rrkz, X86::VADDPSZ128rmkz, 0 },
1933 { X86::VADDPDZ128rrkz, X86::VADDPDZ128rmkz, 0 },
1934 { X86::VSUBPSZ128rrkz, X86::VSUBPSZ128rmkz, 0 },
1935 { X86::VSUBPDZ128rrkz, X86::VSUBPDZ128rmkz, 0 },
1936 { X86::VMULPSZ128rrkz, X86::VMULPSZ128rmkz, 0 },
1937 { X86::VMULPDZ128rrkz, X86::VMULPDZ128rmkz, 0 },
1938 { X86::VDIVPSZ128rrkz, X86::VDIVPSZ128rmkz, 0 },
1939 { X86::VDIVPDZ128rrkz, X86::VDIVPDZ128rmkz, 0 },
1940 { X86::VMINPSZ128rrkz, X86::VMINPSZ128rmkz, 0 },
1941 { X86::VMINPDZ128rrkz, X86::VMINPDZ128rmkz, 0 },
1942 { X86::VMAXPSZ128rrkz, X86::VMAXPSZ128rmkz, 0 },
1943 { X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 }
1944 };
1945
1946 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable3); i != e; ++i) {
1947 unsigned RegOp = MemoryFoldTable3[i].RegOp;
1948 unsigned MemOp = MemoryFoldTable3[i].MemOp;
1949 unsigned Flags = MemoryFoldTable3[i].Flags;
1950 AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1951 RegOp, MemOp,
1952 // Index 3, folded load
1953 Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1954 }
1955
1956 static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
1957 // AVX-512 foldable instructions
1958 { X86::VADDPSZrrk, X86::VADDPSZrmk, 0 },
1959 { X86::VADDPDZrrk, X86::VADDPDZrmk, 0 },
1960 { X86::VSUBPSZrrk, X86::VSUBPSZrmk, 0 },
1961 { X86::VSUBPDZrrk, X86::VSUBPDZrmk, 0 },
1962 { X86::VMULPSZrrk, X86::VMULPSZrmk, 0 },
1963 { X86::VMULPDZrrk, X86::VMULPDZrmk, 0 },
1964 { X86::VDIVPSZrrk, X86::VDIVPSZrmk, 0 },
1965 { X86::VDIVPDZrrk, X86::VDIVPDZrmk, 0 },
1966 { X86::VMINPSZrrk, X86::VMINPSZrmk, 0 },
1967 { X86::VMINPDZrrk, X86::VMINPDZrmk, 0 },
1968 { X86::VMAXPSZrrk, X86::VMAXPSZrmk, 0 },
1969 { X86::VMAXPDZrrk, X86::VMAXPDZrmk, 0 },
1970 // AVX-512{F,VL} foldable instructions 256-bit
1971 { X86::VADDPSZ256rrk, X86::VADDPSZ256rmk, 0 },
1972 { X86::VADDPDZ256rrk, X86::VADDPDZ256rmk, 0 },
1973 { X86::VSUBPSZ256rrk, X86::VSUBPSZ256rmk, 0 },
1974 { X86::VSUBPDZ256rrk, X86::VSUBPDZ256rmk, 0 },
1975 { X86::VMULPSZ256rrk, X86::VMULPSZ256rmk, 0 },
1976 { X86::VMULPDZ256rrk, X86::VMULPDZ256rmk, 0 },
1977 { X86::VDIVPSZ256rrk, X86::VDIVPSZ256rmk, 0 },
1978 { X86::VDIVPDZ256rrk, X86::VDIVPDZ256rmk, 0 },
1979 { X86::VMINPSZ256rrk, X86::VMINPSZ256rmk, 0 },
1980 { X86::VMINPDZ256rrk, X86::VMINPDZ256rmk, 0 },
1981 { X86::VMAXPSZ256rrk, X86::VMAXPSZ256rmk, 0 },
1982 { X86::VMAXPDZ256rrk, X86::VMAXPDZ256rmk, 0 },
1983 // AVX-512{F,VL} foldable instructions 128-bit
1984 { X86::VADDPSZ128rrk, X86::VADDPSZ128rmk, 0 },
1985 { X86::VADDPDZ128rrk, X86::VADDPDZ128rmk, 0 },
1986 { X86::VSUBPSZ128rrk, X86::VSUBPSZ128rmk, 0 },
1987 { X86::VSUBPDZ128rrk, X86::VSUBPDZ128rmk, 0 },
1988 { X86::VMULPSZ128rrk, X86::VMULPSZ128rmk, 0 },
1989 { X86::VMULPDZ128rrk, X86::VMULPDZ128rmk, 0 },
1990 { X86::VDIVPSZ128rrk, X86::VDIVPSZ128rmk, 0 },
1991 { X86::VDIVPDZ128rrk, X86::VDIVPDZ128rmk, 0 },
1992 { X86::VMINPSZ128rrk, X86::VMINPSZ128rmk, 0 },
1993 { X86::VMINPDZ128rrk, X86::VMINPDZ128rmk, 0 },
1994 { X86::VMAXPSZ128rrk, X86::VMAXPSZ128rmk, 0 },
1995 { X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 }
1996 };
1997
1998 for (unsigned i = 0, e = array_lengthof(MemoryFoldTable4); i != e; ++i) {
1999 unsigned RegOp = MemoryFoldTable4[i].RegOp;
2000 unsigned MemOp = MemoryFoldTable4[i].MemOp;
2001 unsigned Flags = MemoryFoldTable4[i].Flags;
2002 AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
2003 RegOp, MemOp,
2004 // Index 4, folded load
2005 Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
2006 }
2007 }
2008
2009 void
AddTableEntry(RegOp2MemOpTableType & R2MTable,MemOp2RegOpTableType & M2RTable,unsigned RegOp,unsigned MemOp,unsigned Flags)2010 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
2011 MemOp2RegOpTableType &M2RTable,
2012 unsigned RegOp, unsigned MemOp, unsigned Flags) {
2013 if ((Flags & TB_NO_FORWARD) == 0) {
2014 assert(!R2MTable.count(RegOp) && "Duplicate entry!");
2015 R2MTable[RegOp] = std::make_pair(MemOp, Flags);
2016 }
2017 if ((Flags & TB_NO_REVERSE) == 0) {
2018 assert(!M2RTable.count(MemOp) &&
2019 "Duplicated entries in unfolding maps?");
2020 M2RTable[MemOp] = std::make_pair(RegOp, Flags);
2021 }
2022 }
2023
2024 bool
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx) const2025 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
2026 unsigned &SrcReg, unsigned &DstReg,
2027 unsigned &SubIdx) const {
2028 switch (MI.getOpcode()) {
2029 default: break;
2030 case X86::MOVSX16rr8:
2031 case X86::MOVZX16rr8:
2032 case X86::MOVSX32rr8:
2033 case X86::MOVZX32rr8:
2034 case X86::MOVSX64rr8:
2035 if (!Subtarget.is64Bit())
2036 // It's not always legal to reference the low 8-bit of the larger
2037 // register in 32-bit mode.
2038 return false;
2039 case X86::MOVSX32rr16:
2040 case X86::MOVZX32rr16:
2041 case X86::MOVSX64rr16:
2042 case X86::MOVSX64rr32: {
2043 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
2044 // Be conservative.
2045 return false;
2046 SrcReg = MI.getOperand(1).getReg();
2047 DstReg = MI.getOperand(0).getReg();
2048 switch (MI.getOpcode()) {
2049 default: llvm_unreachable("Unreachable!");
2050 case X86::MOVSX16rr8:
2051 case X86::MOVZX16rr8:
2052 case X86::MOVSX32rr8:
2053 case X86::MOVZX32rr8:
2054 case X86::MOVSX64rr8:
2055 SubIdx = X86::sub_8bit;
2056 break;
2057 case X86::MOVSX32rr16:
2058 case X86::MOVZX32rr16:
2059 case X86::MOVSX64rr16:
2060 SubIdx = X86::sub_16bit;
2061 break;
2062 case X86::MOVSX64rr32:
2063 SubIdx = X86::sub_32bit;
2064 break;
2065 }
2066 return true;
2067 }
2068 }
2069 return false;
2070 }
2071
getSPAdjust(const MachineInstr * MI) const2072 int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const {
2073 const MachineFunction *MF = MI->getParent()->getParent();
2074 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2075
2076 if (MI->getOpcode() == getCallFrameSetupOpcode() ||
2077 MI->getOpcode() == getCallFrameDestroyOpcode()) {
2078 unsigned StackAlign = TFI->getStackAlignment();
2079 int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign *
2080 StackAlign;
2081
2082 SPAdj -= MI->getOperand(1).getImm();
2083
2084 if (MI->getOpcode() == getCallFrameSetupOpcode())
2085 return SPAdj;
2086 else
2087 return -SPAdj;
2088 }
2089
2090 // To know whether a call adjusts the stack, we need information
2091 // that is bound to the following ADJCALLSTACKUP pseudo.
2092 // Look for the next ADJCALLSTACKUP that follows the call.
2093 if (MI->isCall()) {
2094 const MachineBasicBlock* MBB = MI->getParent();
2095 auto I = ++MachineBasicBlock::const_iterator(MI);
2096 for (auto E = MBB->end(); I != E; ++I) {
2097 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
2098 I->isCall())
2099 break;
2100 }
2101
2102 // If we could not find a frame destroy opcode, then it has already
2103 // been simplified, so we don't care.
2104 if (I->getOpcode() != getCallFrameDestroyOpcode())
2105 return 0;
2106
2107 return -(I->getOperand(1).getImm());
2108 }
2109
2110 // Currently handle only PUSHes we can reasonably expect to see
2111 // in call sequences
2112 switch (MI->getOpcode()) {
2113 default:
2114 return 0;
2115 case X86::PUSH32i8:
2116 case X86::PUSH32r:
2117 case X86::PUSH32rmm:
2118 case X86::PUSH32rmr:
2119 case X86::PUSHi32:
2120 return 4;
2121 }
2122 }
2123
2124 /// Return true and the FrameIndex if the specified
2125 /// operand and follow operands form a reference to the stack frame.
isFrameOperand(const MachineInstr * MI,unsigned int Op,int & FrameIndex) const2126 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
2127 int &FrameIndex) const {
2128 if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
2129 MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
2130 MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
2131 MI->getOperand(Op+X86::AddrDisp).isImm() &&
2132 MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
2133 MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
2134 MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
2135 FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
2136 return true;
2137 }
2138 return false;
2139 }
2140
isFrameLoadOpcode(int Opcode)2141 static bool isFrameLoadOpcode(int Opcode) {
2142 switch (Opcode) {
2143 default:
2144 return false;
2145 case X86::MOV8rm:
2146 case X86::MOV16rm:
2147 case X86::MOV32rm:
2148 case X86::MOV64rm:
2149 case X86::LD_Fp64m:
2150 case X86::MOVSSrm:
2151 case X86::MOVSDrm:
2152 case X86::MOVAPSrm:
2153 case X86::MOVAPDrm:
2154 case X86::MOVDQArm:
2155 case X86::VMOVSSrm:
2156 case X86::VMOVSDrm:
2157 case X86::VMOVAPSrm:
2158 case X86::VMOVAPDrm:
2159 case X86::VMOVDQArm:
2160 case X86::VMOVUPSYrm:
2161 case X86::VMOVAPSYrm:
2162 case X86::VMOVUPDYrm:
2163 case X86::VMOVAPDYrm:
2164 case X86::VMOVDQUYrm:
2165 case X86::VMOVDQAYrm:
2166 case X86::MMX_MOVD64rm:
2167 case X86::MMX_MOVQ64rm:
2168 case X86::VMOVAPSZrm:
2169 case X86::VMOVUPSZrm:
2170 return true;
2171 }
2172 }
2173
isFrameStoreOpcode(int Opcode)2174 static bool isFrameStoreOpcode(int Opcode) {
2175 switch (Opcode) {
2176 default: break;
2177 case X86::MOV8mr:
2178 case X86::MOV16mr:
2179 case X86::MOV32mr:
2180 case X86::MOV64mr:
2181 case X86::ST_FpP64m:
2182 case X86::MOVSSmr:
2183 case X86::MOVSDmr:
2184 case X86::MOVAPSmr:
2185 case X86::MOVAPDmr:
2186 case X86::MOVDQAmr:
2187 case X86::VMOVSSmr:
2188 case X86::VMOVSDmr:
2189 case X86::VMOVAPSmr:
2190 case X86::VMOVAPDmr:
2191 case X86::VMOVDQAmr:
2192 case X86::VMOVUPSYmr:
2193 case X86::VMOVAPSYmr:
2194 case X86::VMOVUPDYmr:
2195 case X86::VMOVAPDYmr:
2196 case X86::VMOVDQUYmr:
2197 case X86::VMOVDQAYmr:
2198 case X86::VMOVUPSZmr:
2199 case X86::VMOVAPSZmr:
2200 case X86::MMX_MOVD64mr:
2201 case X86::MMX_MOVQ64mr:
2202 case X86::MMX_MOVNTQmr:
2203 return true;
2204 }
2205 return false;
2206 }
2207
isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex) const2208 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
2209 int &FrameIndex) const {
2210 if (isFrameLoadOpcode(MI->getOpcode()))
2211 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
2212 return MI->getOperand(0).getReg();
2213 return 0;
2214 }
2215
isLoadFromStackSlotPostFE(const MachineInstr * MI,int & FrameIndex) const2216 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
2217 int &FrameIndex) const {
2218 if (isFrameLoadOpcode(MI->getOpcode())) {
2219 unsigned Reg;
2220 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
2221 return Reg;
2222 // Check for post-frame index elimination operations
2223 const MachineMemOperand *Dummy;
2224 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
2225 }
2226 return 0;
2227 }
2228
isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex) const2229 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
2230 int &FrameIndex) const {
2231 if (isFrameStoreOpcode(MI->getOpcode()))
2232 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
2233 isFrameOperand(MI, 0, FrameIndex))
2234 return MI->getOperand(X86::AddrNumOperands).getReg();
2235 return 0;
2236 }
2237
isStoreToStackSlotPostFE(const MachineInstr * MI,int & FrameIndex) const2238 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
2239 int &FrameIndex) const {
2240 if (isFrameStoreOpcode(MI->getOpcode())) {
2241 unsigned Reg;
2242 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
2243 return Reg;
2244 // Check for post-frame index elimination operations
2245 const MachineMemOperand *Dummy;
2246 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
2247 }
2248 return 0;
2249 }
2250
2251 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
regIsPICBase(unsigned BaseReg,const MachineRegisterInfo & MRI)2252 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
2253 // Don't waste compile time scanning use-def chains of physregs.
2254 if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
2255 return false;
2256 bool isPICBase = false;
2257 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
2258 E = MRI.def_instr_end(); I != E; ++I) {
2259 MachineInstr *DefMI = &*I;
2260 if (DefMI->getOpcode() != X86::MOVPC32r)
2261 return false;
2262 assert(!isPICBase && "More than one PIC base?");
2263 isPICBase = true;
2264 }
2265 return isPICBase;
2266 }
2267
2268 bool
isReallyTriviallyReMaterializable(const MachineInstr * MI,AliasAnalysis * AA) const2269 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
2270 AliasAnalysis *AA) const {
2271 switch (MI->getOpcode()) {
2272 default: break;
2273 case X86::MOV8rm:
2274 case X86::MOV16rm:
2275 case X86::MOV32rm:
2276 case X86::MOV64rm:
2277 case X86::LD_Fp64m:
2278 case X86::MOVSSrm:
2279 case X86::MOVSDrm:
2280 case X86::MOVAPSrm:
2281 case X86::MOVUPSrm:
2282 case X86::MOVAPDrm:
2283 case X86::MOVDQArm:
2284 case X86::MOVDQUrm:
2285 case X86::VMOVSSrm:
2286 case X86::VMOVSDrm:
2287 case X86::VMOVAPSrm:
2288 case X86::VMOVUPSrm:
2289 case X86::VMOVAPDrm:
2290 case X86::VMOVDQArm:
2291 case X86::VMOVDQUrm:
2292 case X86::VMOVAPSYrm:
2293 case X86::VMOVUPSYrm:
2294 case X86::VMOVAPDYrm:
2295 case X86::VMOVDQAYrm:
2296 case X86::VMOVDQUYrm:
2297 case X86::MMX_MOVD64rm:
2298 case X86::MMX_MOVQ64rm:
2299 case X86::FsVMOVAPSrm:
2300 case X86::FsVMOVAPDrm:
2301 case X86::FsMOVAPSrm:
2302 case X86::FsMOVAPDrm: {
2303 // Loads from constant pools are trivially rematerializable.
2304 if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
2305 MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2306 MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2307 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2308 MI->isInvariantLoad(AA)) {
2309 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
2310 if (BaseReg == 0 || BaseReg == X86::RIP)
2311 return true;
2312 // Allow re-materialization of PIC load.
2313 if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
2314 return false;
2315 const MachineFunction &MF = *MI->getParent()->getParent();
2316 const MachineRegisterInfo &MRI = MF.getRegInfo();
2317 return regIsPICBase(BaseReg, MRI);
2318 }
2319 return false;
2320 }
2321
2322 case X86::LEA32r:
2323 case X86::LEA64r: {
2324 if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2325 MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2326 MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2327 !MI->getOperand(1+X86::AddrDisp).isReg()) {
2328 // lea fi#, lea GV, etc. are all rematerializable.
2329 if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
2330 return true;
2331 unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
2332 if (BaseReg == 0)
2333 return true;
2334 // Allow re-materialization of lea PICBase + x.
2335 const MachineFunction &MF = *MI->getParent()->getParent();
2336 const MachineRegisterInfo &MRI = MF.getRegInfo();
2337 return regIsPICBase(BaseReg, MRI);
2338 }
2339 return false;
2340 }
2341 }
2342
2343 // All other instructions marked M_REMATERIALIZABLE are always trivially
2344 // rematerializable.
2345 return true;
2346 }
2347
isSafeToClobberEFLAGS(MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2348 bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
2349 MachineBasicBlock::iterator I) const {
2350 MachineBasicBlock::iterator E = MBB.end();
2351
2352 // For compile time consideration, if we are not able to determine the
2353 // safety after visiting 4 instructions in each direction, we will assume
2354 // it's not safe.
2355 MachineBasicBlock::iterator Iter = I;
2356 for (unsigned i = 0; Iter != E && i < 4; ++i) {
2357 bool SeenDef = false;
2358 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2359 MachineOperand &MO = Iter->getOperand(j);
2360 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2361 SeenDef = true;
2362 if (!MO.isReg())
2363 continue;
2364 if (MO.getReg() == X86::EFLAGS) {
2365 if (MO.isUse())
2366 return false;
2367 SeenDef = true;
2368 }
2369 }
2370
2371 if (SeenDef)
2372 // This instruction defines EFLAGS, no need to look any further.
2373 return true;
2374 ++Iter;
2375 // Skip over DBG_VALUE.
2376 while (Iter != E && Iter->isDebugValue())
2377 ++Iter;
2378 }
2379
2380 // It is safe to clobber EFLAGS at the end of a block of no successor has it
2381 // live in.
2382 if (Iter == E) {
2383 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
2384 SE = MBB.succ_end(); SI != SE; ++SI)
2385 if ((*SI)->isLiveIn(X86::EFLAGS))
2386 return false;
2387 return true;
2388 }
2389
2390 MachineBasicBlock::iterator B = MBB.begin();
2391 Iter = I;
2392 for (unsigned i = 0; i < 4; ++i) {
2393 // If we make it to the beginning of the block, it's safe to clobber
2394 // EFLAGS iff EFLAGS is not live-in.
2395 if (Iter == B)
2396 return !MBB.isLiveIn(X86::EFLAGS);
2397
2398 --Iter;
2399 // Skip over DBG_VALUE.
2400 while (Iter != B && Iter->isDebugValue())
2401 --Iter;
2402
2403 bool SawKill = false;
2404 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2405 MachineOperand &MO = Iter->getOperand(j);
2406 // A register mask may clobber EFLAGS, but we should still look for a
2407 // live EFLAGS def.
