1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86InstrInfo.h"
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/StackMaps.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCExpr.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include <limits>
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "x86-instr-info"
44 
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "X86GenInstrInfo.inc"
47 
48 static cl::opt<bool>
49 NoFusing("disable-spill-fusing",
50          cl::desc("Disable fusing of spill code into instructions"));
51 static cl::opt<bool>
52 PrintFailedFusing("print-failed-fuse-candidates",
53                   cl::desc("Print instructions that the allocator wants to"
54                            " fuse, but the X86 backend currently can't"),
55                   cl::Hidden);
56 static cl::opt<bool>
57 ReMatPICStubLoad("remat-pic-stub-load",
58                  cl::desc("Re-materialize load from stub in PIC mode"),
59                  cl::init(false), cl::Hidden);
60 
61 enum {
62   // Select which memory operand is being unfolded.
63   // (stored in bits 0 - 3)
64   TB_INDEX_0    = 0,
65   TB_INDEX_1    = 1,
66   TB_INDEX_2    = 2,
67   TB_INDEX_3    = 3,
68   TB_INDEX_4    = 4,
69   TB_INDEX_MASK = 0xf,
70 
71   // Do not insert the reverse map (MemOp -> RegOp) into the table.
72   // This may be needed because there is a many -> one mapping.
73   TB_NO_REVERSE   = 1 << 4,
74 
75   // Do not insert the forward map (RegOp -> MemOp) into the table.
76   // This is needed for Native Client, which prohibits branch
77   // instructions from using a memory operand.
78   TB_NO_FORWARD   = 1 << 5,
79 
80   TB_FOLDED_LOAD  = 1 << 6,
81   TB_FOLDED_STORE = 1 << 7,
82 
83   // Minimum alignment required for load/store.
84   // Used for RegOp->MemOp conversion.
85   // (stored in bits 8 - 15)
86   TB_ALIGN_SHIFT = 8,
87   TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
88   TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
89   TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
90   TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT,
91   TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
92 };
93 
94 struct X86MemoryFoldTableEntry {
95   uint16_t RegOp;
96   uint16_t MemOp;
97   uint16_t Flags;
98 };
99 
100 // Pin the vtable to this file.
anchor()101 void X86InstrInfo::anchor() {}
102 
X86InstrInfo(X86Subtarget & STI)103 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
104     : X86GenInstrInfo(
105           (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
106           (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
107       Subtarget(STI), RI(STI.getTargetTriple()) {
108 
109   static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
110     { X86::ADC32ri,     X86::ADC32mi,    0 },
111     { X86::ADC32ri8,    X86::ADC32mi8,   0 },
112     { X86::ADC32rr,     X86::ADC32mr,    0 },
113     { X86::ADC64ri32,   X86::ADC64mi32,  0 },
114     { X86::ADC64ri8,    X86::ADC64mi8,   0 },
115     { X86::ADC64rr,     X86::ADC64mr,    0 },
116     { X86::ADD16ri,     X86::ADD16mi,    0 },
117     { X86::ADD16ri8,    X86::ADD16mi8,   0 },
118     { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
119     { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
120     { X86::ADD16rr,     X86::ADD16mr,    0 },
121     { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
122     { X86::ADD32ri,     X86::ADD32mi,    0 },
123     { X86::ADD32ri8,    X86::ADD32mi8,   0 },
124     { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
125     { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
126     { X86::ADD32rr,     X86::ADD32mr,    0 },
127     { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
128     { X86::ADD64ri32,   X86::ADD64mi32,  0 },
129     { X86::ADD64ri8,    X86::ADD64mi8,   0 },
130     { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
131     { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
132     { X86::ADD64rr,     X86::ADD64mr,    0 },
133     { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
134     { X86::ADD8ri,      X86::ADD8mi,     0 },
135     { X86::ADD8rr,      X86::ADD8mr,     0 },
136     { X86::AND16ri,     X86::AND16mi,    0 },
137     { X86::AND16ri8,    X86::AND16mi8,   0 },
138     { X86::AND16rr,     X86::AND16mr,    0 },
139     { X86::AND32ri,     X86::AND32mi,    0 },
140     { X86::AND32ri8,    X86::AND32mi8,   0 },
141     { X86::AND32rr,     X86::AND32mr,    0 },
142     { X86::AND64ri32,   X86::AND64mi32,  0 },
143     { X86::AND64ri8,    X86::AND64mi8,   0 },
144     { X86::AND64rr,     X86::AND64mr,    0 },
145     { X86::AND8ri,      X86::AND8mi,     0 },
146     { X86::AND8rr,      X86::AND8mr,     0 },
147     { X86::DEC16r,      X86::DEC16m,     0 },
148     { X86::DEC32r,      X86::DEC32m,     0 },
149     { X86::DEC64r,      X86::DEC64m,     0 },
150     { X86::DEC8r,       X86::DEC8m,      0 },
151     { X86::INC16r,      X86::INC16m,     0 },
152     { X86::INC32r,      X86::INC32m,     0 },
153     { X86::INC64r,      X86::INC64m,     0 },
154     { X86::INC8r,       X86::INC8m,      0 },
155     { X86::NEG16r,      X86::NEG16m,     0 },
156     { X86::NEG32r,      X86::NEG32m,     0 },
157     { X86::NEG64r,      X86::NEG64m,     0 },
158     { X86::NEG8r,       X86::NEG8m,      0 },
159     { X86::NOT16r,      X86::NOT16m,     0 },
160     { X86::NOT32r,      X86::NOT32m,     0 },
161     { X86::NOT64r,      X86::NOT64m,     0 },
162     { X86::NOT8r,       X86::NOT8m,      0 },
163     { X86::OR16ri,      X86::OR16mi,     0 },
164     { X86::OR16ri8,     X86::OR16mi8,    0 },
165     { X86::OR16rr,      X86::OR16mr,     0 },
166     { X86::OR32ri,      X86::OR32mi,     0 },
167     { X86::OR32ri8,     X86::OR32mi8,    0 },
168     { X86::OR32rr,      X86::OR32mr,     0 },
169     { X86::OR64ri32,    X86::OR64mi32,   0 },
170     { X86::OR64ri8,     X86::OR64mi8,    0 },
171     { X86::OR64rr,      X86::OR64mr,     0 },
172     { X86::OR8ri,       X86::OR8mi,      0 },
173     { X86::OR8rr,       X86::OR8mr,      0 },
174     { X86::ROL16r1,     X86::ROL16m1,    0 },
175     { X86::ROL16rCL,    X86::ROL16mCL,   0 },
176     { X86::ROL16ri,     X86::ROL16mi,    0 },
177     { X86::ROL32r1,     X86::ROL32m1,    0 },
178     { X86::ROL32rCL,    X86::ROL32mCL,   0 },
179     { X86::ROL32ri,     X86::ROL32mi,    0 },
180     { X86::ROL64r1,     X86::ROL64m1,    0 },
181     { X86::ROL64rCL,    X86::ROL64mCL,   0 },
182     { X86::ROL64ri,     X86::ROL64mi,    0 },
183     { X86::ROL8r1,      X86::ROL8m1,     0 },
184     { X86::ROL8rCL,     X86::ROL8mCL,    0 },
185     { X86::ROL8ri,      X86::ROL8mi,     0 },
186     { X86::ROR16r1,     X86::ROR16m1,    0 },
187     { X86::ROR16rCL,    X86::ROR16mCL,   0 },
188     { X86::ROR16ri,     X86::ROR16mi,    0 },
189     { X86::ROR32r1,     X86::ROR32m1,    0 },
190     { X86::ROR32rCL,    X86::ROR32mCL,   0 },
191     { X86::ROR32ri,     X86::ROR32mi,    0 },
192     { X86::ROR64r1,     X86::ROR64m1,    0 },
193     { X86::ROR64rCL,    X86::ROR64mCL,   0 },
194     { X86::ROR64ri,     X86::ROR64mi,    0 },
195     { X86::ROR8r1,      X86::ROR8m1,     0 },
196     { X86::ROR8rCL,     X86::ROR8mCL,    0 },
197     { X86::ROR8ri,      X86::ROR8mi,     0 },
198     { X86::SAR16r1,     X86::SAR16m1,    0 },
199     { X86::SAR16rCL,    X86::SAR16mCL,   0 },
200     { X86::SAR16ri,     X86::SAR16mi,    0 },
201     { X86::SAR32r1,     X86::SAR32m1,    0 },
202     { X86::SAR32rCL,    X86::SAR32mCL,   0 },
203     { X86::SAR32ri,     X86::SAR32mi,    0 },
204     { X86::SAR64r1,     X86::SAR64m1,    0 },
205     { X86::SAR64rCL,    X86::SAR64mCL,   0 },
206     { X86::SAR64ri,     X86::SAR64mi,    0 },
207     { X86::SAR8r1,      X86::SAR8m1,     0 },
208     { X86::SAR8rCL,     X86::SAR8mCL,    0 },
209     { X86::SAR8ri,      X86::SAR8mi,     0 },
210     { X86::SBB32ri,     X86::SBB32mi,    0 },
211     { X86::SBB32ri8,    X86::SBB32mi8,   0 },
212     { X86::SBB32rr,     X86::SBB32mr,    0 },
213     { X86::SBB64ri32,   X86::SBB64mi32,  0 },
214     { X86::SBB64ri8,    X86::SBB64mi8,   0 },
215     { X86::SBB64rr,     X86::SBB64mr,    0 },
216     { X86::SHL16rCL,    X86::SHL16mCL,   0 },
217     { X86::SHL16ri,     X86::SHL16mi,    0 },
218     { X86::SHL32rCL,    X86::SHL32mCL,   0 },
219     { X86::SHL32ri,     X86::SHL32mi,    0 },
220     { X86::SHL64rCL,    X86::SHL64mCL,   0 },
221     { X86::SHL64ri,     X86::SHL64mi,    0 },
222     { X86::SHL8rCL,     X86::SHL8mCL,    0 },
223     { X86::SHL8ri,      X86::SHL8mi,     0 },
224     { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
225     { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
226     { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
227     { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
228     { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
229     { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
230     { X86::SHR16r1,     X86::SHR16m1,    0 },
231     { X86::SHR16rCL,    X86::SHR16mCL,   0 },
232     { X86::SHR16ri,     X86::SHR16mi,    0 },
233     { X86::SHR32r1,     X86::SHR32m1,    0 },
234     { X86::SHR32rCL,    X86::SHR32mCL,   0 },
235     { X86::SHR32ri,     X86::SHR32mi,    0 },
236     { X86::SHR64r1,     X86::SHR64m1,    0 },
237     { X86::SHR64rCL,    X86::SHR64mCL,   0 },
238     { X86::SHR64ri,     X86::SHR64mi,    0 },
239     { X86::SHR8r1,      X86::SHR8m1,     0 },
240     { X86::SHR8rCL,     X86::SHR8mCL,    0 },
241     { X86::SHR8ri,      X86::SHR8mi,     0 },
242     { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
243     { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
244     { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
245     { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
246     { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
247     { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
248     { X86::SUB16ri,     X86::SUB16mi,    0 },
249     { X86::SUB16ri8,    X86::SUB16mi8,   0 },
250     { X86::SUB16rr,     X86::SUB16mr,    0 },
251     { X86::SUB32ri,     X86::SUB32mi,    0 },
252     { X86::SUB32ri8,    X86::SUB32mi8,   0 },
253     { X86::SUB32rr,     X86::SUB32mr,    0 },
254     { X86::SUB64ri32,   X86::SUB64mi32,  0 },
255     { X86::SUB64ri8,    X86::SUB64mi8,   0 },
256     { X86::SUB64rr,     X86::SUB64mr,    0 },
257     { X86::SUB8ri,      X86::SUB8mi,     0 },
258     { X86::SUB8rr,      X86::SUB8mr,     0 },
259     { X86::XOR16ri,     X86::XOR16mi,    0 },
260     { X86::XOR16ri8,    X86::XOR16mi8,   0 },
261     { X86::XOR16rr,     X86::XOR16mr,    0 },
262     { X86::XOR32ri,     X86::XOR32mi,    0 },
263     { X86::XOR32ri8,    X86::XOR32mi8,   0 },
264     { X86::XOR32rr,     X86::XOR32mr,    0 },
265     { X86::XOR64ri32,   X86::XOR64mi32,  0 },
266     { X86::XOR64ri8,    X86::XOR64mi8,   0 },
267     { X86::XOR64rr,     X86::XOR64mr,    0 },
268     { X86::XOR8ri,      X86::XOR8mi,     0 },
269     { X86::XOR8rr,      X86::XOR8mr,     0 }
270   };
271 
272   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2Addr); i != e; ++i) {
273     unsigned RegOp = MemoryFoldTable2Addr[i].RegOp;
274     unsigned MemOp = MemoryFoldTable2Addr[i].MemOp;
275     unsigned Flags = MemoryFoldTable2Addr[i].Flags;
276     AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
277                   RegOp, MemOp,
278                   // Index 0, folded load and store, no alignment requirement.
279                   Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
280   }
281 
282   static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
283     { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
284     { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
285     { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
286     { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
287     { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
288     { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
289     { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
290     { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
291     { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
292     { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
293     { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
294     { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
295     { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
296     { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
297     { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
298     { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
299     { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
300     { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
301     { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
302     { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
303     { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
304     { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
305     { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
306     { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
307     { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
308     { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
309     { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
310     { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
311     { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
312     { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
313     { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
314     { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
315     { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
316     { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
317     { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
318     { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
319     { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
320     { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
321     { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
322     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
323     { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
324     { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
325     { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
326     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
327     { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
328     { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
329     { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
330     { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
331     { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
332     { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
333     { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
334     { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
335     { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
336     { X86::PEXTRDrr,    X86::PEXTRDmr,      TB_FOLDED_STORE },
337     { X86::PEXTRQrr,    X86::PEXTRQmr,      TB_FOLDED_STORE },
338     { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
339     { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
340     { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
341     { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
342     { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
343     { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
344     { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
345     { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
346     { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
347     { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
348     { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
349     { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
350     { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
351     { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
352     { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
353     { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
354     { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
355     { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
356     { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
357     { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
358     { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
359     { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
360     { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
361 
362     // AVX 128-bit versions of foldable instructions
363     { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
364     { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
365     { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
366     { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
367     { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
368     { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
369     { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
370     { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
371     { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
372     { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
373     { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
374     { X86::VPEXTRDrr,   X86::VPEXTRDmr,     TB_FOLDED_STORE },
375     { X86::VPEXTRQrr,   X86::VPEXTRQmr,     TB_FOLDED_STORE },
376 
377     // AVX 256-bit foldable instructions
378     { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
379     { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
380     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
381     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
382     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
383     { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE },
384 
385     // AVX-512 foldable instructions
386     { X86::VMOVPDI2DIZrr,   X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
387     { X86::VMOVAPDZrr,      X86::VMOVAPDZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
388     { X86::VMOVAPSZrr,      X86::VMOVAPSZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
389     { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
390     { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
391     { X86::VMOVUPDZrr,      X86::VMOVUPDZmr,    TB_FOLDED_STORE },
392     { X86::VMOVUPSZrr,      X86::VMOVUPSZmr,    TB_FOLDED_STORE },
393     { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zmr,   TB_FOLDED_STORE },
394     { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zmr,  TB_FOLDED_STORE },
395     { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zmr,  TB_FOLDED_STORE },
396     { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zmr,  TB_FOLDED_STORE },
397 
398     // AVX-512 foldable instructions (256-bit versions)
399     { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
400     { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
401     { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
402     { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
403     { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256mr,    TB_FOLDED_STORE },
404     { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256mr,    TB_FOLDED_STORE },
405     { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256mr,   TB_FOLDED_STORE },
406     { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256mr,  TB_FOLDED_STORE },
407     { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256mr,  TB_FOLDED_STORE },
408     { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256mr,  TB_FOLDED_STORE },
409 
410     // AVX-512 foldable instructions (128-bit versions)
411     { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
412     { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
413     { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
414     { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
415     { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128mr,    TB_FOLDED_STORE },
416     { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128mr,    TB_FOLDED_STORE },
417     { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128mr,   TB_FOLDED_STORE },
418     { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128mr,  TB_FOLDED_STORE },
419     { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128mr,  TB_FOLDED_STORE },
420     { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128mr,  TB_FOLDED_STORE },
421 
422     // F16C foldable instructions
423     { X86::VCVTPS2PHrr,        X86::VCVTPS2PHmr,      TB_FOLDED_STORE },
424     { X86::VCVTPS2PHYrr,       X86::VCVTPS2PHYmr,     TB_FOLDED_STORE }
425   };
426 
427   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable0); i != e; ++i) {
428     unsigned RegOp      = MemoryFoldTable0[i].RegOp;
429     unsigned MemOp      = MemoryFoldTable0[i].MemOp;
430     unsigned Flags      = MemoryFoldTable0[i].Flags;
431     AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
432                   RegOp, MemOp, TB_INDEX_0 | Flags);
433   }
434 
435   static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
436     { X86::CMP16rr,         X86::CMP16rm,             0 },
437     { X86::CMP32rr,         X86::CMP32rm,             0 },
438     { X86::CMP64rr,         X86::CMP64rm,             0 },
439     { X86::CMP8rr,          X86::CMP8rm,              0 },
440     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
441     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
442     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
443     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
444     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
445     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
446     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
447     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
448     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
449     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
450     { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
451     { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
452     { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
453     { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
454     { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
455     { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
456     { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
457     { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
458     { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
459     { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
460     { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
461     { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
462     { X86::CVTDQ2PDrr,      X86::CVTDQ2PDrm,          TB_ALIGN_16 },
463     { X86::CVTDQ2PSrr,      X86::CVTDQ2PSrm,          TB_ALIGN_16 },
464     { X86::CVTPD2DQrr,      X86::CVTPD2DQrm,          TB_ALIGN_16 },
465     { X86::CVTPD2PSrr,      X86::CVTPD2PSrm,          TB_ALIGN_16 },
466     { X86::CVTPS2DQrr,      X86::CVTPS2DQrm,          TB_ALIGN_16 },
467     { X86::CVTPS2PDrr,      X86::CVTPS2PDrm,          TB_ALIGN_16 },
468     { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
469     { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
470     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
471     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
472     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
473     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
474     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
475     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
476     { X86::MOV16rr,         X86::MOV16rm,             0 },
477     { X86::MOV32rr,         X86::MOV32rm,             0 },
478     { X86::MOV64rr,         X86::MOV64rm,             0 },
479     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
480     { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
481     { X86::MOV8rr,          X86::MOV8rm,              0 },
482     { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
483     { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
484     { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
485     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
486     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
487     { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
488     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
489     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
490     { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
491     { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
492     { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
493     { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
494     { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
495     { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
496     { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
497     { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
498     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
499     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
500     { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
501     { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
502     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
503     { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
504     { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
505     { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
506     { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
507     { X86::PCMPESTRIrr,     X86::PCMPESTRIrm,         TB_ALIGN_16 },
508     { X86::PCMPESTRM128rr,  X86::PCMPESTRM128rm,      TB_ALIGN_16 },
509     { X86::PCMPISTRIrr,     X86::PCMPISTRIrm,         TB_ALIGN_16 },
510     { X86::PCMPISTRM128rr,  X86::PCMPISTRM128rm,      TB_ALIGN_16 },
511     { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128,     TB_ALIGN_16 },
512     { X86::PMOVSXBDrr,      X86::PMOVSXBDrm,          TB_ALIGN_16 },
513     { X86::PMOVSXBQrr,      X86::PMOVSXBQrm,          TB_ALIGN_16 },
514     { X86::PMOVSXBWrr,      X86::PMOVSXBWrm,          TB_ALIGN_16 },
515     { X86::PMOVSXDQrr,      X86::PMOVSXDQrm,          TB_ALIGN_16 },
516     { X86::PMOVSXWDrr,      X86::PMOVSXWDrm,          TB_ALIGN_16 },
517     { X86::PMOVSXWQrr,      X86::PMOVSXWQrm,          TB_ALIGN_16 },
518     { X86::PMOVZXBDrr,      X86::PMOVZXBDrm,          TB_ALIGN_16 },
519     { X86::PMOVZXBQrr,      X86::PMOVZXBQrm,          TB_ALIGN_16 },
520     { X86::PMOVZXBWrr,      X86::PMOVZXBWrm,          TB_ALIGN_16 },
521     { X86::PMOVZXDQrr,      X86::PMOVZXDQrm,          TB_ALIGN_16 },
522     { X86::PMOVZXWDrr,      X86::PMOVZXWDrm,          TB_ALIGN_16 },
523     { X86::PMOVZXWQrr,      X86::PMOVZXWQrm,          TB_ALIGN_16 },
524     { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
525     { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
526     { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
527     { X86::PTESTrr,         X86::PTESTrm,             TB_ALIGN_16 },
528     { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
529     { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
530     { X86::ROUNDPDr,        X86::ROUNDPDm,            TB_ALIGN_16 },
531     { X86::ROUNDPSr,        X86::ROUNDPSm,            TB_ALIGN_16 },
532     { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
533     { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
534     { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
535     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
536     { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
537     { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
538     { X86::SQRTSDr,         X86::SQRTSDm,             0 },
539     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
540     { X86::SQRTSSr,         X86::SQRTSSm,             0 },
541     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
542     { X86::TEST16rr,        X86::TEST16rm,            0 },
543     { X86::TEST32rr,        X86::TEST32rm,            0 },
544     { X86::TEST64rr,        X86::TEST64rm,            0 },
545     { X86::TEST8rr,         X86::TEST8rm,             0 },
546     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
547     { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
548     { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
549 
550     // MMX version of foldable instructions
551     { X86::MMX_CVTPD2PIirr,   X86::MMX_CVTPD2PIirm,   0 },
552     { X86::MMX_CVTPI2PDirr,   X86::MMX_CVTPI2PDirm,   0 },
553     { X86::MMX_CVTPS2PIirr,   X86::MMX_CVTPS2PIirm,   0 },
554     { X86::MMX_CVTTPD2PIirr,  X86::MMX_CVTTPD2PIirm,  0 },
555     { X86::MMX_CVTTPS2PIirr,  X86::MMX_CVTTPS2PIirm,  0 },
556     { X86::MMX_MOVD64to64rr,  X86::MMX_MOVQ64rm,      0 },
557     { X86::MMX_PABSBrr64,     X86::MMX_PABSBrm64,     0 },
558     { X86::MMX_PABSDrr64,     X86::MMX_PABSDrm64,     0 },
559     { X86::MMX_PABSWrr64,     X86::MMX_PABSWrm64,     0 },
560     { X86::MMX_PSHUFWri,      X86::MMX_PSHUFWmi,      0 },
561 
562     // 3DNow! version of foldable instructions
563     { X86::PF2IDrr,         X86::PF2IDrm,             0 },
564     { X86::PF2IWrr,         X86::PF2IWrm,             0 },
565     { X86::PFRCPrr,         X86::PFRCPrm,             0 },
566     { X86::PFRSQRTrr,       X86::PFRSQRTrm,           0 },
567     { X86::PI2FDrr,         X86::PI2FDrm,             0 },
568     { X86::PI2FWrr,         X86::PI2FWrm,             0 },
569     { X86::PSWAPDrr,        X86::PSWAPDrm,            0 },
570 
571     // AVX 128-bit versions of foldable instructions
572     { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
573     { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
574     { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
575     { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
576     { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
577     { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
578     { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
579     { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
580     { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
581     { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
582     { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
583     { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
584     { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
585     { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
586     { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
587     { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
588     { X86::VCVTDQ2PDrr,     X86::VCVTDQ2PDrm,         0 },
589     { X86::VCVTDQ2PSrr,     X86::VCVTDQ2PSrm,         0 },
590     { X86::VCVTPD2DQrr,     X86::VCVTPD2DQXrm,        0 },
591     { X86::VCVTPD2PSrr,     X86::VCVTPD2PSXrm,        0 },
592     { X86::VCVTPS2DQrr,     X86::VCVTPS2DQrm,         0 },
593     { X86::VCVTPS2PDrr,     X86::VCVTPS2PDrm,         0 },
594     { X86::VCVTTPD2DQrr,    X86::VCVTTPD2DQXrm,       0 },
595     { X86::VCVTTPS2DQrr,    X86::VCVTTPS2DQrm,        0 },
596     { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
597     { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
598     { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
599     { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
600     { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
601     { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
602     { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
603     { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
604     { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         0 },
605     { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         0 },
606     { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
607     { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
608     { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
609     { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
610     { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
611     { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
612     { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
613     { X86::VPCMPESTRIrr,    X86::VPCMPESTRIrm,        0 },
614     { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm,     0 },
615     { X86::VPCMPISTRIrr,    X86::VPCMPISTRIrm,        0 },
616     { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm,     0 },
617     { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128,   0 },
618     { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
619     { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
620     { X86::VPMOVSXBDrr,     X86::VPMOVSXBDrm,         0 },
621     { X86::VPMOVSXBQrr,     X86::VPMOVSXBQrm,         0 },
622     { X86::VPMOVSXBWrr,     X86::VPMOVSXBWrm,         0 },
623     { X86::VPMOVSXDQrr,     X86::VPMOVSXDQrm,         0 },
624     { X86::VPMOVSXWDrr,     X86::VPMOVSXWDrm,         0 },
625     { X86::VPMOVSXWQrr,     X86::VPMOVSXWQrm,         0 },
626     { X86::VPMOVZXBDrr,     X86::VPMOVZXBDrm,         0 },
627     { X86::VPMOVZXBQrr,     X86::VPMOVZXBQrm,         0 },
628     { X86::VPMOVZXBWrr,     X86::VPMOVZXBWrm,         0 },
629     { X86::VPMOVZXDQrr,     X86::VPMOVZXDQrm,         0 },
630     { X86::VPMOVZXWDrr,     X86::VPMOVZXWDrm,         0 },
631     { X86::VPMOVZXWQrr,     X86::VPMOVZXWQrm,         0 },
632     { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
633     { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
634     { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
635     { X86::VPTESTrr,        X86::VPTESTrm,            0 },
636     { X86::VRCPPSr,         X86::VRCPPSm,             0 },
637     { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         0 },
638     { X86::VROUNDPDr,       X86::VROUNDPDm,           0 },
639     { X86::VROUNDPSr,       X86::VROUNDPSm,           0 },
640     { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
641     { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       0 },
642     { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
643     { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
644     { X86::VTESTPDrr,       X86::VTESTPDrm,           0 },
645     { X86::VTESTPSrr,       X86::VTESTPSrm,           0 },
646     { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
647     { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
648 
649     // AVX 256-bit foldable instructions
650     { X86::VCVTDQ2PDYrr,    X86::VCVTDQ2PDYrm,        0 },
651     { X86::VCVTDQ2PSYrr,    X86::VCVTDQ2PSYrm,        0 },
652     { X86::VCVTPD2DQYrr,    X86::VCVTPD2DQYrm,        0 },
653     { X86::VCVTPD2PSYrr,    X86::VCVTPD2PSYrm,        0 },
654     { X86::VCVTPS2DQYrr,    X86::VCVTPS2DQYrm,        0 },
655     { X86::VCVTPS2PDYrr,    X86::VCVTPS2PDYrm,        0 },
656     { X86::VCVTTPD2DQYrr,   X86::VCVTTPD2DQYrm,       0 },
657     { X86::VCVTTPS2DQYrr,   X86::VCVTTPS2DQYrm,       0 },
658     { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
659     { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
660     { X86::VMOVDDUPYrr,     X86::VMOVDDUPYrm,         0 },
661     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
662     { X86::VMOVSLDUPYrr,    X86::VMOVSLDUPYrm,        0 },
663     { X86::VMOVSHDUPYrr,    X86::VMOVSHDUPYrm,        0 },
664     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
665     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
666     { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
667     { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
668     { X86::VPTESTYrr,       X86::VPTESTYrm,           0 },
669     { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
670     { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        0 },
671     { X86::VROUNDYPDr,      X86::VROUNDYPDm,          0 },
672     { X86::VROUNDYPSr,      X86::VROUNDYPSm,          0 },
673     { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
674     { X86::VRSQRTPSYr_Int,  X86::VRSQRTPSYm_Int,      0 },
675     { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
676     { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
677     { X86::VTESTPDYrr,      X86::VTESTPDYrm,          0 },
678     { X86::VTESTPSYrr,      X86::VTESTPSYrm,          0 },
679 
680     // AVX2 foldable instructions
681 
682     // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
683     // VBROADCASTS{SD}rm memory instructions were available from AVX1.
684     // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
685     // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
686     // so they don't need an equivalent limitation.