2408 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2409 SawKill = true;
2410 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
2411 if (MO.isDef()) return MO.isDead();
2412 if (MO.isKill()) SawKill = true;
2413 }
2414 }
2415
2416 if (SawKill)
2417 // This instruction kills EFLAGS and doesn't redefine it, so
2418 // there's no need to look further.
2419 return true;
2420 }
2421
2422 // Conservative answer.
2423 return false;
2424 }
2425
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr * Orig,const TargetRegisterInfo & TRI) const2426 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
2427 MachineBasicBlock::iterator I,
2428 unsigned DestReg, unsigned SubIdx,
2429 const MachineInstr *Orig,
2430 const TargetRegisterInfo &TRI) const {
2431 // MOV32r0 is implemented with a xor which clobbers condition code.
2432 // Re-materialize it as movri instructions to avoid side effects.
2433 unsigned Opc = Orig->getOpcode();
2434 if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
2435 DebugLoc DL = Orig->getDebugLoc();
2436 BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
2437 .addImm(0);
2438 } else {
2439 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
2440 MBB.insert(I, MI);
2441 }
2442
2443 MachineInstr *NewMI = std::prev(I);
2444 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
2445 }
2446
2447 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
hasLiveCondCodeDef(MachineInstr * MI)2448 static bool hasLiveCondCodeDef(MachineInstr *MI) {
2449 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2450 MachineOperand &MO = MI->getOperand(i);
2451 if (MO.isReg() && MO.isDef() &&
2452 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
2453 return true;
2454 }
2455 }
2456 return false;
2457 }
2458
2459 /// Check whether the shift count for a machine operand is non-zero.
getTruncatedShiftCount(MachineInstr * MI,unsigned ShiftAmtOperandIdx)2460 inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
2461 unsigned ShiftAmtOperandIdx) {
2462 // The shift count is six bits with the REX.W prefix and five bits without.
2463 unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
2464 unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
2465 return Imm & ShiftCountMask;
2466 }
2467
2468 /// Check whether the given shift count is appropriate
2469 /// can be represented by a LEA instruction.
isTruncatedShiftCountForLEA(unsigned ShAmt)2470 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
2471 // Left shift instructions can be transformed into load-effective-address
2472 // instructions if we can encode them appropriately.
2473 // A LEA instruction utilizes a SIB byte to encode it's scale factor.
2474 // The SIB.scale field is two bits wide which means that we can encode any
2475 // shift amount less than 4.
2476 return ShAmt < 4 && ShAmt > 0;
2477 }
2478
classifyLEAReg(MachineInstr * MI,const MachineOperand & Src,unsigned Opc,bool AllowSP,unsigned & NewSrc,bool & isKill,bool & isUndef,MachineOperand & ImplicitOp) const2479 bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
2480 unsigned Opc, bool AllowSP,
2481 unsigned &NewSrc, bool &isKill, bool &isUndef,
2482 MachineOperand &ImplicitOp) const {
2483 MachineFunction &MF = *MI->getParent()->getParent();
2484 const TargetRegisterClass *RC;
2485 if (AllowSP) {
2486 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
2487 } else {
2488 RC = Opc != X86::LEA32r ?
2489 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
2490 }
2491 unsigned SrcReg = Src.getReg();
2492
2493 // For both LEA64 and LEA32 the register already has essentially the right
2494 // type (32-bit or 64-bit) we may just need to forbid SP.
2495 if (Opc != X86::LEA64_32r) {
2496 NewSrc = SrcReg;
2497 isKill = Src.isKill();
2498 isUndef = Src.isUndef();
2499
2500 if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
2501 !MF.getRegInfo().constrainRegClass(NewSrc, RC))
2502 return false;
2503
2504 return true;
2505 }
2506
2507 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
2508 // another we need to add 64-bit registers to the final MI.
2509 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
2510 ImplicitOp = Src;
2511 ImplicitOp.setImplicit();
2512
2513 NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
2514 MachineBasicBlock::LivenessQueryResult LQR =
2515 MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
2516
2517 switch (LQR) {
2518 case MachineBasicBlock::LQR_Unknown:
2519 // We can't give sane liveness flags to the instruction, abandon LEA
2520 // formation.
2521 return false;
2522 case MachineBasicBlock::LQR_Live:
2523 isKill = MI->killsRegister(SrcReg);
2524 isUndef = false;
2525 break;
2526 default:
2527 // The physreg itself is dead, so we have to use it as an <undef>.
2528 isKill = false;
2529 isUndef = true;
2530 break;
2531 }
2532 } else {
2533 // Virtual register of the wrong class, we have to create a temporary 64-bit
2534 // vreg to feed into the LEA.
2535 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
2536 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
2537 get(TargetOpcode::COPY))
2538 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
2539 .addOperand(Src);
2540
2541 // Which is obviously going to be dead after we're done with it.
2542 isKill = true;
2543 isUndef = false;
2544 }
2545
2546 // We've set all the parameters without issue.
2547 return true;
2548 }
2549
2550 /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
2551 /// LEA to form 3-address code by promoting to a 32-bit superregister and then
2552 /// truncating back down to a 16-bit subregister.
2553 MachineInstr *
convertToThreeAddressWithLEA(unsigned MIOpc,MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI,LiveVariables * LV) const2554 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
2555 MachineFunction::iterator &MFI,
2556 MachineBasicBlock::iterator &MBBI,
2557 LiveVariables *LV) const {
2558 MachineInstr *MI = MBBI;
2559 unsigned Dest = MI->getOperand(0).getReg();
2560 unsigned Src = MI->getOperand(1).getReg();
2561 bool isDead = MI->getOperand(0).isDead();
2562 bool isKill = MI->getOperand(1).isKill();
2563
2564 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
2565 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
2566 unsigned Opc, leaInReg;
2567 if (Subtarget.is64Bit()) {
2568 Opc = X86::LEA64_32r;
2569 leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2570 } else {
2571 Opc = X86::LEA32r;
2572 leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2573 }
2574
2575 // Build and insert into an implicit UNDEF value. This is OK because
2576 // well be shifting and then extracting the lower 16-bits.
2577 // This has the potential to cause partial register stall. e.g.
2578 // movw (%rbp,%rcx,2), %dx
2579 // leal -65(%rdx), %esi
2580 // But testing has shown this *does* help performance in 64-bit mode (at
2581 // least on modern x86 machines).
2582 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
2583 MachineInstr *InsMI =
2584 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2585 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
2586 .addReg(Src, getKillRegState(isKill));
2587
2588 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
2589 get(Opc), leaOutReg);
2590 switch (MIOpc) {
2591 default: llvm_unreachable("Unreachable!");
2592 case X86::SHL16ri: {
2593 unsigned ShAmt = MI->getOperand(2).getImm();
2594 MIB.addReg(0).addImm(1 << ShAmt)
2595 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
2596 break;
2597 }
2598 case X86::INC16r:
2599 addRegOffset(MIB, leaInReg, true, 1);
2600 break;
2601 case X86::DEC16r:
2602 addRegOffset(MIB, leaInReg, true, -1);
2603 break;
2604 case X86::ADD16ri:
2605 case X86::ADD16ri8:
2606 case X86::ADD16ri_DB:
2607 case X86::ADD16ri8_DB:
2608 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
2609 break;
2610 case X86::ADD16rr:
2611 case X86::ADD16rr_DB: {
2612 unsigned Src2 = MI->getOperand(2).getReg();
2613 bool isKill2 = MI->getOperand(2).isKill();
2614 unsigned leaInReg2 = 0;
2615 MachineInstr *InsMI2 = nullptr;
2616 if (Src == Src2) {
2617 // ADD16rr %reg1028<kill>, %reg1028
2618 // just a single insert_subreg.
2619 addRegReg(MIB, leaInReg, true, leaInReg, false);
2620 } else {
2621 if (Subtarget.is64Bit())
2622 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2623 else
2624 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2625 // Build and insert into an implicit UNDEF value. This is OK because
2626 // well be shifting and then extracting the lower 16-bits.
2627 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
2628 InsMI2 =
2629 BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
2630 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2631 .addReg(Src2, getKillRegState(isKill2));
2632 addRegReg(MIB, leaInReg, true, leaInReg2, true);
2633 }
2634 if (LV && isKill2 && InsMI2)
2635 LV->replaceKillInstruction(Src2, MI, InsMI2);
2636 break;
2637 }
2638 }
2639
2640 MachineInstr *NewMI = MIB;
2641 MachineInstr *ExtMI =
2642 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2643 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
2644 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
2645
2646 if (LV) {
2647 // Update live variables
2648 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2649 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2650 if (isKill)
2651 LV->replaceKillInstruction(Src, MI, InsMI);
2652 if (isDead)
2653 LV->replaceKillInstruction(Dest, MI, ExtMI);
2654 }
2655
2656 return ExtMI;
2657 }
2658
2659 /// This method must be implemented by targets that
2660 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
2661 /// may be able to convert a two-address instruction into a true
2662 /// three-address instruction on demand. This allows the X86 target (for
2663 /// example) to convert ADD and SHL instructions into LEA instructions if they
2664 /// would require register copies due to two-addressness.
2665 ///
2666 /// This method returns a null pointer if the transformation cannot be
2667 /// performed, otherwise it returns the new instruction.
2668 ///
2669 MachineInstr *
convertToThreeAddress(MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI,LiveVariables * LV) const2670 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2671 MachineBasicBlock::iterator &MBBI,
2672 LiveVariables *LV) const {
2673 MachineInstr *MI = MBBI;
2674
2675 // The following opcodes also sets the condition code register(s). Only
2676 // convert them to equivalent lea if the condition code register def's
2677 // are dead!
2678 if (hasLiveCondCodeDef(MI))
2679 return nullptr;
2680
2681 MachineFunction &MF = *MI->getParent()->getParent();
2682 // All instructions input are two-addr instructions. Get the known operands.
2683 const MachineOperand &Dest = MI->getOperand(0);
2684 const MachineOperand &Src = MI->getOperand(1);
2685
2686 MachineInstr *NewMI = nullptr;
2687 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
2688 // we have better subtarget support, enable the 16-bit LEA generation here.
2689 // 16-bit LEA is also slow on Core2.
2690 bool DisableLEA16 = true;
2691 bool is64Bit = Subtarget.is64Bit();
2692
2693 unsigned MIOpc = MI->getOpcode();
2694 switch (MIOpc) {
2695 default: return nullptr;
2696 case X86::SHL64ri: {
2697 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2698 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2699 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2700
2701 // LEA can't handle RSP.
2702 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2703 !MF.getRegInfo().constrainRegClass(Src.getReg(),
2704 &X86::GR64_NOSPRegClass))
2705 return nullptr;
2706
2707 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2708 .addOperand(Dest)
2709 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2710 break;
2711 }
2712 case X86::SHL32ri: {
2713 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2714 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2715 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2716
2717 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2718
2719 // LEA can't handle ESP.
2720 bool isKill, isUndef;
2721 unsigned SrcReg;
2722 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2723 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2724 SrcReg, isKill, isUndef, ImplicitOp))
2725 return nullptr;
2726
2727 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2728 .addOperand(Dest)
2729 .addReg(0).addImm(1 << ShAmt)
2730 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2731 .addImm(0).addReg(0);
2732 if (ImplicitOp.getReg() != 0)
2733 MIB.addOperand(ImplicitOp);
2734 NewMI = MIB;
2735
2736 break;
2737 }
2738 case X86::SHL16ri: {
2739 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2740 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2741 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2742
2743 if (DisableLEA16)
2744 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
2745 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2746 .addOperand(Dest)
2747 .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2748 break;
2749 }
2750 case X86::INC64r:
2751 case X86::INC32r: {
2752 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2753 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2754 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2755 bool isKill, isUndef;
2756 unsigned SrcReg;
2757 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2758 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2759 SrcReg, isKill, isUndef, ImplicitOp))
2760 return nullptr;
2761
2762 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2763 .addOperand(Dest)
2764 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2765 if (ImplicitOp.getReg() != 0)
2766 MIB.addOperand(ImplicitOp);
2767
2768 NewMI = addOffset(MIB, 1);
2769 break;
2770 }
2771 case X86::INC16r:
2772 if (DisableLEA16)
2773 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2774 : nullptr;
2775 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2776 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2777 .addOperand(Dest).addOperand(Src), 1);
2778 break;
2779 case X86::DEC64r:
2780 case X86::DEC32r: {
2781 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2782 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2783 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2784
2785 bool isKill, isUndef;
2786 unsigned SrcReg;
2787 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2788 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2789 SrcReg, isKill, isUndef, ImplicitOp))
2790 return nullptr;
2791
2792 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2793 .addOperand(Dest)
2794 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2795 if (ImplicitOp.getReg() != 0)
2796 MIB.addOperand(ImplicitOp);
2797
2798 NewMI = addOffset(MIB, -1);
2799
2800 break;
2801 }
2802 case X86::DEC16r:
2803 if (DisableLEA16)
2804 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2805 : nullptr;
2806 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2807 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2808 .addOperand(Dest).addOperand(Src), -1);
2809 break;
2810 case X86::ADD64rr:
2811 case X86::ADD64rr_DB:
2812 case X86::ADD32rr:
2813 case X86::ADD32rr_DB: {
2814 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2815 unsigned Opc;
2816 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
2817 Opc = X86::LEA64r;
2818 else
2819 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2820
2821 bool isKill, isUndef;
2822 unsigned SrcReg;
2823 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2824 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2825 SrcReg, isKill, isUndef, ImplicitOp))
2826 return nullptr;
2827
2828 const MachineOperand &Src2 = MI->getOperand(2);
2829 bool isKill2, isUndef2;
2830 unsigned SrcReg2;
2831 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2832 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2833 SrcReg2, isKill2, isUndef2, ImplicitOp2))
2834 return nullptr;
2835
2836 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2837 .addOperand(Dest);
2838 if (ImplicitOp.getReg() != 0)
2839 MIB.addOperand(ImplicitOp);
2840 if (ImplicitOp2.getReg() != 0)
2841 MIB.addOperand(ImplicitOp2);
2842
2843 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
2844
2845 // Preserve undefness of the operands.
2846 NewMI->getOperand(1).setIsUndef(isUndef);
2847 NewMI->getOperand(3).setIsUndef(isUndef2);
2848
2849 if (LV && Src2.isKill())
2850 LV->replaceKillInstruction(SrcReg2, MI, NewMI);
2851 break;
2852 }
2853 case X86::ADD16rr:
2854 case X86::ADD16rr_DB: {
2855 if (DisableLEA16)
2856 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2857 : nullptr;
2858 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2859 unsigned Src2 = MI->getOperand(2).getReg();
2860 bool isKill2 = MI->getOperand(2).isKill();
2861 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2862 .addOperand(Dest),
2863 Src.getReg(), Src.isKill(), Src2, isKill2);
2864
2865 // Preserve undefness of the operands.
2866 bool isUndef = MI->getOperand(1).isUndef();
2867 bool isUndef2 = MI->getOperand(2).isUndef();
2868 NewMI->getOperand(1).setIsUndef(isUndef);
2869 NewMI->getOperand(3).setIsUndef(isUndef2);
2870
2871 if (LV && isKill2)
2872 LV->replaceKillInstruction(Src2, MI, NewMI);
2873 break;
2874 }
2875 case X86::ADD64ri32:
2876 case X86::ADD64ri8:
2877 case X86::ADD64ri32_DB:
2878 case X86::ADD64ri8_DB:
2879 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2880 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2881 .addOperand(Dest).addOperand(Src),
2882 MI->getOperand(2).getImm());
2883 break;
2884 case X86::ADD32ri:
2885 case X86::ADD32ri8:
2886 case X86::ADD32ri_DB:
2887 case X86::ADD32ri8_DB: {
2888 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2889 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2890
2891 bool isKill, isUndef;
2892 unsigned SrcReg;
2893 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2894 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2895 SrcReg, isKill, isUndef, ImplicitOp))
2896 return nullptr;
2897
2898 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2899 .addOperand(Dest)
2900 .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2901 if (ImplicitOp.getReg() != 0)
2902 MIB.addOperand(ImplicitOp);
2903
2904 NewMI = addOffset(MIB, MI->getOperand(2).getImm());
2905 break;
2906 }
2907 case X86::ADD16ri:
2908 case X86::ADD16ri8:
2909 case X86::ADD16ri_DB:
2910 case X86::ADD16ri8_DB:
2911 if (DisableLEA16)
2912 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2913 : nullptr;
2914 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2915 NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2916 .addOperand(Dest).addOperand(Src),
2917 MI->getOperand(2).getImm());
2918 break;
2919 }
2920
2921 if (!NewMI) return nullptr;
2922
2923 if (LV) { // Update live variables
2924 if (Src.isKill())
2925 LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2926 if (Dest.isDead())
2927 LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
2928 }
2929
2930 MFI->insert(MBBI, NewMI); // Insert the new inst
2931 return NewMI;
2932 }
2933
2934 /// We have a few instructions that must be hacked on to commute them.
2935 ///
2936 MachineInstr *
commuteInstruction(MachineInstr * MI,bool NewMI) const2937 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
2938 switch (MI->getOpcode()) {
2939 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2940 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2941 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2942 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2943 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2944 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2945 unsigned Opc;
2946 unsigned Size;
2947 switch (MI->getOpcode()) {
2948 default: llvm_unreachable("Unreachable!");
2949 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2950 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2951 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2952 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2953 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2954 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2955 }
2956 unsigned Amt = MI->getOperand(3).getImm();
2957 if (NewMI) {
2958 MachineFunction &MF = *MI->getParent()->getParent();
2959 MI = MF.CloneMachineInstr(MI);
2960 NewMI = false;
2961 }
2962 MI->setDesc(get(Opc));
2963 MI->getOperand(3).setImm(Size-Amt);
2964 return TargetInstrInfo::commuteInstruction(MI, NewMI);
2965 }
2966 case X86::BLENDPDrri:
2967 case X86::BLENDPSrri:
2968 case X86::PBLENDWrri:
2969 case X86::VBLENDPDrri:
2970 case X86::VBLENDPSrri:
2971 case X86::VBLENDPDYrri:
2972 case X86::VBLENDPSYrri:
2973 case X86::VPBLENDDrri:
2974 case X86::VPBLENDWrri:
2975 case X86::VPBLENDDYrri:
2976 case X86::VPBLENDWYrri:{
2977 unsigned Mask;
2978 switch (MI->getOpcode()) {
2979 default: llvm_unreachable("Unreachable!");
2980 case X86::BLENDPDrri: Mask = 0x03; break;
2981 case X86::BLENDPSrri: Mask = 0x0F; break;
2982 case X86::PBLENDWrri: Mask = 0xFF; break;
2983 case X86::VBLENDPDrri: Mask = 0x03; break;
2984 case X86::VBLENDPSrri: Mask = 0x0F; break;
2985 case X86::VBLENDPDYrri: Mask = 0x0F; break;
2986 case X86::VBLENDPSYrri: Mask = 0xFF; break;
2987 case X86::VPBLENDDrri: Mask = 0x0F; break;
2988 case X86::VPBLENDWrri: Mask = 0xFF; break;
2989 case X86::VPBLENDDYrri: Mask = 0xFF; break;
2990 case X86::VPBLENDWYrri: Mask = 0xFF; break;
2991 }
2992 // Only the least significant bits of Imm are used.
2993 unsigned Imm = MI->getOperand(3).getImm() & Mask;
2994 if (NewMI) {
2995 MachineFunction &MF = *MI->getParent()->getParent();
2996 MI = MF.CloneMachineInstr(MI);
2997 NewMI = false;
2998 }
2999 MI->getOperand(3).setImm(Mask ^ Imm);
3000 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3001 }
3002 case X86::PCLMULQDQrr:
3003 case X86::VPCLMULQDQrr:{
3004 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
3005 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
3006 unsigned Imm = MI->getOperand(3).getImm();
3007 unsigned Src1Hi = Imm & 0x01;
3008 unsigned Src2Hi = Imm & 0x10;
3009 if (NewMI) {
3010 MachineFunction &MF = *MI->getParent()->getParent();
3011 MI = MF.CloneMachineInstr(MI);
3012 NewMI = false;
3013 }
3014 MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
3015 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3016 }
3017 case X86::CMPPDrri:
3018 case X86::CMPPSrri:
3019 case X86::VCMPPDrri:
3020 case X86::VCMPPSrri:
3021 case X86::VCMPPDYrri:
3022 case X86::VCMPPSYrri: {
3023 // Float comparison can be safely commuted for
3024 // Ordered/Unordered/Equal/NotEqual tests
3025 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3026 switch (Imm) {
3027 case 0x00: // EQUAL
3028 case 0x03: // UNORDERED
3029 case 0x04: // NOT EQUAL
3030 case 0x07: // ORDERED
3031 if (NewMI) {
3032 MachineFunction &MF = *MI->getParent()->getParent();
3033 MI = MF.CloneMachineInstr(MI);
3034 NewMI = false;
3035 }
3036 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3037 default:
3038 return nullptr;
3039 }
3040 }
3041 case X86::VPCOMBri: case X86::VPCOMUBri:
3042 case X86::VPCOMDri: case X86::VPCOMUDri:
3043 case X86::VPCOMQri: case X86::VPCOMUQri:
3044 case X86::VPCOMWri: case X86::VPCOMUWri: {
3045 // Flip comparison mode immediate (if necessary).
3046 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3047 switch (Imm) {
3048 case 0x00: Imm = 0x02; break; // LT -> GT
3049 case 0x01: Imm = 0x03; break; // LE -> GE
3050 case 0x02: Imm = 0x00; break; // GT -> LT
3051 case 0x03: Imm = 0x01; break; // GE -> LE
3052 case 0x04: // EQ
3053 case 0x05: // NE
3054 case 0x06: // FALSE
3055 case 0x07: // TRUE
3056 default:
3057 break;
3058 }
3059 if (NewMI) {
3060 MachineFunction &MF = *MI->getParent()->getParent();
3061 MI = MF.CloneMachineInstr(MI);
3062 NewMI = false;
3063 }
3064 MI->getOperand(3).setImm(Imm);
3065 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3066 }
3067 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
3068 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
3069 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
3070 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
3071 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
3072 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
3073 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
3074 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
3075 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
3076 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
3077 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
3078 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
3079 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
3080 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
3081 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
3082 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
3083 unsigned Opc;
3084 switch (MI->getOpcode()) {
3085 default: llvm_unreachable("Unreachable!");
3086 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
3087 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
3088 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
3089 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
3090 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
3091 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
3092 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
3093 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
3094 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
3095 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
3096 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
3097 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
3098 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
3099 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
3100 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
3101 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
3102 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
3103 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
3104 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
3105 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
3106 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
3107 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
3108 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
3109 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
3110 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
3111 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
3112 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
3113 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
3114 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
3115 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
3116 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
3117 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
3118 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
3119 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
3120 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
3121 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
3122 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
3123 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
3124 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
3125 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
3126 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
3127 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
3128 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
3129 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
3130 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
3131 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
3132 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
3133 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
3134 }
3135 if (NewMI) {
3136 MachineFunction &MF = *MI->getParent()->getParent();
3137 MI = MF.CloneMachineInstr(MI);
3138 NewMI = false;
3139 }
3140 MI->setDesc(get(Opc));
3141 // Fallthrough intended.
3142 }
3143 default:
3144 return TargetInstrInfo::commuteInstruction(MI, NewMI);
3145 }
3146 }
3147
findCommutedOpIndices(MachineInstr * MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const3148 bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
3149 unsigned &SrcOpIdx2) const {
3150 switch (MI->getOpcode()) {
3151 case X86::CMPPDrri:
3152 case X86::CMPPSrri:
3153 case X86::VCMPPDrri:
3154 case X86::VCMPPSrri:
3155 case X86::VCMPPDYrri:
3156 case X86::VCMPPSYrri: {
3157 // Float comparison can be safely commuted for
3158 // Ordered/Unordered/Equal/NotEqual tests
3159 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3160 switch (Imm) {
3161 case 0x00: // EQUAL
3162 case 0x03: // UNORDERED
3163 case 0x04: // NOT EQUAL
3164 case 0x07: // ORDERED
3165 SrcOpIdx1 = 1;
3166 SrcOpIdx2 = 2;
3167 return true;
3168 }
3169 return false;
3170 }
3171 case X86::VFMADDPDr231r:
3172 case X86::VFMADDPSr231r:
3173 case X86::VFMADDSDr231r:
3174 case X86::VFMADDSSr231r:
3175 case X86::VFMSUBPDr231r:
3176 case X86::VFMSUBPSr231r:
3177 case X86::VFMSUBSDr231r:
3178 case X86::VFMSUBSSr231r:
3179 case X86::VFNMADDPDr231r:
3180 case X86::VFNMADDPSr231r:
3181 case X86::VFNMADDSDr231r:
3182 case X86::VFNMADDSSr231r:
3183 case X86::VFNMSUBPDr231r:
3184 case X86::VFNMSUBPSr231r:
3185 case X86::VFNMSUBSDr231r:
3186 case X86::VFNMSUBSSr231r:
3187 case X86::VFMADDPDr231rY:
3188 case X86::VFMADDPSr231rY:
3189 case X86::VFMSUBPDr231rY:
3190 case X86::VFMSUBPSr231rY:
3191 case X86::VFNMADDPDr231rY:
3192 case X86::VFNMADDPSr231rY:
3193 case X86::VFNMSUBPDr231rY:
3194 case X86::VFNMSUBPSr231rY:
3195 SrcOpIdx1 = 2;
3196 SrcOpIdx2 = 3;
3197 return true;
3198 default:
3199 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3200 }
3201 }
3202
getCondFromBranchOpc(unsigned BrOpc)3203 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
3204 switch (BrOpc) {
3205 default: return X86::COND_INVALID;
3206 case X86::JE_1: return X86::COND_E;
3207 case X86::JNE_1: return X86::COND_NE;
3208 case X86::JL_1: return X86::COND_L;
3209 case X86::JLE_1: return X86::COND_LE;
3210 case X86::JG_1: return X86::COND_G;
3211 case X86::JGE_1: return X86::COND_GE;
3212 case X86::JB_1: return X86::COND_B;
3213 case X86::JBE_1: return X86::COND_BE;
3214 case X86::JA_1: return X86::COND_A;
3215 case X86::JAE_1: return X86::COND_AE;
3216 case X86::JS_1: return X86::COND_S;
3217 case X86::JNS_1: return X86::COND_NS;
3218 case X86::JP_1: return X86::COND_P;
3219 case X86::JNP_1: return X86::COND_NP;
3220 case X86::JO_1: return X86::COND_O;
3221 case X86::JNO_1: return X86::COND_NO;
3222 }
3223 }
3224
3225 /// Return condition code of a SET opcode.
getCondFromSETOpc(unsigned Opc)3226 static X86::CondCode getCondFromSETOpc(unsigned Opc) {
3227 switch (Opc) {
3228 default: return X86::COND_INVALID;
3229 case X86::SETAr: case X86::SETAm: return X86::COND_A;
3230 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
3231 case X86::SETBr: case X86::SETBm: return X86::COND_B;
3232 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
3233 case X86::SETEr: case X86::SETEm: return X86::COND_E;
3234 case X86::SETGr: case X86::SETGm: return X86::COND_G;
3235 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
3236 case X86::SETLr: case X86::SETLm: return X86::COND_L;
3237 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
3238 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
3239 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
3240 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
3241 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
3242 case X86::SETOr: case X86::SETOm: return X86::COND_O;
3243 case X86::SETPr: case X86::SETPm: return X86::COND_P;
3244 case X86::SETSr: case X86::SETSm: return X86::COND_S;
3245 }
3246 }
3247
3248 /// Return condition code of a CMov opcode.
getCondFromCMovOpc(unsigned Opc)3249 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
3250 switch (Opc) {
3251 default: return X86::COND_INVALID;
3252 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
3253 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
3254 return X86::COND_A;
3255 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
3256 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
3257 return X86::COND_AE;
3258 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
3259 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
3260 return X86::COND_B;
3261 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
3262 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
3263 return X86::COND_BE;
3264 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
3265 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
3266 return X86::COND_E;
3267 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
3268 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
3269 return X86::COND_G;
3270 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
3271 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
3272 return X86::COND_GE;
3273 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
3274 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
3275 return X86::COND_L;
3276 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
3277 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
3278 return X86::COND_LE;
3279 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
3280 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
3281 return X86::COND_NE;
3282 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
3283 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
3284 return X86::COND_NO;
3285 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
3286 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
3287 return X86::COND_NP;
3288 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
3289 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
3290 return X86::COND_NS;
3291 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
3292 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
3293 return X86::COND_O;
3294 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
3295 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
3296 return X86::COND_P;
3297 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
3298 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
3299 return X86::COND_S;
3300 }
3301 }
3302
GetCondBranchFromCond(X86::CondCode CC)3303 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
3304 switch (CC) {
3305 default: llvm_unreachable("Illegal condition code!");
3306 case X86::COND_E: return X86::JE_1;
3307 case X86::COND_NE: return X86::JNE_1;
3308 case X86::COND_L: return X86::JL_1;
3309 case X86::COND_LE: return X86::JLE_1;
3310 case X86::COND_G: return X86::JG_1;
3311 case X86::COND_GE: return X86::JGE_1;
3312 case X86::COND_B: return X86::JB_1;
3313 case X86::COND_BE: return X86::JBE_1;
3314 case X86::COND_A: return X86::JA_1;
3315 case X86::COND_AE: return X86::JAE_1;
3316 case X86::COND_S: return X86::JS_1;
3317 case X86::COND_NS: return X86::JNS_1;
3318 case X86::COND_P: return X86::JP_1;
3319 case X86::COND_NP: return X86::JNP_1;
3320 case X86::COND_O: return X86::JO_1;
3321 case X86::COND_NO: return X86::JNO_1;
3322 }
3323 }
3324
3325 /// Return the inverse of the specified condition,
3326 /// e.g. turning COND_E to COND_NE.
GetOppositeBranchCondition(X86::CondCode CC)3327 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
3328 switch (CC) {
3329 default: llvm_unreachable("Illegal condition code!");
3330 case X86::COND_E: return X86::COND_NE;
3331 case X86::COND_NE: return X86::COND_E;
3332 case X86::COND_L: return X86::COND_GE;
3333 case X86::COND_LE: return X86::COND_G;
3334 case X86::COND_G: return X86::COND_LE;
3335 case X86::COND_GE: return X86::COND_L;
3336 case X86::COND_B: return X86::COND_AE;
3337 case X86::COND_BE: return X86::COND_A;
3338 case X86::COND_A: return X86::COND_BE;
3339 case X86::COND_AE: return X86::COND_B;
3340 case X86::COND_S: return X86::COND_NS;
3341 case X86::COND_NS: return X86::COND_S;
3342 case X86::COND_P: return X86::COND_NP;
3343 case X86::COND_NP: return X86::COND_P;
3344 case X86::COND_O: return X86::COND_NO;
3345 case X86::COND_NO: return X86::COND_O;
3346 }
3347 }
3348
3349 /// Assuming the flags are set by MI(a,b), return the condition code if we
3350 /// modify the instructions such that flags are set by MI(b,a).
getSwappedCondition(X86::CondCode CC)3351 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
3352 switch (CC) {
3353 default: return X86::COND_INVALID;
3354 case X86::COND_E: return X86::COND_E;
3355 case X86::COND_NE: return X86::COND_NE;
3356 case X86::COND_L: return X86::COND_G;
3357 case X86::COND_LE: return X86::COND_GE;
3358 case X86::COND_G: return X86::COND_L;
3359 case X86::COND_GE: return X86::COND_LE;
3360 case X86::COND_B: return X86::COND_A;
3361 case X86::COND_BE: return X86::COND_AE;
3362 case X86::COND_A: return X86::COND_B;
3363 case X86::COND_AE: return X86::COND_BE;
3364 }
3365 }
3366
3367 /// Return a set opcode for the given condition and
3368 /// whether it has memory operand.
getSETFromCond(CondCode CC,bool HasMemoryOperand)3369 unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
3370 static const uint16_t Opc[16][2] = {
3371 { X86::SETAr, X86::SETAm },
3372 { X86::SETAEr, X86::SETAEm },
3373 { X86::SETBr, X86::SETBm },
3374 { X86::SETBEr, X86::SETBEm },
3375 { X86::SETEr, X86::SETEm },
3376 { X86::SETGr, X86::SETGm },
3377 { X86::SETGEr, X86::SETGEm },
3378 { X86::SETLr, X86::SETLm },
3379 { X86::SETLEr, X86::SETLEm },
3380 { X86::SETNEr, X86::SETNEm },
3381 { X86::SETNOr, X86::SETNOm },
3382 { X86::SETNPr, X86::SETNPm },
3383 { X86::SETNSr, X86::SETNSm },
3384 { X86::SETOr, X86::SETOm },
3385 { X86::SETPr, X86::SETPm },
3386 { X86::SETSr, X86::SETSm }
3387 };
3388
3389 assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
3390 return Opc[CC][HasMemoryOperand ? 1 : 0];
3391 }
3392
3393 /// Return a cmov opcode for the given condition,
3394 /// register size in bytes, and operand type.
getCMovFromCond(CondCode CC,unsigned RegBytes,bool HasMemoryOperand)3395 unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
3396 bool HasMemoryOperand) {
3397 static const uint16_t Opc[32][3] = {
3398 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
3399 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
3400 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
3401 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
3402 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
3403 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
3404 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
3405 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
3406 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
3407 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
3408 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
3409 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
3410 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
3411 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
3412 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
3413 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
3414 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
3415 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
3416 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
3417 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
3418 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
3419 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
3420 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
3421 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
3422 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
3423 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
3424 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
3425 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
3426 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
3427 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
3428 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
3429 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
3430 };
3431
3432 assert(CC < 16 && "Can only handle standard cond codes");
3433 unsigned Idx = HasMemoryOperand ? 16+CC : CC;
3434 switch(RegBytes) {
3435 default: llvm_unreachable("Illegal register size!");
3436 case 2: return Opc[Idx][0];
3437 case 4: return Opc[Idx][1];
3438 case 8: return Opc[Idx][2];
3439 }
3440 }
3441
isUnpredicatedTerminator(const MachineInstr * MI) const3442 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
3443 if (!MI->isTerminator()) return false;
3444
3445 // Conditional branch is a special case.
3446 if (MI->isBranch() && !MI->isBarrier())
3447 return true;
3448 if (!MI->isPredicable())
3449 return true;
3450 return !isPredicated(MI);
3451 }
3452
AnalyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const3453 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
3454 MachineBasicBlock *&TBB,
3455 MachineBasicBlock *&FBB,
3456 SmallVectorImpl<MachineOperand> &Cond,
3457 bool AllowModify) const {
3458 // Start from the bottom of the block and work up, examining the
3459 // terminator instructions.
3460 MachineBasicBlock::iterator I = MBB.end();
3461 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3462 while (I != MBB.begin()) {
3463 --I;
3464 if (I->isDebugValue())
3465 continue;
3466
3467 // Working from the bottom, when we see a non-terminator instruction, we're
3468 // done.
3469 if (!isUnpredicatedTerminator(I))
3470 break;
3471
3472 // A terminator that isn't a branch can't easily be handled by this
3473 // analysis.
3474 if (!I->isBranch())
3475 return true;
3476
3477 // Handle unconditional branches.
3478 if (I->getOpcode() == X86::JMP_1) {
3479 UnCondBrIter = I;
3480
3481 if (!AllowModify) {
3482 TBB = I->getOperand(0).getMBB();
3483 continue;
3484 }
3485
3486 // If the block has any instructions after a JMP, delete them.
3487 while (std::next(I) != MBB.end())
3488 std::next(I)->eraseFromParent();
3489
3490 Cond.clear();
3491 FBB = nullptr;
3492
3493 // Delete the JMP if it's equivalent to a fall-through.
3494 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3495 TBB = nullptr;
3496 I->eraseFromParent();
3497 I = MBB.end();
3498 UnCondBrIter = MBB.end();
3499 continue;
3500 }
3501
3502 // TBB is used to indicate the unconditional destination.
3503 TBB = I->getOperand(0).getMBB();
3504 continue;
3505 }
3506
3507 // Handle conditional branches.
3508 X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
3509 if (BranchCode == X86::COND_INVALID)
3510 return true; // Can't handle indirect branch.
3511
3512 // Working from the bottom, handle the first conditional branch.
3513 if (Cond.empty()) {
3514 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3515 if (AllowModify && UnCondBrIter != MBB.end() &&
3516 MBB.isLayoutSuccessor(TargetBB)) {
3517 // If we can modify the code and it ends in something like:
3518 //
3519 // jCC L1
3520 // jmp L2
3521 // L1:
3522 // ...
3523 // L2:
3524 //
3525 // Then we can change this to:
3526 //
3527 // jnCC L2
3528 // L1:
3529 // ...
3530 // L2:
3531 //
3532 // Which is a bit more efficient.
3533 // We conditionally jump to the fall-through block.
3534 BranchCode = GetOppositeBranchCondition(BranchCode);
3535 unsigned JNCC = GetCondBranchFromCond(BranchCode);
3536 MachineBasicBlock::iterator OldInst = I;
3537
3538 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
3539 .addMBB(UnCondBrIter->getOperand(0).getMBB());
3540 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3541 .addMBB(TargetBB);
3542
3543 OldInst->eraseFromParent();
3544 UnCondBrIter->eraseFromParent();
3545
3546 // Restart the analysis.
3547 UnCondBrIter = MBB.end();
3548 I = MBB.end();
3549 continue;
3550 }
3551
3552 FBB = TBB;
3553 TBB = I->getOperand(0).getMBB();
3554 Cond.push_back(MachineOperand::CreateImm(BranchCode));
3555 continue;
3556 }
3557
3558 // Handle subsequent conditional branches. Only handle the case where all
3559 // conditional branches branch to the same destination and their condition
3560 // opcodes fit one of the special multi-branch idioms.
3561 assert(Cond.size() == 1);
3562 assert(TBB);
3563
3564 // Only handle the case where all conditional branches branch to the same
3565 // destination.
3566 if (TBB != I->getOperand(0).getMBB())
3567 return true;
3568
3569 // If the conditions are the same, we can leave them alone.
3570 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3571 if (OldBranchCode == BranchCode)
3572 continue;
3573
3574 // If they differ, see if they fit one of the known patterns. Theoretically,
3575 // we could handle more patterns here, but we shouldn't expect to see them
3576 // if instruction selection has done a reasonable job.
3577 if ((OldBranchCode == X86::COND_NP &&
3578 BranchCode == X86::COND_E) ||
3579 (OldBranchCode == X86::COND_E &&
3580 BranchCode == X86::COND_NP))
3581 BranchCode = X86::COND_NP_OR_E;
3582 else if ((OldBranchCode == X86::COND_P &&
3583 BranchCode == X86::COND_NE) ||
3584 (OldBranchCode == X86::COND_NE &&
3585 BranchCode == X86::COND_P))
3586 BranchCode = X86::COND_NE_OR_P;
3587 else
3588 return true;
3589
3590 // Update the MachineOperand.
3591 Cond[0].setImm(BranchCode);
3592 }
3593
3594 return false;
3595 }
3596
RemoveBranch(MachineBasicBlock & MBB) const3597 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
3598 MachineBasicBlock::iterator I = MBB.end();
3599 unsigned Count = 0;
3600
3601 while (I != MBB.begin()) {
3602 --I;
3603 if (I->isDebugValue())
3604 continue;
3605 if (I->getOpcode() != X86::JMP_1 &&
3606 getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
3607 break;
3608 // Remove the branch.
3609 I->eraseFromParent();
3610 I = MBB.end();
3611 ++Count;
3612 }
3613
3614 return Count;
3615 }
3616
3617 unsigned
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,const SmallVectorImpl<MachineOperand> & Cond,DebugLoc DL) const3618 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
3619 MachineBasicBlock *FBB,
3620 const SmallVectorImpl<MachineOperand> &Cond,
3621 DebugLoc DL) const {
3622 // Shouldn't be a fall through.
3623 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
3624 assert((Cond.size() == 1 || Cond.size() == 0) &&
3625 "X86 branch conditions have one component!");
3626
3627 if (Cond.empty()) {
3628 // Unconditional branch?
3629 assert(!FBB && "Unconditional branch with multiple successors!");
3630 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3631 return 1;
3632 }
3633
3634 // Conditional branch.