687     { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
688     { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
689     { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
690     { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
691     { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
692     { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
693     { X86::VPBROADCASTBrr,  X86::VPBROADCASTBrm,      0 },
694     { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm,     0 },
695     { X86::VPBROADCASTDrr,  X86::VPBROADCASTDrm,      0 },
696     { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm,     0 },
697     { X86::VPBROADCASTQrr,  X86::VPBROADCASTQrm,      0 },
698     { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm,     0 },
699     { X86::VPBROADCASTWrr,  X86::VPBROADCASTWrm,      0 },
700     { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm,     0 },
701     { X86::VPERMPDYri,      X86::VPERMPDYmi,          0 },
702     { X86::VPERMQYri,       X86::VPERMQYmi,           0 },
703     { X86::VPMOVSXBDYrr,    X86::VPMOVSXBDYrm,        0 },
704     { X86::VPMOVSXBQYrr,    X86::VPMOVSXBQYrm,        0 },
705     { X86::VPMOVSXBWYrr,    X86::VPMOVSXBWYrm,        0 },
706     { X86::VPMOVSXDQYrr,    X86::VPMOVSXDQYrm,        0 },
707     { X86::VPMOVSXWDYrr,    X86::VPMOVSXWDYrm,        0 },
708     { X86::VPMOVSXWQYrr,    X86::VPMOVSXWQYrm,        0 },
709     { X86::VPMOVZXBDYrr,    X86::VPMOVZXBDYrm,        0 },
710     { X86::VPMOVZXBQYrr,    X86::VPMOVZXBQYrm,        0 },
711     { X86::VPMOVZXBWYrr,    X86::VPMOVZXBWYrm,        0 },
712     { X86::VPMOVZXDQYrr,    X86::VPMOVZXDQYrm,        0 },
713     { X86::VPMOVZXWDYrr,    X86::VPMOVZXWDYrm,        0 },
714     { X86::VPMOVZXWQYrr,    X86::VPMOVZXWQYrm,        0 },
715     { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
716     { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
717     { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
718 
719     // XOP foldable instructions
720     { X86::VFRCZPDrr,          X86::VFRCZPDrm,        0 },
721     { X86::VFRCZPDrrY,         X86::VFRCZPDrmY,       0 },
722     { X86::VFRCZPSrr,          X86::VFRCZPSrm,        0 },
723     { X86::VFRCZPSrrY,         X86::VFRCZPSrmY,       0 },
724     { X86::VFRCZSDrr,          X86::VFRCZSDrm,        0 },
725     { X86::VFRCZSSrr,          X86::VFRCZSSrm,        0 },
726     { X86::VPHADDBDrr,         X86::VPHADDBDrm,       0 },
727     { X86::VPHADDBQrr,         X86::VPHADDBQrm,       0 },
728     { X86::VPHADDBWrr,         X86::VPHADDBWrm,       0 },
729     { X86::VPHADDDQrr,         X86::VPHADDDQrm,       0 },
730     { X86::VPHADDWDrr,         X86::VPHADDWDrm,       0 },
731     { X86::VPHADDWQrr,         X86::VPHADDWQrm,       0 },
732     { X86::VPHADDUBDrr,        X86::VPHADDUBDrm,      0 },
733     { X86::VPHADDUBQrr,        X86::VPHADDUBQrm,      0 },
734     { X86::VPHADDUBWrr,        X86::VPHADDUBWrm,      0 },
735     { X86::VPHADDUDQrr,        X86::VPHADDUDQrm,      0 },
736     { X86::VPHADDUWDrr,        X86::VPHADDUWDrm,      0 },
737     { X86::VPHADDUWQrr,        X86::VPHADDUWQrm,      0 },
738     { X86::VPHSUBBWrr,         X86::VPHSUBBWrm,       0 },
739     { X86::VPHSUBDQrr,         X86::VPHSUBDQrm,       0 },
740     { X86::VPHSUBWDrr,         X86::VPHSUBWDrm,       0 },
741     { X86::VPROTBri,           X86::VPROTBmi,         0 },
742     { X86::VPROTBrr,           X86::VPROTBmr,         0 },
743     { X86::VPROTDri,           X86::VPROTDmi,         0 },
744     { X86::VPROTDrr,           X86::VPROTDmr,         0 },
745     { X86::VPROTQri,           X86::VPROTQmi,         0 },
746     { X86::VPROTQrr,           X86::VPROTQmr,         0 },
747     { X86::VPROTWri,           X86::VPROTWmi,         0 },
748     { X86::VPROTWrr,           X86::VPROTWmr,         0 },
749     { X86::VPSHABrr,           X86::VPSHABmr,         0 },
750     { X86::VPSHADrr,           X86::VPSHADmr,         0 },
751     { X86::VPSHAQrr,           X86::VPSHAQmr,         0 },
752     { X86::VPSHAWrr,           X86::VPSHAWmr,         0 },
753     { X86::VPSHLBrr,           X86::VPSHLBmr,         0 },
754     { X86::VPSHLDrr,           X86::VPSHLDmr,         0 },
755     { X86::VPSHLQrr,           X86::VPSHLQmr,         0 },
756     { X86::VPSHLWrr,           X86::VPSHLWmr,         0 },
757 
758     // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
759     { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
760     { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
761     { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 },
762     { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 },
763     { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 },
764     { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 },
765     { X86::BLCI32rr,        X86::BLCI32rm,            0 },
766     { X86::BLCI64rr,        X86::BLCI64rm,            0 },
767     { X86::BLCIC32rr,       X86::BLCIC32rm,           0 },
768     { X86::BLCIC64rr,       X86::BLCIC64rm,           0 },
769     { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 },
770     { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 },
771     { X86::BLCS32rr,        X86::BLCS32rm,            0 },
772     { X86::BLCS64rr,        X86::BLCS64rm,            0 },
773     { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 },
774     { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 },
775     { X86::BLSI32rr,        X86::BLSI32rm,            0 },
776     { X86::BLSI64rr,        X86::BLSI64rm,            0 },
777     { X86::BLSIC32rr,       X86::BLSIC32rm,           0 },
778     { X86::BLSIC64rr,       X86::BLSIC64rm,           0 },
779     { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
780     { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
781     { X86::BLSR32rr,        X86::BLSR32rm,            0 },
782     { X86::BLSR64rr,        X86::BLSR64rm,            0 },
783     { X86::BZHI32rr,        X86::BZHI32rm,            0 },
784     { X86::BZHI64rr,        X86::BZHI64rm,            0 },
785     { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
786     { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
787     { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
788     { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
789     { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
790     { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
791     { X86::RORX32ri,        X86::RORX32mi,            0 },
792     { X86::RORX64ri,        X86::RORX64mi,            0 },
793     { X86::SARX32rr,        X86::SARX32rm,            0 },
794     { X86::SARX64rr,        X86::SARX64rm,            0 },
795     { X86::SHRX32rr,        X86::SHRX32rm,            0 },
796     { X86::SHRX64rr,        X86::SHRX64rm,            0 },
797     { X86::SHLX32rr,        X86::SHLX32rm,            0 },
798     { X86::SHLX64rr,        X86::SHLX64rm,            0 },
799     { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 },
800     { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 },
801     { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
802     { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
803     { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
804     { X86::TZMSK32rr,       X86::TZMSK32rm,           0 },
805     { X86::TZMSK64rr,       X86::TZMSK64rm,           0 },
806 
807     // AVX-512 foldable instructions
808     { X86::VMOV64toPQIZrr,  X86::VMOVQI2PQIZrm,       0 },
809     { X86::VMOVDI2SSZrr,    X86::VMOVDI2SSZrm,        0 },
810     { X86::VMOVAPDZrr,      X86::VMOVAPDZrm,          TB_ALIGN_64 },
811     { X86::VMOVAPSZrr,      X86::VMOVAPSZrm,          TB_ALIGN_64 },
812     { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zrm,        TB_ALIGN_64 },
813     { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zrm,        TB_ALIGN_64 },
814     { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zrm,         0 },
815     { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zrm,        0 },
816     { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zrm,        0 },
817     { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zrm,        0 },
818     { X86::VMOVUPDZrr,      X86::VMOVUPDZrm,          0 },
819     { X86::VMOVUPSZrr,      X86::VMOVUPSZrm,          0 },
820     { X86::VPABSDZrr,       X86::VPABSDZrm,           0 },
821     { X86::VPABSQZrr,       X86::VPABSQZrm,           0 },
822     { X86::VBROADCASTSSZr,  X86::VBROADCASTSSZm,      TB_NO_REVERSE },
823     { X86::VBROADCASTSDZr,  X86::VBROADCASTSDZm,      TB_NO_REVERSE },
824 
825     // AVX-512 foldable instructions (256-bit versions)
826     { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256rm,          TB_ALIGN_32 },
827     { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256rm,          TB_ALIGN_32 },
828     { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256rm,        TB_ALIGN_32 },
829     { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256rm,        TB_ALIGN_32 },
830     { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256rm,         0 },
831     { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256rm,        0 },
832     { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256rm,        0 },
833     { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256rm,        0 },
834     { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256rm,          0 },
835     { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256rm,          0 },
836     { X86::VBROADCASTSSZ256r,  X86::VBROADCASTSSZ256m,      TB_NO_REVERSE },
837     { X86::VBROADCASTSDZ256r,  X86::VBROADCASTSDZ256m,      TB_NO_REVERSE },
838 
839     // AVX-512 foldable instructions (256-bit versions)
840     { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128rm,          TB_ALIGN_16 },
841     { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128rm,          TB_ALIGN_16 },
842     { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128rm,        TB_ALIGN_16 },
843     { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128rm,        TB_ALIGN_16 },
844     { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128rm,         0 },
845     { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128rm,        0 },
846     { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128rm,        0 },
847     { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128rm,        0 },
848     { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128rm,          0 },
849     { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128rm,          0 },
850     { X86::VBROADCASTSSZ128r,  X86::VBROADCASTSSZ128m,      TB_NO_REVERSE },
851 
852     // F16C foldable instructions
853     { X86::VCVTPH2PSrr,        X86::VCVTPH2PSrm,            0 },
854     { X86::VCVTPH2PSYrr,       X86::VCVTPH2PSYrm,           0 },
855 
856     // AES foldable instructions
857     { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 },
858     { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 },
859     { X86::VAESIMCrr,             X86::VAESIMCrm,             0 },
860     { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
861   };
862 
863   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable1); i != e; ++i) {
864     unsigned RegOp = MemoryFoldTable1[i].RegOp;
865     unsigned MemOp = MemoryFoldTable1[i].MemOp;
866     unsigned Flags = MemoryFoldTable1[i].Flags;
867     AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
868                   RegOp, MemOp,
869                   // Index 1, folded load
870                   Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
871   }
872 
873   static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
874     { X86::ADC32rr,         X86::ADC32rm,       0 },
875     { X86::ADC64rr,         X86::ADC64rm,       0 },
876     { X86::ADD16rr,         X86::ADD16rm,       0 },
877     { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
878     { X86::ADD32rr,         X86::ADD32rm,       0 },
879     { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
880     { X86::ADD64rr,         X86::ADD64rm,       0 },
881     { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
882     { X86::ADD8rr,          X86::ADD8rm,        0 },
883     { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
884     { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
885     { X86::ADDSDrr,         X86::ADDSDrm,       0 },
886     { X86::ADDSDrr_Int,     X86::ADDSDrm_Int,   0 },
887     { X86::ADDSSrr,         X86::ADDSSrm,       0 },
888     { X86::ADDSSrr_Int,     X86::ADDSSrm_Int,   0 },
889     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
890     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
891     { X86::AND16rr,         X86::AND16rm,       0 },
892     { X86::AND32rr,         X86::AND32rm,       0 },
893     { X86::AND64rr,         X86::AND64rm,       0 },
894     { X86::AND8rr,          X86::AND8rm,        0 },
895     { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
896     { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
897     { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
898     { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
899     { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
900     { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
901     { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
902     { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
903     { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
904     { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
905     { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
906     { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
907     { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
908     { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
909     { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
910     { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
911     { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
912     { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
913     { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
914     { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
915     { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
916     { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
917     { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
918     { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
919     { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
920     { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
921     { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
922     { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
923     { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
924     { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
925     { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
926     { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
927     { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
928     { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
929     { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
930     { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
931     { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
932     { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
933     { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
934     { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
935     { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
936     { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
937     { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
938     { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
939     { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
940     { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
941     { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
942     { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
943     { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
944     { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
945     { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
946     { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
947     { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
948     { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
949     { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
950     { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
951     { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
952     { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
953     { X86::CMPSDrr,         X86::CMPSDrm,       0 },
954     { X86::CMPSSrr,         X86::CMPSSrm,       0 },
955     { X86::CRC32r32r32,     X86::CRC32r32m32,   0 },
956     { X86::CRC32r64r64,     X86::CRC32r64m64,   0 },
957     { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
958     { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
959     { X86::DIVSDrr,         X86::DIVSDrm,       0 },
960     { X86::DIVSDrr_Int,     X86::DIVSDrm_Int,   0 },
961     { X86::DIVSSrr,         X86::DIVSSrm,       0 },
962     { X86::DIVSSrr_Int,     X86::DIVSSrm_Int,   0 },
963     { X86::DPPDrri,         X86::DPPDrmi,       TB_ALIGN_16 },
964     { X86::DPPSrri,         X86::DPPSrmi,       TB_ALIGN_16 },
965 
966     // FIXME: We should not be folding Fs* scalar loads into vector
967     // instructions because the vector instructions require vector-sized
968     // loads. Lowering should create vector-sized instructions (the Fv*
969     // variants below) to allow load folding.
970     { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
971     { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
972     { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
973     { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
974     { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
975     { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
976     { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
977     { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
978 
979     { X86::FvANDNPDrr,      X86::FvANDNPDrm,    TB_ALIGN_16 },
980     { X86::FvANDNPSrr,      X86::FvANDNPSrm,    TB_ALIGN_16 },
981     { X86::FvANDPDrr,       X86::FvANDPDrm,     TB_ALIGN_16 },
982     { X86::FvANDPSrr,       X86::FvANDPSrm,     TB_ALIGN_16 },
983     { X86::FvORPDrr,        X86::FvORPDrm,      TB_ALIGN_16 },
984     { X86::FvORPSrr,        X86::FvORPSrm,      TB_ALIGN_16 },
985     { X86::FvXORPDrr,       X86::FvXORPDrm,     TB_ALIGN_16 },
986     { X86::FvXORPSrr,       X86::FvXORPSrm,     TB_ALIGN_16 },
987     { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
988     { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
989     { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
990     { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
991     { X86::IMUL16rr,        X86::IMUL16rm,      0 },
992     { X86::IMUL32rr,        X86::IMUL32rm,      0 },
993     { X86::IMUL64rr,        X86::IMUL64rm,      0 },
994     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
995     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
996     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
997     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
998     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
999     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
1000     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
1001     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
1002     { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
1003     { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
1004     { X86::MAXSDrr,         X86::MAXSDrm,       0 },
1005     { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
1006     { X86::MAXSSrr,         X86::MAXSSrm,       0 },
1007     { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
1008     { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
1009     { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
1010     { X86::MINSDrr,         X86::MINSDrm,       0 },
1011     { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
1012     { X86::MINSSrr,         X86::MINSSrm,       0 },
1013     { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
1014     { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
1015     { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
1016     { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
1017     { X86::MULSDrr,         X86::MULSDrm,       0 },
1018     { X86::MULSDrr_Int,     X86::MULSDrm_Int,   0 },
1019     { X86::MULSSrr,         X86::MULSSrm,       0 },
1020     { X86::MULSSrr_Int,     X86::MULSSrm_Int,   0 },
1021     { X86::OR16rr,          X86::OR16rm,        0 },
1022     { X86::OR32rr,          X86::OR32rm,        0 },
1023     { X86::OR64rr,          X86::OR64rm,        0 },
1024     { X86::OR8rr,           X86::OR8rm,         0 },
1025     { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
1026     { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
1027     { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
1028     { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
1029     { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
1030     { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
1031     { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
1032     { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
1033     { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
1034     { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
1035     { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
1036     { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
1037     { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
1038     { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
1039     { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
1040     { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
1041     { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
1042     { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
1043     { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
1044     { X86::PBLENDVBrr0,     X86::PBLENDVBrm0,   TB_ALIGN_16 },
1045     { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
1046     { X86::PCLMULQDQrr,     X86::PCLMULQDQrm,   TB_ALIGN_16 },
1047     { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
1048     { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
1049     { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
1050     { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
1051     { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
1052     { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
1053     { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
1054     { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
1055     { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
1056     { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
1057     { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
1058     { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
1059     { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
1060     { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
1061     { X86::PINSRBrr,        X86::PINSRBrm,      0 },
1062     { X86::PINSRDrr,        X86::PINSRDrm,      0 },
1063     { X86::PINSRQrr,        X86::PINSRQrm,      0 },
1064     { X86::PINSRWrri,       X86::PINSRWrmi,     0 },
1065     { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
1066     { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
1067     { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
1068     { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
1069     { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
1070     { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
1071     { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
1072     { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
1073     { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
1074     { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
1075     { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
1076     { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
1077     { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
1078     { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
1079     { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
1080     { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
1081     { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
1082     { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
1083     { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
1084     { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
1085     { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
1086     { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
1087     { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
1088     { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
1089     { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
1090     { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
1091     { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
1092     { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
1093     { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
1094     { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
1095     { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
1096     { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
1097     { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
1098     { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
1099     { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
1100     { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
1101     { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
1102     { X86::PSUBQrr,         X86::PSUBQrm,       TB_ALIGN_16 },
1103     { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
1104     { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
1105     { X86::PSUBUSBrr,       X86::PSUBUSBrm,     TB_ALIGN_16 },
1106     { X86::PSUBUSWrr,       X86::PSUBUSWrm,     TB_ALIGN_16 },
1107     { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
1108     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
1109     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
1110     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
1111     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
1112     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
1113     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
1114     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
1115     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
1116     { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
1117     { X86::SBB32rr,         X86::SBB32rm,       0 },
1118     { X86::SBB64rr,         X86::SBB64rm,       0 },
1119     { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
1120     { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
1121     { X86::SUB16rr,         X86::SUB16rm,       0 },
1122     { X86::SUB32rr,         X86::SUB32rm,       0 },
1123     { X86::SUB64rr,         X86::SUB64rm,       0 },
1124     { X86::SUB8rr,          X86::SUB8rm,        0 },
1125     { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
1126     { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
1127     { X86::SUBSDrr,         X86::SUBSDrm,       0 },
1128     { X86::SUBSDrr_Int,     X86::SUBSDrm_Int,   0 },
1129     { X86::SUBSSrr,         X86::SUBSSrm,       0 },
1130     { X86::SUBSSrr_Int,     X86::SUBSSrm_Int,   0 },
1131     // FIXME: TEST*rr -> swapped operand of TEST*mr.
1132     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
1133     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
1134     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
1135     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
1136     { X86::XOR16rr,         X86::XOR16rm,       0 },
1137     { X86::XOR32rr,         X86::XOR32rm,       0 },
1138     { X86::XOR64rr,         X86::XOR64rm,       0 },
1139     { X86::XOR8rr,          X86::XOR8rm,        0 },
1140     { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
1141     { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
1142 
1143     // MMX version of foldable instructions
1144     { X86::MMX_CVTPI2PSirr,   X86::MMX_CVTPI2PSirm,   0 },
1145     { X86::MMX_PACKSSDWirr,   X86::MMX_PACKSSDWirm,   0 },
1146     { X86::MMX_PACKSSWBirr,   X86::MMX_PACKSSWBirm,   0 },
1147     { X86::MMX_PACKUSWBirr,   X86::MMX_PACKUSWBirm,   0 },
1148     { X86::MMX_PADDBirr,      X86::MMX_PADDBirm,      0 },
1149     { X86::MMX_PADDDirr,      X86::MMX_PADDDirm,      0 },
1150     { X86::MMX_PADDQirr,      X86::MMX_PADDQirm,      0 },
1151     { X86::MMX_PADDSBirr,     X86::MMX_PADDSBirm,     0 },
1152     { X86::MMX_PADDSWirr,     X86::MMX_PADDSWirm,     0 },
1153     { X86::MMX_PADDUSBirr,    X86::MMX_PADDUSBirm,    0 },
1154     { X86::MMX_PADDUSWirr,    X86::MMX_PADDUSWirm,    0 },
1155     { X86::MMX_PADDWirr,      X86::MMX_PADDWirm,      0 },
1156     { X86::MMX_PALIGNR64irr,  X86::MMX_PALIGNR64irm,  0 },
1157     { X86::MMX_PANDNirr,      X86::MMX_PANDNirm,      0 },
1158     { X86::MMX_PANDirr,       X86::MMX_PANDirm,       0 },
1159     { X86::MMX_PAVGBirr,      X86::MMX_PAVGBirm,      0 },
1160     { X86::MMX_PAVGWirr,      X86::MMX_PAVGWirm,      0 },
1161     { X86::MMX_PCMPEQBirr,    X86::MMX_PCMPEQBirm,    0 },
1162     { X86::MMX_PCMPEQDirr,    X86::MMX_PCMPEQDirm,    0 },
1163     { X86::MMX_PCMPEQWirr,    X86::MMX_PCMPEQWirm,    0 },
1164     { X86::MMX_PCMPGTBirr,    X86::MMX_PCMPGTBirm,    0 },
1165     { X86::MMX_PCMPGTDirr,    X86::MMX_PCMPGTDirm,    0 },
1166     { X86::MMX_PCMPGTWirr,    X86::MMX_PCMPGTWirm,    0 },
1167     { X86::MMX_PHADDSWrr64,   X86::MMX_PHADDSWrm64,   0 },
1168     { X86::MMX_PHADDWrr64,    X86::MMX_PHADDWrm64,    0 },
1169     { X86::MMX_PHADDrr64,     X86::MMX_PHADDrm64,     0 },
1170     { X86::MMX_PHSUBDrr64,    X86::MMX_PHSUBDrm64,    0 },
1171     { X86::MMX_PHSUBSWrr64,   X86::MMX_PHSUBSWrm64,   0 },
1172     { X86::MMX_PHSUBWrr64,    X86::MMX_PHSUBWrm64,    0 },
1173     { X86::MMX_PINSRWirri,    X86::MMX_PINSRWirmi,    0 },
1174     { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
1175     { X86::MMX_PMADDWDirr,    X86::MMX_PMADDWDirm,    0 },
1176     { X86::MMX_PMAXSWirr,     X86::MMX_PMAXSWirm,     0 },
1177     { X86::MMX_PMAXUBirr,     X86::MMX_PMAXUBirm,     0 },
1178     { X86::MMX_PMINSWirr,     X86::MMX_PMINSWirm,     0 },
1179     { X86::MMX_PMINUBirr,     X86::MMX_PMINUBirm,     0 },
1180     { X86::MMX_PMULHRSWrr64,  X86::MMX_PMULHRSWrm64,  0 },
1181     { X86::MMX_PMULHUWirr,    X86::MMX_PMULHUWirm,    0 },
1182     { X86::MMX_PMULHWirr,     X86::MMX_PMULHWirm,     0 },
1183     { X86::MMX_PMULLWirr,     X86::MMX_PMULLWirm,     0 },
1184     { X86::MMX_PMULUDQirr,    X86::MMX_PMULUDQirm,    0 },
1185     { X86::MMX_PORirr,        X86::MMX_PORirm,        0 },
1186     { X86::MMX_PSADBWirr,     X86::MMX_PSADBWirm,     0 },
1187     { X86::MMX_PSHUFBrr64,    X86::MMX_PSHUFBrm64,    0 },
1188     { X86::MMX_PSIGNBrr64,    X86::MMX_PSIGNBrm64,    0 },
1189     { X86::MMX_PSIGNDrr64,    X86::MMX_PSIGNDrm64,    0 },
1190     { X86::MMX_PSIGNWrr64,    X86::MMX_PSIGNWrm64,    0 },
1191     { X86::MMX_PSLLDrr,       X86::MMX_PSLLDrm,       0 },
1192     { X86::MMX_PSLLQrr,       X86::MMX_PSLLQrm,       0 },
1193     { X86::MMX_PSLLWrr,       X86::MMX_PSLLWrm,       0 },
1194     { X86::MMX_PSRADrr,       X86::MMX_PSRADrm,       0 },
1195     { X86::MMX_PSRAWrr,       X86::MMX_PSRAWrm,       0 },
1196     { X86::MMX_PSRLDrr,       X86::MMX_PSRLDrm,       0 },
1197     { X86::MMX_PSRLQrr,       X86::MMX_PSRLQrm,       0 },
1198     { X86::MMX_PSRLWrr,       X86::MMX_PSRLWrm,       0 },
1199     { X86::MMX_PSUBBirr,      X86::MMX_PSUBBirm,      0 },
1200     { X86::MMX_PSUBDirr,      X86::MMX_PSUBDirm,      0 },
1201     { X86::MMX_PSUBQirr,      X86::MMX_PSUBQirm,      0 },
1202     { X86::MMX_PSUBSBirr,     X86::MMX_PSUBSBirm,     0 },
1203     { X86::MMX_PSUBSWirr,     X86::MMX_PSUBSWirm,     0 },
1204     { X86::MMX_PSUBUSBirr,    X86::MMX_PSUBUSBirm,    0 },
1205     { X86::MMX_PSUBUSWirr,    X86::MMX_PSUBUSWirm,    0 },
1206     { X86::MMX_PSUBWirr,      X86::MMX_PSUBWirm,      0 },
1207     { X86::MMX_PUNPCKHBWirr,  X86::MMX_PUNPCKHBWirm,  0 },
1208     { X86::MMX_PUNPCKHDQirr,  X86::MMX_PUNPCKHDQirm,  0 },
1209     { X86::MMX_PUNPCKHWDirr,  X86::MMX_PUNPCKHWDirm,  0 },
1210     { X86::MMX_PUNPCKLBWirr,  X86::MMX_PUNPCKLBWirm,  0 },
1211     { X86::MMX_PUNPCKLDQirr,  X86::MMX_PUNPCKLDQirm,  0 },
1212     { X86::MMX_PUNPCKLWDirr,  X86::MMX_PUNPCKLWDirm,  0 },
1213     { X86::MMX_PXORirr,       X86::MMX_PXORirm,       0 },
1214 
1215     // 3DNow! version of foldable instructions
1216     { X86::PAVGUSBrr,         X86::PAVGUSBrm,         0 },
1217     { X86::PFACCrr,           X86::PFACCrm,           0 },
1218     { X86::PFADDrr,           X86::PFADDrm,           0 },
1219     { X86::PFCMPEQrr,         X86::PFCMPEQrm,         0 },
1220     { X86::PFCMPGErr,         X86::PFCMPGErm,         0 },
1221     { X86::PFCMPGTrr,         X86::PFCMPGTrm,         0 },
1222     { X86::PFMAXrr,           X86::PFMAXrm,           0 },
1223     { X86::PFMINrr,           X86::PFMINrm,           0 },
1224     { X86::PFMULrr,           X86::PFMULrm,           0 },
1225     { X86::PFNACCrr,          X86::PFNACCrm,          0 },
1226     { X86::PFPNACCrr,         X86::PFPNACCrm,         0 },
1227     { X86::PFRCPIT1rr,        X86::PFRCPIT1rm,        0 },
1228     { X86::PFRCPIT2rr,        X86::PFRCPIT2rm,        0 },
1229     { X86::PFRSQIT1rr,        X86::PFRSQIT1rm,        0 },
1230     { X86::PFSUBrr,           X86::PFSUBrm,           0 },
1231     { X86::PFSUBRrr,          X86::PFSUBRrm,          0 },
1232     { X86::PMULHRWrr,         X86::PMULHRWrm,         0 },
1233 
1234     // AVX 128-bit versions of foldable instructions
1235     { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
1236     { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
1237     { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
1238     { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
1239     { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
1240     { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
1241     { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
1242     { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
1243     { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
1244     { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
1245     { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
1246     { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
1247     { X86::VRCPSSr,           X86::VRCPSSm,            0 },
1248     { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
1249     { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
1250     { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
1251     { X86::VADDPDrr,          X86::VADDPDrm,           0 },
1252     { X86::VADDPSrr,          X86::VADDPSrm,           0 },
1253     { X86::VADDSDrr,          X86::VADDSDrm,           0 },
1254     { X86::VADDSDrr_Int,      X86::VADDSDrm_Int,       0 },
1255     { X86::VADDSSrr,          X86::VADDSSrm,           0 },
1256     { X86::VADDSSrr_Int,      X86::VADDSSrm_Int,       0 },
1257     { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
1258     { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
1259     { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
1260     { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
1261     { X86::VANDPDrr,          X86::VANDPDrm,           0 },
1262     { X86::VANDPSrr,          X86::VANDPSrm,           0 },
1263     { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
1264     { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
1265     { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
1266     { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
1267     { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
1268     { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
1269     { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
1270     { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
1271     { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
1272     { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
1273     { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
1274     { X86::VDIVSDrr_Int,      X86::VDIVSDrm_Int,       0 },
1275     { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
1276     { X86::VDIVSSrr_Int,      X86::VDIVSSrm_Int,       0 },
1277     { X86::VDPPDrri,          X86::VDPPDrmi,           0 },
1278     { X86::VDPPSrri,          X86::VDPPSrmi,           0 },
1279     // Do not fold VFs* loads because there are no scalar load variants for
1280     // these instructions. When folded, the load is required to be 128-bits, so
1281     // the load size would not match.