3635 unsigned Count = 0;
3636 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3637 switch (CC) {
3638 case X86::COND_NP_OR_E:
3639 // Synthesize NP_OR_E with two branches.
3640 BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
3641 ++Count;
3642 BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
3643 ++Count;
3644 break;
3645 case X86::COND_NE_OR_P:
3646 // Synthesize NE_OR_P with two branches.
3647 BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
3648 ++Count;
3649 BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
3650 ++Count;
3651 break;
3652 default: {
3653 unsigned Opc = GetCondBranchFromCond(CC);
3654 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
3655 ++Count;
3656 }
3657 }
3658 if (FBB) {
3659 // Two-way Conditional branch. Insert the second branch.
3660 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3661 ++Count;
3662 }
3663 return Count;
3664 }
3665
3666 bool X86InstrInfo::
canInsertSelect(const MachineBasicBlock & MBB,const SmallVectorImpl<MachineOperand> & Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const3667 canInsertSelect(const MachineBasicBlock &MBB,
3668 const SmallVectorImpl<MachineOperand> &Cond,
3669 unsigned TrueReg, unsigned FalseReg,
3670 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
3671 // Not all subtargets have cmov instructions.
3672 if (!Subtarget.hasCMov())
3673 return false;
3674 if (Cond.size() != 1)
3675 return false;
3676 // We cannot do the composite conditions, at least not in SSA form.
3677 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
3678 return false;
3679
3680 // Check register classes.
3681 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3682 const TargetRegisterClass *RC =
3683 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3684 if (!RC)
3685 return false;
3686
3687 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3688 if (X86::GR16RegClass.hasSubClassEq(RC) ||
3689 X86::GR32RegClass.hasSubClassEq(RC) ||
3690 X86::GR64RegClass.hasSubClassEq(RC)) {
3691 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3692 // Bridge. Probably Ivy Bridge as well.
3693 CondCycles = 2;
3694 TrueCycles = 2;
3695 FalseCycles = 2;
3696 return true;
3697 }
3698
3699 // Can't do vectors.
3700 return false;
3701 }
3702
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DstReg,const SmallVectorImpl<MachineOperand> & Cond,unsigned TrueReg,unsigned FalseReg) const3703 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3704 MachineBasicBlock::iterator I, DebugLoc DL,
3705 unsigned DstReg,
3706 const SmallVectorImpl<MachineOperand> &Cond,
3707 unsigned TrueReg, unsigned FalseReg) const {
3708 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3709 assert(Cond.size() == 1 && "Invalid Cond array");
3710 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
3711 MRI.getRegClass(DstReg)->getSize(),
3712 false/*HasMemoryOperand*/);
3713 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
3714 }
3715
3716 /// Test if the given register is a physical h register.
isHReg(unsigned Reg)3717 static bool isHReg(unsigned Reg) {
3718 return X86::GR8_ABCD_HRegClass.contains(Reg);
3719 }
3720
3721 // Try and copy between VR128/VR64 and GR64 registers.
CopyToFromAsymmetricReg(unsigned DestReg,unsigned SrcReg,const X86Subtarget & Subtarget)3722 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3723 const X86Subtarget &Subtarget) {
3724
3725 // SrcReg(VR128) -> DestReg(GR64)
3726 // SrcReg(VR64) -> DestReg(GR64)
3727 // SrcReg(GR64) -> DestReg(VR128)
3728 // SrcReg(GR64) -> DestReg(VR64)
3729
3730 bool HasAVX = Subtarget.hasAVX();
3731 bool HasAVX512 = Subtarget.hasAVX512();
3732 if (X86::GR64RegClass.contains(DestReg)) {
3733 if (X86::VR128XRegClass.contains(SrcReg))
3734 // Copy from a VR128 register to a GR64 register.
3735 return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
3736 X86::MOVPQIto64rr);
3737 if (X86::VR64RegClass.contains(SrcReg))
3738 // Copy from a VR64 register to a GR64 register.
3739 return X86::MOVSDto64rr;
3740 } else if (X86::GR64RegClass.contains(SrcReg)) {
3741 // Copy from a GR64 register to a VR128 register.
3742 if (X86::VR128XRegClass.contains(DestReg))
3743 return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
3744 X86::MOV64toPQIrr);
3745 // Copy from a GR64 register to a VR64 register.
3746 if (X86::VR64RegClass.contains(DestReg))
3747 return X86::MOV64toSDrr;
3748 }
3749
3750 // SrcReg(FR32) -> DestReg(GR32)
3751 // SrcReg(GR32) -> DestReg(FR32)
3752
3753 if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
3754 // Copy from a FR32 register to a GR32 register.
3755 return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
3756
3757 if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
3758 // Copy from a GR32 register to a FR32 register.
3759 return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
3760 return 0;
3761 }
3762
MaskRegClassContains(unsigned Reg)3763 inline static bool MaskRegClassContains(unsigned Reg) {
3764 return X86::VK8RegClass.contains(Reg) ||
3765 X86::VK16RegClass.contains(Reg) ||
3766 X86::VK32RegClass.contains(Reg) ||
3767 X86::VK64RegClass.contains(Reg) ||
3768 X86::VK1RegClass.contains(Reg);
3769 }
3770 static
copyPhysRegOpcode_AVX512(unsigned & DestReg,unsigned & SrcReg)3771 unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
3772 if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
3773 X86::VR256XRegClass.contains(DestReg, SrcReg) ||
3774 X86::VR512RegClass.contains(DestReg, SrcReg)) {
3775 DestReg = get512BitSuperRegister(DestReg);
3776 SrcReg = get512BitSuperRegister(SrcReg);
3777 return X86::VMOVAPSZrr;
3778 }
3779 if (MaskRegClassContains(DestReg) &&
3780 MaskRegClassContains(SrcReg))
3781 return X86::KMOVWkk;
3782 if (MaskRegClassContains(DestReg) &&
3783 (X86::GR32RegClass.contains(SrcReg) ||
3784 X86::GR16RegClass.contains(SrcReg) ||
3785 X86::GR8RegClass.contains(SrcReg))) {
3786 SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
3787 return X86::KMOVWkr;
3788 }
3789 if ((X86::GR32RegClass.contains(DestReg) ||
3790 X86::GR16RegClass.contains(DestReg) ||
3791 X86::GR8RegClass.contains(DestReg)) &&
3792 MaskRegClassContains(SrcReg)) {
3793 DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
3794 return X86::KMOVWrk;
3795 }
3796 return 0;
3797 }
3798
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const3799 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3800 MachineBasicBlock::iterator MI, DebugLoc DL,
3801 unsigned DestReg, unsigned SrcReg,
3802 bool KillSrc) const {
3803 // First deal with the normal symmetric copies.
3804 bool HasAVX = Subtarget.hasAVX();
3805 bool HasAVX512 = Subtarget.hasAVX512();
3806 unsigned Opc = 0;
3807 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3808 Opc = X86::MOV64rr;
3809 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3810 Opc = X86::MOV32rr;
3811 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3812 Opc = X86::MOV16rr;
3813 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3814 // Copying to or from a physical H register on x86-64 requires a NOREX
3815 // move. Otherwise use a normal move.
3816 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3817 Subtarget.is64Bit()) {
3818 Opc = X86::MOV8rr_NOREX;
3819 // Both operands must be encodable without an REX prefix.
3820 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3821 "8-bit H register can not be copied outside GR8_NOREX");
3822 } else
3823 Opc = X86::MOV8rr;
3824 }
3825 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3826 Opc = X86::MMX_MOVQ64rr;
3827 else if (HasAVX512)
3828 Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
3829 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3830 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3831 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3832 Opc = X86::VMOVAPSYrr;
3833 if (!Opc)
3834 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3835
3836 if (Opc) {
3837 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3838 .addReg(SrcReg, getKillRegState(KillSrc));
3839 return;
3840 }
3841
3842 // Moving EFLAGS to / from another register requires a push and a pop.
3843 // Notice that we have to adjust the stack if we don't want to clobber the
3844 // first frame index. See X86FrameLowering.cpp - clobbersTheStack.
3845 if (SrcReg == X86::EFLAGS) {
3846 if (X86::GR64RegClass.contains(DestReg)) {
3847 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
3848 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
3849 return;
3850 }
3851 if (X86::GR32RegClass.contains(DestReg)) {
3852 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
3853 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
3854 return;
3855 }
3856 }
3857 if (DestReg == X86::EFLAGS) {
3858 if (X86::GR64RegClass.contains(SrcReg)) {
3859 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
3860 .addReg(SrcReg, getKillRegState(KillSrc));
3861 BuildMI(MBB, MI, DL, get(X86::POPF64));
3862 return;
3863 }
3864 if (X86::GR32RegClass.contains(SrcReg)) {
3865 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
3866 .addReg(SrcReg, getKillRegState(KillSrc));
3867 BuildMI(MBB, MI, DL, get(X86::POPF32));
3868 return;
3869 }
3870 }
3871
3872 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
3873 << " to " << RI.getName(DestReg) << '\n');
3874 llvm_unreachable("Cannot emit physreg copy instruction");
3875 }
3876
getLoadStoreRegOpcode(unsigned Reg,const TargetRegisterClass * RC,bool isStackAligned,const X86Subtarget & STI,bool load)3877 static unsigned getLoadStoreRegOpcode(unsigned Reg,
3878 const TargetRegisterClass *RC,
3879 bool isStackAligned,
3880 const X86Subtarget &STI,
3881 bool load) {
3882 if (STI.hasAVX512()) {
3883 if (X86::VK8RegClass.hasSubClassEq(RC) ||
3884 X86::VK16RegClass.hasSubClassEq(RC))
3885 return load ? X86::KMOVWkm : X86::KMOVWmk;
3886 if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
3887 return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
3888 if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
3889 return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
3890 if (X86::VR512RegClass.hasSubClassEq(RC))
3891 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3892 }
3893
3894 bool HasAVX = STI.hasAVX();
3895 switch (RC->getSize()) {
3896 default:
3897 llvm_unreachable("Unknown spill size");
3898 case 1:
3899 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3900 if (STI.is64Bit())
3901 // Copying to or from a physical H register on x86-64 requires a NOREX
3902 // move. Otherwise use a normal move.
3903 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3904 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3905 return load ? X86::MOV8rm : X86::MOV8mr;
3906 case 2:
3907 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3908 return load ? X86::MOV16rm : X86::MOV16mr;
3909 case 4:
3910 if (X86::GR32RegClass.hasSubClassEq(RC))
3911 return load ? X86::MOV32rm : X86::MOV32mr;
3912 if (X86::FR32RegClass.hasSubClassEq(RC))
3913 return load ?
3914 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3915 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
3916 if (X86::RFP32RegClass.hasSubClassEq(RC))
3917 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3918 llvm_unreachable("Unknown 4-byte regclass");
3919 case 8:
3920 if (X86::GR64RegClass.hasSubClassEq(RC))
3921 return load ? X86::MOV64rm : X86::MOV64mr;
3922 if (X86::FR64RegClass.hasSubClassEq(RC))
3923 return load ?
3924 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
3925 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
3926 if (X86::VR64RegClass.hasSubClassEq(RC))
3927 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3928 if (X86::RFP64RegClass.hasSubClassEq(RC))
3929 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3930 llvm_unreachable("Unknown 8-byte regclass");
3931 case 10:
3932 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3933 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3934 case 16: {
3935 assert((X86::VR128RegClass.hasSubClassEq(RC) ||
3936 X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
3937 // If stack is realigned we can use aligned stores.
3938 if (isStackAligned)
3939 return load ?
3940 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
3941 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
3942 else
3943 return load ?
3944 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
3945 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
3946 }
3947 case 32:
3948 assert((X86::VR256RegClass.hasSubClassEq(RC) ||
3949 X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
3950 // If stack is realigned we can use aligned stores.
3951 if (isStackAligned)
3952 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
3953 else
3954 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
3955 case 64:
3956 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3957 if (isStackAligned)
3958 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3959 else
3960 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3961 }
3962 }
3963
getStoreRegOpcode(unsigned SrcReg,const TargetRegisterClass * RC,bool isStackAligned,const X86Subtarget & STI)3964 static unsigned getStoreRegOpcode(unsigned SrcReg,
3965 const TargetRegisterClass *RC,
3966 bool isStackAligned,
3967 const X86Subtarget &STI) {
3968 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3969 }
3970
3971
getLoadRegOpcode(unsigned DestReg,const TargetRegisterClass * RC,bool isStackAligned,const X86Subtarget & STI)3972 static unsigned getLoadRegOpcode(unsigned DestReg,
3973 const TargetRegisterClass *RC,
3974 bool isStackAligned,
3975 const X86Subtarget &STI) {
3976 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3977 }
3978
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const3979 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3980 MachineBasicBlock::iterator MI,
3981 unsigned SrcReg, bool isKill, int FrameIdx,
3982 const TargetRegisterClass *RC,
3983 const TargetRegisterInfo *TRI) const {
3984 const MachineFunction &MF = *MBB.getParent();
3985 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
3986 "Stack slot too small for store");
3987 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3988 bool isAligned =
3989 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3990 RI.canRealignStack(MF);
3991 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3992 DebugLoc DL = MBB.findDebugLoc(MI);
3993 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
3994 .addReg(SrcReg, getKillRegState(isKill));
3995 }
3996
storeRegToAddr(MachineFunction & MF,unsigned SrcReg,bool isKill,SmallVectorImpl<MachineOperand> & Addr,const TargetRegisterClass * RC,MachineInstr::mmo_iterator MMOBegin,MachineInstr::mmo_iterator MMOEnd,SmallVectorImpl<MachineInstr * > & NewMIs) const3997 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
3998 bool isKill,
3999 SmallVectorImpl<MachineOperand> &Addr,
4000 const TargetRegisterClass *RC,
4001 MachineInstr::mmo_iterator MMOBegin,
4002 MachineInstr::mmo_iterator MMOEnd,
4003 SmallVectorImpl<MachineInstr*> &NewMIs) const {
4004 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4005 bool isAligned = MMOBegin != MMOEnd &&
4006 (*MMOBegin)->getAlignment() >= Alignment;
4007 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
4008 DebugLoc DL;
4009 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
4010 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
4011 MIB.addOperand(Addr[i]);
4012 MIB.addReg(SrcReg, getKillRegState(isKill));
4013 (*MIB).setMemRefs(MMOBegin, MMOEnd);
4014 NewMIs.push_back(MIB);
4015 }
4016
4017
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const4018 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
4019 MachineBasicBlock::iterator MI,
4020 unsigned DestReg, int FrameIdx,
4021 const TargetRegisterClass *RC,
4022 const TargetRegisterInfo *TRI) const {
4023 const MachineFunction &MF = *MBB.getParent();
4024 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4025 bool isAligned =
4026 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
4027 RI.canRealignStack(MF);
4028 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4029 DebugLoc DL = MBB.findDebugLoc(MI);
4030 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
4031 }
4032
loadRegFromAddr(MachineFunction & MF,unsigned DestReg,SmallVectorImpl<MachineOperand> & Addr,const TargetRegisterClass * RC,MachineInstr::mmo_iterator MMOBegin,MachineInstr::mmo_iterator MMOEnd,SmallVectorImpl<MachineInstr * > & NewMIs) const4033 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
4034 SmallVectorImpl<MachineOperand> &Addr,
4035 const TargetRegisterClass *RC,
4036 MachineInstr::mmo_iterator MMOBegin,
4037 MachineInstr::mmo_iterator MMOEnd,
4038 SmallVectorImpl<MachineInstr*> &NewMIs) const {
4039 unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4040 bool isAligned = MMOBegin != MMOEnd &&
4041 (*MMOBegin)->getAlignment() >= Alignment;
4042 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4043 DebugLoc DL;
4044 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
4045 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
4046 MIB.addOperand(Addr[i]);
4047 (*MIB).setMemRefs(MMOBegin, MMOEnd);
4048 NewMIs.push_back(MIB);
4049 }
4050
4051 bool X86InstrInfo::
analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const4052 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
4053 int &CmpMask, int &CmpValue) const {
4054 switch (MI->getOpcode()) {
4055 default: break;
4056 case X86::CMP64ri32:
4057 case X86::CMP64ri8:
4058 case X86::CMP32ri:
4059 case X86::CMP32ri8:
4060 case X86::CMP16ri:
4061 case X86::CMP16ri8:
4062 case X86::CMP8ri:
4063 SrcReg = MI->getOperand(0).getReg();
4064 SrcReg2 = 0;
4065 CmpMask = ~0;
4066 CmpValue = MI->getOperand(1).getImm();
4067 return true;
4068 // A SUB can be used to perform comparison.
4069 case X86::SUB64rm:
4070 case X86::SUB32rm:
4071 case X86::SUB16rm:
4072 case X86::SUB8rm:
4073 SrcReg = MI->getOperand(1).getReg();
4074 SrcReg2 = 0;
4075 CmpMask = ~0;
4076 CmpValue = 0;
4077 return true;
4078 case X86::SUB64rr:
4079 case X86::SUB32rr:
4080 case X86::SUB16rr:
4081 case X86::SUB8rr:
4082 SrcReg = MI->getOperand(1).getReg();
4083 SrcReg2 = MI->getOperand(2).getReg();
4084 CmpMask = ~0;
4085 CmpValue = 0;
4086 return true;
4087 case X86::SUB64ri32:
4088 case X86::SUB64ri8:
4089 case X86::SUB32ri:
4090 case X86::SUB32ri8:
4091 case X86::SUB16ri:
4092 case X86::SUB16ri8:
4093 case X86::SUB8ri:
4094 SrcReg = MI->getOperand(1).getReg();
4095 SrcReg2 = 0;
4096 CmpMask = ~0;
4097 CmpValue = MI->getOperand(2).getImm();
4098 return true;
4099 case X86::CMP64rr:
4100 case X86::CMP32rr:
4101 case X86::CMP16rr:
4102 case X86::CMP8rr:
4103 SrcReg = MI->getOperand(0).getReg();
4104 SrcReg2 = MI->getOperand(1).getReg();
4105 CmpMask = ~0;
4106 CmpValue = 0;
4107 return true;
4108 case X86::TEST8rr:
4109 case X86::TEST16rr:
4110 case X86::TEST32rr:
4111 case X86::TEST64rr:
4112 SrcReg = MI->getOperand(0).getReg();
4113 if (MI->getOperand(1).getReg() != SrcReg) return false;
4114 // Compare against zero.
4115 SrcReg2 = 0;
4116 CmpMask = ~0;
4117 CmpValue = 0;
4118 return true;
4119 }
4120 return false;
4121 }
4122
4123 /// Check whether the first instruction, whose only
4124 /// purpose is to update flags, can be made redundant.
4125 /// CMPrr can be made redundant by SUBrr if the operands are the same.
4126 /// This function can be extended later on.
4127 /// SrcReg, SrcRegs: register operands for FlagI.
4128 /// ImmValue: immediate for FlagI if it takes an immediate.
isRedundantFlagInstr(MachineInstr * FlagI,unsigned SrcReg,unsigned SrcReg2,int ImmValue,MachineInstr * OI)4129 inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
4130 unsigned SrcReg2, int ImmValue,
4131 MachineInstr *OI) {
4132 if (((FlagI->getOpcode() == X86::CMP64rr &&
4133 OI->getOpcode() == X86::SUB64rr) ||
4134 (FlagI->getOpcode() == X86::CMP32rr &&
4135 OI->getOpcode() == X86::SUB32rr)||
4136 (FlagI->getOpcode() == X86::CMP16rr &&
4137 OI->getOpcode() == X86::SUB16rr)||
4138 (FlagI->getOpcode() == X86::CMP8rr &&
4139 OI->getOpcode() == X86::SUB8rr)) &&
4140 ((OI->getOperand(1).getReg() == SrcReg &&
4141 OI->getOperand(2).getReg() == SrcReg2) ||
4142 (OI->getOperand(1).getReg() == SrcReg2 &&
4143 OI->getOperand(2).getReg() == SrcReg)))
4144 return true;
4145
4146 if (((FlagI->getOpcode() == X86::CMP64ri32 &&
4147 OI->getOpcode() == X86::SUB64ri32) ||
4148 (FlagI->getOpcode() == X86::CMP64ri8 &&
4149 OI->getOpcode() == X86::SUB64ri8) ||
4150 (FlagI->getOpcode() == X86::CMP32ri &&
4151 OI->getOpcode() == X86::SUB32ri) ||
4152 (FlagI->getOpcode() == X86::CMP32ri8 &&
4153 OI->getOpcode() == X86::SUB32ri8) ||
4154 (FlagI->getOpcode() == X86::CMP16ri &&
4155 OI->getOpcode() == X86::SUB16ri) ||
4156 (FlagI->getOpcode() == X86::CMP16ri8 &&
4157 OI->getOpcode() == X86::SUB16ri8) ||
4158 (FlagI->getOpcode() == X86::CMP8ri &&
4159 OI->getOpcode() == X86::SUB8ri)) &&
4160 OI->getOperand(1).getReg() == SrcReg &&
4161 OI->getOperand(2).getImm() == ImmValue)
4162 return true;
4163 return false;
4164 }
4165
4166 /// Check whether the definition can be converted
4167 /// to remove a comparison against zero.
isDefConvertible(MachineInstr * MI)4168 inline static bool isDefConvertible(MachineInstr *MI) {
4169 switch (MI->getOpcode()) {
4170 default: return false;
4171
4172 // The shift instructions only modify ZF if their shift count is non-zero.
4173 // N.B.: The processor truncates the shift count depending on the encoding.
4174 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
4175 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
4176 return getTruncatedShiftCount(MI, 2) != 0;
4177
4178 // Some left shift instructions can be turned into LEA instructions but only
4179 // if their flags aren't used. Avoid transforming such instructions.
4180 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
4181 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4182 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4183 return ShAmt != 0;
4184 }
4185
4186 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4187 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4188 return getTruncatedShiftCount(MI, 3) != 0;
4189
4190 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4191 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
4192 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
4193 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
4194 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
4195 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
4196 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4197 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
4198 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
4199 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
4200 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
4201 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
4202 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4203 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
4204 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
4205 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
4206 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
4207 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4208 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
4209 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
4210 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
4211 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
4212 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
4213 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
4214 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
4215 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
4216 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
4217 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
4218 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
4219 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
4220 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
4221 case X86::ADC32ri: case X86::ADC32ri8:
4222 case X86::ADC32rr: case X86::ADC64ri32:
4223 case X86::ADC64ri8: case X86::ADC64rr:
4224 case X86::SBB32ri: case X86::SBB32ri8:
4225 case X86::SBB32rr: case X86::SBB64ri32:
4226 case X86::SBB64ri8: case X86::SBB64rr:
4227 case X86::ANDN32rr: case X86::ANDN32rm:
4228 case X86::ANDN64rr: case X86::ANDN64rm:
4229 case X86::BEXTR32rr: case X86::BEXTR64rr:
4230 case X86::BEXTR32rm: case X86::BEXTR64rm:
4231 case X86::BLSI32rr: case X86::BLSI32rm:
4232 case X86::BLSI64rr: case X86::BLSI64rm:
4233 case X86::BLSMSK32rr:case X86::BLSMSK32rm:
4234 case X86::BLSMSK64rr:case X86::BLSMSK64rm:
4235 case X86::BLSR32rr: case X86::BLSR32rm:
4236 case X86::BLSR64rr: case X86::BLSR64rm:
4237 case X86::BZHI32rr: case X86::BZHI32rm:
4238 case X86::BZHI64rr: case X86::BZHI64rm:
4239 case X86::LZCNT16rr: case X86::LZCNT16rm:
4240 case X86::LZCNT32rr: case X86::LZCNT32rm:
4241 case X86::LZCNT64rr: case X86::LZCNT64rm:
4242 case X86::POPCNT16rr:case X86::POPCNT16rm:
4243 case X86::POPCNT32rr:case X86::POPCNT32rm:
4244 case X86::POPCNT64rr:case X86::POPCNT64rm:
4245 case X86::TZCNT16rr: case X86::TZCNT16rm:
4246 case X86::TZCNT32rr: case X86::TZCNT32rm:
4247 case X86::TZCNT64rr: case X86::TZCNT64rm:
4248 return true;
4249 }
4250 }
4251
4252 /// Check whether the use can be converted to remove a comparison against zero.
isUseDefConvertible(MachineInstr * MI)4253 static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
4254 switch (MI->getOpcode()) {
4255 default: return X86::COND_INVALID;
4256 case X86::LZCNT16rr: case X86::LZCNT16rm:
4257 case X86::LZCNT32rr: case X86::LZCNT32rm:
4258 case X86::LZCNT64rr: case X86::LZCNT64rm:
4259 return X86::COND_B;
4260 case X86::POPCNT16rr:case X86::POPCNT16rm:
4261 case X86::POPCNT32rr:case X86::POPCNT32rm:
4262 case X86::POPCNT64rr:case X86::POPCNT64rm:
4263 return X86::COND_E;
4264 case X86::TZCNT16rr: case X86::TZCNT16rm:
4265 case X86::TZCNT32rr: case X86::TZCNT32rm:
4266 case X86::TZCNT64rr: case X86::TZCNT64rm:
4267 return X86::COND_B;
4268 }
4269 }
4270
4271 /// Check if there exists an earlier instruction that
4272 /// operates on the same source operands and sets flags in the same way as
4273 /// Compare; remove Compare if possible.
4274 bool X86InstrInfo::
optimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const4275 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
4276 int CmpMask, int CmpValue,
4277 const MachineRegisterInfo *MRI) const {
4278 // Check whether we can replace SUB with CMP.
4279 unsigned NewOpcode = 0;
4280 switch (CmpInstr->getOpcode()) {
4281 default: break;
4282 case X86::SUB64ri32:
4283 case X86::SUB64ri8:
4284 case X86::SUB32ri:
4285 case X86::SUB32ri8:
4286 case X86::SUB16ri:
4287 case X86::SUB16ri8:
4288 case X86::SUB8ri:
4289 case X86::SUB64rm:
4290 case X86::SUB32rm:
4291 case X86::SUB16rm:
4292 case X86::SUB8rm:
4293 case X86::SUB64rr:
4294 case X86::SUB32rr:
4295 case X86::SUB16rr:
4296 case X86::SUB8rr: {
4297 if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
4298 return false;
4299 // There is no use of the destination register, we can replace SUB with CMP.
4300 switch (CmpInstr->getOpcode()) {
4301 default: llvm_unreachable("Unreachable!");
4302 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
4303 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
4304 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
4305 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
4306 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
4307 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
4308 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
4309 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
4310 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4311 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
4312 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
4313 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
4314 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
4315 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
4316 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
4317 }
4318 CmpInstr->setDesc(get(NewOpcode));
4319 CmpInstr->RemoveOperand(0);
4320 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4321 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4322 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4323 return false;
4324 }
4325 }
4326
4327 // Get the unique definition of SrcReg.
4328 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
4329 if (!MI) return false;
4330
4331 // CmpInstr is the first instruction of the BB.
4332 MachineBasicBlock::iterator I = CmpInstr, Def = MI;
4333
4334 // If we are comparing against zero, check whether we can use MI to update
4335 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
4336 bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
4337 if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
4338 return false;
4339
4340 // If we have a use of the source register between the def and our compare
4341 // instruction we can eliminate the compare iff the use sets EFLAGS in the
4342 // right way.
4343 bool ShouldUpdateCC = false;
4344 X86::CondCode NewCC = X86::COND_INVALID;
4345 if (IsCmpZero && !isDefConvertible(MI)) {
4346 // Scan forward from the use until we hit the use we're looking for or the
4347 // compare instruction.
4348 for (MachineBasicBlock::iterator J = MI;; ++J) {
4349 // Do we have a convertible instruction?
4350 NewCC = isUseDefConvertible(J);
4351 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
4352 J->getOperand(1).getReg() == SrcReg) {
4353 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
4354 ShouldUpdateCC = true; // Update CC later on.
4355 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
4356 // with the new def.
4357 MI = Def = J;
4358 break;
4359 }
4360
4361 if (J == I)
4362 return false;
4363 }
4364 }
4365
4366 // We are searching for an earlier instruction that can make CmpInstr
4367 // redundant and that instruction will be saved in Sub.
4368 MachineInstr *Sub = nullptr;
4369 const TargetRegisterInfo *TRI = &getRegisterInfo();
4370
4371 // We iterate backward, starting from the instruction before CmpInstr and
4372 // stop when reaching the definition of a source register or done with the BB.
4373 // RI points to the instruction before CmpInstr.
4374 // If the definition is in this basic block, RE points to the definition;
4375 // otherwise, RE is the rend of the basic block.
4376 MachineBasicBlock::reverse_iterator
4377 RI = MachineBasicBlock::reverse_iterator(I),
4378 RE = CmpInstr->getParent() == MI->getParent() ?
4379 MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
4380 CmpInstr->getParent()->rend();
4381 MachineInstr *Movr0Inst = nullptr;
4382 for (; RI != RE; ++RI) {
4383 MachineInstr *Instr = &*RI;
4384 // Check whether CmpInstr can be made redundant by the current instruction.
4385 if (!IsCmpZero &&
4386 isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
4387 Sub = Instr;
4388 break;
4389 }
4390
4391 if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
4392 Instr->readsRegister(X86::EFLAGS, TRI)) {
4393 // This instruction modifies or uses EFLAGS.
4394
4395 // MOV32r0 etc. are implemented with xor which clobbers condition code.
4396 // They are safe to move up, if the definition to EFLAGS is dead and
4397 // earlier instructions do not read or write EFLAGS.
4398 if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
4399 Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
4400 Movr0Inst = Instr;
4401 continue;
4402 }
4403
4404 // We can't remove CmpInstr.
4405 return false;
4406 }
4407 }
4408
4409 // Return false if no candidates exist.
4410 if (!IsCmpZero && !Sub)
4411 return false;
4412
4413 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
4414 Sub->getOperand(2).getReg() == SrcReg);
4415
4416 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4417 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4418 // If we are done with the basic block, we need to check whether EFLAGS is
4419 // live-out.
4420 bool IsSafe = false;
4421 SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
4422 MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
4423 for (++I; I != E; ++I) {
4424 const MachineInstr &Instr = *I;
4425 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4426 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4427 // We should check the usage if this instruction uses and updates EFLAGS.
4428 if (!UseEFLAGS && ModifyEFLAGS) {
4429 // It is safe to remove CmpInstr if EFLAGS is updated again.
4430 IsSafe = true;
4431 break;
4432 }
4433 if (!UseEFLAGS && !ModifyEFLAGS)
4434 continue;
4435
4436 // EFLAGS is used by this instruction.
4437 X86::CondCode OldCC = X86::COND_INVALID;
4438 bool OpcIsSET = false;
4439 if (IsCmpZero || IsSwapped) {
4440 // We decode the condition code from opcode.
4441 if (Instr.isBranch())
4442 OldCC = getCondFromBranchOpc(Instr.getOpcode());
4443 else {
4444 OldCC = getCondFromSETOpc(Instr.getOpcode());
4445 if (OldCC != X86::COND_INVALID)
4446 OpcIsSET = true;
4447 else
4448 OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
4449 }
4450 if (OldCC == X86::COND_INVALID) return false;
4451 }
4452 if (IsCmpZero) {
4453 switch (OldCC) {
4454 default: break;
4455 case X86::COND_A: case X86::COND_AE:
4456 case X86::COND_B: case X86::COND_BE:
4457 case X86::COND_G: case X86::COND_GE:
4458 case X86::COND_L: case X86::COND_LE:
4459 case X86::COND_O: case X86::COND_NO:
4460 // CF and OF are used, we can't perform this optimization.
4461 return false;
4462 }
4463
4464 // If we're updating the condition code check if we have to reverse the
4465 // condition.
4466 if (ShouldUpdateCC)
4467 switch (OldCC) {
4468 default:
4469 return false;
4470 case X86::COND_E:
4471 break;
4472 case X86::COND_NE:
4473 NewCC = GetOppositeBranchCondition(NewCC);
4474 break;
4475 }
4476 } else if (IsSwapped) {
4477 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4478 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4479 // We swap the condition code and synthesize the new opcode.
4480 NewCC = getSwappedCondition(OldCC);
4481 if (NewCC == X86::COND_INVALID) return false;
4482 }
4483
4484 if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
4485 // Synthesize the new opcode.
4486 bool HasMemoryOperand = Instr.hasOneMemOperand();
4487 unsigned NewOpc;
4488 if (Instr.isBranch())
4489 NewOpc = GetCondBranchFromCond(NewCC);
4490 else if(OpcIsSET)
4491 NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
4492 else {
4493 unsigned DstReg = Instr.getOperand(0).getReg();
4494 NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
4495 HasMemoryOperand);
4496 }
4497
4498 // Push the MachineInstr to OpsToUpdate.
4499 // If it is safe to remove CmpInstr, the condition code of these
4500 // instructions will be modified.
4501 OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
4502 }
4503 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4504 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4505 IsSafe = true;
4506 break;
4507 }
4508 }
4509
4510 // If EFLAGS is not killed nor re-defined, we should check whether it is
4511 // live-out. If it is live-out, do not optimize.
4512 if ((IsCmpZero || IsSwapped) && !IsSafe) {
4513 MachineBasicBlock *MBB = CmpInstr->getParent();
4514 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
4515 SE = MBB->succ_end(); SI != SE; ++SI)
4516 if ((*SI)->isLiveIn(X86::EFLAGS))
4517 return false;
4518 }
4519
4520 // The instruction to be updated is either Sub or MI.
4521 Sub = IsCmpZero ? MI : Sub;
4522 // Move Movr0Inst to the appropriate place before Sub.
4523 if (Movr0Inst) {
4524 // Look backwards until we find a def that doesn't use the current EFLAGS.
4525 Def = Sub;
4526 MachineBasicBlock::reverse_iterator
4527 InsertI = MachineBasicBlock::reverse_iterator(++Def),
4528 InsertE = Sub->getParent()->rend();
4529 for (; InsertI != InsertE; ++InsertI) {
4530 MachineInstr *Instr = &*InsertI;
4531 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4532 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4533 Sub->getParent()->remove(Movr0Inst);
4534 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4535 Movr0Inst);
4536 break;
4537 }
4538 }
4539 if (InsertI == InsertE)
4540 return false;
4541 }
4542
4543 // Make sure Sub instruction defines EFLAGS and mark the def live.
4544 unsigned i = 0, e = Sub->getNumOperands();
4545 for (; i != e; ++i) {
4546 MachineOperand &MO = Sub->getOperand(i);
4547 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
4548 MO.setIsDead(false);
4549 break;
4550 }
4551 }
4552 assert(i != e && "Unable to locate a def EFLAGS operand");
4553
4554 CmpInstr->eraseFromParent();
4555
4556 // Modify the condition code of instructions in OpsToUpdate.
4557 for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
4558 OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
4559 return true;
4560 }
4561
4562 /// Try to remove the load by folding it to a register
4563 /// operand at the use. We fold the load instructions if load defines a virtual
4564 /// register, the virtual register is used once in the same BB, and the
4565 /// instructions in-between do not load or store, and have no side effects.
optimizeLoadInstr(MachineInstr * MI,const MachineRegisterInfo * MRI,unsigned & FoldAsLoadDefReg,MachineInstr * & DefMI) const4566 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
4567 const MachineRegisterInfo *MRI,
4568 unsigned &FoldAsLoadDefReg,
4569 MachineInstr *&DefMI) const {
4570 if (FoldAsLoadDefReg == 0)
4571 return nullptr;
4572 // To be conservative, if there exists another load, clear the load candidate.
4573 if (MI->mayLoad()) {
4574 FoldAsLoadDefReg = 0;
4575 return nullptr;
4576 }
4577
4578 // Check whether we can move DefMI here.
4579 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4580 assert(DefMI);
4581 bool SawStore = false;
4582 if (!DefMI->isSafeToMove(this, nullptr, SawStore))
4583 return nullptr;
4584
4585 // Collect information about virtual register operands of MI.
4586 unsigned SrcOperandId = 0;
4587 bool FoundSrcOperand = false;
4588 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
4589 MachineOperand &MO = MI->getOperand(i);
4590 if (!MO.isReg())
4591 continue;
4592 unsigned Reg = MO.getReg();
4593 if (Reg != FoldAsLoadDefReg)
4594 continue;
4595 // Do not fold if we have a subreg use or a def or multiple uses.
4596 if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
4597 return nullptr;
4598
4599 SrcOperandId = i;
4600 FoundSrcOperand = true;
4601 }
4602 if (!FoundSrcOperand)
4603 return nullptr;
4604
4605 // Check whether we can fold the def into SrcOperandId.
4606 MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI);
4607 if (FoldMI) {
4608 FoldAsLoadDefReg = 0;
4609 return FoldMI;
4610 }
4611
4612 return nullptr;
4613 }
4614
4615 /// Expand a single-def pseudo instruction to a two-addr
4616 /// instruction with two undef reads of the register being defined.
4617 /// This is used for mapping:
4618 /// %xmm4 = V_SET0
4619 /// to:
4620 /// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
4621 ///
Expand2AddrUndef(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)4622 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4623 const MCInstrDesc &Desc) {
4624 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4625 unsigned Reg = MIB->getOperand(0).getReg();
4626 MIB->setDesc(Desc);
4627
4628 // MachineInstr::addOperand() will insert explicit operands before any
4629 // implicit operands.
4630 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4631 // But we don't trust that.
4632 assert(MIB->getOperand(1).getReg() == Reg &&
4633 MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
4634 return true;
4635 }
4636
4637 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4638 // code sequence is needed for other targets.
expandLoadStackGuard(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4639 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4640 const TargetInstrInfo &TII) {
4641 MachineBasicBlock &MBB = *MIB->getParent();
4642 DebugLoc DL = MIB->getDebugLoc();
4643 unsigned Reg = MIB->getOperand(0).getReg();
4644 const GlobalValue *GV =
4645 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4646 unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
4647 MachineMemOperand *MMO = MBB.getParent()->
4648 getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8);
4649 MachineBasicBlock::iterator I = MIB.getInstr();
4650
4651 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4652 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4653 .addMemOperand(MMO);
4654 MIB->setDebugLoc(DL);
4655 MIB->setDesc(TII.get(X86::MOV64rm));
4656 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4657 }
4658
expandPostRAPseudo(MachineBasicBlock::iterator MI) const4659 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
4660 bool HasAVX = Subtarget.hasAVX();
4661 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
4662 switch (MI->getOpcode()) {
4663 case X86::MOV32r0:
4664 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4665 case X86::SETB_C8r:
4666 return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4667 case X86::SETB_C16r:
4668 return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4669 case X86::SETB_C32r:
4670 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4671 case X86::SETB_C64r:
4672 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4673 case X86::V_SET0:
4674 case X86::FsFLD0SS:
4675 case X86::FsFLD0SD:
4676 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4677 case X86::AVX_SET0:
4678 assert(HasAVX && "AVX not supported");
4679 return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
4680 case X86::AVX512_512_SET0:
4681 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4682 case X86::V_SETALLONES:
4683 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4684 case X86::AVX2_SETALLONES:
4685 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4686 case X86::TEST8ri_NOREX:
4687 MI->setDesc(get(X86::TEST8ri));
4688 return true;
4689 case X86::KSET0B:
4690 case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
4691 case X86::KSET1B:
4692 case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
4693 case TargetOpcode::LOAD_STACK_GUARD:
4694 expandLoadStackGuard(MIB, *this);
4695 return true;
4696 }
4697 return false;
4698 }
4699
FuseTwoAddrInst(MachineFunction & MF,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineInstr * MI,const TargetInstrInfo & TII)4700 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4701 ArrayRef<MachineOperand> MOs,
4702 MachineInstr *MI,
4703 const TargetInstrInfo &TII) {
4704 // Create the base instruction with the memory operand as the first part.
4705 // Omit the implicit operands, something BuildMI can't do.
4706 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4707 MI->getDebugLoc(), true);
4708 MachineInstrBuilder MIB(MF, NewMI);
4709 unsigned NumAddrOps = MOs.size();
4710 for (unsigned i = 0; i != NumAddrOps; ++i)
4711 MIB.addOperand(MOs[i]);
4712 if (NumAddrOps < 4) // FrameIndex only
4713 addOffset(MIB, 0);
4714
4715 // Loop over the rest of the ri operands, converting them over.