1282     { X86::VFvANDNPDrr,       X86::VFvANDNPDrm,        0 },
1283     { X86::VFvANDNPSrr,       X86::VFvANDNPSrm,        0 },
1284     { X86::VFvANDPDrr,        X86::VFvANDPDrm,         0 },
1285     { X86::VFvANDPSrr,        X86::VFvANDPSrm,         0 },
1286     { X86::VFvORPDrr,         X86::VFvORPDrm,          0 },
1287     { X86::VFvORPSrr,         X86::VFvORPSrm,          0 },
1288     { X86::VFvXORPDrr,        X86::VFvXORPDrm,         0 },
1289     { X86::VFvXORPSrr,        X86::VFvXORPSrm,         0 },
1290     { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
1291     { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
1292     { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
1293     { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
1294     { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
1295     { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
1296     { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
1297     { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
1298     { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
1299     { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
1300     { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
1301     { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
1302     { X86::VMINPDrr,          X86::VMINPDrm,           0 },
1303     { X86::VMINPSrr,          X86::VMINPSrm,           0 },
1304     { X86::VMINSDrr,          X86::VMINSDrm,           0 },
1305     { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
1306     { X86::VMINSSrr,          X86::VMINSSrm,           0 },
1307     { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
1308     { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
1309     { X86::VMULPDrr,          X86::VMULPDrm,           0 },
1310     { X86::VMULPSrr,          X86::VMULPSrm,           0 },
1311     { X86::VMULSDrr,          X86::VMULSDrm,           0 },
1312     { X86::VMULSDrr_Int,      X86::VMULSDrm_Int,       0 },
1313     { X86::VMULSSrr,          X86::VMULSSrm,           0 },
1314     { X86::VMULSSrr_Int,      X86::VMULSSrm_Int,       0 },
1315     { X86::VORPDrr,           X86::VORPDrm,            0 },
1316     { X86::VORPSrr,           X86::VORPSrm,            0 },
1317     { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
1318     { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
1319     { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
1320     { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
1321     { X86::VPADDBrr,          X86::VPADDBrm,           0 },
1322     { X86::VPADDDrr,          X86::VPADDDrm,           0 },
1323     { X86::VPADDQrr,          X86::VPADDQrm,           0 },
1324     { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
1325     { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
1326     { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
1327     { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
1328     { X86::VPADDWrr,          X86::VPADDWrm,           0 },
1329     { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      0 },
1330     { X86::VPANDNrr,          X86::VPANDNrm,           0 },
1331     { X86::VPANDrr,           X86::VPANDrm,            0 },
1332     { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
1333     { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
1334     { X86::VPBLENDVBrr,       X86::VPBLENDVBrm,        0 },
1335     { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
1336     { X86::VPCLMULQDQrr,      X86::VPCLMULQDQrm,       0 },
1337     { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
1338     { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
1339     { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
1340     { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
1341     { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
1342     { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
1343     { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
1344     { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
1345     { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
1346     { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
1347     { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
1348     { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
1349     { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
1350     { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
1351     { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
1352     { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
1353     { X86::VPINSRBrr,         X86::VPINSRBrm,          0 },
1354     { X86::VPINSRDrr,         X86::VPINSRDrm,          0 },
1355     { X86::VPINSRQrr,         X86::VPINSRQrm,          0 },
1356     { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
1357     { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 },
1358     { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
1359     { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
1360     { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
1361     { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
1362     { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
1363     { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
1364     { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
1365     { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
1366     { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
1367     { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
1368     { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
1369     { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
1370     { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
1371     { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
1372     { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 },
1373     { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
1374     { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
1375     { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
1376     { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
1377     { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
1378     { X86::VPORrr,            X86::VPORrm,             0 },
1379     { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
1380     { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
1381     { X86::VPSIGNBrr,         X86::VPSIGNBrm,          0 },
1382     { X86::VPSIGNWrr,         X86::VPSIGNWrm,          0 },
1383     { X86::VPSIGNDrr,         X86::VPSIGNDrm,          0 },
1384     { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
1385     { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
1386     { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
1387     { X86::VPSRADrr,          X86::VPSRADrm,           0 },
1388     { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
1389     { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
1390     { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
1391     { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
1392     { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
1393     { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
1394     { X86::VPSUBQrr,          X86::VPSUBQrm,           0 },
1395     { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
1396     { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
1397     { X86::VPSUBUSBrr,        X86::VPSUBUSBrm,         0 },
1398     { X86::VPSUBUSWrr,        X86::VPSUBUSWrm,         0 },
1399     { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
1400     { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
1401     { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
1402     { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
1403     { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
1404     { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
1405     { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
1406     { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
1407     { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
1408     { X86::VPXORrr,           X86::VPXORrm,            0 },
1409     { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
1410     { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
1411     { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
1412     { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
1413     { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
1414     { X86::VSUBSDrr_Int,      X86::VSUBSDrm_Int,       0 },
1415     { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
1416     { X86::VSUBSSrr_Int,      X86::VSUBSSrm_Int,       0 },
1417     { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
1418     { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
1419     { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
1420     { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
1421     { X86::VXORPDrr,          X86::VXORPDrm,           0 },
1422     { X86::VXORPSrr,          X86::VXORPSrm,           0 },
1423 
1424     // AVX 256-bit foldable instructions
1425     { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
1426     { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
1427     { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
1428     { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
1429     { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
1430     { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
1431     { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
1432     { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
1433     { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
1434     { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
1435     { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
1436     { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
1437     { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
1438     { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
1439     { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
1440     { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
1441     { X86::VDPPSYrri,         X86::VDPPSYrmi,          0 },
1442     { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
1443     { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
1444     { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
1445     { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
1446     { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
1447     { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
1448     { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
1449     { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
1450     { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
1451     { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
1452     { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
1453     { X86::VORPDYrr,          X86::VORPDYrm,           0 },
1454     { X86::VORPSYrr,          X86::VORPSYrm,           0 },
1455     { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
1456     { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
1457     { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
1458     { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
1459     { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
1460     { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
1461     { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
1462     { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
1463     { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
1464     { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
1465     { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
1466     { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
1467     { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
1468 
1469     // AVX2 foldable instructions
1470     { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
1471     { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
1472     { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
1473     { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
1474     { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
1475     { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
1476     { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
1477     { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
1478     { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
1479     { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
1480     { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
1481     { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
1482     { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
1483     { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      0 },
1484     { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
1485     { X86::VPANDYrr,          X86::VPANDYrm,           0 },
1486     { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
1487     { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
1488     { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
1489     { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
1490     { X86::VPBLENDVBYrr,      X86::VPBLENDVBYrm,       0 },
1491     { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
1492     { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
1493     { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
1494     { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
1495     { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
1496     { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
1497     { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
1498     { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
1499     { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
1500     { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
1501     { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
1502     { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
1503     { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
1504     { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
1505     { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
1506     { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
1507     { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
1508     { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
1509     { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 },
1510     { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
1511     { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
1512     { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
1513     { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
1514     { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
1515     { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
1516     { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
1517     { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
1518     { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
1519     { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
1520     { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
1521     { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
1522     { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
1523     { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
1524     { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
1525     { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 },
1526     { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
1527     { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
1528     { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
1529     { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
1530     { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
1531     { X86::VPORYrr,           X86::VPORYrm,            0 },
1532     { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
1533     { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
1534     { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         0 },
1535     { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         0 },
1536     { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         0 },
1537     { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
1538     { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
1539     { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
1540     { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
1541     { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
1542     { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
1543     { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
1544     { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
1545     { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
1546     { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
1547     { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
1548     { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
1549     { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
1550     { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
1551     { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
1552     { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
1553     { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
1554     { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
1555     { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
1556     { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
1557     { X86::VPSUBQYrr,         X86::VPSUBQYrm,          0 },
1558     { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
1559     { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
1560     { X86::VPSUBUSBYrr,       X86::VPSUBUSBYrm,        0 },
1561     { X86::VPSUBUSWYrr,       X86::VPSUBUSWYrm,        0 },
1562     { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
1563     { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
1564     { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
1565     { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
1566     { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
1567     { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
1568     { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
1569     { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
1570     { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
1571     { X86::VPXORYrr,          X86::VPXORYrm,           0 },
1572 
1573     // FMA4 foldable patterns
1574     { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        0 },
1575     { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        0 },
1576     { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        0 },
1577     { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        0 },
1578     { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       0 },
1579     { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       0 },
1580     { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       0 },
1581     { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       0 },
1582     { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       0 },
1583     { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       0 },
1584     { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      0 },
1585     { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      0 },
1586     { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        0 },
1587     { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        0 },
1588     { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        0 },
1589     { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        0 },
1590     { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       0 },
1591     { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       0 },
1592     { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       0 },
1593     { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       0 },
1594     { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       0 },
1595     { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       0 },
1596     { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      0 },
1597     { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      0 },
1598     { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     0 },
1599     { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     0 },
1600     { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    0 },
1601     { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    0 },
1602     { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     0 },
1603     { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     0 },
1604     { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    0 },
1605     { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    0 },
1606 
1607     // XOP foldable instructions
1608     { X86::VPCMOVrr,          X86::VPCMOVmr,            0 },
1609     { X86::VPCMOVrrY,         X86::VPCMOVmrY,           0 },
1610     { X86::VPCOMBri,          X86::VPCOMBmi,            0 },
1611     { X86::VPCOMDri,          X86::VPCOMDmi,            0 },
1612     { X86::VPCOMQri,          X86::VPCOMQmi,            0 },
1613     { X86::VPCOMWri,          X86::VPCOMWmi,            0 },
1614     { X86::VPCOMUBri,         X86::VPCOMUBmi,           0 },
1615     { X86::VPCOMUDri,         X86::VPCOMUDmi,           0 },
1616     { X86::VPCOMUQri,         X86::VPCOMUQmi,           0 },
1617     { X86::VPCOMUWri,         X86::VPCOMUWmi,           0 },
1618     { X86::VPERMIL2PDrr,      X86::VPERMIL2PDmr,        0 },
1619     { X86::VPERMIL2PDrrY,     X86::VPERMIL2PDmrY,       0 },
1620     { X86::VPERMIL2PSrr,      X86::VPERMIL2PSmr,        0 },
1621     { X86::VPERMIL2PSrrY,     X86::VPERMIL2PSmrY,       0 },
1622     { X86::VPMACSDDrr,        X86::VPMACSDDrm,          0 },
1623     { X86::VPMACSDQHrr,       X86::VPMACSDQHrm,         0 },
1624     { X86::VPMACSDQLrr,       X86::VPMACSDQLrm,         0 },
1625     { X86::VPMACSSDDrr,       X86::VPMACSSDDrm,         0 },
1626     { X86::VPMACSSDQHrr,      X86::VPMACSSDQHrm,        0 },
1627     { X86::VPMACSSDQLrr,      X86::VPMACSSDQLrm,        0 },
1628     { X86::VPMACSSWDrr,       X86::VPMACSSWDrm,         0 },
1629     { X86::VPMACSSWWrr,       X86::VPMACSSWWrm,         0 },
1630     { X86::VPMACSWDrr,        X86::VPMACSWDrm,          0 },
1631     { X86::VPMACSWWrr,        X86::VPMACSWWrm,          0 },
1632     { X86::VPMADCSSWDrr,      X86::VPMADCSSWDrm,        0 },
1633     { X86::VPMADCSWDrr,       X86::VPMADCSWDrm,         0 },
1634     { X86::VPPERMrr,          X86::VPPERMmr,            0 },
1635     { X86::VPROTBrr,          X86::VPROTBrm,            0 },
1636     { X86::VPROTDrr,          X86::VPROTDrm,            0 },
1637     { X86::VPROTQrr,          X86::VPROTQrm,            0 },
1638     { X86::VPROTWrr,          X86::VPROTWrm,            0 },
1639     { X86::VPSHABrr,          X86::VPSHABrm,            0 },
1640     { X86::VPSHADrr,          X86::VPSHADrm,            0 },
1641     { X86::VPSHAQrr,          X86::VPSHAQrm,            0 },
1642     { X86::VPSHAWrr,          X86::VPSHAWrm,            0 },
1643     { X86::VPSHLBrr,          X86::VPSHLBrm,            0 },
1644     { X86::VPSHLDrr,          X86::VPSHLDrm,            0 },
1645     { X86::VPSHLQrr,          X86::VPSHLQrm,            0 },
1646     { X86::VPSHLWrr,          X86::VPSHLWrm,            0 },
1647 
1648     // BMI/BMI2 foldable instructions
1649     { X86::ANDN32rr,          X86::ANDN32rm,            0 },
1650     { X86::ANDN64rr,          X86::ANDN64rm,            0 },
1651     { X86::MULX32rr,          X86::MULX32rm,            0 },
1652     { X86::MULX64rr,          X86::MULX64rm,            0 },
1653     { X86::PDEP32rr,          X86::PDEP32rm,            0 },
1654     { X86::PDEP64rr,          X86::PDEP64rm,            0 },
1655     { X86::PEXT32rr,          X86::PEXT32rm,            0 },
1656     { X86::PEXT64rr,          X86::PEXT64rm,            0 },
1657 
1658     // AVX-512 foldable instructions
1659     { X86::VADDPSZrr,         X86::VADDPSZrm,           0 },
1660     { X86::VADDPDZrr,         X86::VADDPDZrm,           0 },
1661     { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 },
1662     { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 },
1663     { X86::VMULPSZrr,         X86::VMULPSZrm,           0 },
1664     { X86::VMULPDZrr,         X86::VMULPDZrm,           0 },
1665     { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 },
1666     { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 },
1667     { X86::VMINPSZrr,         X86::VMINPSZrm,           0 },
1668     { X86::VMINPDZrr,         X86::VMINPDZrm,           0 },
1669     { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 },
1670     { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 },
1671     { X86::VPADDDZrr,         X86::VPADDDZrm,           0 },
1672     { X86::VPADDQZrr,         X86::VPADDQZrm,           0 },
1673     { X86::VPERMPDZri,        X86::VPERMPDZmi,          0 },
1674     { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 },
1675     { X86::VPMAXSDZrr,        X86::VPMAXSDZrm,          0 },
1676     { X86::VPMAXSQZrr,        X86::VPMAXSQZrm,          0 },
1677     { X86::VPMAXUDZrr,        X86::VPMAXUDZrm,          0 },
1678     { X86::VPMAXUQZrr,        X86::VPMAXUQZrm,          0 },
1679     { X86::VPMINSDZrr,        X86::VPMINSDZrm,          0 },
1680     { X86::VPMINSQZrr,        X86::VPMINSQZrm,          0 },
1681     { X86::VPMINUDZrr,        X86::VPMINUDZrm,          0 },
1682     { X86::VPMINUQZrr,        X86::VPMINUQZrm,          0 },
1683     { X86::VPMULDQZrr,        X86::VPMULDQZrm,          0 },
1684     { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 },
1685     { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 },
1686     { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 },
1687     { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 },
1688     { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 },
1689     { X86::VPSUBDZrr,         X86::VPSUBDZrm,           0 },
1690     { X86::VPSUBQZrr,         X86::VPSUBQZrm,           0 },
1691     { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 },
1692     { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 },
1693     { X86::VALIGNQrri,        X86::VALIGNQrmi,          0 },
1694     { X86::VALIGNDrri,        X86::VALIGNDrmi,          0 },
1695     { X86::VPMULUDQZrr,       X86::VPMULUDQZrm,         0 },
1696     { X86::VBROADCASTSSZrkz,  X86::VBROADCASTSSZmkz,    TB_NO_REVERSE },
1697     { X86::VBROADCASTSDZrkz,  X86::VBROADCASTSDZmkz,    TB_NO_REVERSE },
1698 
1699     // AVX-512{F,VL} foldable instructions
1700     { X86::VBROADCASTSSZ256rkz,  X86::VBROADCASTSSZ256mkz,      TB_NO_REVERSE },
1701     { X86::VBROADCASTSDZ256rkz,  X86::VBROADCASTSDZ256mkz,      TB_NO_REVERSE },
1702     { X86::VBROADCASTSSZ128rkz,  X86::VBROADCASTSSZ128mkz,      TB_NO_REVERSE },
1703 
1704     // AVX-512{F,VL} foldable instructions
1705     { X86::VADDPDZ128rr,      X86::VADDPDZ128rm,        0 },
1706     { X86::VADDPDZ256rr,      X86::VADDPDZ256rm,        0 },
1707     { X86::VADDPSZ128rr,      X86::VADDPSZ128rm,        0 },
1708     { X86::VADDPSZ256rr,      X86::VADDPSZ256rm,        0 },
1709 
1710     // AES foldable instructions
1711     { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 },
1712     { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 },
1713     { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 },
1714     { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 },
1715     { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       0 },
1716     { X86::VAESDECrr,         X86::VAESDECrm,           0 },
1717     { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       0 },
1718     { X86::VAESENCrr,         X86::VAESENCrm,           0 },
1719 
1720     // SHA foldable instructions
1721     { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 },
1722     { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 },
1723     { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 },
1724     { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 },
1725     { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 },
1726     { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 },
1727     { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 }
1728   };
1729 
1730   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2); i != e; ++i) {
1731     unsigned RegOp = MemoryFoldTable2[i].RegOp;
1732     unsigned MemOp = MemoryFoldTable2[i].MemOp;
1733     unsigned Flags = MemoryFoldTable2[i].Flags;
1734     AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1735                   RegOp, MemOp,
1736                   // Index 2, folded load
1737                   Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1738   }
1739 
1740   static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
1741     // FMA foldable instructions
1742     { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         TB_ALIGN_NONE },
1743     { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         TB_ALIGN_NONE },
1744     { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         TB_ALIGN_NONE },
1745     { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         TB_ALIGN_NONE },
1746     { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         TB_ALIGN_NONE },
1747     { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         TB_ALIGN_NONE },
1748 
1749     { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_NONE },
1750     { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_NONE },
1751     { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_NONE },
1752     { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_NONE },
1753     { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_NONE },
1754     { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_NONE },
1755     { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_NONE },
1756     { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_NONE },
1757     { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_NONE },
1758     { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_NONE },
1759     { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_NONE },
1760     { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_NONE },
1761 
1762     { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        TB_ALIGN_NONE },
1763     { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        TB_ALIGN_NONE },
1764     { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        TB_ALIGN_NONE },
1765     { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        TB_ALIGN_NONE },
1766     { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        TB_ALIGN_NONE },
1767     { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        TB_ALIGN_NONE },
1768 
1769     { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_NONE },
1770     { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_NONE },
1771     { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_NONE },
1772     { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_NONE },
1773     { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_NONE },
1774     { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_NONE },
1775     { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_NONE },
1776     { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_NONE },
1777     { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_NONE },
1778     { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_NONE },
1779     { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_NONE },
1780     { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_NONE },
1781 
1782     { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         TB_ALIGN_NONE },
1783     { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         TB_ALIGN_NONE },
1784     { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         TB_ALIGN_NONE },
1785     { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         TB_ALIGN_NONE },
1786     { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         TB_ALIGN_NONE },
1787     { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         TB_ALIGN_NONE },
1788 
1789     { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_NONE },
1790     { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_NONE },
1791     { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_NONE },
1792     { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_NONE },
1793     { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_NONE },
1794     { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_NONE },
1795     { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_NONE },
1796     { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_NONE },
1797     { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_NONE },
1798     { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_NONE },
1799     { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_NONE },
1800     { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_NONE },
1801 
1802     { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        TB_ALIGN_NONE },
1803     { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        TB_ALIGN_NONE },
1804     { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        TB_ALIGN_NONE },
1805     { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        TB_ALIGN_NONE },
1806     { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        TB_ALIGN_NONE },
1807     { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        TB_ALIGN_NONE },
1808 
1809     { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_NONE },
1810     { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_NONE },
1811     { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_NONE },
1812     { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_NONE },
1813     { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_NONE },
1814     { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_NONE },
1815     { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_NONE },
1816     { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_NONE },
1817     { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_NONE },
1818     { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_NONE },
1819     { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_NONE },
1820     { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_NONE },
1821 
1822     { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_NONE },
1823     { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_NONE },
1824     { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_NONE },
1825     { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_NONE },
1826     { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_NONE },
1827     { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_NONE },
1828     { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_NONE },
1829     { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_NONE },
1830     { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_NONE },
1831     { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_NONE },
1832     { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_NONE },
1833     { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_NONE },
1834 
1835     { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_NONE },
1836     { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_NONE },
1837     { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_NONE },
1838     { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_NONE },
1839     { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_NONE },
1840     { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_NONE },
1841     { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_NONE },
1842     { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_NONE },
1843     { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_NONE },
1844     { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_NONE },
1845     { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_NONE },
1846     { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_NONE },
1847 
1848     // FMA4 foldable patterns
1849     { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           0           },
1850     { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           0           },
1851     { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_16 },
1852     { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_16 },
1853     { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_32 },
1854     { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_32 },
1855     { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          0           },
1856     { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          0           },
1857     { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_16 },
1858     { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_16 },
1859     { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_32 },
1860     { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_32 },
1861     { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           0           },
1862     { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           0           },
1863     { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_16 },
1864     { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_16 },
1865     { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_32 },
1866     { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_32 },
1867     { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          0           },
1868     { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          0           },
1869     { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_16 },
1870     { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_16 },
1871     { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_32 },
1872     { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_32 },
1873     { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_16 },
1874     { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_16 },
1875     { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_32 },
1876     { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_32 },
1877     { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_16 },
1878     { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_16 },
1879     { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_32 },
1880     { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_32 },
1881 
1882     // XOP foldable instructions
1883     { X86::VPCMOVrr,              X86::VPCMOVrm,              0 },
1884     { X86::VPCMOVrrY,             X86::VPCMOVrmY,             0 },
1885     { X86::VPERMIL2PDrr,          X86::VPERMIL2PDrm,          0 },
1886     { X86::VPERMIL2PDrrY,         X86::VPERMIL2PDrmY,         0 },
1887     { X86::VPERMIL2PSrr,          X86::VPERMIL2PSrm,          0 },
1888     { X86::VPERMIL2PSrrY,         X86::VPERMIL2PSrmY,         0 },
1889     { X86::VPPERMrr,              X86::VPPERMrm,              0 },
1890 
1891     // AVX-512 VPERMI instructions with 3 source operands.
1892     { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 },
1893     { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 },
1894     { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 },
1895     { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 },
1896     { X86::VBLENDMPDZrr,          X86::VBLENDMPDZrm,          0 },
1897     { X86::VBLENDMPSZrr,          X86::VBLENDMPSZrm,          0 },
1898     { X86::VPBLENDMDZrr,          X86::VPBLENDMDZrm,          0 },
1899     { X86::VPBLENDMQZrr,          X86::VPBLENDMQZrm,          0 },
1900     { X86::VBROADCASTSSZrk,       X86::VBROADCASTSSZmk,       TB_NO_REVERSE },
1901     { X86::VBROADCASTSDZrk,       X86::VBROADCASTSDZmk,       TB_NO_REVERSE },
1902     { X86::VBROADCASTSSZ256rk,    X86::VBROADCASTSSZ256mk,    TB_NO_REVERSE },
1903     { X86::VBROADCASTSDZ256rk,    X86::VBROADCASTSDZ256mk,    TB_NO_REVERSE },
1904     { X86::VBROADCASTSSZ128rk,    X86::VBROADCASTSSZ128mk,    TB_NO_REVERSE },
1905      // AVX-512 arithmetic instructions
1906     { X86::VADDPSZrrkz,           X86::VADDPSZrmkz,           0 },
1907     { X86::VADDPDZrrkz,           X86::VADDPDZrmkz,           0 },
1908     { X86::VSUBPSZrrkz,           X86::VSUBPSZrmkz,           0 },
1909     { X86::VSUBPDZrrkz,           X86::VSUBPDZrmkz,           0 },
1910     { X86::VMULPSZrrkz,           X86::VMULPSZrmkz,           0 },
1911     { X86::VMULPDZrrkz,           X86::VMULPDZrmkz,           0 },
1912     { X86::VDIVPSZrrkz,           X86::VDIVPSZrmkz,           0 },
1913     { X86::VDIVPDZrrkz,           X86::VDIVPDZrmkz,           0 },
1914     { X86::VMINPSZrrkz,           X86::VMINPSZrmkz,           0 },
1915     { X86::VMINPDZrrkz,           X86::VMINPDZrmkz,           0 },
1916     { X86::VMAXPSZrrkz,           X86::VMAXPSZrmkz,           0 },
1917     { X86::VMAXPDZrrkz,           X86::VMAXPDZrmkz,           0 },
1918     // AVX-512{F,VL} arithmetic instructions 256-bit
1919     { X86::VADDPSZ256rrkz,        X86::VADDPSZ256rmkz,        0 },
1920     { X86::VADDPDZ256rrkz,        X86::VADDPDZ256rmkz,        0 },
1921     { X86::VSUBPSZ256rrkz,        X86::VSUBPSZ256rmkz,        0 },
1922     { X86::VSUBPDZ256rrkz,        X86::VSUBPDZ256rmkz,        0 },
1923     { X86::VMULPSZ256rrkz,        X86::VMULPSZ256rmkz,        0 },
1924     { X86::VMULPDZ256rrkz,        X86::VMULPDZ256rmkz,        0 },
1925     { X86::VDIVPSZ256rrkz,        X86::VDIVPSZ256rmkz,        0 },
1926     { X86::VDIVPDZ256rrkz,        X86::VDIVPDZ256rmkz,        0 },
1927     { X86::VMINPSZ256rrkz,        X86::VMINPSZ256rmkz,        0 },
1928     { X86::VMINPDZ256rrkz,        X86::VMINPDZ256rmkz,        0 },
1929     { X86::VMAXPSZ256rrkz,        X86::VMAXPSZ256rmkz,        0 },
1930     { X86::VMAXPDZ256rrkz,        X86::VMAXPDZ256rmkz,        0 },
1931     // AVX-512{F,VL} arithmetic instructions 128-bit
1932     { X86::VADDPSZ128rrkz,        X86::VADDPSZ128rmkz,        0 },
1933     { X86::VADDPDZ128rrkz,        X86::VADDPDZ128rmkz,        0 },
1934     { X86::VSUBPSZ128rrkz,        X86::VSUBPSZ128rmkz,        0 },
1935     { X86::VSUBPDZ128rrkz,        X86::VSUBPDZ128rmkz,        0 },
1936     { X86::VMULPSZ128rrkz,        X86::VMULPSZ128rmkz,        0 },
1937     { X86::VMULPDZ128rrkz,        X86::VMULPDZ128rmkz,        0 },
1938     { X86::VDIVPSZ128rrkz,        X86::VDIVPSZ128rmkz,        0 },
1939     { X86::VDIVPDZ128rrkz,        X86::VDIVPDZ128rmkz,        0 },
1940     { X86::VMINPSZ128rrkz,        X86::VMINPSZ128rmkz,        0 },
1941     { X86::VMINPDZ128rrkz,        X86::VMINPDZ128rmkz,        0 },
1942     { X86::VMAXPSZ128rrkz,        X86::VMAXPSZ128rmkz,        0 },
1943     { X86::VMAXPDZ128rrkz,        X86::VMAXPDZ128rmkz,        0 }
1944   };
1945 
1946   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable3); i != e; ++i) {
1947     unsigned RegOp = MemoryFoldTable3[i].RegOp;
1948     unsigned MemOp = MemoryFoldTable3[i].MemOp;
1949     unsigned Flags = MemoryFoldTable3[i].Flags;
1950     AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1951                   RegOp, MemOp,
1952                   // Index 3, folded load
1953                   Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1954   }
1955 
1956   static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
1957      // AVX-512 foldable instructions
1958     { X86::VADDPSZrrk,         X86::VADDPSZrmk,           0 },
1959     { X86::VADDPDZrrk,         X86::VADDPDZrmk,           0 },
1960     { X86::VSUBPSZrrk,         X86::VSUBPSZrmk,           0 },
1961     { X86::VSUBPDZrrk,         X86::VSUBPDZrmk,           0 },
1962     { X86::VMULPSZrrk,         X86::VMULPSZrmk,           0 },
1963     { X86::VMULPDZrrk,         X86::VMULPDZrmk,           0 },
1964     { X86::VDIVPSZrrk,         X86::VDIVPSZrmk,           0 },
1965     { X86::VDIVPDZrrk,         X86::VDIVPDZrmk,           0 },
1966     { X86::VMINPSZrrk,         X86::VMINPSZrmk,           0 },
1967     { X86::VMINPDZrrk,         X86::VMINPDZrmk,           0 },
1968     { X86::VMAXPSZrrk,         X86::VMAXPSZrmk,           0 },
1969     { X86::VMAXPDZrrk,         X86::VMAXPDZrmk,           0 },
1970     // AVX-512{F,VL} foldable instructions 256-bit
1971     { X86::VADDPSZ256rrk,      X86::VADDPSZ256rmk,        0 },
1972     { X86::VADDPDZ256rrk,      X86::VADDPDZ256rmk,        0 },
1973     { X86::VSUBPSZ256rrk,      X86::VSUBPSZ256rmk,        0 },
1974     { X86::VSUBPDZ256rrk,      X86::VSUBPDZ256rmk,        0 },
1975     { X86::VMULPSZ256rrk,      X86::VMULPSZ256rmk,        0 },
1976     { X86::VMULPDZ256rrk,      X86::VMULPDZ256rmk,        0 },
1977     { X86::VDIVPSZ256rrk,      X86::VDIVPSZ256rmk,        0 },
1978     { X86::VDIVPDZ256rrk,      X86::VDIVPDZ256rmk,        0 },
1979     { X86::VMINPSZ256rrk,      X86::VMINPSZ256rmk,        0 },
1980     { X86::VMINPDZ256rrk,      X86::VMINPDZ256rmk,        0 },
1981     { X86::VMAXPSZ256rrk,      X86::VMAXPSZ256rmk,        0 },
1982     { X86::VMAXPDZ256rrk,      X86::VMAXPDZ256rmk,        0 },
1983     // AVX-512{F,VL} foldable instructions 128-bit
1984     { X86::VADDPSZ128rrk,      X86::VADDPSZ128rmk,        0 },
1985     { X86::VADDPDZ128rrk,      X86::VADDPDZ128rmk,        0 },
1986     { X86::VSUBPSZ128rrk,      X86::VSUBPSZ128rmk,        0 },
1987     { X86::VSUBPDZ128rrk,      X86::VSUBPDZ128rmk,        0 },
1988     { X86::VMULPSZ128rrk,      X86::VMULPSZ128rmk,        0 },
1989     { X86::VMULPDZ128rrk,      X86::VMULPDZ128rmk,        0 },
1990     { X86::VDIVPSZ128rrk,      X86::VDIVPSZ128rmk,        0 },
1991     { X86::VDIVPDZ128rrk,      X86::VDIVPDZ128rmk,        0 },
1992     { X86::VMINPSZ128rrk,      X86::VMINPSZ128rmk,        0 },
1993     { X86::VMINPDZ128rrk,      X86::VMINPDZ128rmk,        0 },
1994     { X86::VMAXPSZ128rrk,      X86::VMAXPSZ128rmk,        0 },
1995     { X86::VMAXPDZ128rrk,      X86::VMAXPDZ128rmk,        0 }
1996   };
1997 
1998   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable4); i != e; ++i) {
1999     unsigned RegOp = MemoryFoldTable4[i].RegOp;
2000     unsigned MemOp = MemoryFoldTable4[i].MemOp;
2001     unsigned Flags = MemoryFoldTable4[i].Flags;
2002     AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
2003                   RegOp, MemOp,
2004                   // Index 4, folded load
2005                   Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
2006   }
2007 }
2008 
2009 void
AddTableEntry(RegOp2MemOpTableType & R2MTable,MemOp2RegOpTableType & M2RTable,unsigned RegOp,unsigned MemOp,unsigned Flags)2010 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
2011                             MemOp2RegOpTableType &M2RTable,
2012                             unsigned RegOp, unsigned MemOp, unsigned Flags) {
2013     if ((Flags & TB_NO_FORWARD) == 0) {
2014       assert(!R2MTable.count(RegOp) && "Duplicate entry!");
2015       R2MTable[RegOp] = std::make_pair(MemOp, Flags);
2016     }
2017     if ((Flags & TB_NO_REVERSE) == 0) {
2018       assert(!M2RTable.count(MemOp) &&
2019            "Duplicated entries in unfolding maps?");
2020       M2RTable[MemOp] = std::make_pair(RegOp, Flags);
2021     }
2022 }
2023 
2024 bool
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx) const2025 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
2026                                     unsigned &SrcReg, unsigned &DstReg,
2027                                     unsigned &SubIdx) const {
2028   switch (MI.getOpcode()) {
2029   default: break;
2030   case X86::MOVSX16rr8:
2031   case X86::MOVZX16rr8:
2032   case X86::MOVSX32rr8:
2033   case X86::MOVZX32rr8:
2034   case X86::MOVSX64rr8:
2035     if (!Subtarget.is64Bit())
2036       // It's not always legal to reference the low 8-bit of the larger
2037       // register in 32-bit mode.
2038       return false;
2039   case X86::MOVSX32rr16:
2040   case X86::MOVZX32rr16:
2041   case X86::MOVSX64rr16:
2042   case X86::MOVSX64rr32: {
2043     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
2044       // Be conservative.
2045       return false;
2046     SrcReg = MI.getOperand(1).getReg();
2047     DstReg = MI.getOperand(0).getReg();
2048     switch (MI.getOpcode()) {
2049     default: llvm_unreachable("Unreachable!");
2050     case X86::MOVSX16rr8:
2051     case X86::MOVZX16rr8:
2052     case X86::MOVSX32rr8:
2053     case X86::MOVZX32rr8:
2054     case X86::MOVSX64rr8:
2055       SubIdx = X86::sub_8bit;
2056       break;
2057     case X86::MOVSX32rr16:
2058     case X86::MOVZX32rr16:
2059     case X86::MOVSX64rr16:
2060       SubIdx = X86::sub_16bit;
2061       break;
2062     case X86::MOVSX64rr32:
2063       SubIdx = X86::sub_32bit;
2064       break;
2065     }
2066     return true;
2067   }
2068   }
2069   return false;
2070 }
2071 
getSPAdjust(const MachineInstr * MI) const2072 int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const {
2073   const MachineFunction *MF = MI->getParent()->getParent();
2074   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2075 
2076   if (MI->getOpcode() == getCallFrameSetupOpcode() ||
2077       MI->getOpcode() == getCallFrameDestroyOpcode()) {
2078     unsigned StackAlign = TFI->getStackAlignment();
2079     int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign *
2080                  StackAlign;
2081 
2082     SPAdj -= MI->getOperand(1).getImm();
2083 
2084     if (MI->getOpcode() == getCallFrameSetupOpcode())
2085       return SPAdj;
2086     else
2087       return -SPAdj;
2088   }
2089 
2090   // To know whether a call adjusts the stack, we need information
2091   // that is bound to the following ADJCALLSTACKUP pseudo.