4716 unsigned NumOps = MI->getDesc().getNumOperands()-2;
4717 for (unsigned i = 0; i != NumOps; ++i) {
4718 MachineOperand &MO = MI->getOperand(i+2);
4719 MIB.addOperand(MO);
4720 }
4721 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
4722 MachineOperand &MO = MI->getOperand(i);
4723 MIB.addOperand(MO);
4724 }
4725 return MIB;
4726 }
4727
FuseInst(MachineFunction & MF,unsigned Opcode,unsigned OpNo,ArrayRef<MachineOperand> MOs,MachineInstr * MI,const TargetInstrInfo & TII)4728 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4729 unsigned OpNo, ArrayRef<MachineOperand> MOs,
4730 MachineInstr *MI, const TargetInstrInfo &TII) {
4731 // Omit the implicit operands, something BuildMI can't do.
4732 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4733 MI->getDebugLoc(), true);
4734 MachineInstrBuilder MIB(MF, NewMI);
4735
4736 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4737 MachineOperand &MO = MI->getOperand(i);
4738 if (i == OpNo) {
4739 assert(MO.isReg() && "Expected to fold into reg operand!");
4740 unsigned NumAddrOps = MOs.size();
4741 for (unsigned i = 0; i != NumAddrOps; ++i)
4742 MIB.addOperand(MOs[i]);
4743 if (NumAddrOps < 4) // FrameIndex only
4744 addOffset(MIB, 0);
4745 } else {
4746 MIB.addOperand(MO);
4747 }
4748 }
4749 return MIB;
4750 }
4751
MakeM0Inst(const TargetInstrInfo & TII,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineInstr * MI)4752 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4753 ArrayRef<MachineOperand> MOs,
4754 MachineInstr *MI) {
4755 MachineFunction &MF = *MI->getParent()->getParent();
4756 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
4757
4758 unsigned NumAddrOps = MOs.size();
4759 for (unsigned i = 0; i != NumAddrOps; ++i)
4760 MIB.addOperand(MOs[i]);
4761 if (NumAddrOps < 4) // FrameIndex only
4762 addOffset(MIB, 0);
4763 return MIB.addImm(0);
4764 }
4765
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,unsigned Size,unsigned Align,bool AllowCommute) const4766 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
4767 MachineInstr *MI,
4768 unsigned OpNum,
4769 ArrayRef<MachineOperand> MOs,
4770 unsigned Size, unsigned Align,
4771 bool AllowCommute) const {
4772 const DenseMap<unsigned,
4773 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
4774 bool isCallRegIndirect = Subtarget.callRegIndirect();
4775 bool isTwoAddrFold = false;
4776
4777 // For CPUs that favor the register form of a call,
4778 // do not fold loads into calls.
4779 if (isCallRegIndirect &&
4780 (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r))
4781 return nullptr;
4782
4783 unsigned NumOps = MI->getDesc().getNumOperands();
4784 bool isTwoAddr = NumOps > 1 &&
4785 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4786
4787 // FIXME: AsmPrinter doesn't know how to handle
4788 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4789 if (MI->getOpcode() == X86::ADD32ri &&
4790 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4791 return nullptr;
4792
4793 MachineInstr *NewMI = nullptr;
4794 // Folding a memory location into the two-address part of a two-address
4795 // instruction is different than folding it other places. It requires
4796 // replacing the *two* registers with the memory location.
4797 if (isTwoAddr && NumOps >= 2 && OpNum < 2 &&
4798 MI->getOperand(0).isReg() &&
4799 MI->getOperand(1).isReg() &&
4800 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
4801 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4802 isTwoAddrFold = true;
4803 } else if (OpNum == 0) {
4804 if (MI->getOpcode() == X86::MOV32r0) {
4805 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
4806 if (NewMI)
4807 return NewMI;
4808 }
4809
4810 OpcodeTablePtr = &RegOp2MemOpTable0;
4811 } else if (OpNum == 1) {
4812 OpcodeTablePtr = &RegOp2MemOpTable1;
4813 } else if (OpNum == 2) {
4814 OpcodeTablePtr = &RegOp2MemOpTable2;
4815 } else if (OpNum == 3) {
4816 OpcodeTablePtr = &RegOp2MemOpTable3;
4817 } else if (OpNum == 4) {
4818 OpcodeTablePtr = &RegOp2MemOpTable4;
4819 }
4820
4821 // If table selected...
4822 if (OpcodeTablePtr) {
4823 // Find the Opcode to fuse
4824 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4825 OpcodeTablePtr->find(MI->getOpcode());
4826 if (I != OpcodeTablePtr->end()) {
4827 unsigned Opcode = I->second.first;
4828 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4829 if (Align < MinAlign)
4830 return nullptr;
4831 bool NarrowToMOV32rm = false;
4832 if (Size) {
4833 unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize();
4834 if (Size < RCSize) {
4835 // Check if it's safe to fold the load. If the size of the object is
4836 // narrower than the load width, then it's not.
4837 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4838 return nullptr;
4839 // If this is a 64-bit load, but the spill slot is 32, then we can do
4840 // a 32-bit load which is implicitly zero-extended. This likely is
4841 // due to live interval analysis remat'ing a load from stack slot.
4842 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
4843 return nullptr;
4844 Opcode = X86::MOV32rm;
4845 NarrowToMOV32rm = true;
4846 }
4847 }
4848
4849 if (isTwoAddrFold)
4850 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
4851 else
4852 NewMI = FuseInst(MF, Opcode, OpNum, MOs, MI, *this);
4853
4854 if (NarrowToMOV32rm) {
4855 // If this is the special case where we use a MOV32rm to load a 32-bit
4856 // value and zero-extend the top bits. Change the destination register
4857 // to a 32-bit one.
4858 unsigned DstReg = NewMI->getOperand(0).getReg();
4859 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4860 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4861 else
4862 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4863 }
4864 return NewMI;
4865 }
4866 }
4867
4868 // If the instruction and target operand are commutable, commute the
4869 // instruction and try again.
4870 if (AllowCommute) {
4871 unsigned OriginalOpIdx = OpNum, CommuteOpIdx1, CommuteOpIdx2;
4872 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4873 bool HasDef = MI->getDesc().getNumDefs();
4874 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
4875 unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
4876 unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
4877 bool Tied0 =
4878 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4879 bool Tied1 =
4880 0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4881
4882 // If either of the commutable operands are tied to the destination
4883 // then we can not commute + fold.
4884 if ((HasDef && Reg0 == Reg1 && Tied0) ||
4885 (HasDef && Reg0 == Reg2 && Tied1))
4886 return nullptr;
4887
4888 if ((CommuteOpIdx1 == OriginalOpIdx) ||
4889 (CommuteOpIdx2 == OriginalOpIdx)) {
4890 MachineInstr *CommutedMI = commuteInstruction(MI, false);
4891 if (!CommutedMI) {
4892 // Unable to commute.
4893 return nullptr;
4894 }
4895 if (CommutedMI != MI) {
4896 // New instruction. We can't fold from this.
4897 CommutedMI->eraseFromParent();
4898 return nullptr;
4899 }
4900
4901 // Attempt to fold with the commuted version of the instruction.
4902 unsigned CommuteOp =
4903 (CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1);
4904 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, Size, Align,
4905 /*AllowCommute=*/false);
4906 if (NewMI)
4907 return NewMI;
4908
4909 // Folding failed again - undo the commute before returning.
4910 MachineInstr *UncommutedMI = commuteInstruction(MI, false);
4911 if (!UncommutedMI) {
4912 // Unable to commute.
4913 return nullptr;
4914 }
4915 if (UncommutedMI != MI) {
4916 // New instruction. It doesn't need to be kept.
4917 UncommutedMI->eraseFromParent();
4918 return nullptr;
4919 }
4920
4921 // Return here to prevent duplicate fuse failure report.
4922 return nullptr;
4923 }
4924 }
4925 }
4926
4927 // No fusion
4928 if (PrintFailedFusing && !MI->isCopy())
4929 dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI;
4930 return nullptr;
4931 }
4932
4933 /// Return true for all instructions that only update
4934 /// the first 32 or 64-bits of the destination register and leave the rest
4935 /// unmodified. This can be used to avoid folding loads if the instructions
4936 /// only update part of the destination register, and the non-updated part is
4937 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4938 /// instructions breaks the partial register dependency and it can improve
4939 /// performance. e.g.:
4940 ///
4941 /// movss (%rdi), %xmm0
4942 /// cvtss2sd %xmm0, %xmm0
4943 ///
4944 /// Instead of
4945 /// cvtss2sd (%rdi), %xmm0
4946 ///
4947 /// FIXME: This should be turned into a TSFlags.
4948 ///
hasPartialRegUpdate(unsigned Opcode)4949 static bool hasPartialRegUpdate(unsigned Opcode) {
4950 switch (Opcode) {
4951 case X86::CVTSI2SSrr:
4952 case X86::CVTSI2SSrm:
4953 case X86::CVTSI2SS64rr:
4954 case X86::CVTSI2SS64rm:
4955 case X86::CVTSI2SDrr:
4956 case X86::CVTSI2SDrm:
4957 case X86::CVTSI2SD64rr:
4958 case X86::CVTSI2SD64rm:
4959 case X86::CVTSD2SSrr:
4960 case X86::CVTSD2SSrm:
4961 case X86::Int_CVTSD2SSrr:
4962 case X86::Int_CVTSD2SSrm:
4963 case X86::CVTSS2SDrr:
4964 case X86::CVTSS2SDrm:
4965 case X86::Int_CVTSS2SDrr:
4966 case X86::Int_CVTSS2SDrm:
4967 case X86::RCPSSr:
4968 case X86::RCPSSm:
4969 case X86::RCPSSr_Int:
4970 case X86::RCPSSm_Int:
4971 case X86::ROUNDSDr:
4972 case X86::ROUNDSDm:
4973 case X86::ROUNDSDr_Int:
4974 case X86::ROUNDSSr:
4975 case X86::ROUNDSSm:
4976 case X86::ROUNDSSr_Int:
4977 case X86::RSQRTSSr:
4978 case X86::RSQRTSSm:
4979 case X86::RSQRTSSr_Int:
4980 case X86::RSQRTSSm_Int:
4981 case X86::SQRTSSr:
4982 case X86::SQRTSSm:
4983 case X86::SQRTSSr_Int:
4984 case X86::SQRTSSm_Int:
4985 case X86::SQRTSDr:
4986 case X86::SQRTSDm:
4987 case X86::SQRTSDr_Int:
4988 case X86::SQRTSDm_Int:
4989 return true;
4990 }
4991
4992 return false;
4993 }
4994
4995 /// Inform the ExeDepsFix pass how many idle
4996 /// instructions we would like before a partial register update.
4997 unsigned X86InstrInfo::
getPartialRegUpdateClearance(const MachineInstr * MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4998 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
4999 const TargetRegisterInfo *TRI) const {
5000 if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
5001 return 0;
5002
5003 // If MI is marked as reading Reg, the partial register update is wanted.
5004 const MachineOperand &MO = MI->getOperand(0);
5005 unsigned Reg = MO.getReg();
5006 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
5007 if (MO.readsReg() || MI->readsVirtualRegister(Reg))
5008 return 0;
5009 } else {
5010 if (MI->readsRegister(Reg, TRI))
5011 return 0;
5012 }
5013
5014 // If any of the preceding 16 instructions are reading Reg, insert a
5015 // dependency breaking instruction. The magic number is based on a few
5016 // Nehalem experiments.
5017 return 16;
5018 }
5019
5020 // Return true for any instruction the copies the high bits of the first source
5021 // operand into the unused high bits of the destination operand.
hasUndefRegUpdate(unsigned Opcode)5022 static bool hasUndefRegUpdate(unsigned Opcode) {
5023 switch (Opcode) {
5024 case X86::VCVTSI2SSrr:
5025 case X86::VCVTSI2SSrm:
5026 case X86::Int_VCVTSI2SSrr:
5027 case X86::Int_VCVTSI2SSrm:
5028 case X86::VCVTSI2SS64rr:
5029 case X86::VCVTSI2SS64rm:
5030 case X86::Int_VCVTSI2SS64rr:
5031 case X86::Int_VCVTSI2SS64rm:
5032 case X86::VCVTSI2SDrr:
5033 case X86::VCVTSI2SDrm:
5034 case X86::Int_VCVTSI2SDrr:
5035 case X86::Int_VCVTSI2SDrm:
5036 case X86::VCVTSI2SD64rr:
5037 case X86::VCVTSI2SD64rm:
5038 case X86::Int_VCVTSI2SD64rr:
5039 case X86::Int_VCVTSI2SD64rm:
5040 case X86::VCVTSD2SSrr:
5041 case X86::VCVTSD2SSrm:
5042 case X86::Int_VCVTSD2SSrr:
5043 case X86::Int_VCVTSD2SSrm:
5044 case X86::VCVTSS2SDrr:
5045 case X86::VCVTSS2SDrm:
5046 case X86::Int_VCVTSS2SDrr:
5047 case X86::Int_VCVTSS2SDrm:
5048 case X86::VRCPSSr:
5049 case X86::VRCPSSm:
5050 case X86::VRCPSSm_Int:
5051 case X86::VROUNDSDr:
5052 case X86::VROUNDSDm:
5053 case X86::VROUNDSDr_Int:
5054 case X86::VROUNDSSr:
5055 case X86::VROUNDSSm:
5056 case X86::VROUNDSSr_Int:
5057 case X86::VRSQRTSSr:
5058 case X86::VRSQRTSSm:
5059 case X86::VRSQRTSSm_Int:
5060 case X86::VSQRTSSr:
5061 case X86::VSQRTSSm:
5062 case X86::VSQRTSSm_Int:
5063 case X86::VSQRTSDr:
5064 case X86::VSQRTSDm:
5065 case X86::VSQRTSDm_Int:
5066 // AVX-512
5067 case X86::VCVTSD2SSZrr:
5068 case X86::VCVTSD2SSZrm:
5069 case X86::VCVTSS2SDZrr:
5070 case X86::VCVTSS2SDZrm:
5071 return true;
5072 }
5073
5074 return false;
5075 }
5076
5077 /// Inform the ExeDepsFix pass how many idle instructions we would like before
5078 /// certain undef register reads.
5079 ///
5080 /// This catches the VCVTSI2SD family of instructions:
5081 ///
5082 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
5083 ///
5084 /// We should to be careful *not* to catch VXOR idioms which are presumably
5085 /// handled specially in the pipeline:
5086 ///
5087 /// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
5088 ///
5089 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5090 /// high bits that are passed-through are not live.
5091 unsigned X86InstrInfo::
getUndefRegClearance(const MachineInstr * MI,unsigned & OpNum,const TargetRegisterInfo * TRI) const5092 getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
5093 const TargetRegisterInfo *TRI) const {
5094 if (!hasUndefRegUpdate(MI->getOpcode()))
5095 return 0;
5096
5097 // Set the OpNum parameter to the first source operand.
5098 OpNum = 1;
5099
5100 const MachineOperand &MO = MI->getOperand(OpNum);
5101 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
5102 // Use the same magic number as getPartialRegUpdateClearance.
5103 return 16;
5104 }
5105 return 0;
5106 }
5107
5108 void X86InstrInfo::
breakPartialRegDependency(MachineBasicBlock::iterator MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5109 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
5110 const TargetRegisterInfo *TRI) const {
5111 unsigned Reg = MI->getOperand(OpNum).getReg();
5112 // If MI kills this register, the false dependence is already broken.
5113 if (MI->killsRegister(Reg, TRI))
5114 return;
5115 if (X86::VR128RegClass.contains(Reg)) {
5116 // These instructions are all floating point domain, so xorps is the best
5117 // choice.
5118 bool HasAVX = Subtarget.hasAVX();
5119 unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
5120 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
5121 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5122 } else if (X86::VR256RegClass.contains(Reg)) {
5123 // Use vxorps to clear the full ymm register.
5124 // It wants to read and write the xmm sub-register.
5125 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5126 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
5127 .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
5128 .addReg(Reg, RegState::ImplicitDefine);
5129 } else
5130 return;
5131 MI->addRegisterKilled(Reg, TRI, true);
5132 }
5133
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,ArrayRef<unsigned> Ops,int FrameIndex) const5134 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
5135 MachineInstr *MI,
5136 ArrayRef<unsigned> Ops,
5137 int FrameIndex) const {
5138 // Check switch flag
5139 if (NoFusing) return nullptr;
5140
5141 // Unless optimizing for size, don't fold to avoid partial
5142 // register update stalls
5143 if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
5144 hasPartialRegUpdate(MI->getOpcode()))
5145 return nullptr;
5146
5147 const MachineFrameInfo *MFI = MF.getFrameInfo();
5148 unsigned Size = MFI->getObjectSize(FrameIndex);
5149 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
5150 // If the function stack isn't realigned we don't want to fold instructions
5151 // that need increased alignment.
5152 if (!RI.needsStackRealignment(MF))
5153 Alignment =
5154 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
5155 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5156 unsigned NewOpc = 0;
5157 unsigned RCSize = 0;
5158 switch (MI->getOpcode()) {
5159 default: return nullptr;
5160 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
5161 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5162 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5163 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5164 }
5165 // Check if it's safe to fold the load. If the size of the object is
5166 // narrower than the load width, then it's not.
5167 if (Size < RCSize)
5168 return nullptr;
5169 // Change to CMPXXri r, 0 first.
5170 MI->setDesc(get(NewOpc));
5171 MI->getOperand(1).ChangeToImmediate(0);
5172 } else if (Ops.size() != 1)
5173 return nullptr;
5174
5175 return foldMemoryOperandImpl(MF, MI, Ops[0],
5176 MachineOperand::CreateFI(FrameIndex), Size,
5177 Alignment, /*AllowCommute=*/true);
5178 }
5179
isPartialRegisterLoad(const MachineInstr & LoadMI,const MachineFunction & MF)5180 static bool isPartialRegisterLoad(const MachineInstr &LoadMI,
5181 const MachineFunction &MF) {
5182 unsigned Opc = LoadMI.getOpcode();
5183 unsigned RegSize =
5184 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
5185
5186 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4)
5187 // These instructions only load 32 bits, we can't fold them if the
5188 // destination register is wider than 32 bits (4 bytes).
5189 return true;
5190
5191 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8)
5192 // These instructions only load 64 bits, we can't fold them if the
5193 // destination register is wider than 64 bits (8 bytes).
5194 return true;
5195
5196 return false;
5197 }
5198
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,ArrayRef<unsigned> Ops,MachineInstr * LoadMI) const5199 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
5200 MachineInstr *MI,
5201 ArrayRef<unsigned> Ops,
5202 MachineInstr *LoadMI) const {
5203 // If loading from a FrameIndex, fold directly from the FrameIndex.
5204 unsigned NumOps = LoadMI->getDesc().getNumOperands();
5205 int FrameIndex;
5206 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5207 if (isPartialRegisterLoad(*LoadMI, MF))
5208 return nullptr;
5209 return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
5210 }
5211
5212 // Check switch flag
5213 if (NoFusing) return nullptr;
5214
5215 // Unless optimizing for size, don't fold to avoid partial
5216 // register update stalls
5217 if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
5218 hasPartialRegUpdate(MI->getOpcode()))
5219 return nullptr;
5220
5221 // Determine the alignment of the load.
5222 unsigned Alignment = 0;
5223 if (LoadMI->hasOneMemOperand())
5224 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
5225 else
5226 switch (LoadMI->getOpcode()) {
5227 case X86::AVX2_SETALLONES:
5228 case X86::AVX_SET0:
5229 Alignment = 32;
5230 break;
5231 case X86::V_SET0:
5232 case X86::V_SETALLONES:
5233 Alignment = 16;
5234 break;
5235 case X86::FsFLD0SD:
5236 Alignment = 8;
5237 break;
5238 case X86::FsFLD0SS:
5239 Alignment = 4;
5240 break;
5241 default:
5242 return nullptr;
5243 }
5244 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5245 unsigned NewOpc = 0;
5246 switch (MI->getOpcode()) {
5247 default: return nullptr;
5248 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
5249 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5250 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5251 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5252 }
5253 // Change to CMPXXri r, 0 first.