2092   // Look for the next ADJCALLSTACKUP that follows the call.
2093   if (MI->isCall()) {
2094     const MachineBasicBlock* MBB = MI->getParent();
2095     auto I = ++MachineBasicBlock::const_iterator(MI);
2096     for (auto E = MBB->end(); I != E; ++I) {
2097       if (I->getOpcode() == getCallFrameDestroyOpcode() ||
2098           I->isCall())
2099         break;
2100     }
2101 
2102     // If we could not find a frame destroy opcode, then it has already
2103     // been simplified, so we don't care.
2104     if (I->getOpcode() != getCallFrameDestroyOpcode())
2105       return 0;
2106 
2107     return -(I->getOperand(1).getImm());
2108   }
2109 
2110   // Currently handle only PUSHes we can reasonably expect to see
2111   // in call sequences
2112   switch (MI->getOpcode()) {
2113   default:
2114     return 0;
2115   case X86::PUSH32i8:
2116   case X86::PUSH32r:
2117   case X86::PUSH32rmm:
2118   case X86::PUSH32rmr:
2119   case X86::PUSHi32:
2120     return 4;
2121   }
2122 }
2123 
2124 /// Return true and the FrameIndex if the specified
2125 /// operand and follow operands form a reference to the stack frame.
isFrameOperand(const MachineInstr * MI,unsigned int Op,int & FrameIndex) const2126 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
2127                                   int &FrameIndex) const {
2128   if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
2129       MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
2130       MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
2131       MI->getOperand(Op+X86::AddrDisp).isImm() &&
2132       MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
2133       MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
2134       MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
2135     FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
2136     return true;
2137   }
2138   return false;
2139 }
2140 
isFrameLoadOpcode(int Opcode)2141 static bool isFrameLoadOpcode(int Opcode) {
2142   switch (Opcode) {
2143   default:
2144     return false;
2145   case X86::MOV8rm:
2146   case X86::MOV16rm:
2147   case X86::MOV32rm:
2148   case X86::MOV64rm:
2149   case X86::LD_Fp64m:
2150   case X86::MOVSSrm:
2151   case X86::MOVSDrm:
2152   case X86::MOVAPSrm:
2153   case X86::MOVAPDrm:
2154   case X86::MOVDQArm:
2155   case X86::VMOVSSrm:
2156   case X86::VMOVSDrm:
2157   case X86::VMOVAPSrm:
2158   case X86::VMOVAPDrm:
2159   case X86::VMOVDQArm:
2160   case X86::VMOVUPSYrm:
2161   case X86::VMOVAPSYrm:
2162   case X86::VMOVUPDYrm:
2163   case X86::VMOVAPDYrm:
2164   case X86::VMOVDQUYrm:
2165   case X86::VMOVDQAYrm:
2166   case X86::MMX_MOVD64rm:
2167   case X86::MMX_MOVQ64rm:
2168   case X86::VMOVAPSZrm:
2169   case X86::VMOVUPSZrm:
2170     return true;
2171   }
2172 }
2173 
isFrameStoreOpcode(int Opcode)2174 static bool isFrameStoreOpcode(int Opcode) {
2175   switch (Opcode) {
2176   default: break;
2177   case X86::MOV8mr:
2178   case X86::MOV16mr:
2179   case X86::MOV32mr:
2180   case X86::MOV64mr:
2181   case X86::ST_FpP64m:
2182   case X86::MOVSSmr:
2183   case X86::MOVSDmr:
2184   case X86::MOVAPSmr:
2185   case X86::MOVAPDmr:
2186   case X86::MOVDQAmr:
2187   case X86::VMOVSSmr:
2188   case X86::VMOVSDmr:
2189   case X86::VMOVAPSmr:
2190   case X86::VMOVAPDmr:
2191   case X86::VMOVDQAmr:
2192   case X86::VMOVUPSYmr:
2193   case X86::VMOVAPSYmr:
2194   case X86::VMOVUPDYmr:
2195   case X86::VMOVAPDYmr:
2196   case X86::VMOVDQUYmr:
2197   case X86::VMOVDQAYmr:
2198   case X86::VMOVUPSZmr:
2199   case X86::VMOVAPSZmr:
2200   case X86::MMX_MOVD64mr:
2201   case X86::MMX_MOVQ64mr:
2202   case X86::MMX_MOVNTQmr:
2203     return true;
2204   }
2205   return false;
2206 }
2207 
isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex) const2208 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
2209                                            int &FrameIndex) const {
2210   if (isFrameLoadOpcode(MI->getOpcode()))
2211     if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
2212       return MI->getOperand(0).getReg();
2213   return 0;
2214 }
2215 
isLoadFromStackSlotPostFE(const MachineInstr * MI,int & FrameIndex) const2216 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
2217                                                  int &FrameIndex) const {
2218   if (isFrameLoadOpcode(MI->getOpcode())) {
2219     unsigned Reg;
2220     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
2221       return Reg;
2222     // Check for post-frame index elimination operations
2223     const MachineMemOperand *Dummy;
2224     return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
2225   }
2226   return 0;
2227 }
2228 
isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex) const2229 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
2230                                           int &FrameIndex) const {
2231   if (isFrameStoreOpcode(MI->getOpcode()))
2232     if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
2233         isFrameOperand(MI, 0, FrameIndex))
2234       return MI->getOperand(X86::AddrNumOperands).getReg();
2235   return 0;
2236 }
2237 
isStoreToStackSlotPostFE(const MachineInstr * MI,int & FrameIndex) const2238 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
2239                                                 int &FrameIndex) const {
2240   if (isFrameStoreOpcode(MI->getOpcode())) {
2241     unsigned Reg;
2242     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
2243       return Reg;
2244     // Check for post-frame index elimination operations
2245     const MachineMemOperand *Dummy;
2246     return hasStoreToStackSlot(MI, Dummy, FrameIndex);
2247   }
2248   return 0;
2249 }
2250 
2251 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
regIsPICBase(unsigned BaseReg,const MachineRegisterInfo & MRI)2252 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
2253   // Don't waste compile time scanning use-def chains of physregs.
2254   if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
2255     return false;
2256   bool isPICBase = false;
2257   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
2258          E = MRI.def_instr_end(); I != E; ++I) {
2259     MachineInstr *DefMI = &*I;
2260     if (DefMI->getOpcode() != X86::MOVPC32r)
2261       return false;
2262     assert(!isPICBase && "More than one PIC base?");
2263     isPICBase = true;
2264   }
2265   return isPICBase;
2266 }
2267 
2268 bool
isReallyTriviallyReMaterializable(const MachineInstr * MI,AliasAnalysis * AA) const2269 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
2270                                                 AliasAnalysis *AA) const {
2271   switch (MI->getOpcode()) {
2272   default: break;
2273   case X86::MOV8rm:
2274   case X86::MOV16rm:
2275   case X86::MOV32rm:
2276   case X86::MOV64rm:
2277   case X86::LD_Fp64m:
2278   case X86::MOVSSrm:
2279   case X86::MOVSDrm:
2280   case X86::MOVAPSrm:
2281   case X86::MOVUPSrm:
2282   case X86::MOVAPDrm:
2283   case X86::MOVDQArm:
2284   case X86::MOVDQUrm:
2285   case X86::VMOVSSrm:
2286   case X86::VMOVSDrm:
2287   case X86::VMOVAPSrm:
2288   case X86::VMOVUPSrm:
2289   case X86::VMOVAPDrm:
2290   case X86::VMOVDQArm:
2291   case X86::VMOVDQUrm:
2292   case X86::VMOVAPSYrm:
2293   case X86::VMOVUPSYrm:
2294   case X86::VMOVAPDYrm:
2295   case X86::VMOVDQAYrm:
2296   case X86::VMOVDQUYrm:
2297   case X86::MMX_MOVD64rm:
2298   case X86::MMX_MOVQ64rm:
2299   case X86::FsVMOVAPSrm:
2300   case X86::FsVMOVAPDrm:
2301   case X86::FsMOVAPSrm:
2302   case X86::FsMOVAPDrm: {
2303     // Loads from constant pools are trivially rematerializable.
2304     if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
2305         MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2306         MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2307         MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2308         MI->isInvariantLoad(AA)) {
2309       unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
2310       if (BaseReg == 0 || BaseReg == X86::RIP)
2311         return true;
2312       // Allow re-materialization of PIC load.
2313       if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
2314         return false;
2315       const MachineFunction &MF = *MI->getParent()->getParent();
2316       const MachineRegisterInfo &MRI = MF.getRegInfo();
2317       return regIsPICBase(BaseReg, MRI);
2318     }
2319     return false;
2320   }
2321 
2322   case X86::LEA32r:
2323   case X86::LEA64r: {
2324     if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2325         MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2326         MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2327         !MI->getOperand(1+X86::AddrDisp).isReg()) {
2328       // lea fi#, lea GV, etc. are all rematerializable.
2329       if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
2330         return true;
2331       unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
2332       if (BaseReg == 0)
2333         return true;
2334       // Allow re-materialization of lea PICBase + x.
2335       const MachineFunction &MF = *MI->getParent()->getParent();
2336       const MachineRegisterInfo &MRI = MF.getRegInfo();
2337       return regIsPICBase(BaseReg, MRI);
2338     }
2339     return false;
2340   }
2341   }
2342 
2343   // All other instructions marked M_REMATERIALIZABLE are always trivially
2344   // rematerializable.
2345   return true;
2346 }
2347 
isSafeToClobberEFLAGS(MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2348 bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
2349                                          MachineBasicBlock::iterator I) const {
2350   MachineBasicBlock::iterator E = MBB.end();
2351 
2352   // For compile time consideration, if we are not able to determine the
2353   // safety after visiting 4 instructions in each direction, we will assume
2354   // it's not safe.
2355   MachineBasicBlock::iterator Iter = I;
2356   for (unsigned i = 0; Iter != E && i < 4; ++i) {
2357     bool SeenDef = false;
2358     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2359       MachineOperand &MO = Iter->getOperand(j);
2360       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2361         SeenDef = true;
2362       if (!MO.isReg())
2363         continue;
2364       if (MO.getReg() == X86::EFLAGS) {
2365         if (MO.isUse())
2366           return false;
2367         SeenDef = true;
2368       }
2369     }
2370 
2371     if (SeenDef)
2372       // This instruction defines EFLAGS, no need to look any further.
2373       return true;
2374     ++Iter;
2375     // Skip over DBG_VALUE.
2376     while (Iter != E && Iter->isDebugValue())
2377       ++Iter;
2378   }
2379 
2380   // It is safe to clobber EFLAGS at the end of a block of no successor has it
2381   // live in.
2382   if (Iter == E) {
2383     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
2384            SE = MBB.succ_end(); SI != SE; ++SI)
2385       if ((*SI)->isLiveIn(X86::EFLAGS))
2386         return false;
2387     return true;
2388   }
2389 
2390   MachineBasicBlock::iterator B = MBB.begin();
2391   Iter = I;
2392   for (unsigned i = 0; i < 4; ++i) {
2393     // If we make it to the beginning of the block, it's safe to clobber
2394     // EFLAGS iff EFLAGS is not live-in.
2395     if (Iter == B)
2396       return !MBB.isLiveIn(X86::EFLAGS);
2397 
2398     --Iter;
2399     // Skip over DBG_VALUE.
2400     while (Iter != B && Iter->isDebugValue())
2401       --Iter;
2402 
2403     bool SawKill = false;
2404     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2405       MachineOperand &MO = Iter->getOperand(j);
2406       // A register mask may clobber EFLAGS, but we should still look for a
2407       // live EFLAGS def.
2408       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2409         SawKill = true;
2410       if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
2411         if (MO.isDef()) return MO.isDead();
2412         if (MO.isKill()) SawKill = true;
2413       }
2414     }
2415 
2416     if (SawKill)
2417       // This instruction kills EFLAGS and doesn't redefine it, so
2418       // there's no need to look further.
2419       return true;
2420   }
2421 
2422   // Conservative answer.
2423   return false;
2424 }
2425 
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr * Orig,const TargetRegisterInfo & TRI) const2426 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
2427                                  MachineBasicBlock::iterator I,
2428                                  unsigned DestReg, unsigned SubIdx,
2429                                  const MachineInstr *Orig,
2430                                  const TargetRegisterInfo &TRI) const {
2431   // MOV32r0 is implemented with a xor which clobbers condition code.
2432   // Re-materialize it as movri instructions to avoid side effects.
2433   unsigned Opc = Orig->getOpcode();
2434   if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
2435     DebugLoc DL = Orig->getDebugLoc();
2436     BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
2437       .addImm(0);
2438   } else {
2439     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
2440     MBB.insert(I, MI);
2441   }
2442 
2443   MachineInstr *NewMI = std::prev(I);
2444   NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
2445 }
2446 
2447 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
hasLiveCondCodeDef(MachineInstr * MI)2448 static bool hasLiveCondCodeDef(MachineInstr *MI) {
2449   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2450     MachineOperand &MO = MI->getOperand(i);
2451     if (MO.isReg() && MO.isDef() &&
2452         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
2453       return true;
2454     }
2455   }
2456   return false;
2457 }
2458 
2459 /// Check whether the shift count for a machine operand is non-zero.
getTruncatedShiftCount(MachineInstr * MI,unsigned ShiftAmtOperandIdx)2460 inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
2461                                               unsigned ShiftAmtOperandIdx) {
2462   // The shift count is six bits with the REX.W prefix and five bits without.
2463   unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
2464   unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
2465   return Imm & ShiftCountMask;
2466 }
2467 
2468 /// Check whether the given shift count is appropriate
2469 /// can be represented by a LEA instruction.
isTruncatedShiftCountForLEA(unsigned ShAmt)2470 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
2471   // Left shift instructions can be transformed into load-effective-address
2472   // instructions if we can encode them appropriately.
2473   // A LEA instruction utilizes a SIB byte to encode it's scale factor.
2474   // The SIB.scale field is two bits wide which means that we can encode any
2475   // shift amount less than 4.
2476   return ShAmt < 4 && ShAmt > 0;
2477 }
2478 
classifyLEAReg(MachineInstr * MI,const MachineOperand & Src,unsigned Opc,bool AllowSP,unsigned & NewSrc,bool & isKill,bool & isUndef,MachineOperand & ImplicitOp) const2479 bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
2480                                   unsigned Opc, bool AllowSP,
2481                                   unsigned &NewSrc, bool &isKill, bool &isUndef,
2482                                   MachineOperand &ImplicitOp) const {
2483   MachineFunction &MF = *MI->getParent()->getParent();
2484   const TargetRegisterClass *RC;
2485   if (AllowSP) {
2486     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
2487   } else {
2488     RC = Opc != X86::LEA32r ?
2489       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
2490   }
2491   unsigned SrcReg = Src.getReg();
2492 
2493   // For both LEA64 and LEA32 the register already has essentially the right
2494   // type (32-bit or 64-bit) we may just need to forbid SP.
2495   if (Opc != X86::LEA64_32r) {
2496     NewSrc = SrcReg;
2497     isKill = Src.isKill();
2498     isUndef = Src.isUndef();
2499 
2500     if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
2501         !MF.getRegInfo().constrainRegClass(NewSrc, RC))
2502       return false;
2503 
2504     return true;
2505   }
2506 
2507   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
2508   // another we need to add 64-bit registers to the final MI.
2509   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
2510     ImplicitOp = Src;
2511     ImplicitOp.setImplicit();
2512 
2513     NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
2514     MachineBasicBlock::LivenessQueryResult LQR =
2515       MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
2516 
2517     switch (LQR) {
2518     case MachineBasicBlock::LQR_Unknown:
2519       // We can't give sane liveness flags to the instruction, abandon LEA
2520       // formation.
2521       return false;
2522     case MachineBasicBlock::LQR_Live:
2523       isKill = MI->killsRegister(SrcReg);
2524       isUndef = false;
2525       break;
2526     default:
2527       // The physreg itself is dead, so we have to use it as an <undef>.
2528       isKill = false;
2529       isUndef = true;
2530       break;
2531     }
2532   } else {
2533     // Virtual register of the wrong class, we have to create a temporary 64-bit
2534     // vreg to feed into the LEA.
2535     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
2536     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
2537             get(TargetOpcode::COPY))
2538       .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
2539         .addOperand(Src);
2540 
2541     // Which is obviously going to be dead after we're done with it.
2542     isKill = true;
2543     isUndef = false;
2544   }
2545 
2546   // We've set all the parameters without issue.
2547   return true;
2548 }
2549 
2550 /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
2551 /// LEA to form 3-address code by promoting to a 32-bit superregister and then
2552 /// truncating back down to a 16-bit subregister.
2553 MachineInstr *
convertToThreeAddressWithLEA(unsigned MIOpc,MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI,LiveVariables * LV) const2554 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
2555                                            MachineFunction::iterator &MFI,
2556                                            MachineBasicBlock::iterator &MBBI,
2557                                            LiveVariables *LV) const {
2558   MachineInstr *MI = MBBI;
2559   unsigned Dest = MI->getOperand(0).getReg();
2560   unsigned Src = MI->getOperand(1).getReg();
2561   bool isDead = MI->getOperand(0).isDead();
2562   bool isKill = MI->getOperand(1).isKill();
2563 
2564   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
2565   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
2566   unsigned Opc, leaInReg;
2567   if (Subtarget.is64Bit()) {
2568     Opc = X86::LEA64_32r;
2569     leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2570   } else {
2571     Opc = X86::LEA32r;
2572     leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2573   }
2574 
2575   // Build and insert into an implicit UNDEF value. This is OK because
2576   // well be shifting and then extracting the lower 16-bits.
2577   // This has the potential to cause partial register stall. e.g.
2578   //   movw    (%rbp,%rcx,2), %dx
2579   //   leal    -65(%rdx), %esi
2580   // But testing has shown this *does* help performance in 64-bit mode (at
2581   // least on modern x86 machines).
2582   BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
2583   MachineInstr *InsMI =
2584     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2585     .addReg(leaInReg, RegState::Define, X86::sub_16bit)
2586     .addReg(Src, getKillRegState(isKill));
2587 
2588   MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
2589                                     get(Opc), leaOutReg);
2590   switch (MIOpc) {
2591   default: llvm_unreachable("Unreachable!");
2592   case X86::SHL16ri: {
2593     unsigned ShAmt = MI->getOperand(2).getImm();
2594     MIB.addReg(0).addImm(1 << ShAmt)
2595        .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
2596     break;
2597   }
2598   case X86::INC16r:
2599     addRegOffset(MIB, leaInReg, true, 1);
2600     break;
2601   case X86::DEC16r:
2602     addRegOffset(MIB, leaInReg, true, -1);
2603     break;
2604   case X86::ADD16ri:
2605   case X86::ADD16ri8:
2606   case X86::ADD16ri_DB:
2607   case X86::ADD16ri8_DB:
2608     addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
2609     break;
2610   case X86::ADD16rr:
2611   case X86::ADD16rr_DB: {
2612     unsigned Src2 = MI->getOperand(2).getReg();
2613     bool isKill2 = MI->getOperand(2).isKill();
2614     unsigned leaInReg2 = 0;
2615     MachineInstr *InsMI2 = nullptr;
2616     if (Src == Src2) {
2617       // ADD16rr %reg1028<kill>, %reg1028
2618       // just a single insert_subreg.
2619       addRegReg(MIB, leaInReg, true, leaInReg, false);
2620     } else {
2621       if (Subtarget.is64Bit())
2622         leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2623       else
2624         leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2625       // Build and insert into an implicit UNDEF value. This is OK because
2626       // well be shifting and then extracting the lower 16-bits.
2627       BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
2628       InsMI2 =
2629         BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
2630         .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2631         .addReg(Src2, getKillRegState(isKill2));
2632       addRegReg(MIB, leaInReg, true, leaInReg2, true);
2633     }
2634     if (LV && isKill2 && InsMI2)
2635       LV->replaceKillInstruction(Src2, MI, InsMI2);
2636     break;
2637   }
2638   }
2639 
2640   MachineInstr *NewMI = MIB;
2641   MachineInstr *ExtMI =
2642     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2643     .addReg(Dest, RegState::Define | getDeadRegState(isDead))
2644     .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
2645 
2646   if (LV) {
2647     // Update live variables
2648     LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2649     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2650     if (isKill)
2651       LV->replaceKillInstruction(Src, MI, InsMI);
2652     if (isDead)
2653       LV->replaceKillInstruction(Dest, MI, ExtMI);
2654   }
2655 
2656   return ExtMI;
2657 }
2658 
2659 /// This method must be implemented by targets that
2660 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
2661 /// may be able to convert a two-address instruction into a true
2662 /// three-address instruction on demand.  This allows the X86 target (for
2663 /// example) to convert ADD and SHL instructions into LEA instructions if they
2664 /// would require register copies due to two-addressness.
2665 ///
2666 /// This method returns a null pointer if the transformation cannot be
2667 /// performed, otherwise it returns the new instruction.
2668 ///
2669 MachineInstr *
convertToThreeAddress(MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI,LiveVariables * LV) const2670 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2671                                     MachineBasicBlock::iterator &MBBI,
2672                                     LiveVariables *LV) const {
2673   MachineInstr *MI = MBBI;
2674 
2675   // The following opcodes also sets the condition code register(s). Only
2676   // convert them to equivalent lea if the condition code register def's
2677   // are dead!
2678   if (hasLiveCondCodeDef(MI))
2679     return nullptr;
2680 
2681   MachineFunction &MF = *MI->getParent()->getParent();
2682   // All instructions input are two-addr instructions.  Get the known operands.
2683   const MachineOperand &Dest = MI->getOperand(0);
2684   const MachineOperand &Src = MI->getOperand(1);
2685 
2686   MachineInstr *NewMI = nullptr;
2687   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
2688   // we have better subtarget support, enable the 16-bit LEA generation here.
2689   // 16-bit LEA is also slow on Core2.
2690   bool DisableLEA16 = true;
2691   bool is64Bit = Subtarget.is64Bit();
2692 
2693   unsigned MIOpc = MI->getOpcode();
2694   switch (MIOpc) {
2695   default: return nullptr;
2696   case X86::SHL64ri: {
2697     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2698     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2699     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2700 
2701     // LEA can't handle RSP.
2702     if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2703         !MF.getRegInfo().constrainRegClass(Src.getReg(),
2704                                            &X86::GR64_NOSPRegClass))
2705       return nullptr;
2706 
2707     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2708       .addOperand(Dest)
2709       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2710     break;
2711   }
2712   case X86::SHL32ri: {
2713     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2714     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2715     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2716 
2717     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2718 
2719     // LEA can't handle ESP.
2720     bool isKill, isUndef;
2721     unsigned SrcReg;
2722     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2723     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2724                         SrcReg, isKill, isUndef, ImplicitOp))
2725       return nullptr;
2726 
2727     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2728       .addOperand(Dest)
2729       .addReg(0).addImm(1 << ShAmt)
2730       .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2731       .addImm(0).addReg(0);
2732     if (ImplicitOp.getReg() != 0)
2733       MIB.addOperand(ImplicitOp);
2734     NewMI = MIB;
2735 
2736     break;
2737   }
2738   case X86::SHL16ri: {
2739     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2740     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2741     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2742 
2743     if (DisableLEA16)
2744       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
2745     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2746       .addOperand(Dest)
2747       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2748     break;
2749   }
2750   case X86::INC64r:
2751   case X86::INC32r: {
2752     assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2753     unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2754       : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2755     bool isKill, isUndef;
2756     unsigned SrcReg;
2757     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2758     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2759                         SrcReg, isKill, isUndef, ImplicitOp))
2760       return nullptr;
2761 
2762     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2763         .addOperand(Dest)
2764         .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2765     if (ImplicitOp.getReg() != 0)
2766       MIB.addOperand(ImplicitOp);
2767 
2768     NewMI = addOffset(MIB, 1);
2769     break;
2770   }
2771   case X86::INC16r:
2772     if (DisableLEA16)
2773       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2774                      : nullptr;
2775     assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2776     NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2777                       .addOperand(Dest).addOperand(Src), 1);
2778     break;
2779   case X86::DEC64r:
2780   case X86::DEC32r: {
2781     assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2782     unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2783       : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2784 
2785     bool isKill, isUndef;
2786     unsigned SrcReg;
2787     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2788     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2789                         SrcReg, isKill, isUndef, ImplicitOp))
2790       return nullptr;
2791 
2792     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2793         .addOperand(Dest)
2794         .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2795     if (ImplicitOp.getReg() != 0)
2796       MIB.addOperand(ImplicitOp);
2797 
2798     NewMI = addOffset(MIB, -1);
2799 
2800     break;
2801   }
2802   case X86::DEC16r:
2803     if (DisableLEA16)
2804       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2805                      : nullptr;
2806     assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2807     NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2808                       .addOperand(Dest).addOperand(Src), -1);
2809     break;
2810   case X86::ADD64rr:
2811   case X86::ADD64rr_DB:
2812   case X86::ADD32rr:
2813   case X86::ADD32rr_DB: {
2814     assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2815     unsigned Opc;
2816     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
2817       Opc = X86::LEA64r;
2818     else
2819       Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2820 
2821     bool isKill, isUndef;
2822     unsigned SrcReg;
2823     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2824     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2825                         SrcReg, isKill, isUndef, ImplicitOp))
2826       return nullptr;
2827 
2828     const MachineOperand &Src2 = MI->getOperand(2);
2829     bool isKill2, isUndef2;
2830     unsigned SrcReg2;
2831     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2832     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2833                         SrcReg2, isKill2, isUndef2, ImplicitOp2))
2834       return nullptr;
2835 
2836     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2837       .addOperand(Dest);
2838     if (ImplicitOp.getReg() != 0)
2839       MIB.addOperand(ImplicitOp);
2840     if (ImplicitOp2.getReg() != 0)
2841       MIB.addOperand(ImplicitOp2);
2842 
2843     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
2844 
2845     // Preserve undefness of the operands.
2846     NewMI->getOperand(1).setIsUndef(isUndef);
2847     NewMI->getOperand(3).setIsUndef(isUndef2);
2848 
2849     if (LV && Src2.isKill())
2850       LV->replaceKillInstruction(SrcReg2, MI, NewMI);
2851     break;
2852   }
2853   case X86::ADD16rr:
2854   case X86::ADD16rr_DB: {
2855     if (DisableLEA16)
2856       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2857                      : nullptr;
2858     assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2859     unsigned Src2 = MI->getOperand(2).getReg();
2860     bool isKill2 = MI->getOperand(2).isKill();
2861     NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2862                       .addOperand(Dest),
2863                       Src.getReg(), Src.isKill(), Src2, isKill2);
2864 
2865     // Preserve undefness of the operands.
2866     bool isUndef = MI->getOperand(1).isUndef();
2867     bool isUndef2 = MI->getOperand(2).isUndef();
2868     NewMI->getOperand(1).setIsUndef(isUndef);
2869     NewMI->getOperand(3).setIsUndef(isUndef2);
2870 
2871     if (LV && isKill2)
2872       LV->replaceKillInstruction(Src2, MI, NewMI);
2873     break;
2874   }
2875   case X86::ADD64ri32:
2876   case X86::ADD64ri8:
2877   case X86::ADD64ri32_DB:
2878   case X86::ADD64ri8_DB:
2879     assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2880     NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2881                       .addOperand(Dest).addOperand(Src),
2882                       MI->getOperand(2).getImm());
2883     break;
2884   case X86::ADD32ri:
2885   case X86::ADD32ri8:
2886   case X86::ADD32ri_DB:
2887   case X86::ADD32ri8_DB: {
2888     assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2889     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2890 
2891     bool isKill, isUndef;
2892     unsigned SrcReg;
2893     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2894     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2895                         SrcReg, isKill, isUndef, ImplicitOp))
2896       return nullptr;
2897 
2898     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2899         .addOperand(Dest)
2900         .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2901     if (ImplicitOp.getReg() != 0)
2902       MIB.addOperand(ImplicitOp);
2903 
2904     NewMI = addOffset(MIB, MI->getOperand(2).getImm());
2905     break;
2906   }
2907   case X86::ADD16ri:
2908   case X86::ADD16ri8:
2909   case X86::ADD16ri_DB:
2910   case X86::ADD16ri8_DB:
2911     if (DisableLEA16)
2912       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2913                      : nullptr;
2914     assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2915     NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2916                       .addOperand(Dest).addOperand(Src),
2917                       MI->getOperand(2).getImm());
2918     break;
2919   }
2920 
2921   if (!NewMI) return nullptr;
2922 
2923   if (LV) {  // Update live variables
2924     if (Src.isKill())
2925       LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2926     if (Dest.isDead())
2927       LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
2928   }
2929 
2930   MFI->insert(MBBI, NewMI);          // Insert the new inst
2931   return NewMI;
2932 }
2933 
2934 /// We have a few instructions that must be hacked on to commute them.
2935 ///
2936 MachineInstr *
commuteInstruction(MachineInstr * MI,bool NewMI) const2937 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
2938   switch (MI->getOpcode()) {
2939   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2940   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2941   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2942   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2943   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2944   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2945     unsigned Opc;
2946     unsigned Size;
2947     switch (MI->getOpcode()) {
2948     default: llvm_unreachable("Unreachable!");
2949     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2950     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2951     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2952     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2953     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2954     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2955     }
2956     unsigned Amt = MI->getOperand(3).getImm();
2957     if (NewMI) {
2958       MachineFunction &MF = *MI->getParent()->getParent();
2959       MI = MF.CloneMachineInstr(MI);
2960       NewMI = false;
2961     }
2962     MI->setDesc(get(Opc));
2963     MI->getOperand(3).setImm(Size-Amt);
2964     return TargetInstrInfo::commuteInstruction(MI, NewMI);
2965   }
2966   case X86::BLENDPDrri:
2967   case X86::BLENDPSrri:
2968   case X86::PBLENDWrri:
2969   case X86::VBLENDPDrri:
2970   case X86::VBLENDPSrri:
2971   case X86::VBLENDPDYrri:
2972   case X86::VBLENDPSYrri:
2973   case X86::VPBLENDDrri:
2974   case X86::VPBLENDWrri:
2975   case X86::VPBLENDDYrri:
2976   case X86::VPBLENDWYrri:{
2977     unsigned Mask;
2978     switch (MI->getOpcode()) {
2979     default: llvm_unreachable("Unreachable!");
2980     case X86::BLENDPDrri:    Mask = 0x03; break;
2981     case X86::BLENDPSrri:    Mask = 0x0F; break;
2982     case X86::PBLENDWrri:    Mask = 0xFF; break;
2983     case X86::VBLENDPDrri:   Mask = 0x03; break;
2984     case X86::VBLENDPSrri:   Mask = 0x0F; break;
2985     case X86::VBLENDPDYrri:  Mask = 0x0F; break;
2986     case X86::VBLENDPSYrri:  Mask = 0xFF; break;
2987     case X86::VPBLENDDrri:   Mask = 0x0F; break;
2988     case X86::VPBLENDWrri:   Mask = 0xFF; break;
2989     case X86::VPBLENDDYrri:  Mask = 0xFF; break;
2990     case X86::VPBLENDWYrri:  Mask = 0xFF; break;
2991     }
2992     // Only the least significant bits of Imm are used.
2993     unsigned Imm = MI->getOperand(3).getImm() & Mask;
2994     if (NewMI) {
2995       MachineFunction &MF = *MI->getParent()->getParent();
2996       MI = MF.CloneMachineInstr(MI);
2997       NewMI = false;
2998     }
2999     MI->getOperand(3).setImm(Mask ^ Imm);
3000     return TargetInstrInfo::commuteInstruction(MI, NewMI);
3001   }
3002   case X86::PCLMULQDQrr:
3003   case X86::VPCLMULQDQrr:{
3004     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
3005     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
3006     unsigned Imm = MI->getOperand(3).getImm();
3007     unsigned Src1Hi = Imm & 0x01;
3008     unsigned Src2Hi = Imm & 0x10;
3009     if (NewMI) {
3010       MachineFunction &MF = *MI->getParent()->getParent();
3011       MI = MF.CloneMachineInstr(MI);
3012       NewMI = false;
3013     }
3014     MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
3015     return TargetInstrInfo::commuteInstruction(MI, NewMI);
3016   }
3017   case X86::CMPPDrri:
3018   case X86::CMPPSrri:
3019   case X86::VCMPPDrri:
3020   case X86::VCMPPSrri:
3021   case X86::VCMPPDYrri:
3022   case X86::VCMPPSYrri: {
3023     // Float comparison can be safely commuted for
3024     // Ordered/Unordered/Equal/NotEqual tests
3025     unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3026     switch (Imm) {
3027     case 0x00: // EQUAL
3028     case 0x03: // UNORDERED
3029     case 0x04: // NOT EQUAL
3030     case 0x07: // ORDERED
3031       if (NewMI) {
3032         MachineFunction &MF = *MI->getParent()->getParent();
3033         MI = MF.CloneMachineInstr(MI);
3034         NewMI = false;
3035       }
3036       return TargetInstrInfo::commuteInstruction(MI, NewMI);
3037     default:
3038       return nullptr;
3039     }
3040   }
3041   case X86::VPCOMBri: case X86::VPCOMUBri:
3042   case X86::VPCOMDri: case X86::VPCOMUDri:
3043   case X86::VPCOMQri: case X86::VPCOMUQri:
3044   case X86::VPCOMWri: case X86::VPCOMUWri: {
3045     // Flip comparison mode immediate (if necessary).
3046     unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3047     switch (Imm) {
3048     case 0x00: Imm = 0x02; break; // LT -> GT
3049     case 0x01: Imm = 0x03; break; // LE -> GE
3050     case 0x02: Imm = 0x00; break; // GT -> LT
3051     case 0x03: Imm = 0x01; break; // GE -> LE
3052     case 0x04: // EQ
3053     case 0x05: // NE
3054     case 0x06: // FALSE
3055     case 0x07: // TRUE
3056     default:
3057       break;
3058     }
3059     if (NewMI) {
3060       MachineFunction &MF = *MI->getParent()->getParent();
3061       MI = MF.CloneMachineInstr(MI);
3062       NewMI = false;
3063     }
3064     MI->getOperand(3).setImm(Imm);
3065     return TargetInstrInfo::commuteInstruction(MI, NewMI);
3066   }
3067   case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
3068   case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
3069   case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
3070   case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
3071   case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
3072   case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
3073   case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
3074   case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
3075   case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
3076   case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
3077   case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
3078   case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
3079   case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
3080   case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
3081   case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
3082   case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
3083     unsigned Opc;
3084     switch (MI->getOpcode()) {
3085     default: llvm_unreachable("Unreachable!");
3086     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
3087     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
3088     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
3089     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
3090     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
3091     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
3092     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
3093     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
3094     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
3095     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
3096     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
3097     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
3098     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
3099     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
3100     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
3101     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
3102     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
3103     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
3104     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
3105     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
3106     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
3107     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
3108     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
3109     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
3110     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
3111     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
3112     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
3113     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
3114     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
3115     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
3116     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
3117     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
3118     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
3119     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
3120     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
3121     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
3122     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
3123     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
3124     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
3125     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
3126     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
3127     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
3128     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
3129     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
3130     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
3131     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
3132     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
3133     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
3134     }
3135     if (NewMI) {
3136       MachineFunction &MF = *MI->getParent()->getParent();
3137       MI = MF.CloneMachineInstr(MI);
3138       NewMI = false;
3139     }
3140     MI->setDesc(get(Opc));
3141     // Fallthrough intended.
3142   }
3143   default:
3144     return TargetInstrInfo::commuteInstruction(MI, NewMI);
3145   }
3146 }
3147 
findCommutedOpIndices(MachineInstr * MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const3148 bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
3149                                          unsigned &SrcOpIdx2) const {
3150   switch (MI->getOpcode()) {
3151     case X86::CMPPDrri:
3152     case X86::CMPPSrri:
3153     case X86::VCMPPDrri:
3154     case X86::VCMPPSrri:
3155     case X86::VCMPPDYrri:
3156     case X86::VCMPPSYrri: {
3157       // Float comparison can be safely commuted for
3158       // Ordered/Unordered/Equal/NotEqual tests
3159       unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3160       switch (Imm) {
3161       case 0x00: // EQUAL
3162       case 0x03: // UNORDERED
3163       case 0x04: // NOT EQUAL
3164       case 0x07: // ORDERED
3165         SrcOpIdx1 = 1;
3166         SrcOpIdx2 = 2;
3167         return true;
3168       }
3169       return false;
3170     }
3171     case X86::VFMADDPDr231r:
3172     case X86::VFMADDPSr231r:
3173     case X86::VFMADDSDr231r:
3174     case X86::VFMADDSSr231r:
3175     case X86::VFMSUBPDr231r:
3176     case X86::VFMSUBPSr231r:
3177     case X86::VFMSUBSDr231r:
3178     case X86::VFMSUBSSr231r:
3179     case X86::VFNMADDPDr231r:
3180     case X86::VFNMADDPSr231r:
3181     case X86::VFNMADDSDr231r:
3182     case X86::VFNMADDSSr231r:
3183     case X86::VFNMSUBPDr231r:
3184     case X86::VFNMSUBPSr231r:
3185     case X86::VFNMSUBSDr231r:
3186     case X86::VFNMSUBSSr231r:
3187     case X86::VFMADDPDr231rY:
3188     case X86::VFMADDPSr231rY:
3189     case X86::VFMSUBPDr231rY:
3190     case X86::VFMSUBPSr231rY:
3191     case X86::VFNMADDPDr231rY:
3192     case X86::VFNMADDPSr231rY:
3193     case X86::VFNMSUBPDr231rY:
3194     case X86::VFNMSUBPSr231rY:
3195       SrcOpIdx1 = 2;
3196       SrcOpIdx2 = 3;
3197       return true;
3198     default:
3199       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3200   }
3201 }
3202 
getCondFromBranchOpc(unsigned BrOpc)3203 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
3204   switch (BrOpc) {
3205   default: return X86::COND_INVALID;
3206   case X86::JE_1:  return X86::COND_E;
3207   case X86::JNE_1: return X86::COND_NE;
3208   case X86::JL_1:  return X86::COND_L;
3209   case X86::JLE_1: return X86::COND_LE;
3210   case X86::JG_1:  return X86::COND_G;
3211   case X86::JGE_1: return X86::COND_GE;
3212   case X86::JB_1:  return X86::COND_B;
3213   case X86::JBE_1: return X86::COND_BE;
3214   case X86::JA_1:  return X86::COND_A;
3215   case X86::JAE_1: return X86::COND_AE;
3216   case X86::JS_1:  return X86::COND_S;
3217   case X86::JNS_1: return X86::COND_NS;
3218   case X86::JP_1:  return X86::COND_P;
3219   case X86::JNP_1: return X86::COND_NP;
3220   case X86::JO_1:  return X86::COND_O;
3221   case X86::JNO_1: return X86::COND_NO;
3222   }
3223 }
3224 
3225 /// Return condition code of a SET opcode.
getCondFromSETOpc(unsigned Opc)3226 static X86::CondCode getCondFromSETOpc(unsigned Opc) {
3227   switch (Opc) {
3228   default: return X86::COND_INVALID;
3229   case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
3230   case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
3231   case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
3232   case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
3233   case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
3234   case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
3235   case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
3236   case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
3237   case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
3238   case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
3239   case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
3240   case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
3241   case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
3242   case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
3243   case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
3244   case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
3245   }
3246 }
3247 
3248 /// Return condition code of a CMov opcode.
getCondFromCMovOpc(unsigned Opc)3249 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
3250   switch (Opc) {
3251   default: return X86::COND_INVALID;
3252   case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
3253   case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
3254     return X86::COND_A;
3255   case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
3256   case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
3257     return X86::COND_AE;
3258   case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
3259   case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
3260     return X86::COND_B;
3261   case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
3262   case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
3263     return X86::COND_BE;
3264   case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
3265   case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
3266     return X86::COND_E;
3267   case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
3268   case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
3269     return X86::COND_G;
3270   case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
3271   case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
3272     return X86::COND_GE;
3273   case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
3274   case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
3275     return X86::COND_L;
3276   case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
3277   case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
3278     return X86::COND_LE;
3279   case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
3280   case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
3281     return X86::COND_NE;
3282   case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
3283   case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
3284     return X86::COND_NO;
3285   case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
3286   case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
3287     return X86::COND_NP;
3288   case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
3289   case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
3290     return X86::COND_NS;
3291   case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
3292   case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
3293     return X86::COND_O;
3294   case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
3295   case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
3296     return X86::COND_P;
3297   case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
3298   case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
3299     return X86::COND_S;
3300   }
3301 }
3302 
GetCondBranchFromCond(X86::CondCode CC)3303 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
3304   switch (CC) {
3305   default: llvm_unreachable("Illegal condition code!");
3306   case X86::COND_E:  return X86::JE_1;
3307   case X86::COND_NE: return X86::JNE_1;
3308   case X86::COND_L:  return X86::JL_1;
3309   case X86::COND_LE: return X86::JLE_1;
3310   case X86::COND_G:  return X86::JG_1;
3311   case X86::COND_GE: return X86::JGE_1;
3312   case X86::COND_B:  return X86::JB_1;
3313   case X86::COND_BE: return X86::JBE_1;
3314   case X86::COND_A:  return X86::JA_1;
3315   case X86::COND_AE: return X86::JAE_1;
3316   case X86::COND_S:  return X86::JS_1;
3317   case X86::COND_NS: return X86::JNS_1;
3318   case X86::COND_P:  return X86::JP_1;
3319   case X86::COND_NP: return X86::JNP_1;
3320   case X86::COND_O:  return X86::JO_1;
3321   case X86::COND_NO: return X86::JNO_1;
3322   }
3323 }
3324 
3325 /// Return the inverse of the specified condition,
3326 /// e.g. turning COND_E to COND_NE.
GetOppositeBranchCondition(X86::CondCode CC)3327 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
3328   switch (CC) {
3329   default: llvm_unreachable("Illegal condition code!");
3330   case X86::COND_E:  return X86::COND_NE;
3331   case X86::COND_NE: return X86::COND_E;
3332   case X86::COND_L:  return X86::COND_GE;
3333   case X86::COND_LE: return X86::COND_G;
3334   case X86::COND_G:  return X86::COND_LE;
3335   case X86::COND_GE: return X86::COND_L;
3336   case X86::COND_B:  return X86::COND_AE;
3337   case X86::COND_BE: return X86::COND_A;
3338   case X86::COND_A:  return X86::COND_BE;
3339   case X86::COND_AE: return X86::COND_B;
3340   case X86::COND_S:  return X86::COND_NS;
3341   case X86::COND_NS: return X86::COND_S;
3342   case X86::COND_P:  return X86::COND_NP;
3343   case X86::COND_NP: return X86::COND_P;
3344   case X86::COND_O:  return X86::COND_NO;
3345   case X86::COND_NO: return X86::COND_O;
3346   }
3347 }
3348 
3349 /// Assuming the flags are set by MI(a,b), return the condition code if we
3350 /// modify the instructions such that flags are set by MI(b,a).
getSwappedCondition(X86::CondCode CC)3351 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
3352   switch (CC) {
3353   default: return X86::COND_INVALID;
3354   case X86::COND_E:  return X86::COND_E;
3355   case X86::COND_NE: return X86::COND_NE;
3356   case X86::COND_L:  return X86::COND_G;
3357   case X86::COND_LE: return X86::COND_GE;
3358   case X86::COND_G:  return X86::COND_L;
3359   case X86::COND_GE: return X86::COND_LE;
3360   case X86::COND_B:  return X86::COND_A;
3361   case X86::COND_BE: return X86::COND_AE;
3362   case X86::COND_A:  return X86::COND_B;
3363   case X86::COND_AE: return X86::COND_BE;
3364   }
3365 }
3366 
3367 /// Return a set opcode for the given condition and
3368 /// whether it has memory operand.
getSETFromCond(CondCode CC,bool HasMemoryOperand)3369 unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
3370   static const uint16_t Opc[16][2] = {
3371     { X86::SETAr,  X86::SETAm  },
3372     { X86::SETAEr, X86::SETAEm },
3373     { X86::SETBr,  X86::SETBm  },
3374     { X86::SETBEr, X86::SETBEm },
3375     { X86::SETEr,  X86::SETEm  },
3376     { X86::SETGr,  X86::SETGm  },
3377     { X86::SETGEr, X86::SETGEm },
3378     { X86::SETLr,  X86::SETLm  },
3379     { X86::SETLEr, X86::SETLEm },
3380     { X86::SETNEr, X86::SETNEm },
3381     { X86::SETNOr, X86::SETNOm },
3382     { X86::SETNPr, X86::SETNPm },
3383     { X86::SETNSr, X86::SETNSm },
3384     { X86::SETOr,  X86::SETOm  },
3385     { X86::SETPr,  X86::SETPm  },
3386     { X86::SETSr,  X86::SETSm  }
3387   };
3388 
3389   assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
3390   return Opc[CC][HasMemoryOperand ? 1 : 0];
3391 }
3392 
3393 /// Return a cmov opcode for the given condition,
3394 /// register size in bytes, and operand type.
getCMovFromCond(CondCode CC,unsigned RegBytes,bool HasMemoryOperand)3395 unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
3396                               bool HasMemoryOperand) {
3397   static const uint16_t Opc[32][3] = {
3398     { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
3399     { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
3400     { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
3401     { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
3402     { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
3403     { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
3404     { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
3405     { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
3406     { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
3407     { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
3408     { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
3409     { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
3410     { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
3411     { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
3412     { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
3413     { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
3414     { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
3415     { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
3416     { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
3417     { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
3418     { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
3419     { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
3420     { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
3421     { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
3422     { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
3423     { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
3424     { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
3425     { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
3426     { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
3427     { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
3428     { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
3429     { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
3430   };
3431 
3432   assert(CC < 16 && "Can only handle standard cond codes");
3433   unsigned Idx = HasMemoryOperand ? 16+CC : CC;
3434   switch(RegBytes) {
3435   default: llvm_unreachable("Illegal register size!");
3436   case 2: return Opc[Idx][0];
3437   case 4: return Opc[Idx][1];
3438   case 8: return Opc[Idx][2];
3439   }
3440 }
3441 
isUnpredicatedTerminator(const MachineInstr * MI) const3442 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
3443   if (!MI->isTerminator()) return false;
3444 
3445   // Conditional branch is a special case.
3446   if (MI->isBranch() && !MI->isBarrier())
3447     return true;
3448   if (!MI->isPredicable())
3449     return true;
3450   return !isPredicated(MI);
3451 }
3452 
AnalyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const3453 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
3454                                  MachineBasicBlock *&TBB,
3455                                  MachineBasicBlock *&FBB,
3456                                  SmallVectorImpl<MachineOperand> &Cond,
3457                                  bool AllowModify) const {
3458   // Start from the bottom of the block and work up, examining the
3459   // terminator instructions.
3460   MachineBasicBlock::iterator I = MBB.end();
3461   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3462   while (I != MBB.begin()) {
3463     --I;
3464     if (I->isDebugValue())
3465       continue;
3466 
3467     // Working from the bottom, when we see a non-terminator instruction, we're
3468     // done.
3469     if (!isUnpredicatedTerminator(I))
3470       break;
3471 
3472     // A terminator that isn't a branch can't easily be handled by this
3473     // analysis.
3474     if (!I->isBranch())
3475       return true;
3476 
3477     // Handle unconditional branches.
3478     if (I->getOpcode() == X86::JMP_1) {
3479       UnCondBrIter = I;
3480 
3481       if (!AllowModify) {
3482         TBB = I->getOperand(0).getMBB();
3483         continue;
3484       }
3485 
3486       // If the block has any instructions after a JMP, delete them.
3487       while (std::next(I) != MBB.end())
3488         std::next(I)->eraseFromParent();
3489 
3490       Cond.clear();
3491       FBB = nullptr;
3492 
3493       // Delete the JMP if it's equivalent to a fall-through.
3494       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3495         TBB = nullptr;
3496         I->eraseFromParent();
3497         I = MBB.end();
3498         UnCondBrIter = MBB.end();
3499         continue;
3500       }
3501 
3502       // TBB is used to indicate the unconditional destination.
3503       TBB = I->getOperand(0).getMBB();
3504       continue;
3505     }
3506 
3507     // Handle conditional branches.
3508     X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
3509     if (BranchCode == X86::COND_INVALID)
3510       return true;  // Can't handle indirect branch.
3511 
3512     // Working from the bottom, handle the first conditional branch.
3513     if (Cond.empty()) {
3514       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3515       if (AllowModify && UnCondBrIter != MBB.end() &&
3516           MBB.isLayoutSuccessor(TargetBB)) {
3517         // If we can modify the code and it ends in something like:
3518         //
3519         //     jCC L1
3520         //     jmp L2
3521         //   L1:
3522         //     ...
3523         //   L2:
3524         //
3525         // Then we can change this to:
3526         //
3527         //     jnCC L2
3528         //   L1:
3529         //     ...
3530         //   L2:
3531         //
3532         // Which is a bit more efficient.
3533         // We conditionally jump to the fall-through block.
3534         BranchCode = GetOppositeBranchCondition(BranchCode);
3535         unsigned JNCC = GetCondBranchFromCond(BranchCode);
3536         MachineBasicBlock::iterator OldInst = I;
3537 
3538         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
3539           .addMBB(UnCondBrIter->getOperand(0).getMBB());
3540         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3541           .addMBB(TargetBB);
3542 
3543         OldInst->eraseFromParent();
3544         UnCondBrIter->eraseFromParent();
3545 
3546         // Restart the analysis.
3547         UnCondBrIter = MBB.end();
3548         I = MBB.end();
3549         continue;
3550       }
3551 
3552       FBB = TBB;
3553       TBB = I->getOperand(0).getMBB();
3554       Cond.push_back(MachineOperand::CreateImm(BranchCode));
3555       continue;
3556     }
3557 
3558     // Handle subsequent conditional branches. Only handle the case where all
3559     // conditional branches branch to the same destination and their condition
3560     // opcodes fit one of the special multi-branch idioms.
3561     assert(Cond.size() == 1);
3562     assert(TBB);
3563 
3564     // Only handle the case where all conditional branches branch to the same
3565     // destination.
3566     if (TBB != I->getOperand(0).getMBB())
3567       return true;
3568 
3569     // If the conditions are the same, we can leave them alone.
3570     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3571     if (OldBranchCode == BranchCode)
3572       continue;
3573 
3574     // If they differ, see if they fit one of the known patterns. Theoretically,
3575     // we could handle more patterns here, but we shouldn't expect to see them
3576     // if instruction selection has done a reasonable job.
3577     if ((OldBranchCode == X86::COND_NP &&
3578          BranchCode == X86::COND_E) ||
3579         (OldBranchCode == X86::COND_E &&
3580          BranchCode == X86::COND_NP))
3581       BranchCode = X86::COND_NP_OR_E;
3582     else if ((OldBranchCode == X86::COND_P &&
3583               BranchCode == X86::COND_NE) ||
3584              (OldBranchCode == X86::COND_NE &&
3585               BranchCode == X86::COND_P))
3586       BranchCode = X86::COND_NE_OR_P;
3587     else
3588       return true;
3589 
3590     // Update the MachineOperand.
3591     Cond[0].setImm(BranchCode);
3592   }
3593 
3594   return false;
3595 }
3596 
RemoveBranch(MachineBasicBlock & MBB) const3597 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
3598   MachineBasicBlock::iterator I = MBB.end();
3599   unsigned Count = 0;
3600 
3601   while (I != MBB.begin()) {
3602     --I;
3603     if (I->isDebugValue())
3604       continue;
3605     if (I->getOpcode() != X86::JMP_1 &&
3606         getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
3607       break;
3608     // Remove the branch.
3609     I->eraseFromParent();
3610     I = MBB.end();
3611     ++Count;
3612   }
3613 
3614   return Count;
3615 }
3616 
3617 unsigned
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,const SmallVectorImpl<MachineOperand> & Cond,DebugLoc DL) const3618 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
3619                            MachineBasicBlock *FBB,
3620                            const SmallVectorImpl<MachineOperand> &Cond,
3621                            DebugLoc DL) const {
3622   // Shouldn't be a fall through.
3623   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
3624   assert((Cond.size() == 1 || Cond.size() == 0) &&
3625          "X86 branch conditions have one component!");
3626 
3627   if (Cond.empty()) {
3628     // Unconditional branch?
3629     assert(!FBB && "Unconditional branch with multiple successors!");
3630     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3631     return 1;
3632   }
3633 
3634   // Conditional branch.
3635   unsigned Count = 0;
3636   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3637   switch (CC) {
3638   case X86::COND_NP_OR_E:
3639     // Synthesize NP_OR_E with two branches.
3640     BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
3641     ++Count;
3642     BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
3643     ++Count;
3644     break;
3645   case X86::COND_NE_OR_P:
3646     // Synthesize NE_OR_P with two branches.
3647     BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
3648     ++Count;
3649     BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
3650     ++Count;
3651     break;
3652   default: {
3653     unsigned Opc = GetCondBranchFromCond(CC);
3654     BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
3655     ++Count;
3656   }
3657   }
3658   if (FBB) {
3659     // Two-way Conditional branch. Insert the second branch.
3660     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3661     ++Count;
3662   }
3663   return Count;
3664 }
3665 
3666 bool X86InstrInfo::
canInsertSelect(const MachineBasicBlock & MBB,const SmallVectorImpl<MachineOperand> & Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const3667 canInsertSelect(const MachineBasicBlock &MBB,
3668                 const SmallVectorImpl<MachineOperand> &Cond,
3669                 unsigned TrueReg, unsigned FalseReg,
3670                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
3671   // Not all subtargets have cmov instructions.
3672   if (!Subtarget.hasCMov())
3673     return false;
3674   if (Cond.size() != 1)
3675     return false;
3676   // We cannot do the composite conditions, at least not in SSA form.
3677   if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
3678     return false;
3679 
3680   // Check register classes.
3681   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3682   const TargetRegisterClass *RC =
3683     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3684   if (!RC)
3685     return false;
3686 
3687   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3688   if (X86::GR16RegClass.hasSubClassEq(RC) ||
3689       X86::GR32RegClass.hasSubClassEq(RC) ||
3690       X86::GR64RegClass.hasSubClassEq(RC)) {
3691     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3692     // Bridge. Probably Ivy Bridge as well.
3693     CondCycles = 2;
3694     TrueCycles = 2;
3695     FalseCycles = 2;
3696     return true;
3697   }
3698 
3699   // Can't do vectors.
3700   return false;
3701 }
3702 
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DstReg,const SmallVectorImpl<MachineOperand> & Cond,unsigned TrueReg,unsigned FalseReg) const3703 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3704                                 MachineBasicBlock::iterator I, DebugLoc DL,
3705                                 unsigned DstReg,
3706                                 const SmallVectorImpl<MachineOperand> &Cond,
3707                                 unsigned TrueReg, unsigned FalseReg) const {
3708    MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3709    assert(Cond.size() == 1 && "Invalid Cond array");
3710    unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
3711                                   MRI.getRegClass(DstReg)->getSize(),
3712                                   false/*HasMemoryOperand*/);
3713    BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
3714 }
3715 
3716 /// Test if the given register is a physical h register.
isHReg(unsigned Reg)3717 static bool isHReg(unsigned Reg) {
3718   return X86::GR8_ABCD_HRegClass.contains(Reg);
3719 }
3720 
3721 // Try and copy between VR128/VR64 and GR64 registers.
CopyToFromAsymmetricReg(unsigned DestReg,unsigned SrcReg,const X86Subtarget & Subtarget)3722 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3723                                         const X86Subtarget &Subtarget) {
3724 
3725   // SrcReg(VR128) -> DestReg(GR64)
3726   // SrcReg(VR64)  -> DestReg(GR64)
3727   // SrcReg(GR64)  -> DestReg(VR128)
3728   // SrcReg(GR64)  -> DestReg(VR64)
3729 
3730   bool HasAVX = Subtarget.hasAVX();
3731   bool HasAVX512 = Subtarget.hasAVX512();
3732   if (X86::GR64RegClass.contains(DestReg)) {
3733     if (X86::VR128XRegClass.contains(SrcReg))
3734       // Copy from a VR128 register to a GR64 register.
3735       return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
3736                                                X86::MOVPQIto64rr);
3737     if (X86::VR64RegClass.contains(SrcReg))
3738       // Copy from a VR64 register to a GR64 register.
3739       return X86::MOVSDto64rr;
3740   } else if (X86::GR64RegClass.contains(SrcReg)) {
3741     // Copy from a GR64 register to a VR128 register.
3742     if (X86::VR128XRegClass.contains(DestReg))
3743       return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
3744                                                X86::MOV64toPQIrr);
3745     // Copy from a GR64 register to a VR64 register.
3746     if (X86::VR64RegClass.contains(DestReg))
3747       return X86::MOV64toSDrr;
3748   }
3749 
3750   // SrcReg(FR32) -> DestReg(GR32)
3751   // SrcReg(GR32) -> DestReg(FR32)
3752 
3753   if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
3754     // Copy from a FR32 register to a GR32 register.
3755     return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
3756 
3757   if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
3758     // Copy from a GR32 register to a FR32 register.
3759     return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
3760   return 0;
3761 }
3762 
MaskRegClassContains(unsigned Reg)3763 inline static bool MaskRegClassContains(unsigned Reg) {
3764   return X86::VK8RegClass.contains(Reg) ||
3765          X86::VK16RegClass.contains(Reg) ||
3766          X86::VK32RegClass.contains(Reg) ||
3767          X86::VK64RegClass.contains(Reg) ||
3768          X86::VK1RegClass.contains(Reg);
3769 }
3770 static
copyPhysRegOpcode_AVX512(unsigned & DestReg,unsigned & SrcReg)3771 unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
3772   if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
3773       X86::VR256XRegClass.contains(DestReg, SrcReg) ||
3774       X86::VR512RegClass.contains(DestReg, SrcReg)) {
3775      DestReg = get512BitSuperRegister(DestReg);
3776      SrcReg = get512BitSuperRegister(SrcReg);
3777      return X86::VMOVAPSZrr;
3778   }
3779   if (MaskRegClassContains(DestReg) &&
3780       MaskRegClassContains(SrcReg))
3781     return X86::KMOVWkk;
3782   if (MaskRegClassContains(DestReg) &&
3783       (X86::GR32RegClass.contains(SrcReg) ||
3784        X86::GR16RegClass.contains(SrcReg) ||
3785        X86::GR8RegClass.contains(SrcReg))) {
3786     SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
3787     return X86::KMOVWkr;
3788   }
3789   if ((X86::GR32RegClass.contains(DestReg) ||
3790        X86::GR16RegClass.contains(DestReg) ||
3791        X86::GR8RegClass.contains(DestReg)) &&
3792        MaskRegClassContains(SrcReg)) {
3793     DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
3794     return X86::KMOVWrk;
3795   }
3796   return 0;
3797 }
3798 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const3799 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3800                                MachineBasicBlock::iterator MI, DebugLoc DL,
3801                                unsigned DestReg, unsigned SrcReg,
3802                                bool KillSrc) const {
3803   // First deal with the normal symmetric copies.
3804   bool HasAVX = Subtarget.hasAVX();
3805   bool HasAVX512 = Subtarget.hasAVX512();
3806   unsigned Opc = 0;
3807   if (X86::GR64RegClass.contains(DestReg, SrcReg))
3808     Opc = X86::MOV64rr;
3809   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3810     Opc = X86::MOV32rr;
3811   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3812     Opc = X86::MOV16rr;
3813   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3814     // Copying to or from a physical H register on x86-64 requires a NOREX
3815     // move.  Otherwise use a normal move.
3816     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3817         Subtarget.is64Bit()) {
3818       Opc = X86::MOV8rr_NOREX;
3819       // Both operands must be encodable without an REX prefix.
3820       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3821              "8-bit H register can not be copied outside GR8_NOREX");
3822     } else
3823       Opc = X86::MOV8rr;
3824   }
3825   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3826     Opc = X86::MMX_MOVQ64rr;
3827   else if (HasAVX512)
3828     Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
3829   else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3830     Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3831   else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3832     Opc = X86::VMOVAPSYrr;
3833   if (!Opc)
3834     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3835 
3836   if (Opc) {
3837     BuildMI(MBB, MI, DL, get(Opc), DestReg)
3838       .addReg(SrcReg, getKillRegState(KillSrc));
3839     return;
3840   }
3841 
3842   // Moving EFLAGS to / from another register requires a push and a pop.
3843   // Notice that we have to adjust the stack if we don't want to clobber the
3844   // first frame index. See X86FrameLowering.cpp - clobbersTheStack.