5254 MI->setDesc(get(NewOpc));
5255 MI->getOperand(1).ChangeToImmediate(0);
5256 } else if (Ops.size() != 1)
5257 return nullptr;
5258
5259 // Make sure the subregisters match.
5260 // Otherwise we risk changing the size of the load.
5261 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
5262 return nullptr;
5263
5264 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5265 switch (LoadMI->getOpcode()) {
5266 case X86::V_SET0:
5267 case X86::V_SETALLONES:
5268 case X86::AVX2_SETALLONES:
5269 case X86::AVX_SET0:
5270 case X86::FsFLD0SD:
5271 case X86::FsFLD0SS: {
5272 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5273 // Create a constant-pool entry and operands to load from it.
5274
5275 // Medium and large mode can't fold loads this way.
5276 if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5277 MF.getTarget().getCodeModel() != CodeModel::Kernel)
5278 return nullptr;
5279
5280 // x86-32 PIC requires a PIC base register for constant pools.
5281 unsigned PICBase = 0;
5282 if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
5283 if (Subtarget.is64Bit())
5284 PICBase = X86::RIP;
5285 else
5286 // FIXME: PICBase = getGlobalBaseReg(&MF);
5287 // This doesn't work for several reasons.
5288 // 1. GlobalBaseReg may have been spilled.
5289 // 2. It may not be live at MI.
5290 return nullptr;
5291 }
5292
5293 // Create a constant-pool entry.
5294 MachineConstantPool &MCP = *MF.getConstantPool();
5295 Type *Ty;
5296 unsigned Opc = LoadMI->getOpcode();
5297 if (Opc == X86::FsFLD0SS)
5298 Ty = Type::getFloatTy(MF.getFunction()->getContext());
5299 else if (Opc == X86::FsFLD0SD)
5300 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
5301 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
5302 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
5303 else
5304 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
5305
5306 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
5307 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5308 Constant::getNullValue(Ty);
5309 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5310
5311 // Create operands to load from the constant pool entry.
5312 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5313 MOs.push_back(MachineOperand::CreateImm(1));
5314 MOs.push_back(MachineOperand::CreateReg(0, false));
5315 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5316 MOs.push_back(MachineOperand::CreateReg(0, false));
5317 break;
5318 }
5319 default: {
5320 if (isPartialRegisterLoad(*LoadMI, MF))
5321 return nullptr;
5322
5323 // Folding a normal load. Just copy the load's address operands.
5324 MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands,
5325 LoadMI->operands_begin() + NumOps);
5326 break;
5327 }
5328 }
5329 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
5330 /*Size=*/0, Alignment, /*AllowCommute=*/true);
5331 }
5332
canFoldMemoryOperand(const MachineInstr * MI,ArrayRef<unsigned> Ops) const5333 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
5334 ArrayRef<unsigned> Ops) const {
5335 // Check switch flag
5336 if (NoFusing) return 0;
5337
5338 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5339 switch (MI->getOpcode()) {
5340 default: return false;
5341 case X86::TEST8rr:
5342 case X86::TEST16rr:
5343 case X86::TEST32rr:
5344 case X86::TEST64rr:
5345 return true;
5346 case X86::ADD32ri:
5347 // FIXME: AsmPrinter doesn't know how to handle
5348 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5349 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5350 return false;
5351 break;
5352 }
5353 }
5354
5355 if (Ops.size() != 1)
5356 return false;
5357
5358 unsigned OpNum = Ops[0];
5359 unsigned Opc = MI->getOpcode();
5360 unsigned NumOps = MI->getDesc().getNumOperands();
5361 bool isTwoAddr = NumOps > 1 &&
5362 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
5363
5364 // Folding a memory location into the two-address part of a two-address
5365 // instruction is different than folding it other places. It requires
5366 // replacing the *two* registers with the memory location.
5367 const DenseMap<unsigned,
5368 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
5369 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
5370 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
5371 } else if (OpNum == 0) {
5372 if (Opc == X86::MOV32r0)
5373 return true;
5374
5375 OpcodeTablePtr = &RegOp2MemOpTable0;
5376 } else if (OpNum == 1) {
5377 OpcodeTablePtr = &RegOp2MemOpTable1;
5378 } else if (OpNum == 2) {
5379 OpcodeTablePtr = &RegOp2MemOpTable2;
5380 } else if (OpNum == 3) {
5381 OpcodeTablePtr = &RegOp2MemOpTable3;
5382 }
5383
5384 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
5385 return true;
5386 return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
5387 }
5388
unfoldMemoryOperand(MachineFunction & MF,MachineInstr * MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs) const5389 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
5390 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
5391 SmallVectorImpl<MachineInstr*> &NewMIs) const {
5392 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5393 MemOp2RegOpTable.find(MI->getOpcode());
5394 if (I == MemOp2RegOpTable.end())
5395 return false;
5396 unsigned Opc = I->second.first;
5397 unsigned Index = I->second.second & TB_INDEX_MASK;
5398 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5399 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
5400 if (UnfoldLoad && !FoldedLoad)
5401 return false;
5402 UnfoldLoad &= FoldedLoad;
5403 if (UnfoldStore && !FoldedStore)
5404 return false;
5405 UnfoldStore &= FoldedStore;
5406
5407 const MCInstrDesc &MCID = get(Opc);
5408 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5409 if (!MI->hasOneMemOperand() &&
5410 RC == &X86::VR128RegClass &&
5411 !Subtarget.isUnalignedMemAccessFast())
5412 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5413 // conservatively assume the address is unaligned. That's bad for
5414 // performance.
5415 return false;
5416 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5417 SmallVector<MachineOperand,2> BeforeOps;
5418 SmallVector<MachineOperand,2> AfterOps;
5419 SmallVector<MachineOperand,4> ImpOps;
5420 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
5421 MachineOperand &Op = MI->getOperand(i);
5422 if (i >= Index && i < Index + X86::AddrNumOperands)
5423 AddrOps.push_back(Op);
5424 else if (Op.isReg() && Op.isImplicit())
5425 ImpOps.push_back(Op);
5426 else if (i < Index)
5427 BeforeOps.push_back(Op);
5428 else if (i > Index)
5429 AfterOps.push_back(Op);
5430 }
5431
5432 // Emit the load instruction.
5433 if (UnfoldLoad) {
5434 std::pair<MachineInstr::mmo_iterator,
5435 MachineInstr::mmo_iterator> MMOs =
5436 MF.extractLoadMemRefs(MI->memoperands_begin(),
5437 MI->memoperands_end());
5438 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
5439 if (UnfoldStore) {
5440 // Address operands cannot be marked isKill.
5441 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5442 MachineOperand &MO = NewMIs[0]->getOperand(i);
5443 if (MO.isReg())
5444 MO.setIsKill(false);
5445 }
5446 }
5447 }
5448
5449 // Emit the data processing instruction.
5450 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
5451 MachineInstrBuilder MIB(MF, DataMI);
5452
5453 if (FoldedStore)
5454 MIB.addReg(Reg, RegState::Define);
5455 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
5456 MIB.addOperand(BeforeOps[i]);
5457 if (FoldedLoad)
5458 MIB.addReg(Reg);
5459 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
5460 MIB.addOperand(AfterOps[i]);
5461 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
5462 MachineOperand &MO = ImpOps[i];
5463 MIB.addReg(MO.getReg(),
5464 getDefRegState(MO.isDef()) |
5465 RegState::Implicit |
5466 getKillRegState(MO.isKill()) |
5467 getDeadRegState(MO.isDead()) |
5468 getUndefRegState(MO.isUndef()));
5469 }
5470 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5471 switch (DataMI->getOpcode()) {
5472 default: break;
5473 case X86::CMP64ri32:
5474 case X86::CMP64ri8:
5475 case X86::CMP32ri:
5476 case X86::CMP32ri8:
5477 case X86::CMP16ri:
5478 case X86::CMP16ri8:
5479 case X86::CMP8ri: {
5480 MachineOperand &MO0 = DataMI->getOperand(0);
5481 MachineOperand &MO1 = DataMI->getOperand(1);
5482 if (MO1.getImm() == 0) {
5483 unsigned NewOpc;
5484 switch (DataMI->getOpcode()) {
5485 default: llvm_unreachable("Unreachable!");
5486 case X86::CMP64ri8:
5487 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5488 case X86::CMP32ri8:
5489 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
5490 case X86::CMP16ri8:
5491 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
5492 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
5493 }
5494 DataMI->setDesc(get(NewOpc));
5495 MO1.ChangeToRegister(MO0.getReg(), false);
5496 }
5497 }
5498 }
5499 NewMIs.push_back(DataMI);
5500
5501 // Emit the store instruction.
5502 if (UnfoldStore) {
5503 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5504 std::pair<MachineInstr::mmo_iterator,
5505 MachineInstr::mmo_iterator> MMOs =
5506 MF.extractStoreMemRefs(MI->memoperands_begin(),
5507 MI->memoperands_end());
5508 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
5509 }
5510
5511 return true;
5512 }
5513
5514 bool
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes) const5515 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5516 SmallVectorImpl<SDNode*> &NewNodes) const {
5517 if (!N->isMachineOpcode())
5518 return false;
5519
5520 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5521 MemOp2RegOpTable.find(N->getMachineOpcode());
5522 if (I == MemOp2RegOpTable.end())
5523 return false;
5524 unsigned Opc = I->second.first;
5525 unsigned Index = I->second.second & TB_INDEX_MASK;
5526 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5527 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
5528 const MCInstrDesc &MCID = get(Opc);
5529 MachineFunction &MF = DAG.getMachineFunction();
5530 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5531 unsigned NumDefs = MCID.NumDefs;
5532 std::vector<SDValue> AddrOps;
5533 std::vector<SDValue> BeforeOps;
5534 std::vector<SDValue> AfterOps;
5535 SDLoc dl(N);
5536 unsigned NumOps = N->getNumOperands();
5537 for (unsigned i = 0; i != NumOps-1; ++i) {
5538 SDValue Op = N->getOperand(i);
5539 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5540 AddrOps.push_back(Op);
5541 else if (i < Index-NumDefs)
5542 BeforeOps.push_back(Op);
5543 else if (i > Index-NumDefs)
5544 AfterOps.push_back(Op);
5545 }
5546 SDValue Chain = N->getOperand(NumOps-1);
5547 AddrOps.push_back(Chain);
5548
5549 // Emit the load instruction.
5550 SDNode *Load = nullptr;
5551 if (FoldedLoad) {
5552 EVT VT = *RC->vt_begin();
5553 std::pair<MachineInstr::mmo_iterator,
5554 MachineInstr::mmo_iterator> MMOs =
5555 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5556 cast<MachineSDNode>(N)->memoperands_end());
5557 if (!(*MMOs.first) &&
5558 RC == &X86::VR128RegClass &&
5559 !Subtarget.isUnalignedMemAccessFast())
5560 // Do not introduce a slow unaligned load.
5561 return false;
5562 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
5563 bool isAligned = (*MMOs.first) &&
5564 (*MMOs.first)->getAlignment() >= Alignment;
5565 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
5566 VT, MVT::Other, AddrOps);
5567 NewNodes.push_back(Load);
5568
5569 // Preserve memory reference information.
5570 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
5571 }
5572
5573 // Emit the data processing instruction.
5574 std::vector<EVT> VTs;
5575 const TargetRegisterClass *DstRC = nullptr;
5576 if (MCID.getNumDefs() > 0) {
5577 DstRC = getRegClass(MCID, 0, &RI, MF);
5578 VTs.push_back(*DstRC->vt_begin());
5579 }
5580 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5581 EVT VT = N->getValueType(i);
5582 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5583 VTs.push_back(VT);
5584 }
5585 if (Load)
5586 BeforeOps.push_back(SDValue(Load, 0));
5587 BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5588 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5589 NewNodes.push_back(NewNode);
5590
5591 // Emit the store instruction.
5592 if (FoldedStore) {
5593 AddrOps.pop_back();
5594 AddrOps.push_back(SDValue(NewNode, 0));
5595 AddrOps.push_back(Chain);
5596 std::pair<MachineInstr::mmo_iterator,
5597 MachineInstr::mmo_iterator> MMOs =
5598 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5599 cast<MachineSDNode>(N)->memoperands_end());
5600 if (!(*MMOs.first) &&
5601 RC == &X86::VR128RegClass &&
5602 !Subtarget.isUnalignedMemAccessFast())
5603 // Do not introduce a slow unaligned store.
5604 return false;
5605 unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
5606 bool isAligned = (*MMOs.first) &&
5607 (*MMOs.first)->getAlignment() >= Alignment;
5608 SDNode *Store =
5609 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5610 dl, MVT::Other, AddrOps);
5611 NewNodes.push_back(Store);
5612
5613 // Preserve memory reference information.
5614 cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
5615 }
5616
5617 return true;
5618 }
5619
getOpcodeAfterMemoryUnfold(unsigned Opc,bool UnfoldLoad,bool UnfoldStore,unsigned * LoadRegIndex) const5620 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5621 bool UnfoldLoad, bool UnfoldStore,
5622 unsigned *LoadRegIndex) const {
5623 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5624 MemOp2RegOpTable.find(Opc);
5625 if (I == MemOp2RegOpTable.end())
5626 return 0;
5627 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5628 bool FoldedStore = I->second.second & TB_FOLDED_STORE;
5629 if (UnfoldLoad && !FoldedLoad)
5630 return 0;
5631 if (UnfoldStore && !FoldedStore)
5632 return 0;
5633 if (LoadRegIndex)
5634 *LoadRegIndex = I->second.second & TB_INDEX_MASK;
5635 return I->second.first;
5636 }
5637
5638 bool
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const5639 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5640 int64_t &Offset1, int64_t &Offset2) const {
5641 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5642 return false;
5643 unsigned Opc1 = Load1->getMachineOpcode();
5644 unsigned Opc2 = Load2->getMachineOpcode();
5645 switch (Opc1) {
5646 default: return false;
5647 case X86::MOV8rm:
5648 case X86::MOV16rm:
5649 case X86::MOV32rm:
5650 case X86::MOV64rm:
5651 case X86::LD_Fp32m:
5652 case X86::LD_Fp64m:
5653 case X86::LD_Fp80m:
5654 case X86::MOVSSrm:
5655 case X86::MOVSDrm:
5656 case X86::MMX_MOVD64rm:
5657 case X86::MMX_MOVQ64rm:
5658 case X86::FsMOVAPSrm:
5659 case X86::FsMOVAPDrm:
5660 case X86::MOVAPSrm:
5661 case X86::MOVUPSrm:
5662 case X86::MOVAPDrm:
5663 case X86::MOVDQArm:
5664 case X86::MOVDQUrm:
5665 // AVX load instructions
5666 case X86::VMOVSSrm:
5667 case X86::VMOVSDrm:
5668 case X86::FsVMOVAPSrm:
5669 case X86::FsVMOVAPDrm:
5670 case X86::VMOVAPSrm:
5671 case X86::VMOVUPSrm:
5672 case X86::VMOVAPDrm:
5673 case X86::VMOVDQArm:
5674 case X86::VMOVDQUrm:
5675 case X86::VMOVAPSYrm:
5676 case X86::VMOVUPSYrm:
5677 case X86::VMOVAPDYrm:
5678 case X86::VMOVDQAYrm:
5679 case X86::VMOVDQUYrm:
5680 break;
5681 }
5682 switch (Opc2) {
5683 default: return false;
5684 case X86::MOV8rm:
5685 case X86::MOV16rm:
5686 case X86::MOV32rm:
5687 case X86::MOV64rm:
5688 case X86::LD_Fp32m:
5689 case X86::LD_Fp64m:
5690 case X86::LD_Fp80m:
5691 case X86::MOVSSrm:
5692 case X86::MOVSDrm:
5693 case X86::MMX_MOVD64rm:
5694 case X86::MMX_MOVQ64rm:
5695 case X86::FsMOVAPSrm:
5696 case X86::FsMOVAPDrm:
5697 case X86::MOVAPSrm:
5698 case X86::MOVUPSrm:
5699 case X86::MOVAPDrm:
5700 case X86::MOVDQArm:
5701 case X86::MOVDQUrm:
5702 // AVX load instructions
5703 case X86::VMOVSSrm:
5704 case X86::VMOVSDrm:
5705 case X86::FsVMOVAPSrm:
5706 case X86::FsVMOVAPDrm:
5707 case X86::VMOVAPSrm:
5708 case X86::VMOVUPSrm:
5709 case X86::VMOVAPDrm:
5710 case X86::VMOVDQArm:
5711 case X86::VMOVDQUrm:
5712 case X86::VMOVAPSYrm:
5713 case X86::VMOVUPSYrm:
5714 case X86::VMOVAPDYrm:
5715 case X86::VMOVDQAYrm:
5716 case X86::VMOVDQUYrm:
5717 break;
5718 }
5719
5720 // Check if chain operands and base addresses match.
5721 if (Load1->getOperand(0) != Load2->getOperand(0) ||
5722 Load1->getOperand(5) != Load2->getOperand(5))
5723 return false;
5724 // Segment operands should match as well.
5725 if (Load1->getOperand(4) != Load2->getOperand(4))
5726 return false;
5727 // Scale should be 1, Index should be Reg0.
5728 if (Load1->getOperand(1) == Load2->getOperand(1) &&
5729 Load1->getOperand(2) == Load2->getOperand(2)) {
5730 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
5731 return false;
5732
5733 // Now let's examine the displacements.
5734 if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
5735 isa<ConstantSDNode>(Load2->getOperand(3))) {
5736 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
5737 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
5738 return true;
5739 }
5740 }
5741 return false;
5742 }
5743
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const5744 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5745 int64_t Offset1, int64_t Offset2,
5746 unsigned NumLoads) const {
5747 assert(Offset2 > Offset1);
5748 if ((Offset2 - Offset1) / 8 > 64)
5749 return false;
5750
5751 unsigned Opc1 = Load1->getMachineOpcode();
5752 unsigned Opc2 = Load2->getMachineOpcode();
5753 if (Opc1 != Opc2)
5754 return false; // FIXME: overly conservative?
5755
5756 switch (Opc1) {
5757 default: break;
5758 case X86::LD_Fp32m:
5759 case X86::LD_Fp64m:
5760 case X86::LD_Fp80m:
5761 case X86::MMX_MOVD64rm:
5762 case X86::MMX_MOVQ64rm:
5763 return false;
5764 }
5765
5766 EVT VT = Load1->getValueType(0);
5767 switch (VT.getSimpleVT().SimpleTy) {
5768 default:
5769 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5770 // have 16 of them to play with.
5771 if (Subtarget.is64Bit()) {
5772 if (NumLoads >= 3)
5773 return false;
5774 } else if (NumLoads) {
5775 return false;
5776 }
5777 break;
5778 case MVT::i8:
5779 case MVT::i16:
5780 case MVT::i32:
5781 case MVT::i64:
5782 case MVT::f32:
5783 case MVT::f64:
5784 if (NumLoads)
5785 return false;
5786 break;
5787 }
5788
5789 return true;
5790 }
5791
shouldScheduleAdjacent(MachineInstr * First,MachineInstr * Second) const5792 bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
5793 MachineInstr *Second) const {
5794 // Check if this processor supports macro-fusion. Since this is a minor
5795 // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
5796 // proxy for SandyBridge+.