3845   if (SrcReg == X86::EFLAGS) {
3846     if (X86::GR64RegClass.contains(DestReg)) {
3847       BuildMI(MBB, MI, DL, get(X86::PUSHF64));
3848       BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
3849       return;
3850     }
3851     if (X86::GR32RegClass.contains(DestReg)) {
3852       BuildMI(MBB, MI, DL, get(X86::PUSHF32));
3853       BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
3854       return;
3855     }
3856   }
3857   if (DestReg == X86::EFLAGS) {
3858     if (X86::GR64RegClass.contains(SrcReg)) {
3859       BuildMI(MBB, MI, DL, get(X86::PUSH64r))
3860         .addReg(SrcReg, getKillRegState(KillSrc));
3861       BuildMI(MBB, MI, DL, get(X86::POPF64));
3862       return;
3863     }
3864     if (X86::GR32RegClass.contains(SrcReg)) {
3865       BuildMI(MBB, MI, DL, get(X86::PUSH32r))
3866         .addReg(SrcReg, getKillRegState(KillSrc));
3867       BuildMI(MBB, MI, DL, get(X86::POPF32));
3868       return;
3869     }
3870   }
3871 
3872   DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
3873                << " to " << RI.getName(DestReg) << '\n');
3874   llvm_unreachable("Cannot emit physreg copy instruction");
3875 }
3876 
getLoadStoreRegOpcode(unsigned Reg,const TargetRegisterClass * RC,bool isStackAligned,const X86Subtarget & STI,bool load)3877 static unsigned getLoadStoreRegOpcode(unsigned Reg,
3878                                       const TargetRegisterClass *RC,
3879                                       bool isStackAligned,
3880                                       const X86Subtarget &STI,
3881                                       bool load) {
3882   if (STI.hasAVX512()) {
3883     if (X86::VK8RegClass.hasSubClassEq(RC)  ||
3884       X86::VK16RegClass.hasSubClassEq(RC))
3885       return load ? X86::KMOVWkm : X86::KMOVWmk;
3886     if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
3887       return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
3888     if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
3889       return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
3890     if (X86::VR512RegClass.hasSubClassEq(RC))
3891       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3892   }
3893 
3894   bool HasAVX = STI.hasAVX();
3895   switch (RC->getSize()) {
3896   default:
3897     llvm_unreachable("Unknown spill size");
3898   case 1:
3899     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3900     if (STI.is64Bit())
3901       // Copying to or from a physical H register on x86-64 requires a NOREX
3902       // move.  Otherwise use a normal move.
3903       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3904         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3905     return load ? X86::MOV8rm : X86::MOV8mr;
3906   case 2:
3907     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3908     return load ? X86::MOV16rm : X86::MOV16mr;
3909   case 4:
3910     if (X86::GR32RegClass.hasSubClassEq(RC))
3911       return load ? X86::MOV32rm : X86::MOV32mr;
3912     if (X86::FR32RegClass.hasSubClassEq(RC))
3913       return load ?
3914         (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3915         (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
3916     if (X86::RFP32RegClass.hasSubClassEq(RC))
3917       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3918     llvm_unreachable("Unknown 4-byte regclass");
3919   case 8:
3920     if (X86::GR64RegClass.hasSubClassEq(RC))
3921       return load ? X86::MOV64rm : X86::MOV64mr;
3922     if (X86::FR64RegClass.hasSubClassEq(RC))
3923       return load ?
3924         (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
3925         (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
3926     if (X86::VR64RegClass.hasSubClassEq(RC))
3927       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3928     if (X86::RFP64RegClass.hasSubClassEq(RC))
3929       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3930     llvm_unreachable("Unknown 8-byte regclass");
3931   case 10:
3932     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3933     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3934   case 16: {
3935     assert((X86::VR128RegClass.hasSubClassEq(RC) ||
3936             X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
3937     // If stack is realigned we can use aligned stores.
3938     if (isStackAligned)
3939       return load ?
3940         (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
3941         (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
3942     else
3943       return load ?
3944         (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
3945         (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
3946   }
3947   case 32:
3948     assert((X86::VR256RegClass.hasSubClassEq(RC) ||
3949             X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
3950     // If stack is realigned we can use aligned stores.
3951     if (isStackAligned)
3952       return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
3953     else
3954       return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
3955   case 64:
3956     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3957     if (isStackAligned)
3958       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3959     else
3960       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3961   }
3962 }
3963 
getStoreRegOpcode(unsigned SrcReg,const TargetRegisterClass * RC,bool isStackAligned,const X86Subtarget & STI)3964 static unsigned getStoreRegOpcode(unsigned SrcReg,
3965                                   const TargetRegisterClass *RC,
3966                                   bool isStackAligned,
3967                                   const X86Subtarget &STI) {
3968   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3969 }
3970 
3971 
getLoadRegOpcode(unsigned DestReg,const TargetRegisterClass * RC,bool isStackAligned,const X86Subtarget & STI)3972 static unsigned getLoadRegOpcode(unsigned DestReg,
3973                                  const TargetRegisterClass *RC,
3974                                  bool isStackAligned,
3975                                  const X86Subtarget &STI) {
3976   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3977 }
3978 
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const3979 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3980                                        MachineBasicBlock::iterator MI,
3981                                        unsigned SrcReg, bool isKill, int FrameIdx,
3982                                        const TargetRegisterClass *RC,
3983                                        const TargetRegisterInfo *TRI) const {
3984   const MachineFunction &MF = *MBB.getParent();
3985   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
3986          "Stack slot too small for store");
3987   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
3988   bool isAligned =
3989       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3990       RI.canRealignStack(MF);
3991   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3992   DebugLoc DL = MBB.findDebugLoc(MI);
3993   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
3994     .addReg(SrcReg, getKillRegState(isKill));
3995 }
3996 
storeRegToAddr(MachineFunction & MF,unsigned SrcReg,bool isKill,SmallVectorImpl<MachineOperand> & Addr,const TargetRegisterClass * RC,MachineInstr::mmo_iterator MMOBegin,MachineInstr::mmo_iterator MMOEnd,SmallVectorImpl<MachineInstr * > & NewMIs) const3997 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
3998                                   bool isKill,
3999                                   SmallVectorImpl<MachineOperand> &Addr,
4000                                   const TargetRegisterClass *RC,
4001                                   MachineInstr::mmo_iterator MMOBegin,
4002                                   MachineInstr::mmo_iterator MMOEnd,
4003                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
4004   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4005   bool isAligned = MMOBegin != MMOEnd &&
4006                    (*MMOBegin)->getAlignment() >= Alignment;
4007   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
4008   DebugLoc DL;
4009   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
4010   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
4011     MIB.addOperand(Addr[i]);
4012   MIB.addReg(SrcReg, getKillRegState(isKill));
4013   (*MIB).setMemRefs(MMOBegin, MMOEnd);
4014   NewMIs.push_back(MIB);
4015 }
4016 
4017 
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const4018 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
4019                                         MachineBasicBlock::iterator MI,
4020                                         unsigned DestReg, int FrameIdx,
4021                                         const TargetRegisterClass *RC,
4022                                         const TargetRegisterInfo *TRI) const {
4023   const MachineFunction &MF = *MBB.getParent();
4024   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4025   bool isAligned =
4026       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
4027       RI.canRealignStack(MF);
4028   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4029   DebugLoc DL = MBB.findDebugLoc(MI);
4030   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
4031 }
4032 
loadRegFromAddr(MachineFunction & MF,unsigned DestReg,SmallVectorImpl<MachineOperand> & Addr,const TargetRegisterClass * RC,MachineInstr::mmo_iterator MMOBegin,MachineInstr::mmo_iterator MMOEnd,SmallVectorImpl<MachineInstr * > & NewMIs) const4033 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
4034                                  SmallVectorImpl<MachineOperand> &Addr,
4035                                  const TargetRegisterClass *RC,
4036                                  MachineInstr::mmo_iterator MMOBegin,
4037                                  MachineInstr::mmo_iterator MMOEnd,
4038                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
4039   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4040   bool isAligned = MMOBegin != MMOEnd &&
4041                    (*MMOBegin)->getAlignment() >= Alignment;
4042   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4043   DebugLoc DL;
4044   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
4045   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
4046     MIB.addOperand(Addr[i]);
4047   (*MIB).setMemRefs(MMOBegin, MMOEnd);
4048   NewMIs.push_back(MIB);
4049 }
4050 
4051 bool X86InstrInfo::
analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const4052 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
4053                int &CmpMask, int &CmpValue) const {
4054   switch (MI->getOpcode()) {
4055   default: break;
4056   case X86::CMP64ri32:
4057   case X86::CMP64ri8:
4058   case X86::CMP32ri:
4059   case X86::CMP32ri8:
4060   case X86::CMP16ri:
4061   case X86::CMP16ri8:
4062   case X86::CMP8ri:
4063     SrcReg = MI->getOperand(0).getReg();
4064     SrcReg2 = 0;
4065     CmpMask = ~0;
4066     CmpValue = MI->getOperand(1).getImm();
4067     return true;
4068   // A SUB can be used to perform comparison.
4069   case X86::SUB64rm:
4070   case X86::SUB32rm:
4071   case X86::SUB16rm:
4072   case X86::SUB8rm:
4073     SrcReg = MI->getOperand(1).getReg();
4074     SrcReg2 = 0;
4075     CmpMask = ~0;
4076     CmpValue = 0;
4077     return true;
4078   case X86::SUB64rr:
4079   case X86::SUB32rr:
4080   case X86::SUB16rr:
4081   case X86::SUB8rr:
4082     SrcReg = MI->getOperand(1).getReg();
4083     SrcReg2 = MI->getOperand(2).getReg();
4084     CmpMask = ~0;
4085     CmpValue = 0;
4086     return true;
4087   case X86::SUB64ri32:
4088   case X86::SUB64ri8:
4089   case X86::SUB32ri:
4090   case X86::SUB32ri8:
4091   case X86::SUB16ri:
4092   case X86::SUB16ri8:
4093   case X86::SUB8ri:
4094     SrcReg = MI->getOperand(1).getReg();
4095     SrcReg2 = 0;
4096     CmpMask = ~0;
4097     CmpValue = MI->getOperand(2).getImm();
4098     return true;
4099   case X86::CMP64rr:
4100   case X86::CMP32rr:
4101   case X86::CMP16rr:
4102   case X86::CMP8rr:
4103     SrcReg = MI->getOperand(0).getReg();
4104     SrcReg2 = MI->getOperand(1).getReg();
4105     CmpMask = ~0;
4106     CmpValue = 0;
4107     return true;
4108   case X86::TEST8rr:
4109   case X86::TEST16rr:
4110   case X86::TEST32rr:
4111   case X86::TEST64rr:
4112     SrcReg = MI->getOperand(0).getReg();
4113     if (MI->getOperand(1).getReg() != SrcReg) return false;
4114     // Compare against zero.
4115     SrcReg2 = 0;
4116     CmpMask = ~0;
4117     CmpValue = 0;
4118     return true;
4119   }
4120   return false;
4121 }
4122 
4123 /// Check whether the first instruction, whose only
4124 /// purpose is to update flags, can be made redundant.
4125 /// CMPrr can be made redundant by SUBrr if the operands are the same.
4126 /// This function can be extended later on.
4127 /// SrcReg, SrcRegs: register operands for FlagI.
4128 /// ImmValue: immediate for FlagI if it takes an immediate.
isRedundantFlagInstr(MachineInstr * FlagI,unsigned SrcReg,unsigned SrcReg2,int ImmValue,MachineInstr * OI)4129 inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
4130                                         unsigned SrcReg2, int ImmValue,
4131                                         MachineInstr *OI) {
4132   if (((FlagI->getOpcode() == X86::CMP64rr &&
4133         OI->getOpcode() == X86::SUB64rr) ||
4134        (FlagI->getOpcode() == X86::CMP32rr &&
4135         OI->getOpcode() == X86::SUB32rr)||
4136        (FlagI->getOpcode() == X86::CMP16rr &&
4137         OI->getOpcode() == X86::SUB16rr)||
4138        (FlagI->getOpcode() == X86::CMP8rr &&
4139         OI->getOpcode() == X86::SUB8rr)) &&
4140       ((OI->getOperand(1).getReg() == SrcReg &&
4141         OI->getOperand(2).getReg() == SrcReg2) ||
4142        (OI->getOperand(1).getReg() == SrcReg2 &&
4143         OI->getOperand(2).getReg() == SrcReg)))
4144     return true;
4145 
4146   if (((FlagI->getOpcode() == X86::CMP64ri32 &&
4147         OI->getOpcode() == X86::SUB64ri32) ||
4148        (FlagI->getOpcode() == X86::CMP64ri8 &&
4149         OI->getOpcode() == X86::SUB64ri8) ||
4150        (FlagI->getOpcode() == X86::CMP32ri &&
4151         OI->getOpcode() == X86::SUB32ri) ||
4152        (FlagI->getOpcode() == X86::CMP32ri8 &&
4153         OI->getOpcode() == X86::SUB32ri8) ||
4154        (FlagI->getOpcode() == X86::CMP16ri &&
4155         OI->getOpcode() == X86::SUB16ri) ||
4156        (FlagI->getOpcode() == X86::CMP16ri8 &&
4157         OI->getOpcode() == X86::SUB16ri8) ||
4158        (FlagI->getOpcode() == X86::CMP8ri &&
4159         OI->getOpcode() == X86::SUB8ri)) &&
4160       OI->getOperand(1).getReg() == SrcReg &&
4161       OI->getOperand(2).getImm() == ImmValue)
4162     return true;
4163   return false;
4164 }
4165 
4166 /// Check whether the definition can be converted
4167 /// to remove a comparison against zero.
isDefConvertible(MachineInstr * MI)4168 inline static bool isDefConvertible(MachineInstr *MI) {
4169   switch (MI->getOpcode()) {
4170   default: return false;
4171 
4172   // The shift instructions only modify ZF if their shift count is non-zero.
4173   // N.B.: The processor truncates the shift count depending on the encoding.
4174   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
4175   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
4176      return getTruncatedShiftCount(MI, 2) != 0;
4177 
4178   // Some left shift instructions can be turned into LEA instructions but only
4179   // if their flags aren't used. Avoid transforming such instructions.
4180   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
4181     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4182     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4183     return ShAmt != 0;
4184   }
4185 
4186   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4187   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4188      return getTruncatedShiftCount(MI, 3) != 0;
4189 
4190   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4191   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
4192   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
4193   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
4194   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
4195   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
4196   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4197   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
4198   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
4199   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
4200   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
4201   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
4202   case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4203   case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
4204   case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
4205   case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
4206   case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
4207   case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4208   case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
4209   case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
4210   case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
4211   case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
4212   case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
4213   case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
4214   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
4215   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
4216   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
4217   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
4218   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
4219   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
4220   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
4221   case X86::ADC32ri:   case X86::ADC32ri8:
4222   case X86::ADC32rr:   case X86::ADC64ri32:
4223   case X86::ADC64ri8:  case X86::ADC64rr:
4224   case X86::SBB32ri:   case X86::SBB32ri8:
4225   case X86::SBB32rr:   case X86::SBB64ri32:
4226   case X86::SBB64ri8:  case X86::SBB64rr:
4227   case X86::ANDN32rr:  case X86::ANDN32rm:
4228   case X86::ANDN64rr:  case X86::ANDN64rm:
4229   case X86::BEXTR32rr: case X86::BEXTR64rr:
4230   case X86::BEXTR32rm: case X86::BEXTR64rm:
4231   case X86::BLSI32rr:  case X86::BLSI32rm:
4232   case X86::BLSI64rr:  case X86::BLSI64rm:
4233   case X86::BLSMSK32rr:case X86::BLSMSK32rm:
4234   case X86::BLSMSK64rr:case X86::BLSMSK64rm:
4235   case X86::BLSR32rr:  case X86::BLSR32rm:
4236   case X86::BLSR64rr:  case X86::BLSR64rm:
4237   case X86::BZHI32rr:  case X86::BZHI32rm:
4238   case X86::BZHI64rr:  case X86::BZHI64rm:
4239   case X86::LZCNT16rr: case X86::LZCNT16rm:
4240   case X86::LZCNT32rr: case X86::LZCNT32rm:
4241   case X86::LZCNT64rr: case X86::LZCNT64rm:
4242   case X86::POPCNT16rr:case X86::POPCNT16rm:
4243   case X86::POPCNT32rr:case X86::POPCNT32rm:
4244   case X86::POPCNT64rr:case X86::POPCNT64rm:
4245   case X86::TZCNT16rr: case X86::TZCNT16rm:
4246   case X86::TZCNT32rr: case X86::TZCNT32rm:
4247   case X86::TZCNT64rr: case X86::TZCNT64rm:
4248     return true;
4249   }
4250 }
4251 
4252 /// Check whether the use can be converted to remove a comparison against zero.
isUseDefConvertible(MachineInstr * MI)4253 static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
4254   switch (MI->getOpcode()) {
4255   default: return X86::COND_INVALID;
4256   case X86::LZCNT16rr: case X86::LZCNT16rm:
4257   case X86::LZCNT32rr: case X86::LZCNT32rm:
4258   case X86::LZCNT64rr: case X86::LZCNT64rm:
4259     return X86::COND_B;
4260   case X86::POPCNT16rr:case X86::POPCNT16rm:
4261   case X86::POPCNT32rr:case X86::POPCNT32rm:
4262   case X86::POPCNT64rr:case X86::POPCNT64rm:
4263     return X86::COND_E;
4264   case X86::TZCNT16rr: case X86::TZCNT16rm:
4265   case X86::TZCNT32rr: case X86::TZCNT32rm:
4266   case X86::TZCNT64rr: case X86::TZCNT64rm:
4267     return X86::COND_B;
4268   }
4269 }
4270 
4271 /// Check if there exists an earlier instruction that
4272 /// operates on the same source operands and sets flags in the same way as
4273 /// Compare; remove Compare if possible.
4274 bool X86InstrInfo::
optimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const4275 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
4276                      int CmpMask, int CmpValue,
4277                      const MachineRegisterInfo *MRI) const {
4278   // Check whether we can replace SUB with CMP.
4279   unsigned NewOpcode = 0;
4280   switch (CmpInstr->getOpcode()) {
4281   default: break;
4282   case X86::SUB64ri32:
4283   case X86::SUB64ri8:
4284   case X86::SUB32ri:
4285   case X86::SUB32ri8:
4286   case X86::SUB16ri:
4287   case X86::SUB16ri8:
4288   case X86::SUB8ri:
4289   case X86::SUB64rm:
4290   case X86::SUB32rm:
4291   case X86::SUB16rm:
4292   case X86::SUB8rm:
4293   case X86::SUB64rr:
4294   case X86::SUB32rr:
4295   case X86::SUB16rr:
4296   case X86::SUB8rr: {
4297     if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
4298       return false;
4299     // There is no use of the destination register, we can replace SUB with CMP.
4300     switch (CmpInstr->getOpcode()) {
4301     default: llvm_unreachable("Unreachable!");
4302     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
4303     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
4304     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
4305     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
4306     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
4307     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
4308     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
4309     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
4310     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4311     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
4312     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
4313     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
4314     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
4315     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
4316     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
4317     }
4318     CmpInstr->setDesc(get(NewOpcode));
4319     CmpInstr->RemoveOperand(0);
4320     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4321     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4322         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4323       return false;
4324   }
4325   }
4326 
4327   // Get the unique definition of SrcReg.
4328   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
4329   if (!MI) return false;
4330 
4331   // CmpInstr is the first instruction of the BB.
4332   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
4333 
4334   // If we are comparing against zero, check whether we can use MI to update
4335   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
4336   bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
4337   if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
4338     return false;
4339 
4340   // If we have a use of the source register between the def and our compare
4341   // instruction we can eliminate the compare iff the use sets EFLAGS in the
4342   // right way.
4343   bool ShouldUpdateCC = false;
4344   X86::CondCode NewCC = X86::COND_INVALID;
4345   if (IsCmpZero && !isDefConvertible(MI)) {
4346     // Scan forward from the use until we hit the use we're looking for or the
4347     // compare instruction.
4348     for (MachineBasicBlock::iterator J = MI;; ++J) {
4349       // Do we have a convertible instruction?
4350       NewCC = isUseDefConvertible(J);
4351       if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
4352           J->getOperand(1).getReg() == SrcReg) {
4353         assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
4354         ShouldUpdateCC = true; // Update CC later on.
4355         // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
4356         // with the new def.
4357         MI = Def = J;
4358         break;
4359       }
4360 
4361       if (J == I)
4362         return false;
4363     }
4364   }
4365 
4366   // We are searching for an earlier instruction that can make CmpInstr
4367   // redundant and that instruction will be saved in Sub.
4368   MachineInstr *Sub = nullptr;
4369   const TargetRegisterInfo *TRI = &getRegisterInfo();
4370 
4371   // We iterate backward, starting from the instruction before CmpInstr and
4372   // stop when reaching the definition of a source register or done with the BB.
4373   // RI points to the instruction before CmpInstr.
4374   // If the definition is in this basic block, RE points to the definition;
4375   // otherwise, RE is the rend of the basic block.
4376   MachineBasicBlock::reverse_iterator
4377       RI = MachineBasicBlock::reverse_iterator(I),
4378       RE = CmpInstr->getParent() == MI->getParent() ?
4379            MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
4380            CmpInstr->getParent()->rend();
4381   MachineInstr *Movr0Inst = nullptr;
4382   for (; RI != RE; ++RI) {
4383     MachineInstr *Instr = &*RI;
4384     // Check whether CmpInstr can be made redundant by the current instruction.
4385     if (!IsCmpZero &&
4386         isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
4387       Sub = Instr;
4388       break;
4389     }
4390 
4391     if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
4392         Instr->readsRegister(X86::EFLAGS, TRI)) {
4393       // This instruction modifies or uses EFLAGS.
4394 
4395       // MOV32r0 etc. are implemented with xor which clobbers condition code.
4396       // They are safe to move up, if the definition to EFLAGS is dead and
4397       // earlier instructions do not read or write EFLAGS.
4398       if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
4399           Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
4400         Movr0Inst = Instr;
4401         continue;
4402       }
4403 
4404       // We can't remove CmpInstr.
4405       return false;
4406     }
4407   }
4408 
4409   // Return false if no candidates exist.
4410   if (!IsCmpZero && !Sub)
4411     return false;
4412 
4413   bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
4414                     Sub->getOperand(2).getReg() == SrcReg);
4415 
4416   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4417   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4418   // If we are done with the basic block, we need to check whether EFLAGS is
4419   // live-out.
4420   bool IsSafe = false;
4421   SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
4422   MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
4423   for (++I; I != E; ++I) {
4424     const MachineInstr &Instr = *I;
4425     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4426     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4427     // We should check the usage if this instruction uses and updates EFLAGS.
4428     if (!UseEFLAGS && ModifyEFLAGS) {
4429       // It is safe to remove CmpInstr if EFLAGS is updated again.
4430       IsSafe = true;
4431       break;
4432     }
4433     if (!UseEFLAGS && !ModifyEFLAGS)
4434       continue;
4435 
4436     // EFLAGS is used by this instruction.
4437     X86::CondCode OldCC = X86::COND_INVALID;
4438     bool OpcIsSET = false;
4439     if (IsCmpZero || IsSwapped) {
4440       // We decode the condition code from opcode.
4441       if (Instr.isBranch())
4442         OldCC = getCondFromBranchOpc(Instr.getOpcode());
4443       else {
4444         OldCC = getCondFromSETOpc(Instr.getOpcode());
4445         if (OldCC != X86::COND_INVALID)
4446           OpcIsSET = true;
4447         else
4448           OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
4449       }
4450       if (OldCC == X86::COND_INVALID) return false;
4451     }
4452     if (IsCmpZero) {
4453       switch (OldCC) {
4454       default: break;
4455       case X86::COND_A: case X86::COND_AE:
4456       case X86::COND_B: case X86::COND_BE:
4457       case X86::COND_G: case X86::COND_GE:
4458       case X86::COND_L: case X86::COND_LE:
4459       case X86::COND_O: case X86::COND_NO:
4460         // CF and OF are used, we can't perform this optimization.
4461         return false;
4462       }
4463 
4464       // If we're updating the condition code check if we have to reverse the
4465       // condition.
4466       if (ShouldUpdateCC)
4467         switch (OldCC) {
4468         default:
4469           return false;
4470         case X86::COND_E:
4471           break;
4472         case X86::COND_NE:
4473           NewCC = GetOppositeBranchCondition(NewCC);
4474           break;
4475         }
4476     } else if (IsSwapped) {
4477       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4478       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4479       // We swap the condition code and synthesize the new opcode.
4480       NewCC = getSwappedCondition(OldCC);
4481       if (NewCC == X86::COND_INVALID) return false;
4482     }
4483 
4484     if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
4485       // Synthesize the new opcode.
4486       bool HasMemoryOperand = Instr.hasOneMemOperand();
4487       unsigned NewOpc;
4488       if (Instr.isBranch())
4489         NewOpc = GetCondBranchFromCond(NewCC);
4490       else if(OpcIsSET)
4491         NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
4492       else {
4493         unsigned DstReg = Instr.getOperand(0).getReg();
4494         NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
4495                                  HasMemoryOperand);
4496       }
4497 
4498       // Push the MachineInstr to OpsToUpdate.
4499       // If it is safe to remove CmpInstr, the condition code of these
4500       // instructions will be modified.
4501       OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
4502     }
4503     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4504       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4505       IsSafe = true;
4506       break;
4507     }
4508   }
4509 
4510   // If EFLAGS is not killed nor re-defined, we should check whether it is
4511   // live-out. If it is live-out, do not optimize.
4512   if ((IsCmpZero || IsSwapped) && !IsSafe) {
4513     MachineBasicBlock *MBB = CmpInstr->getParent();
4514     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
4515              SE = MBB->succ_end(); SI != SE; ++SI)
4516       if ((*SI)->isLiveIn(X86::EFLAGS))
4517         return false;
4518   }
4519 
4520   // The instruction to be updated is either Sub or MI.
4521   Sub = IsCmpZero ? MI : Sub;
4522   // Move Movr0Inst to the appropriate place before Sub.
4523   if (Movr0Inst) {
4524     // Look backwards until we find a def that doesn't use the current EFLAGS.
4525     Def = Sub;
4526     MachineBasicBlock::reverse_iterator
4527       InsertI = MachineBasicBlock::reverse_iterator(++Def),
4528                 InsertE = Sub->getParent()->rend();
4529     for (; InsertI != InsertE; ++InsertI) {
4530       MachineInstr *Instr = &*InsertI;
4531       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4532           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4533         Sub->getParent()->remove(Movr0Inst);
4534         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4535                                    Movr0Inst);
4536         break;
4537       }
4538     }
4539     if (InsertI == InsertE)
4540       return false;
4541   }
4542 
4543   // Make sure Sub instruction defines EFLAGS and mark the def live.
4544   unsigned i = 0, e = Sub->getNumOperands();
4545   for (; i != e; ++i) {
4546     MachineOperand &MO = Sub->getOperand(i);
4547     if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
4548       MO.setIsDead(false);
4549       break;
4550     }
4551   }
4552   assert(i != e && "Unable to locate a def EFLAGS operand");
4553 
4554   CmpInstr->eraseFromParent();
4555 
4556   // Modify the condition code of instructions in OpsToUpdate.
4557   for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
4558     OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
4559   return true;
4560 }
4561 
4562 /// Try to remove the load by folding it to a register
4563 /// operand at the use. We fold the load instructions if load defines a virtual
4564 /// register, the virtual register is used once in the same BB, and the
4565 /// instructions in-between do not load or store, and have no side effects.
optimizeLoadInstr(MachineInstr * MI,const MachineRegisterInfo * MRI,unsigned & FoldAsLoadDefReg,MachineInstr * & DefMI) const4566 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
4567                                               const MachineRegisterInfo *MRI,
4568                                               unsigned &FoldAsLoadDefReg,
4569                                               MachineInstr *&DefMI) const {
4570   if (FoldAsLoadDefReg == 0)
4571     return nullptr;
4572   // To be conservative, if there exists another load, clear the load candidate.
4573   if (MI->mayLoad()) {
4574     FoldAsLoadDefReg = 0;
4575     return nullptr;
4576   }
4577 
4578   // Check whether we can move DefMI here.
4579   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4580   assert(DefMI);
4581   bool SawStore = false;
4582   if (!DefMI->isSafeToMove(this, nullptr, SawStore))
4583     return nullptr;
4584 
4585   // Collect information about virtual register operands of MI.
4586   unsigned SrcOperandId = 0;
4587   bool FoundSrcOperand = false;
4588   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
4589     MachineOperand &MO = MI->getOperand(i);
4590     if (!MO.isReg())
4591       continue;
4592     unsigned Reg = MO.getReg();
4593     if (Reg != FoldAsLoadDefReg)
4594       continue;
4595     // Do not fold if we have a subreg use or a def or multiple uses.
4596     if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
4597       return nullptr;
4598 
4599     SrcOperandId = i;
4600     FoundSrcOperand = true;
4601   }
4602   if (!FoundSrcOperand)
4603     return nullptr;
4604 
4605   // Check whether we can fold the def into SrcOperandId.
4606   MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI);
4607   if (FoldMI) {
4608     FoldAsLoadDefReg = 0;
4609     return FoldMI;
4610   }
4611 
4612   return nullptr;
4613 }
4614 
4615 /// Expand a single-def pseudo instruction to a two-addr
4616 /// instruction with two undef reads of the register being defined.
4617 /// This is used for mapping:
4618 ///   %xmm4 = V_SET0
4619 /// to:
4620 ///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
4621 ///
Expand2AddrUndef(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)4622 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4623                              const MCInstrDesc &Desc) {
4624   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4625   unsigned Reg = MIB->getOperand(0).getReg();
4626   MIB->setDesc(Desc);
4627 
4628   // MachineInstr::addOperand() will insert explicit operands before any
4629   // implicit operands.
4630   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4631   // But we don't trust that.
4632   assert(MIB->getOperand(1).getReg() == Reg &&
4633          MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
4634   return true;
4635 }
4636 
4637 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4638 // code sequence is needed for other targets.
expandLoadStackGuard(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4639 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4640                                  const TargetInstrInfo &TII) {
4641   MachineBasicBlock &MBB = *MIB->getParent();
4642   DebugLoc DL = MIB->getDebugLoc();
4643   unsigned Reg = MIB->getOperand(0).getReg();
4644   const GlobalValue *GV =
4645       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4646   unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
4647   MachineMemOperand *MMO = MBB.getParent()->
4648       getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8);
4649   MachineBasicBlock::iterator I = MIB.getInstr();
4650 
4651   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4652       .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4653       .addMemOperand(MMO);
4654   MIB->setDebugLoc(DL);
4655   MIB->setDesc(TII.get(X86::MOV64rm));
4656   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4657 }
4658 
expandPostRAPseudo(MachineBasicBlock::iterator MI) const4659 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
4660   bool HasAVX = Subtarget.hasAVX();
4661   MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
4662   switch (MI->getOpcode()) {
4663   case X86::MOV32r0:
4664     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4665   case X86::SETB_C8r:
4666     return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4667   case X86::SETB_C16r:
4668     return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4669   case X86::SETB_C32r:
4670     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4671   case X86::SETB_C64r:
4672     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4673   case X86::V_SET0:
4674   case X86::FsFLD0SS:
4675   case X86::FsFLD0SD:
4676     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4677   case X86::AVX_SET0:
4678     assert(HasAVX && "AVX not supported");
4679     return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
4680   case X86::AVX512_512_SET0:
4681     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4682   case X86::V_SETALLONES:
4683     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4684   case X86::AVX2_SETALLONES:
4685     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4686   case X86::TEST8ri_NOREX:
4687     MI->setDesc(get(X86::TEST8ri));
4688     return true;
4689   case X86::KSET0B:
4690   case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
4691   case X86::KSET1B:
4692   case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
4693   case TargetOpcode::LOAD_STACK_GUARD:
4694     expandLoadStackGuard(MIB, *this);
4695     return true;
4696   }
4697   return false;
4698 }
4699 
FuseTwoAddrInst(MachineFunction & MF,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineInstr * MI,const TargetInstrInfo & TII)4700 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4701                                      ArrayRef<MachineOperand> MOs,
4702                                      MachineInstr *MI,
4703                                      const TargetInstrInfo &TII) {
4704   // Create the base instruction with the memory operand as the first part.
4705   // Omit the implicit operands, something BuildMI can't do.
4706   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4707                                               MI->getDebugLoc(), true);
4708   MachineInstrBuilder MIB(MF, NewMI);
4709   unsigned NumAddrOps = MOs.size();
4710   for (unsigned i = 0; i != NumAddrOps; ++i)
4711     MIB.addOperand(MOs[i]);
4712   if (NumAddrOps < 4)  // FrameIndex only
4713     addOffset(MIB, 0);
4714 
4715   // Loop over the rest of the ri operands, converting them over.
4716   unsigned NumOps = MI->getDesc().getNumOperands()-2;
4717   for (unsigned i = 0; i != NumOps; ++i) {
4718     MachineOperand &MO = MI->getOperand(i+2);
4719     MIB.addOperand(MO);
4720   }
4721   for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
4722     MachineOperand &MO = MI->getOperand(i);
4723     MIB.addOperand(MO);
4724   }
4725   return MIB;
4726 }
4727 
FuseInst(MachineFunction & MF,unsigned Opcode,unsigned OpNo,ArrayRef<MachineOperand> MOs,MachineInstr * MI,const TargetInstrInfo & TII)4728 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4729                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
4730                               MachineInstr *MI, const TargetInstrInfo &TII) {
4731   // Omit the implicit operands, something BuildMI can't do.
4732   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
4733                                               MI->getDebugLoc(), true);
4734   MachineInstrBuilder MIB(MF, NewMI);
4735 
4736   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4737     MachineOperand &MO = MI->getOperand(i);
4738     if (i == OpNo) {
4739       assert(MO.isReg() && "Expected to fold into reg operand!");
4740       unsigned NumAddrOps = MOs.size();
4741       for (unsigned i = 0; i != NumAddrOps; ++i)
4742         MIB.addOperand(MOs[i]);
4743       if (NumAddrOps < 4)  // FrameIndex only
4744         addOffset(MIB, 0);
4745     } else {
4746       MIB.addOperand(MO);
4747     }
4748   }
4749   return MIB;
4750 }
4751 
MakeM0Inst(const TargetInstrInfo & TII,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineInstr * MI)4752 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4753                                 ArrayRef<MachineOperand> MOs,
4754                                 MachineInstr *MI) {
4755   MachineFunction &MF = *MI->getParent()->getParent();
4756   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
4757 
4758   unsigned NumAddrOps = MOs.size();
4759   for (unsigned i = 0; i != NumAddrOps; ++i)
4760     MIB.addOperand(MOs[i]);
4761   if (NumAddrOps < 4)  // FrameIndex only
4762     addOffset(MIB, 0);
4763   return MIB.addImm(0);
4764 }
4765 
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,unsigned Size,unsigned Align,bool AllowCommute) const4766 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
4767                                                   MachineInstr *MI,
4768                                                   unsigned OpNum,
4769                                                   ArrayRef<MachineOperand> MOs,
4770                                                   unsigned Size, unsigned Align,
4771                                                   bool AllowCommute) const {
4772   const DenseMap<unsigned,
4773                  std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
4774   bool isCallRegIndirect = Subtarget.callRegIndirect();
4775   bool isTwoAddrFold = false;
4776 
4777   // For CPUs that favor the register form of a call,
4778   // do not fold loads into calls.
4779   if (isCallRegIndirect &&
4780     (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r))
4781     return nullptr;
4782 
4783   unsigned NumOps = MI->getDesc().getNumOperands();
4784   bool isTwoAddr = NumOps > 1 &&
4785     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4786 
4787   // FIXME: AsmPrinter doesn't know how to handle
4788   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4789   if (MI->getOpcode() == X86::ADD32ri &&
4790       MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4791     return nullptr;
4792 
4793   MachineInstr *NewMI = nullptr;
4794   // Folding a memory location into the two-address part of a two-address
4795   // instruction is different than folding it other places.  It requires
4796   // replacing the *two* registers with the memory location.
4797   if (isTwoAddr && NumOps >= 2 && OpNum < 2 &&
4798       MI->getOperand(0).isReg() &&
4799       MI->getOperand(1).isReg() &&
4800       MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
4801     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4802     isTwoAddrFold = true;
4803   } else if (OpNum == 0) {
4804     if (MI->getOpcode() == X86::MOV32r0) {
4805       NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
4806       if (NewMI)
4807         return NewMI;
4808     }
4809 
4810     OpcodeTablePtr = &RegOp2MemOpTable0;
4811   } else if (OpNum == 1) {
4812     OpcodeTablePtr = &RegOp2MemOpTable1;
4813   } else if (OpNum == 2) {
4814     OpcodeTablePtr = &RegOp2MemOpTable2;
4815   } else if (OpNum == 3) {
4816     OpcodeTablePtr = &RegOp2MemOpTable3;
4817   } else if (OpNum == 4) {
4818     OpcodeTablePtr = &RegOp2MemOpTable4;
4819   }
4820 
4821   // If table selected...
4822   if (OpcodeTablePtr) {
4823     // Find the Opcode to fuse
4824     DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4825       OpcodeTablePtr->find(MI->getOpcode());
4826     if (I != OpcodeTablePtr->end()) {
4827       unsigned Opcode = I->second.first;
4828       unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4829       if (Align < MinAlign)
4830         return nullptr;
4831       bool NarrowToMOV32rm = false;
4832       if (Size) {
4833         unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize();
4834         if (Size < RCSize) {
4835           // Check if it's safe to fold the load. If the size of the object is
4836           // narrower than the load width, then it's not.
4837           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4838             return nullptr;
4839           // If this is a 64-bit load, but the spill slot is 32, then we can do
4840           // a 32-bit load which is implicitly zero-extended. This likely is
4841           // due to live interval analysis remat'ing a load from stack slot.
4842           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
4843             return nullptr;
4844           Opcode = X86::MOV32rm;
4845           NarrowToMOV32rm = true;
4846         }
4847       }
4848 
4849       if (isTwoAddrFold)
4850         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
4851       else
4852         NewMI = FuseInst(MF, Opcode, OpNum, MOs, MI, *this);
4853 
4854       if (NarrowToMOV32rm) {
4855         // If this is the special case where we use a MOV32rm to load a 32-bit
4856         // value and zero-extend the top bits. Change the destination register
4857         // to a 32-bit one.
4858         unsigned DstReg = NewMI->getOperand(0).getReg();
4859         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4860           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4861         else
4862           NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4863       }
4864       return NewMI;
4865     }
4866   }
4867 
4868   // If the instruction and target operand are commutable, commute the
4869   // instruction and try again.
4870   if (AllowCommute) {
4871     unsigned OriginalOpIdx = OpNum, CommuteOpIdx1, CommuteOpIdx2;
4872     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4873       bool HasDef = MI->getDesc().getNumDefs();
4874       unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
4875       unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
4876       unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
4877       bool Tied0 =
4878           0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4879       bool Tied1 =
4880           0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4881 
4882       // If either of the commutable operands are tied to the destination
4883       // then we can not commute + fold.
4884       if ((HasDef && Reg0 == Reg1 && Tied0) ||
4885           (HasDef && Reg0 == Reg2 && Tied1))
4886         return nullptr;
4887 
4888       if ((CommuteOpIdx1 == OriginalOpIdx) ||
4889           (CommuteOpIdx2 == OriginalOpIdx)) {
4890         MachineInstr *CommutedMI = commuteInstruction(MI, false);
4891         if (!CommutedMI) {
4892           // Unable to commute.
4893           return nullptr;
4894         }
4895         if (CommutedMI != MI) {
4896           // New instruction. We can't fold from this.
4897           CommutedMI->eraseFromParent();
4898           return nullptr;
4899         }
4900 
4901         // Attempt to fold with the commuted version of the instruction.
4902         unsigned CommuteOp =
4903             (CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1);
4904         NewMI = foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, Size, Align,
4905                                       /*AllowCommute=*/false);
4906         if (NewMI)
4907           return NewMI;
4908 
4909         // Folding failed again - undo the commute before returning.
4910         MachineInstr *UncommutedMI = commuteInstruction(MI, false);
4911         if (!UncommutedMI) {
4912           // Unable to commute.
4913           return nullptr;
4914         }
4915         if (UncommutedMI != MI) {
4916           // New instruction. It doesn't need to be kept.
4917           UncommutedMI->eraseFromParent();
4918           return nullptr;
4919         }
4920 
4921         // Return here to prevent duplicate fuse failure report.
4922         return nullptr;
4923       }
4924     }
4925   }
4926 
4927   // No fusion
4928   if (PrintFailedFusing && !MI->isCopy())
4929     dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI;
4930   return nullptr;
4931 }
4932 
4933 /// Return true for all instructions that only update
4934 /// the first 32 or 64-bits of the destination register and leave the rest
4935 /// unmodified. This can be used to avoid folding loads if the instructions
4936 /// only update part of the destination register, and the non-updated part is
4937 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4938 /// instructions breaks the partial register dependency and it can improve
4939 /// performance. e.g.:
4940 ///
4941 ///   movss (%rdi), %xmm0
4942 ///   cvtss2sd %xmm0, %xmm0
4943 ///
4944 /// Instead of
4945 ///   cvtss2sd (%rdi), %xmm0
4946 ///
4947 /// FIXME: This should be turned into a TSFlags.
4948 ///
hasPartialRegUpdate(unsigned Opcode)4949 static bool hasPartialRegUpdate(unsigned Opcode) {
4950   switch (Opcode) {
4951   case X86::CVTSI2SSrr:
4952   case X86::CVTSI2SSrm:
4953   case X86::CVTSI2SS64rr:
4954   case X86::CVTSI2SS64rm:
4955   case X86::CVTSI2SDrr:
4956   case X86::CVTSI2SDrm:
4957   case X86::CVTSI2SD64rr:
4958   case X86::CVTSI2SD64rm:
4959   case X86::CVTSD2SSrr:
4960   case X86::CVTSD2SSrm:
4961   case X86::Int_CVTSD2SSrr:
4962   case X86::Int_CVTSD2SSrm:
4963   case X86::CVTSS2SDrr:
4964   case X86::CVTSS2SDrm:
4965   case X86::Int_CVTSS2SDrr:
4966   case X86::Int_CVTSS2SDrm:
4967   case X86::RCPSSr:
4968   case X86::RCPSSm:
4969   case X86::RCPSSr_Int:
4970   case X86::RCPSSm_Int:
4971   case X86::ROUNDSDr:
4972   case X86::ROUNDSDm:
4973   case X86::ROUNDSDr_Int:
4974   case X86::ROUNDSSr:
4975   case X86::ROUNDSSm:
4976   case X86::ROUNDSSr_Int:
4977   case X86::RSQRTSSr:
4978   case X86::RSQRTSSm:
4979   case X86::RSQRTSSr_Int:
4980   case X86::RSQRTSSm_Int:
4981   case X86::SQRTSSr:
4982   case X86::SQRTSSm:
4983   case X86::SQRTSSr_Int:
4984   case X86::SQRTSSm_Int:
4985   case X86::SQRTSDr:
4986   case X86::SQRTSDm:
4987   case X86::SQRTSDr_Int:
4988   case X86::SQRTSDm_Int:
4989     return true;
4990   }
4991 
4992   return false;
4993 }
4994 
4995 /// Inform the ExeDepsFix pass how many idle
4996 /// instructions we would like before a partial register update.
4997 unsigned X86InstrInfo::
getPartialRegUpdateClearance(const MachineInstr * MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4998 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
4999                              const TargetRegisterInfo *TRI) const {
5000   if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
5001     return 0;
5002 
5003   // If MI is marked as reading Reg, the partial register update is wanted.
5004   const MachineOperand &MO = MI->getOperand(0);
5005   unsigned Reg = MO.getReg();
5006   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
5007     if (MO.readsReg() || MI->readsVirtualRegister(Reg))
5008       return 0;
5009   } else {
5010     if (MI->readsRegister(Reg, TRI))
5011       return 0;
5012   }
5013 
5014   // If any of the preceding 16 instructions are reading Reg, insert a
5015   // dependency breaking instruction.  The magic number is based on a few
5016   // Nehalem experiments.
5017   return 16;
5018 }
5019 
5020 // Return true for any instruction the copies the high bits of the first source
5021 // operand into the unused high bits of the destination operand.
hasUndefRegUpdate(unsigned Opcode)5022 static bool hasUndefRegUpdate(unsigned Opcode) {
5023   switch (Opcode) {
5024   case X86::VCVTSI2SSrr:
5025   case X86::VCVTSI2SSrm:
5026   case X86::Int_VCVTSI2SSrr:
5027   case X86::Int_VCVTSI2SSrm:
5028   case X86::VCVTSI2SS64rr:
5029   case X86::VCVTSI2SS64rm:
5030   case X86::Int_VCVTSI2SS64rr:
5031   case X86::Int_VCVTSI2SS64rm:
5032   case X86::VCVTSI2SDrr:
5033   case X86::VCVTSI2SDrm:
5034   case X86::Int_VCVTSI2SDrr:
5035   case X86::Int_VCVTSI2SDrm:
5036   case X86::VCVTSI2SD64rr:
5037   case X86::VCVTSI2SD64rm:
5038   case X86::Int_VCVTSI2SD64rr:
5039   case X86::Int_VCVTSI2SD64rm:
5040   case X86::VCVTSD2SSrr:
5041   case X86::VCVTSD2SSrm:
5042   case X86::Int_VCVTSD2SSrr:
5043   case X86::Int_VCVTSD2SSrm:
5044   case X86::VCVTSS2SDrr:
5045   case X86::VCVTSS2SDrm:
5046   case X86::Int_VCVTSS2SDrr:
5047   case X86::Int_VCVTSS2SDrm:
5048   case X86::VRCPSSr:
5049   case X86::VRCPSSm:
5050   case X86::VRCPSSm_Int:
5051   case X86::VROUNDSDr:
5052   case X86::VROUNDSDm:
5053   case X86::VROUNDSDr_Int:
5054   case X86::VROUNDSSr:
5055   case X86::VROUNDSSm:
5056   case X86::VROUNDSSr_Int:
5057   case X86::VRSQRTSSr:
5058   case X86::VRSQRTSSm:
5059   case X86::VRSQRTSSm_Int:
5060   case X86::VSQRTSSr:
5061   case X86::VSQRTSSm:
5062   case X86::VSQRTSSm_Int:
5063   case X86::VSQRTSDr:
5064   case X86::VSQRTSDm:
5065   case X86::VSQRTSDm_Int:
5066     // AVX-512
5067   case X86::VCVTSD2SSZrr:
5068   case X86::VCVTSD2SSZrm:
5069   case X86::VCVTSS2SDZrr:
5070   case X86::VCVTSS2SDZrm:
5071     return true;
5072   }
5073 
5074   return false;
5075 }
5076 
5077 /// Inform the ExeDepsFix pass how many idle instructions we would like before
5078 /// certain undef register reads.
5079 ///
5080 /// This catches the VCVTSI2SD family of instructions:
5081 ///
5082 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
5083 ///
5084 /// We should to be careful *not* to catch VXOR idioms which are presumably
5085 /// handled specially in the pipeline:
5086 ///
5087 /// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
5088 ///
5089 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5090 /// high bits that are passed-through are not live.
5091 unsigned X86InstrInfo::
getUndefRegClearance(const MachineInstr * MI,unsigned & OpNum,const TargetRegisterInfo * TRI) const5092 getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
5093                      const TargetRegisterInfo *TRI) const {
5094   if (!hasUndefRegUpdate(MI->getOpcode()))
5095     return 0;
5096 
5097   // Set the OpNum parameter to the first source operand.
5098   OpNum = 1;
5099 
5100   const MachineOperand &MO = MI->getOperand(OpNum);
5101   if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
5102     // Use the same magic number as getPartialRegUpdateClearance.
5103     return 16;
5104   }
5105   return 0;
5106 }
5107 
5108 void X86InstrInfo::
breakPartialRegDependency(MachineBasicBlock::iterator MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5109 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
5110                           const TargetRegisterInfo *TRI) const {
5111   unsigned Reg = MI->getOperand(OpNum).getReg();
5112   // If MI kills this register, the false dependence is already broken.
5113   if (MI->killsRegister(Reg, TRI))
5114     return;
5115   if (X86::VR128RegClass.contains(Reg)) {
5116     // These instructions are all floating point domain, so xorps is the best
5117     // choice.
5118     bool HasAVX = Subtarget.hasAVX();
5119     unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
5120     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
5121       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5122   } else if (X86::VR256RegClass.contains(Reg)) {
5123     // Use vxorps to clear the full ymm register.
5124     // It wants to read and write the xmm sub-register.
5125     unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5126     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
5127       .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
5128       .addReg(Reg, RegState::ImplicitDefine);
5129   } else
5130     return;
5131   MI->addRegisterKilled(Reg, TRI, true);
5132 }
5133 
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,ArrayRef<unsigned> Ops,int FrameIndex) const5134 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
5135                                                   MachineInstr *MI,
5136                                                   ArrayRef<unsigned> Ops,
5137                                                   int FrameIndex) const {
5138   // Check switch flag
5139   if (NoFusing) return nullptr;
5140 
5141   // Unless optimizing for size, don't fold to avoid partial
5142   // register update stalls
5143   if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
5144       hasPartialRegUpdate(MI->getOpcode()))
5145     return nullptr;
5146 
5147   const MachineFrameInfo *MFI = MF.getFrameInfo();
5148   unsigned Size = MFI->getObjectSize(FrameIndex);
5149   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
5150   // If the function stack isn't realigned we don't want to fold instructions
5151   // that need increased alignment.
5152   if (!RI.needsStackRealignment(MF))
5153     Alignment =
5154         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
5155   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5156     unsigned NewOpc = 0;
5157     unsigned RCSize = 0;
5158     switch (MI->getOpcode()) {
5159     default: return nullptr;
5160     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
5161     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5162     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5163     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5164     }
5165     // Check if it's safe to fold the load. If the size of the object is
5166     // narrower than the load width, then it's not.
5167     if (Size < RCSize)
5168       return nullptr;
5169     // Change to CMPXXri r, 0 first.
5170     MI->setDesc(get(NewOpc));
5171     MI->getOperand(1).ChangeToImmediate(0);
5172   } else if (Ops.size() != 1)
5173     return nullptr;
5174 
5175   return foldMemoryOperandImpl(MF, MI, Ops[0],
5176                                MachineOperand::CreateFI(FrameIndex), Size,
5177                                Alignment, /*AllowCommute=*/true);
5178 }
5179 
isPartialRegisterLoad(const MachineInstr & LoadMI,const MachineFunction & MF)5180 static bool isPartialRegisterLoad(const MachineInstr &LoadMI,
5181                                   const MachineFunction &MF) {
5182   unsigned Opc = LoadMI.getOpcode();
5183   unsigned RegSize =
5184       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
5185 
5186   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4)
5187     // These instructions only load 32 bits, we can't fold them if the
5188     // destination register is wider than 32 bits (4 bytes).
5189     return true;
5190 
5191   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8)
5192     // These instructions only load 64 bits, we can't fold them if the
5193     // destination register is wider than 64 bits (8 bytes).
5194     return true;
5195 
5196   return false;
5197 }
5198 
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,ArrayRef<unsigned> Ops,MachineInstr * LoadMI) const5199 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
5200                                                   MachineInstr *MI,
5201                                                   ArrayRef<unsigned> Ops,
5202                                                   MachineInstr *LoadMI) const {
5203   // If loading from a FrameIndex, fold directly from the FrameIndex.
5204   unsigned NumOps = LoadMI->getDesc().getNumOperands();
5205   int FrameIndex;
5206   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5207     if (isPartialRegisterLoad(*LoadMI, MF))
5208       return nullptr;
5209     return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
5210   }
5211 
5212   // Check switch flag
5213   if (NoFusing) return nullptr;
5214 
5215   // Unless optimizing for size, don't fold to avoid partial
5216   // register update stalls
5217   if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
5218       hasPartialRegUpdate(MI->getOpcode()))
5219     return nullptr;
5220 
5221   // Determine the alignment of the load.
5222   unsigned Alignment = 0;
5223   if (LoadMI->hasOneMemOperand())
5224     Alignment = (*LoadMI->memoperands_begin())->getAlignment();
5225   else
5226     switch (LoadMI->getOpcode()) {
5227     case X86::AVX2_SETALLONES:
5228     case X86::AVX_SET0:
5229       Alignment = 32;
5230       break;
5231     case X86::V_SET0:
5232     case X86::V_SETALLONES:
5233       Alignment = 16;
5234       break;
5235     case X86::FsFLD0SD:
5236       Alignment = 8;
5237       break;
5238     case X86::FsFLD0SS:
5239       Alignment = 4;
5240       break;
5241     default:
5242       return nullptr;
5243     }
5244   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5245     unsigned NewOpc = 0;
5246     switch (MI->getOpcode()) {
5247     default: return nullptr;
5248     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
5249     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5250     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5251     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5252     }
5253     // Change to CMPXXri r, 0 first.
5254     MI->setDesc(get(NewOpc));
5255     MI->getOperand(1).ChangeToImmediate(0);
5256   } else if (Ops.size() != 1)
5257     return nullptr;
5258 
5259   // Make sure the subregisters match.
5260   // Otherwise we risk changing the size of the load.
5261   if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
5262     return nullptr;
5263 
5264   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5265   switch (LoadMI->getOpcode()) {
5266   case X86::V_SET0:
5267   case X86::V_SETALLONES:
5268   case X86::AVX2_SETALLONES:
5269   case X86::AVX_SET0:
5270   case X86::FsFLD0SD:
5271   case X86::FsFLD0SS: {
5272     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5273     // Create a constant-pool entry and operands to load from it.
5274 
5275     // Medium and large mode can't fold loads this way.
5276     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5277         MF.getTarget().getCodeModel() != CodeModel::Kernel)
5278       return nullptr;
5279 
5280     // x86-32 PIC requires a PIC base register for constant pools.
5281     unsigned PICBase = 0;
5282     if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
5283       if (Subtarget.is64Bit())
5284         PICBase = X86::RIP;
5285       else
5286         // FIXME: PICBase = getGlobalBaseReg(&MF);
5287         // This doesn't work for several reasons.
5288         // 1. GlobalBaseReg may have been spilled.
5289         // 2. It may not be live at MI.
5290         return nullptr;
5291     }
5292 
5293     // Create a constant-pool entry.
5294     MachineConstantPool &MCP = *MF.getConstantPool();
5295     Type *Ty;
5296     unsigned Opc = LoadMI->getOpcode();
5297     if (Opc == X86::FsFLD0SS)
5298       Ty = Type::getFloatTy(MF.getFunction()->getContext());
5299     else if (Opc == X86::FsFLD0SD)
5300       Ty = Type::getDoubleTy(MF.getFunction()->getContext());
5301     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
5302       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
5303     else
5304       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
5305 
5306     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
5307     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5308                                     Constant::getNullValue(Ty);
5309     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5310 
5311     // Create operands to load from the constant pool entry.
5312     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5313     MOs.push_back(MachineOperand::CreateImm(1));
5314     MOs.push_back(MachineOperand::CreateReg(0, false));
5315     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5316     MOs.push_back(MachineOperand::CreateReg(0, false));
5317     break;
5318   }
5319   default: {
5320     if (isPartialRegisterLoad(*LoadMI, MF))
5321       return nullptr;
5322 
5323     // Folding a normal load. Just copy the load's address operands.
5324     MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands,
5325                LoadMI->operands_begin() + NumOps);
5326     break;
5327   }
5328   }
5329   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
5330                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
5331 }
5332 
canFoldMemoryOperand(const MachineInstr * MI,ArrayRef<unsigned> Ops) const5333 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
5334                                         ArrayRef<unsigned> Ops) const {
5335   // Check switch flag
5336   if (NoFusing) return 0;
5337 
5338   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5339     switch (MI->getOpcode()) {
5340     default: return false;
5341     case X86::TEST8rr:
5342     case X86::TEST16rr:
5343     case X86::TEST32rr:
5344     case X86::TEST64rr:
5345       return true;
5346     case X86::ADD32ri:
5347       // FIXME: AsmPrinter doesn't know how to handle
5348       // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5349       if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5350         return false;
5351       break;
5352     }
5353   }
5354 
5355   if (Ops.size() != 1)
5356     return false;
5357 
5358   unsigned OpNum = Ops[0];
5359   unsigned Opc = MI->getOpcode();
5360   unsigned NumOps = MI->getDesc().getNumOperands();
5361   bool isTwoAddr = NumOps > 1 &&
5362     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
5363 
5364   // Folding a memory location into the two-address part of a two-address
5365   // instruction is different than folding it other places.  It requires
5366   // replacing the *two* registers with the memory location.
5367   const DenseMap<unsigned,
5368                  std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
5369   if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
5370     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
5371   } else if (OpNum == 0) {
5372     if (Opc == X86::MOV32r0)
5373       return true;
5374 
5375     OpcodeTablePtr = &RegOp2MemOpTable0;
5376   } else if (OpNum == 1) {
5377     OpcodeTablePtr = &RegOp2MemOpTable1;
5378   } else if (OpNum == 2) {
5379     OpcodeTablePtr = &RegOp2MemOpTable2;
5380   } else if (OpNum == 3) {
5381     OpcodeTablePtr = &RegOp2MemOpTable3;
5382   }
5383 
5384   if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
5385     return true;
5386   return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
5387 }
5388 
unfoldMemoryOperand(MachineFunction & MF,MachineInstr * MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs) const5389 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
5390                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
5391                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
5392   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5393     MemOp2RegOpTable.find(MI->getOpcode());
5394   if (I == MemOp2RegOpTable.end())
5395     return false;
5396   unsigned Opc = I->second.first;
5397   unsigned Index = I->second.second & TB_INDEX_MASK;
5398   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5399   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
5400   if (UnfoldLoad && !FoldedLoad)
5401     return false;
5402   UnfoldLoad &= FoldedLoad;
5403   if (UnfoldStore && !FoldedStore)
5404     return false;
5405   UnfoldStore &= FoldedStore;
5406 
5407   const MCInstrDesc &MCID = get(Opc);
5408   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5409   if (!MI->hasOneMemOperand() &&
5410       RC == &X86::VR128RegClass &&
5411       !Subtarget.isUnalignedMemAccessFast())
5412     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5413     // conservatively assume the address is unaligned. That's bad for
5414     // performance.
5415     return false;
5416   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5417   SmallVector<MachineOperand,2> BeforeOps;
5418   SmallVector<MachineOperand,2> AfterOps;
5419   SmallVector<MachineOperand,4> ImpOps;
5420   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
5421     MachineOperand &Op = MI->getOperand(i);
5422     if (i >= Index && i < Index + X86::AddrNumOperands)
5423       AddrOps.push_back(Op);
5424     else if (Op.isReg() && Op.isImplicit())
5425       ImpOps.push_back(Op);
5426     else if (i < Index)
5427       BeforeOps.push_back(Op);
5428     else if (i > Index)
5429       AfterOps.push_back(Op);
5430   }
5431 
5432   // Emit the load instruction.
5433   if (UnfoldLoad) {
5434     std::pair<MachineInstr::mmo_iterator,
5435               MachineInstr::mmo_iterator> MMOs =
5436       MF.extractLoadMemRefs(MI->memoperands_begin(),
5437                             MI->memoperands_end());
5438     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
5439     if (UnfoldStore) {
5440       // Address operands cannot be marked isKill.
5441       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5442         MachineOperand &MO = NewMIs[0]->getOperand(i);
5443         if (MO.isReg())
5444           MO.setIsKill(false);
5445       }
5446     }
5447   }
5448 
5449   // Emit the data processing instruction.
5450   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
5451   MachineInstrBuilder MIB(MF, DataMI);
5452 
5453   if (FoldedStore)
5454     MIB.addReg(Reg, RegState::Define);
5455   for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
5456     MIB.addOperand(BeforeOps[i]);
5457   if (FoldedLoad)
5458     MIB.addReg(Reg);
5459   for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
5460     MIB.addOperand(AfterOps[i]);
5461   for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
5462     MachineOperand &MO = ImpOps[i];
5463     MIB.addReg(MO.getReg(),
5464                getDefRegState(MO.isDef()) |
5465                RegState::Implicit |
5466                getKillRegState(MO.isKill()) |
5467                getDeadRegState(MO.isDead()) |
5468                getUndefRegState(MO.isUndef()));
5469   }
5470   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5471   switch (DataMI->getOpcode()) {
5472   default: break;
5473   case X86::CMP64ri32:
5474   case X86::CMP64ri8:
5475   case X86::CMP32ri:
5476   case X86::CMP32ri8:
5477   case X86::CMP16ri:
5478   case X86::CMP16ri8:
5479   case X86::CMP8ri: {
5480     MachineOperand &MO0 = DataMI->getOperand(0);
5481     MachineOperand &MO1 = DataMI->getOperand(1);
5482     if (MO1.getImm() == 0) {
5483       unsigned NewOpc;
5484       switch (DataMI->getOpcode()) {
5485       default: llvm_unreachable("Unreachable!");
5486       case X86::CMP64ri8:
5487       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5488       case X86::CMP32ri8:
5489       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
5490       case X86::CMP16ri8:
5491       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
5492       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
5493       }
5494       DataMI->setDesc(get(NewOpc));
5495       MO1.ChangeToRegister(MO0.getReg(), false);
5496     }
5497   }
5498   }
5499   NewMIs.push_back(DataMI);
5500 
5501   // Emit the store instruction.