5797 if (!Subtarget.hasAVX())
5798 return false;
5799
5800 enum {
5801 FuseTest,
5802 FuseCmp,
5803 FuseInc
5804 } FuseKind;
5805
5806 switch(Second->getOpcode()) {
5807 default:
5808 return false;
5809 case X86::JE_1:
5810 case X86::JNE_1:
5811 case X86::JL_1:
5812 case X86::JLE_1:
5813 case X86::JG_1:
5814 case X86::JGE_1:
5815 FuseKind = FuseInc;
5816 break;
5817 case X86::JB_1:
5818 case X86::JBE_1:
5819 case X86::JA_1:
5820 case X86::JAE_1:
5821 FuseKind = FuseCmp;
5822 break;
5823 case X86::JS_1:
5824 case X86::JNS_1:
5825 case X86::JP_1:
5826 case X86::JNP_1:
5827 case X86::JO_1:
5828 case X86::JNO_1:
5829 FuseKind = FuseTest;
5830 break;
5831 }
5832 switch (First->getOpcode()) {
5833 default:
5834 return false;
5835 case X86::TEST8rr:
5836 case X86::TEST16rr:
5837 case X86::TEST32rr:
5838 case X86::TEST64rr:
5839 case X86::TEST8ri:
5840 case X86::TEST16ri:
5841 case X86::TEST32ri:
5842 case X86::TEST32i32:
5843 case X86::TEST64i32:
5844 case X86::TEST64ri32:
5845 case X86::TEST8rm:
5846 case X86::TEST16rm:
5847 case X86::TEST32rm:
5848 case X86::TEST64rm:
5849 case X86::TEST8ri_NOREX:
5850 case X86::AND16i16:
5851 case X86::AND16ri:
5852 case X86::AND16ri8:
5853 case X86::AND16rm:
5854 case X86::AND16rr:
5855 case X86::AND32i32:
5856 case X86::AND32ri:
5857 case X86::AND32ri8:
5858 case X86::AND32rm:
5859 case X86::AND32rr:
5860 case X86::AND64i32:
5861 case X86::AND64ri32:
5862 case X86::AND64ri8:
5863 case X86::AND64rm:
5864 case X86::AND64rr:
5865 case X86::AND8i8:
5866 case X86::AND8ri:
5867 case X86::AND8rm:
5868 case X86::AND8rr:
5869 return true;
5870 case X86::CMP16i16:
5871 case X86::CMP16ri:
5872 case X86::CMP16ri8:
5873 case X86::CMP16rm:
5874 case X86::CMP16rr:
5875 case X86::CMP32i32:
5876 case X86::CMP32ri:
5877 case X86::CMP32ri8:
5878 case X86::CMP32rm:
5879 case X86::CMP32rr:
5880 case X86::CMP64i32:
5881 case X86::CMP64ri32:
5882 case X86::CMP64ri8:
5883 case X86::CMP64rm:
5884 case X86::CMP64rr:
5885 case X86::CMP8i8:
5886 case X86::CMP8ri:
5887 case X86::CMP8rm:
5888 case X86::CMP8rr:
5889 case X86::ADD16i16:
5890 case X86::ADD16ri:
5891 case X86::ADD16ri8:
5892 case X86::ADD16ri8_DB:
5893 case X86::ADD16ri_DB:
5894 case X86::ADD16rm:
5895 case X86::ADD16rr:
5896 case X86::ADD16rr_DB:
5897 case X86::ADD32i32:
5898 case X86::ADD32ri:
5899 case X86::ADD32ri8:
5900 case X86::ADD32ri8_DB:
5901 case X86::ADD32ri_DB:
5902 case X86::ADD32rm:
5903 case X86::ADD32rr:
5904 case X86::ADD32rr_DB:
5905 case X86::ADD64i32:
5906 case X86::ADD64ri32:
5907 case X86::ADD64ri32_DB:
5908 case X86::ADD64ri8:
5909 case X86::ADD64ri8_DB:
5910 case X86::ADD64rm:
5911 case X86::ADD64rr:
5912 case X86::ADD64rr_DB:
5913 case X86::ADD8i8:
5914 case X86::ADD8mi:
5915 case X86::ADD8mr:
5916 case X86::ADD8ri:
5917 case X86::ADD8rm:
5918 case X86::ADD8rr:
5919 case X86::SUB16i16:
5920 case X86::SUB16ri:
5921 case X86::SUB16ri8:
5922 case X86::SUB16rm:
5923 case X86::SUB16rr:
5924 case X86::SUB32i32:
5925 case X86::SUB32ri:
5926 case X86::SUB32ri8:
5927 case X86::SUB32rm:
5928 case X86::SUB32rr:
5929 case X86::SUB64i32:
5930 case X86::SUB64ri32:
5931 case X86::SUB64ri8:
5932 case X86::SUB64rm:
5933 case X86::SUB64rr:
5934 case X86::SUB8i8:
5935 case X86::SUB8ri:
5936 case X86::SUB8rm:
5937 case X86::SUB8rr:
5938 return FuseKind == FuseCmp || FuseKind == FuseInc;
5939 case X86::INC16r:
5940 case X86::INC32r:
5941 case X86::INC64r:
5942 case X86::INC8r:
5943 case X86::DEC16r:
5944 case X86::DEC32r:
5945 case X86::DEC64r:
5946 case X86::DEC8r:
5947 return FuseKind == FuseInc;
5948 }
5949 }
5950
5951 bool X86InstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const5952 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5953 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5954 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5955 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
5956 return true;
5957 Cond[0].setImm(GetOppositeBranchCondition(CC));
5958 return false;
5959 }
5960
5961 bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC) const5962 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5963 // FIXME: Return false for x87 stack register classes for now. We can't
5964 // allow any loads of these registers before FpGet_ST0_80.
5965 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
5966 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
5967 }
5968
5969 /// Return a virtual register initialized with the
5970 /// the global base register value. Output instructions required to
5971 /// initialize the register in the function entry block, if necessary.
5972 ///
5973 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5974 ///
getGlobalBaseReg(MachineFunction * MF) const5975 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5976 assert(!Subtarget.is64Bit() &&
5977 "X86-64 PIC uses RIP relative addressing");
5978
5979 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5980 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5981 if (GlobalBaseReg != 0)
5982 return GlobalBaseReg;
5983
5984 // Create the register. The code to initialize it is inserted
5985 // later, by the CGBR pass (below).
5986 MachineRegisterInfo &RegInfo = MF->getRegInfo();
5987 GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
5988 X86FI->setGlobalBaseReg(GlobalBaseReg);
5989 return GlobalBaseReg;
5990 }
5991
5992 // These are the replaceable SSE instructions. Some of these have Int variants
5993 // that we don't include here. We don't want to replace instructions selected
5994 // by intrinsics.
5995 static const uint16_t ReplaceableInstrs[][3] = {
5996 //PackedSingle PackedDouble PackedInt
5997 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
5998 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
5999 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
6000 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
6001 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
6002 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
6003 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
6004 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
6005 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
6006 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
6007 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
6008 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
6009 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
6010 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
6011 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
6012 // AVX 128-bit support
6013 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
6014 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
6015 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
6016 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
6017 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
6018 // TODO: Add the AVX versions of MOVLPSmr
6019 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6020 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
6021 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
6022 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
6023 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
6024 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
6025 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
6026 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
6027 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
6028 // AVX 256-bit support
6029 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
6030 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
6031 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
6032 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
6033 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
6034 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
6035 };
6036
6037 static const uint16_t ReplaceableInstrsAVX2[][3] = {
6038 //PackedSingle PackedDouble PackedInt
6039 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
6040 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
6041 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
6042 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
6043 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
6044 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
6045 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
6046 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
6047 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6048 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6049 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
6050 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
6051 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
6052 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
6053 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6054 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6055 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6056 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6057 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6058 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
6059 };
6060
6061 // FIXME: Some shuffle and unpack instructions have equivalents in different
6062 // domains, but they require a bit more work than just switching opcodes.
6063
lookup(unsigned opcode,unsigned domain)6064 static const uint16_t *lookup(unsigned opcode, unsigned domain) {
6065 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
6066 if (ReplaceableInstrs[i][domain-1] == opcode)
6067 return ReplaceableInstrs[i];
6068 return nullptr;
6069 }
6070
lookupAVX2(unsigned opcode,unsigned domain)6071 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
6072 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
6073 if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
6074 return ReplaceableInstrsAVX2[i];
6075 return nullptr;
6076 }
6077
6078 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr * MI) const6079 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
6080 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6081 bool hasAVX2 = Subtarget.hasAVX2();
6082 uint16_t validDomains = 0;
6083 if (domain && lookup(MI->getOpcode(), domain))
6084 validDomains = 0xe;
6085 else if (domain && lookupAVX2(MI->getOpcode(), domain))
6086 validDomains = hasAVX2 ? 0xe : 0x6;
6087 return std::make_pair(domain, validDomains);
6088 }
6089
setExecutionDomain(MachineInstr * MI,unsigned Domain) const6090 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
6091 assert(Domain>0 && Domain<4 && "Invalid execution domain");
6092 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6093 assert(dom && "Not an SSE instruction");
6094 const uint16_t *table = lookup(MI->getOpcode(), dom);
6095 if (!table) { // try the other table
6096 assert((Subtarget.hasAVX2() || Domain < 3) &&
6097 "256-bit vector operations only available in AVX2");
6098 table = lookupAVX2(MI->getOpcode(), dom);
6099 }
6100 assert(table && "Cannot change domain");
6101 MI->setDesc(get(table[Domain-1]));
6102 }
6103
6104 /// Return the noop instruction to use for a noop.
getNoopForMachoTarget(MCInst & NopInst) const6105 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
6106 NopInst.setOpcode(X86::NOOP);
6107 }
6108
6109 // This code must remain in sync with getJumpInstrTableEntryBound in this class!
6110 // In particular, getJumpInstrTableEntryBound must always return an upper bound
6111 // on the encoding lengths of the instructions generated by
6112 // getUnconditionalBranch and getTrap.
getUnconditionalBranch(MCInst & Branch,const MCSymbolRefExpr * BranchTarget) const6113 void X86InstrInfo::getUnconditionalBranch(
6114 MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
6115 Branch.setOpcode(X86::JMP_1);
6116 Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
6117 }
6118
6119 // This code must remain in sync with getJumpInstrTableEntryBound in this class!
6120 // In particular, getJumpInstrTableEntryBound must always return an upper bound
6121 // on the encoding lengths of the instructions generated by
6122 // getUnconditionalBranch and getTrap.
getTrap(MCInst & MI) const6123 void X86InstrInfo::getTrap(MCInst &MI) const {
6124 MI.setOpcode(X86::TRAP);
6125 }
6126
6127 // See getTrap and getUnconditionalBranch for conditions on the value returned
6128 // by this function.
getJumpInstrTableEntryBound() const6129 unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
6130 // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
6131 // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
6132 return 5;
6133 }
6134
isHighLatencyDef(int opc) const6135 bool X86InstrInfo::isHighLatencyDef(int opc) const {
6136 switch (opc) {
6137 default: return false;
6138 case X86::DIVSDrm:
6139 case X86::DIVSDrm_Int:
6140 case X86::DIVSDrr:
6141 case X86::DIVSDrr_Int:
6142 case X86::DIVSSrm:
6143 case X86::DIVSSrm_Int:
6144 case X86::DIVSSrr:
6145 case X86::DIVSSrr_Int:
6146 case X86::SQRTPDm:
6147 case X86::SQRTPDr:
6148 case X86::SQRTPSm:
6149 case X86::SQRTPSr:
6150 case X86::SQRTSDm:
6151 case X86::SQRTSDm_Int:
6152 case X86::SQRTSDr:
6153 case X86::SQRTSDr_Int:
6154 case X86::SQRTSSm:
6155 case X86::SQRTSSm_Int:
6156 case X86::SQRTSSr:
6157 case X86::SQRTSSr_Int:
6158 // AVX instructions with high latency
6159 case X86::VDIVSDrm:
6160 case X86::VDIVSDrm_Int:
6161 case X86::VDIVSDrr:
6162 case X86::VDIVSDrr_Int:
6163 case X86::VDIVSSrm:
6164 case X86::VDIVSSrm_Int:
6165 case X86::VDIVSSrr:
6166 case X86::VDIVSSrr_Int:
6167 case X86::VSQRTPDm:
6168 case X86::VSQRTPDr:
6169 case X86::VSQRTPSm:
6170 case X86::VSQRTPSr:
6171 case X86::VSQRTSDm:
6172 case X86::VSQRTSDm_Int:
6173 case X86::VSQRTSDr:
6174 case X86::VSQRTSSm:
6175 case X86::VSQRTSSm_Int:
6176 case X86::VSQRTSSr:
6177 case X86::VSQRTPDZm:
6178 case X86::VSQRTPDZr:
6179 case X86::VSQRTPSZm:
6180 case X86::VSQRTPSZr:
6181 case X86::VSQRTSDZm:
6182 case X86::VSQRTSDZm_Int:
6183 case X86::VSQRTSDZr:
6184 case X86::VSQRTSSZm_Int:
6185 case X86::VSQRTSSZr:
6186 case X86::VSQRTSSZm:
6187 case X86::VDIVSDZrm:
6188 case X86::VDIVSDZrr:
6189 case X86::VDIVSSZrm:
6190 case X86::VDIVSSZrr:
6191
6192 case X86::VGATHERQPSZrm:
6193 case X86::VGATHERQPDZrm:
6194 case X86::VGATHERDPDZrm:
6195 case X86::VGATHERDPSZrm:
6196 case X86::VPGATHERQDZrm:
6197 case X86::VPGATHERQQZrm:
6198 case X86::VPGATHERDDZrm:
6199 case X86::VPGATHERDQZrm:
6200 case X86::VSCATTERQPDZmr:
6201 case X86::VSCATTERQPSZmr:
6202 case X86::VSCATTERDPDZmr:
6203 case X86::VSCATTERDPSZmr:
6204 case X86::VPSCATTERQDZmr:
6205 case X86::VPSCATTERQQZmr:
6206 case X86::VPSCATTERDDZmr:
6207 case X86::VPSCATTERDQZmr:
6208 return true;
6209 }
6210 }
6211
6212 bool X86InstrInfo::
hasHighOperandLatency(const InstrItineraryData * ItinData,const MachineRegisterInfo * MRI,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx) const6213 hasHighOperandLatency(const InstrItineraryData *ItinData,
6214 const MachineRegisterInfo *MRI,
6215 const MachineInstr *DefMI, unsigned DefIdx,
6216 const MachineInstr *UseMI, unsigned UseIdx) const {
6217 return isHighLatencyDef(DefMI->getOpcode());
6218 }
6219
6220 namespace {
6221 /// Create Global Base Reg pass. This initializes the PIC
6222 /// global base register for x86-32.
6223 struct CGBR : public MachineFunctionPass {
6224 static char ID;
CGBR__anon9af0d4bf0311::CGBR6225 CGBR() : MachineFunctionPass(ID) {}
6226
runOnMachineFunction__anon9af0d4bf0311::CGBR6227 bool runOnMachineFunction(MachineFunction &MF) override {
6228 const X86TargetMachine *TM =
6229 static_cast<const X86TargetMachine *>(&MF.getTarget());
6230 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
6231
6232 // Don't do anything if this is 64-bit as 64-bit PIC
6233 // uses RIP relative addressing.
6234 if (STI.is64Bit())
6235 return false;
6236
6237 // Only emit a global base reg in PIC mode.
6238 if (TM->getRelocationModel() != Reloc::PIC_)
6239 return false;
6240
6241 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
6242 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6243
6244 // If we didn't need a GlobalBaseReg, don't insert code.
6245 if (GlobalBaseReg == 0)
6246 return false;
6247
6248 // Insert the set of GlobalBaseReg into the first MBB of the function
6249 MachineBasicBlock &FirstMBB = MF.front();
6250 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
6251 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
6252 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6253 const X86InstrInfo *TII = STI.getInstrInfo();
6254
6255 unsigned PC;
6256 if (STI.isPICStyleGOT())
6257 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
6258 else
6259 PC = GlobalBaseReg;
6260
6261 // Operand of MovePCtoStack is completely ignored by asm printer. It's
6262 // only used in JIT code emission as displacement to pc.
6263 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
6264
6265 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
6266 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
6267 if (STI.isPICStyleGOT()) {
6268 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
6269 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
6270 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
6271 X86II::MO_GOT_ABSOLUTE_ADDRESS);
6272 }
6273
6274 return true;
6275 }
6276
getPassName__anon9af0d4bf0311::CGBR6277 const char *getPassName() const override {
6278 return "X86 PIC Global Base Reg Initialization";
6279 }
6280
getAnalysisUsage__anon9af0d4bf0311::CGBR6281 void getAnalysisUsage(AnalysisUsage &AU) const override {
6282 AU.setPreservesCFG();
6283 MachineFunctionPass::getAnalysisUsage(AU);
6284 }
6285 };
6286 }
6287
6288 char CGBR::ID = 0;
6289 FunctionPass*
createX86GlobalBaseRegPass()6290 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
6291
6292 namespace {
6293 struct LDTLSCleanup : public MachineFunctionPass {
6294 static char ID;
LDTLSCleanup__anon9af0d4bf0411::LDTLSCleanup6295 LDTLSCleanup() : MachineFunctionPass(ID) {}
6296
runOnMachineFunction__anon9af0d4bf0411::LDTLSCleanup6297 bool runOnMachineFunction(MachineFunction &MF) override {
6298 X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
6299 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
6300 // No point folding accesses if there isn't at least two.
6301 return false;
6302 }
6303
6304 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
6305 return VisitNode(DT->getRootNode(), 0);
6306 }
6307
6308 // Visit the dominator subtree rooted at Node in pre-order.
6309 // If TLSBaseAddrReg is non-null, then use that to replace any
6310 // TLS_base_addr instructions. Otherwise, create the register
6311 // when the first such instruction is seen, and then use it
6312 // as we encounter more instructions.
VisitNode__anon9af0d4bf0411::LDTLSCleanup6313 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
6314 MachineBasicBlock *BB = Node->getBlock();
6315 bool Changed = false;
6316
6317 // Traverse the current block.
6318 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
6319 ++I) {
6320 switch (I->getOpcode()) {
6321 case X86::TLS_base_addr32:
6322 case X86::TLS_base_addr64:
6323 if (TLSBaseAddrReg)
6324 I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
6325 else
6326 I = SetRegister(I, &TLSBaseAddrReg);
6327 Changed = true;
6328 break;
6329 default:
6330 break;
6331 }
6332 }
6333
6334 // Visit the children of this block in the dominator tree.
6335 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
6336 I != E; ++I) {
6337 Changed |= VisitNode(*I, TLSBaseAddrReg);
6338 }
6339
6340 return Changed;
6341 }
6342
6343 // Replace the TLS_base_addr instruction I with a copy from
6344 // TLSBaseAddrReg, returning the new instruction.
ReplaceTLSBaseAddrCall__anon9af0d4bf0411::LDTLSCleanup6345 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
6346 unsigned TLSBaseAddrReg) {
6347 MachineFunction *MF = I->getParent()->getParent();
6348 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
6349 const bool is64Bit = STI.is64Bit();
6350 const X86InstrInfo *TII = STI.getInstrInfo();
6351
6352 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
6353 MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
6354 TII->get(TargetOpcode::COPY),
6355 is64Bit ? X86::RAX : X86::EAX)
6356 .addReg(TLSBaseAddrReg);
6357
6358 // Erase the TLS_base_addr instruction.
6359 I->eraseFromParent();
6360
6361 return Copy;
6362 }
6363
6364 // Create a virtal register in *TLSBaseAddrReg, and populate it by
6365 // inserting a copy instruction after I. Returns the new instruction.
SetRegister__anon9af0d4bf0411::LDTLSCleanup6366 MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
6367 MachineFunction *MF = I->getParent()->getParent();
6368 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
6369 const bool is64Bit = STI.is64Bit();
6370 const X86InstrInfo *TII = STI.getInstrInfo();
6371
6372 // Create a virtual register for the TLS base address.
6373 MachineRegisterInfo &RegInfo = MF->getRegInfo();
6374 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
6375 ? &X86::GR64RegClass
6376 : &X86::GR32RegClass);
6377
6378 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
6379 MachineInstr *Next = I->getNextNode();
6380 MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
6381 TII->get(TargetOpcode::COPY),
6382 *TLSBaseAddrReg)
6383 .addReg(is64Bit ? X86::RAX : X86::EAX);
6384
6385 return Copy;
6386 }
6387
getPassName__anon9af0d4bf0411::LDTLSCleanup6388 const char *getPassName() const override {
6389 return "Local Dynamic TLS Access Clean-up";
6390 }
6391
getAnalysisUsage__anon9af0d4bf0411::LDTLSCleanup6392 void getAnalysisUsage(AnalysisUsage &AU) const override {
6393 AU.setPreservesCFG();
6394 AU.addRequired<MachineDominatorTree>();
6395 MachineFunctionPass::getAnalysisUsage(AU);
6396 }
6397 };
6398 }
6399
6400 char LDTLSCleanup::ID = 0;
6401 FunctionPass*
createCleanupLocalDynamicTLSPass()6402 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
6403