5502   if (UnfoldStore) {
5503     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5504     std::pair<MachineInstr::mmo_iterator,
5505               MachineInstr::mmo_iterator> MMOs =
5506       MF.extractStoreMemRefs(MI->memoperands_begin(),
5507                              MI->memoperands_end());
5508     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
5509   }
5510 
5511   return true;
5512 }
5513 
5514 bool
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes) const5515 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5516                                   SmallVectorImpl<SDNode*> &NewNodes) const {
5517   if (!N->isMachineOpcode())
5518     return false;
5519 
5520   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5521     MemOp2RegOpTable.find(N->getMachineOpcode());
5522   if (I == MemOp2RegOpTable.end())
5523     return false;
5524   unsigned Opc = I->second.first;
5525   unsigned Index = I->second.second & TB_INDEX_MASK;
5526   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5527   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
5528   const MCInstrDesc &MCID = get(Opc);
5529   MachineFunction &MF = DAG.getMachineFunction();
5530   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5531   unsigned NumDefs = MCID.NumDefs;
5532   std::vector<SDValue> AddrOps;
5533   std::vector<SDValue> BeforeOps;
5534   std::vector<SDValue> AfterOps;
5535   SDLoc dl(N);
5536   unsigned NumOps = N->getNumOperands();
5537   for (unsigned i = 0; i != NumOps-1; ++i) {
5538     SDValue Op = N->getOperand(i);
5539     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5540       AddrOps.push_back(Op);
5541     else if (i < Index-NumDefs)
5542       BeforeOps.push_back(Op);
5543     else if (i > Index-NumDefs)
5544       AfterOps.push_back(Op);
5545   }
5546   SDValue Chain = N->getOperand(NumOps-1);
5547   AddrOps.push_back(Chain);
5548 
5549   // Emit the load instruction.
5550   SDNode *Load = nullptr;
5551   if (FoldedLoad) {
5552     EVT VT = *RC->vt_begin();
5553     std::pair<MachineInstr::mmo_iterator,
5554               MachineInstr::mmo_iterator> MMOs =
5555       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5556                             cast<MachineSDNode>(N)->memoperands_end());
5557     if (!(*MMOs.first) &&
5558         RC == &X86::VR128RegClass &&
5559         !Subtarget.isUnalignedMemAccessFast())
5560       // Do not introduce a slow unaligned load.
5561       return false;
5562     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
5563     bool isAligned = (*MMOs.first) &&
5564                      (*MMOs.first)->getAlignment() >= Alignment;
5565     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
5566                               VT, MVT::Other, AddrOps);
5567     NewNodes.push_back(Load);
5568 
5569     // Preserve memory reference information.
5570     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
5571   }
5572 
5573   // Emit the data processing instruction.
5574   std::vector<EVT> VTs;
5575   const TargetRegisterClass *DstRC = nullptr;
5576   if (MCID.getNumDefs() > 0) {
5577     DstRC = getRegClass(MCID, 0, &RI, MF);
5578     VTs.push_back(*DstRC->vt_begin());
5579   }
5580   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5581     EVT VT = N->getValueType(i);
5582     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5583       VTs.push_back(VT);
5584   }
5585   if (Load)
5586     BeforeOps.push_back(SDValue(Load, 0));
5587   BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5588   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5589   NewNodes.push_back(NewNode);
5590 
5591   // Emit the store instruction.
5592   if (FoldedStore) {
5593     AddrOps.pop_back();
5594     AddrOps.push_back(SDValue(NewNode, 0));
5595     AddrOps.push_back(Chain);
5596     std::pair<MachineInstr::mmo_iterator,
5597               MachineInstr::mmo_iterator> MMOs =
5598       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5599                              cast<MachineSDNode>(N)->memoperands_end());
5600     if (!(*MMOs.first) &&
5601         RC == &X86::VR128RegClass &&
5602         !Subtarget.isUnalignedMemAccessFast())
5603       // Do not introduce a slow unaligned store.
5604       return false;
5605     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
5606     bool isAligned = (*MMOs.first) &&
5607                      (*MMOs.first)->getAlignment() >= Alignment;
5608     SDNode *Store =
5609         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5610                            dl, MVT::Other, AddrOps);
5611     NewNodes.push_back(Store);
5612 
5613     // Preserve memory reference information.
5614     cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
5615   }
5616 
5617   return true;
5618 }
5619 
getOpcodeAfterMemoryUnfold(unsigned Opc,bool UnfoldLoad,bool UnfoldStore,unsigned * LoadRegIndex) const5620 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5621                                       bool UnfoldLoad, bool UnfoldStore,
5622                                       unsigned *LoadRegIndex) const {
5623   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5624     MemOp2RegOpTable.find(Opc);
5625   if (I == MemOp2RegOpTable.end())
5626     return 0;
5627   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
5628   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
5629   if (UnfoldLoad && !FoldedLoad)
5630     return 0;
5631   if (UnfoldStore && !FoldedStore)
5632     return 0;
5633   if (LoadRegIndex)
5634     *LoadRegIndex = I->second.second & TB_INDEX_MASK;
5635   return I->second.first;
5636 }
5637 
5638 bool
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const5639 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5640                                      int64_t &Offset1, int64_t &Offset2) const {
5641   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5642     return false;
5643   unsigned Opc1 = Load1->getMachineOpcode();
5644   unsigned Opc2 = Load2->getMachineOpcode();
5645   switch (Opc1) {
5646   default: return false;
5647   case X86::MOV8rm:
5648   case X86::MOV16rm:
5649   case X86::MOV32rm:
5650   case X86::MOV64rm:
5651   case X86::LD_Fp32m:
5652   case X86::LD_Fp64m:
5653   case X86::LD_Fp80m:
5654   case X86::MOVSSrm:
5655   case X86::MOVSDrm:
5656   case X86::MMX_MOVD64rm:
5657   case X86::MMX_MOVQ64rm:
5658   case X86::FsMOVAPSrm:
5659   case X86::FsMOVAPDrm:
5660   case X86::MOVAPSrm:
5661   case X86::MOVUPSrm:
5662   case X86::MOVAPDrm:
5663   case X86::MOVDQArm:
5664   case X86::MOVDQUrm:
5665   // AVX load instructions
5666   case X86::VMOVSSrm:
5667   case X86::VMOVSDrm:
5668   case X86::FsVMOVAPSrm:
5669   case X86::FsVMOVAPDrm:
5670   case X86::VMOVAPSrm:
5671   case X86::VMOVUPSrm:
5672   case X86::VMOVAPDrm:
5673   case X86::VMOVDQArm:
5674   case X86::VMOVDQUrm:
5675   case X86::VMOVAPSYrm:
5676   case X86::VMOVUPSYrm:
5677   case X86::VMOVAPDYrm:
5678   case X86::VMOVDQAYrm:
5679   case X86::VMOVDQUYrm:
5680     break;
5681   }
5682   switch (Opc2) {
5683   default: return false;
5684   case X86::MOV8rm:
5685   case X86::MOV16rm:
5686   case X86::MOV32rm:
5687   case X86::MOV64rm:
5688   case X86::LD_Fp32m:
5689   case X86::LD_Fp64m:
5690   case X86::LD_Fp80m:
5691   case X86::MOVSSrm:
5692   case X86::MOVSDrm:
5693   case X86::MMX_MOVD64rm:
5694   case X86::MMX_MOVQ64rm:
5695   case X86::FsMOVAPSrm:
5696   case X86::FsMOVAPDrm:
5697   case X86::MOVAPSrm:
5698   case X86::MOVUPSrm:
5699   case X86::MOVAPDrm:
5700   case X86::MOVDQArm:
5701   case X86::MOVDQUrm:
5702   // AVX load instructions
5703   case X86::VMOVSSrm:
5704   case X86::VMOVSDrm:
5705   case X86::FsVMOVAPSrm:
5706   case X86::FsVMOVAPDrm:
5707   case X86::VMOVAPSrm:
5708   case X86::VMOVUPSrm:
5709   case X86::VMOVAPDrm:
5710   case X86::VMOVDQArm:
5711   case X86::VMOVDQUrm:
5712   case X86::VMOVAPSYrm:
5713   case X86::VMOVUPSYrm:
5714   case X86::VMOVAPDYrm:
5715   case X86::VMOVDQAYrm:
5716   case X86::VMOVDQUYrm:
5717     break;
5718   }
5719 
5720   // Check if chain operands and base addresses match.
5721   if (Load1->getOperand(0) != Load2->getOperand(0) ||
5722       Load1->getOperand(5) != Load2->getOperand(5))
5723     return false;
5724   // Segment operands should match as well.
5725   if (Load1->getOperand(4) != Load2->getOperand(4))
5726     return false;
5727   // Scale should be 1, Index should be Reg0.
5728   if (Load1->getOperand(1) == Load2->getOperand(1) &&
5729       Load1->getOperand(2) == Load2->getOperand(2)) {
5730     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
5731       return false;
5732 
5733     // Now let's examine the displacements.
5734     if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
5735         isa<ConstantSDNode>(Load2->getOperand(3))) {
5736       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
5737       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
5738       return true;
5739     }
5740   }
5741   return false;
5742 }
5743 
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const5744 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5745                                            int64_t Offset1, int64_t Offset2,
5746                                            unsigned NumLoads) const {
5747   assert(Offset2 > Offset1);
5748   if ((Offset2 - Offset1) / 8 > 64)
5749     return false;
5750 
5751   unsigned Opc1 = Load1->getMachineOpcode();
5752   unsigned Opc2 = Load2->getMachineOpcode();
5753   if (Opc1 != Opc2)
5754     return false;  // FIXME: overly conservative?
5755 
5756   switch (Opc1) {
5757   default: break;
5758   case X86::LD_Fp32m:
5759   case X86::LD_Fp64m:
5760   case X86::LD_Fp80m:
5761   case X86::MMX_MOVD64rm:
5762   case X86::MMX_MOVQ64rm:
5763     return false;
5764   }
5765 
5766   EVT VT = Load1->getValueType(0);
5767   switch (VT.getSimpleVT().SimpleTy) {
5768   default:
5769     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5770     // have 16 of them to play with.
5771     if (Subtarget.is64Bit()) {
5772       if (NumLoads >= 3)
5773         return false;
5774     } else if (NumLoads) {
5775       return false;
5776     }
5777     break;
5778   case MVT::i8:
5779   case MVT::i16:
5780   case MVT::i32:
5781   case MVT::i64:
5782   case MVT::f32:
5783   case MVT::f64:
5784     if (NumLoads)
5785       return false;
5786     break;
5787   }
5788 
5789   return true;
5790 }
5791 
shouldScheduleAdjacent(MachineInstr * First,MachineInstr * Second) const5792 bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
5793                                           MachineInstr *Second) const {
5794   // Check if this processor supports macro-fusion. Since this is a minor
5795   // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
5796   // proxy for SandyBridge+.
5797   if (!Subtarget.hasAVX())
5798     return false;
5799 
5800   enum {
5801     FuseTest,
5802     FuseCmp,
5803     FuseInc
5804   } FuseKind;
5805 
5806   switch(Second->getOpcode()) {
5807   default:
5808     return false;
5809   case X86::JE_1:
5810   case X86::JNE_1:
5811   case X86::JL_1:
5812   case X86::JLE_1:
5813   case X86::JG_1:
5814   case X86::JGE_1:
5815     FuseKind = FuseInc;
5816     break;
5817   case X86::JB_1:
5818   case X86::JBE_1:
5819   case X86::JA_1:
5820   case X86::JAE_1:
5821     FuseKind = FuseCmp;
5822     break;
5823   case X86::JS_1:
5824   case X86::JNS_1:
5825   case X86::JP_1:
5826   case X86::JNP_1:
5827   case X86::JO_1:
5828   case X86::JNO_1:
5829     FuseKind = FuseTest;
5830     break;
5831   }
5832   switch (First->getOpcode()) {
5833   default:
5834     return false;
5835   case X86::TEST8rr:
5836   case X86::TEST16rr:
5837   case X86::TEST32rr:
5838   case X86::TEST64rr:
5839   case X86::TEST8ri:
5840   case X86::TEST16ri:
5841   case X86::TEST32ri:
5842   case X86::TEST32i32:
5843   case X86::TEST64i32:
5844   case X86::TEST64ri32:
5845   case X86::TEST8rm:
5846   case X86::TEST16rm:
5847   case X86::TEST32rm:
5848   case X86::TEST64rm:
5849   case X86::TEST8ri_NOREX:
5850   case X86::AND16i16:
5851   case X86::AND16ri:
5852   case X86::AND16ri8:
5853   case X86::AND16rm:
5854   case X86::AND16rr:
5855   case X86::AND32i32:
5856   case X86::AND32ri:
5857   case X86::AND32ri8:
5858   case X86::AND32rm:
5859   case X86::AND32rr:
5860   case X86::AND64i32:
5861   case X86::AND64ri32:
5862   case X86::AND64ri8:
5863   case X86::AND64rm:
5864   case X86::AND64rr:
5865   case X86::AND8i8:
5866   case X86::AND8ri:
5867   case X86::AND8rm:
5868   case X86::AND8rr:
5869     return true;
5870   case X86::CMP16i16:
5871   case X86::CMP16ri:
5872   case X86::CMP16ri8:
5873   case X86::CMP16rm:
5874   case X86::CMP16rr:
5875   case X86::CMP32i32:
5876   case X86::CMP32ri:
5877   case X86::CMP32ri8:
5878   case X86::CMP32rm:
5879   case X86::CMP32rr:
5880   case X86::CMP64i32:
5881   case X86::CMP64ri32:
5882   case X86::CMP64ri8:
5883   case X86::CMP64rm:
5884   case X86::CMP64rr:
5885   case X86::CMP8i8:
5886   case X86::CMP8ri:
5887   case X86::CMP8rm:
5888   case X86::CMP8rr:
5889   case X86::ADD16i16:
5890   case X86::ADD16ri:
5891   case X86::ADD16ri8:
5892   case X86::ADD16ri8_DB:
5893   case X86::ADD16ri_DB:
5894   case X86::ADD16rm:
5895   case X86::ADD16rr:
5896   case X86::ADD16rr_DB:
5897   case X86::ADD32i32:
5898   case X86::ADD32ri:
5899   case X86::ADD32ri8:
5900   case X86::ADD32ri8_DB:
5901   case X86::ADD32ri_DB:
5902   case X86::ADD32rm:
5903   case X86::ADD32rr:
5904   case X86::ADD32rr_DB:
5905   case X86::ADD64i32:
5906   case X86::ADD64ri32:
5907   case X86::ADD64ri32_DB:
5908   case X86::ADD64ri8:
5909   case X86::ADD64ri8_DB:
5910   case X86::ADD64rm:
5911   case X86::ADD64rr:
5912   case X86::ADD64rr_DB:
5913   case X86::ADD8i8:
5914   case X86::ADD8mi:
5915   case X86::ADD8mr:
5916   case X86::ADD8ri:
5917   case X86::ADD8rm:
5918   case X86::ADD8rr:
5919   case X86::SUB16i16:
5920   case X86::SUB16ri:
5921   case X86::SUB16ri8:
5922   case X86::SUB16rm:
5923   case X86::SUB16rr:
5924   case X86::SUB32i32:
5925   case X86::SUB32ri:
5926   case X86::SUB32ri8:
5927   case X86::SUB32rm:
5928   case X86::SUB32rr:
5929   case X86::SUB64i32:
5930   case X86::SUB64ri32:
5931   case X86::SUB64ri8:
5932   case X86::SUB64rm:
5933   case X86::SUB64rr:
5934   case X86::SUB8i8:
5935   case X86::SUB8ri:
5936   case X86::SUB8rm:
5937   case X86::SUB8rr:
5938     return FuseKind == FuseCmp || FuseKind == FuseInc;
5939   case X86::INC16r:
5940   case X86::INC32r:
5941   case X86::INC64r:
5942   case X86::INC8r:
5943   case X86::DEC16r:
5944   case X86::DEC32r:
5945   case X86::DEC64r:
5946   case X86::DEC8r:
5947     return FuseKind == FuseInc;
5948   }
5949 }
5950 
5951 bool X86InstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const5952 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5953   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5954   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5955   if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
5956     return true;
5957   Cond[0].setImm(GetOppositeBranchCondition(CC));
5958   return false;
5959 }
5960 
5961 bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC) const5962 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5963   // FIXME: Return false for x87 stack register classes for now. We can't
5964   // allow any loads of these registers before FpGet_ST0_80.
5965   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
5966            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
5967 }
5968 
5969 /// Return a virtual register initialized with the
5970 /// the global base register value. Output instructions required to
5971 /// initialize the register in the function entry block, if necessary.
5972 ///
5973 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5974 ///
getGlobalBaseReg(MachineFunction * MF) const5975 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5976   assert(!Subtarget.is64Bit() &&
5977          "X86-64 PIC uses RIP relative addressing");
5978 
5979   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5980   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5981   if (GlobalBaseReg != 0)
5982     return GlobalBaseReg;
5983 
5984   // Create the register. The code to initialize it is inserted
5985   // later, by the CGBR pass (below).
5986   MachineRegisterInfo &RegInfo = MF->getRegInfo();
5987   GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
5988   X86FI->setGlobalBaseReg(GlobalBaseReg);
5989   return GlobalBaseReg;
5990 }
5991 
5992 // These are the replaceable SSE instructions. Some of these have Int variants
5993 // that we don't include here. We don't want to replace instructions selected
5994 // by intrinsics.
5995 static const uint16_t ReplaceableInstrs[][3] = {
5996   //PackedSingle     PackedDouble    PackedInt
5997   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
5998   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
5999   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
6000   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
6001   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
6002   { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr  },
6003   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
6004   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
6005   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
6006   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
6007   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
6008   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
6009   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
6010   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
6011   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
6012   // AVX 128-bit support
6013   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
6014   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
6015   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
6016   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
6017   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
6018   // TODO: Add the AVX versions of MOVLPSmr
6019   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6020   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
6021   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
6022   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
6023   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
6024   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
6025   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
6026   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
6027   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
6028   // AVX 256-bit support
6029   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
6030   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
6031   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
6032   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
6033   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
6034   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
6035 };
6036 
6037 static const uint16_t ReplaceableInstrsAVX2[][3] = {
6038   //PackedSingle       PackedDouble       PackedInt
6039   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6040   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6041   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6042   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6043   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6044   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6045   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6046   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6047   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6048   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6049   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6050   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6051   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6052   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6053   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6054   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6055   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6056   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6057   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6058   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
6059 };
6060 
6061 // FIXME: Some shuffle and unpack instructions have equivalents in different
6062 // domains, but they require a bit more work than just switching opcodes.
6063 
lookup(unsigned opcode,unsigned domain)6064 static const uint16_t *lookup(unsigned opcode, unsigned domain) {
6065   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
6066     if (ReplaceableInstrs[i][domain-1] == opcode)
6067       return ReplaceableInstrs[i];
6068   return nullptr;
6069 }
6070 
lookupAVX2(unsigned opcode,unsigned domain)6071 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
6072   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
6073     if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
6074       return ReplaceableInstrsAVX2[i];
6075   return nullptr;
6076 }
6077 
6078 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr * MI) const6079 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
6080   uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6081   bool hasAVX2 = Subtarget.hasAVX2();
6082   uint16_t validDomains = 0;
6083   if (domain && lookup(MI->getOpcode(), domain))
6084     validDomains = 0xe;
6085   else if (domain && lookupAVX2(MI->getOpcode(), domain))
6086     validDomains = hasAVX2 ? 0xe : 0x6;
6087   return std::make_pair(domain, validDomains);
6088 }
6089 
setExecutionDomain(MachineInstr * MI,unsigned Domain) const6090 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
6091   assert(Domain>0 && Domain<4 && "Invalid execution domain");
6092   uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6093   assert(dom && "Not an SSE instruction");
6094   const uint16_t *table = lookup(MI->getOpcode(), dom);
6095   if (!table) { // try the other table
6096     assert((Subtarget.hasAVX2() || Domain < 3) &&
6097            "256-bit vector operations only available in AVX2");
6098     table = lookupAVX2(MI->getOpcode(), dom);
6099   }
6100   assert(table && "Cannot change domain");
6101   MI->setDesc(get(table[Domain-1]));
6102 }
6103 
6104 /// Return the noop instruction to use for a noop.
getNoopForMachoTarget(MCInst & NopInst) const6105 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
6106   NopInst.setOpcode(X86::NOOP);
6107 }
6108 
6109 // This code must remain in sync with getJumpInstrTableEntryBound in this class!
6110 // In particular, getJumpInstrTableEntryBound must always return an upper bound
6111 // on the encoding lengths of the instructions generated by
6112 // getUnconditionalBranch and getTrap.
getUnconditionalBranch(MCInst & Branch,const MCSymbolRefExpr * BranchTarget) const6113 void X86InstrInfo::getUnconditionalBranch(
6114     MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
6115   Branch.setOpcode(X86::JMP_1);
6116   Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
6117 }
6118 
6119 // This code must remain in sync with getJumpInstrTableEntryBound in this class!
6120 // In particular, getJumpInstrTableEntryBound must always return an upper bound
6121 // on the encoding lengths of the instructions generated by
6122 // getUnconditionalBranch and getTrap.
getTrap(MCInst & MI) const6123 void X86InstrInfo::getTrap(MCInst &MI) const {
6124   MI.setOpcode(X86::TRAP);
6125 }
6126 
6127 // See getTrap and getUnconditionalBranch for conditions on the value returned
6128 // by this function.
getJumpInstrTableEntryBound() const6129 unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
6130   // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
6131   // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
6132   return 5;
6133 }
6134 
isHighLatencyDef(int opc) const6135 bool X86InstrInfo::isHighLatencyDef(int opc) const {
6136   switch (opc) {
6137   default: return false;
6138   case X86::DIVSDrm:
6139   case X86::DIVSDrm_Int:
6140   case X86::DIVSDrr:
6141   case X86::DIVSDrr_Int:
6142   case X86::DIVSSrm:
6143   case X86::DIVSSrm_Int:
6144   case X86::DIVSSrr:
6145   case X86::DIVSSrr_Int:
6146   case X86::SQRTPDm:
6147   case X86::SQRTPDr:
6148   case X86::SQRTPSm:
6149   case X86::SQRTPSr:
6150   case X86::SQRTSDm:
6151   case X86::SQRTSDm_Int:
6152   case X86::SQRTSDr:
6153   case X86::SQRTSDr_Int:
6154   case X86::SQRTSSm:
6155   case X86::SQRTSSm_Int:
6156   case X86::SQRTSSr:
6157   case X86::SQRTSSr_Int:
6158   // AVX instructions with high latency
6159   case X86::VDIVSDrm:
6160   case X86::VDIVSDrm_Int:
6161   case X86::VDIVSDrr:
6162   case X86::VDIVSDrr_Int:
6163   case X86::VDIVSSrm:
6164   case X86::VDIVSSrm_Int:
6165   case X86::VDIVSSrr:
6166   case X86::VDIVSSrr_Int:
6167   case X86::VSQRTPDm:
6168   case X86::VSQRTPDr:
6169   case X86::VSQRTPSm:
6170   case X86::VSQRTPSr:
6171   case X86::VSQRTSDm:
6172   case X86::VSQRTSDm_Int:
6173   case X86::VSQRTSDr:
6174   case X86::VSQRTSSm:
6175   case X86::VSQRTSSm_Int:
6176   case X86::VSQRTSSr:
6177   case X86::VSQRTPDZm:
6178   case X86::VSQRTPDZr:
6179   case X86::VSQRTPSZm:
6180   case X86::VSQRTPSZr:
6181   case X86::VSQRTSDZm:
6182   case X86::VSQRTSDZm_Int:
6183   case X86::VSQRTSDZr:
6184   case X86::VSQRTSSZm_Int:
6185   case X86::VSQRTSSZr:
6186   case X86::VSQRTSSZm:
6187   case X86::VDIVSDZrm:
6188   case X86::VDIVSDZrr:
6189   case X86::VDIVSSZrm:
6190   case X86::VDIVSSZrr:
6191 
6192   case X86::VGATHERQPSZrm:
6193   case X86::VGATHERQPDZrm:
6194   case X86::VGATHERDPDZrm:
6195   case X86::VGATHERDPSZrm:
6196   case X86::VPGATHERQDZrm:
6197   case X86::VPGATHERQQZrm:
6198   case X86::VPGATHERDDZrm:
6199   case X86::VPGATHERDQZrm:
6200   case X86::VSCATTERQPDZmr:
6201   case X86::VSCATTERQPSZmr:
6202   case X86::VSCATTERDPDZmr:
6203   case X86::VSCATTERDPSZmr:
6204   case X86::VPSCATTERQDZmr:
6205   case X86::VPSCATTERQQZmr:
6206   case X86::VPSCATTERDDZmr:
6207   case X86::VPSCATTERDQZmr:
6208     return true;
6209   }
6210 }
6211 
6212 bool X86InstrInfo::
hasHighOperandLatency(const InstrItineraryData * ItinData,const MachineRegisterInfo * MRI,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx) const6213 hasHighOperandLatency(const InstrItineraryData *ItinData,
6214                       const MachineRegisterInfo *MRI,
6215                       const MachineInstr *DefMI, unsigned DefIdx,
6216                       const MachineInstr *UseMI, unsigned UseIdx) const {
6217   return isHighLatencyDef(DefMI->getOpcode());
6218 }
6219 
6220 namespace {
6221   /// Create Global Base Reg pass. This initializes the PIC
6222   /// global base register for x86-32.
6223   struct CGBR : public MachineFunctionPass {
6224     static char ID;
CGBR__anon9af0d4bf0311::CGBR6225     CGBR() : MachineFunctionPass(ID) {}
6226 
runOnMachineFunction__anon9af0d4bf0311::CGBR6227     bool runOnMachineFunction(MachineFunction &MF) override {
6228       const X86TargetMachine *TM =
6229         static_cast<const X86TargetMachine *>(&MF.getTarget());
6230       const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
6231 
6232       // Don't do anything if this is 64-bit as 64-bit PIC
6233       // uses RIP relative addressing.
6234       if (STI.is64Bit())
6235         return false;
6236 
6237       // Only emit a global base reg in PIC mode.
6238       if (TM->getRelocationModel() != Reloc::PIC_)
6239         return false;
6240 
6241       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
6242       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6243 
6244       // If we didn't need a GlobalBaseReg, don't insert code.
6245       if (GlobalBaseReg == 0)
6246         return false;
6247 
6248       // Insert the set of GlobalBaseReg into the first MBB of the function
6249       MachineBasicBlock &FirstMBB = MF.front();
6250       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
6251       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
6252       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6253       const X86InstrInfo *TII = STI.getInstrInfo();
6254 
6255       unsigned PC;
6256       if (STI.isPICStyleGOT())
6257         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
6258       else
6259         PC = GlobalBaseReg;
6260 
6261       // Operand of MovePCtoStack is completely ignored by asm printer. It's
6262       // only used in JIT code emission as displacement to pc.
6263       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
6264 
6265       // If we're using vanilla 'GOT' PIC style, we should use relative addressing
6266       // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
6267       if (STI.isPICStyleGOT()) {
6268         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
6269         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
6270           .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
6271                                         X86II::MO_GOT_ABSOLUTE_ADDRESS);
6272       }
6273 
6274       return true;
6275     }
6276 
getPassName__anon9af0d4bf0311::CGBR6277     const char *getPassName() const override {
6278       return "X86 PIC Global Base Reg Initialization";
6279     }
6280 
getAnalysisUsage__anon9af0d4bf0311::CGBR6281     void getAnalysisUsage(AnalysisUsage &AU) const override {
6282       AU.setPreservesCFG();
6283       MachineFunctionPass::getAnalysisUsage(AU);
6284     }
6285   };
6286 }
6287 
6288 char CGBR::ID = 0;
6289 FunctionPass*
createX86GlobalBaseRegPass()6290 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
6291 
6292 namespace {
6293   struct LDTLSCleanup : public MachineFunctionPass {
6294     static char ID;
LDTLSCleanup__anon9af0d4bf0411::LDTLSCleanup6295     LDTLSCleanup() : MachineFunctionPass(ID) {}
6296 
runOnMachineFunction__anon9af0d4bf0411::LDTLSCleanup6297     bool runOnMachineFunction(MachineFunction &MF) override {
6298       X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
6299       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
6300         // No point folding accesses if there isn't at least two.
6301         return false;
6302       }
6303 
6304       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
6305       return VisitNode(DT->getRootNode(), 0);
6306     }
6307 
6308     // Visit the dominator subtree rooted at Node in pre-order.
6309     // If TLSBaseAddrReg is non-null, then use that to replace any
6310     // TLS_base_addr instructions. Otherwise, create the register
6311     // when the first such instruction is seen, and then use it
6312     // as we encounter more instructions.
VisitNode__anon9af0d4bf0411::LDTLSCleanup6313     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
6314       MachineBasicBlock *BB = Node->getBlock();
6315       bool Changed = false;
6316 
6317       // Traverse the current block.
6318       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
6319            ++I) {
6320         switch (I->getOpcode()) {
6321           case X86::TLS_base_addr32:
6322           case X86::TLS_base_addr64:
6323             if (TLSBaseAddrReg)
6324               I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
6325             else
6326               I = SetRegister(I, &TLSBaseAddrReg);
6327             Changed = true;
6328             break;
6329           default:
6330             break;
6331         }
6332       }
6333 
6334       // Visit the children of this block in the dominator tree.
6335       for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
6336            I != E; ++I) {
6337         Changed |= VisitNode(*I, TLSBaseAddrReg);
6338       }
6339 
6340       return Changed;
6341     }
6342 
6343     // Replace the TLS_base_addr instruction I with a copy from
6344     // TLSBaseAddrReg, returning the new instruction.
ReplaceTLSBaseAddrCall__anon9af0d4bf0411::LDTLSCleanup6345     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
6346                                          unsigned TLSBaseAddrReg) {
6347       MachineFunction *MF = I->getParent()->getParent();
6348       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
6349       const bool is64Bit = STI.is64Bit();
6350       const X86InstrInfo *TII = STI.getInstrInfo();
6351 
6352       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
6353       MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
6354                                    TII->get(TargetOpcode::COPY),
6355                                    is64Bit ? X86::RAX : X86::EAX)
6356                                    .addReg(TLSBaseAddrReg);
6357 
6358       // Erase the TLS_base_addr instruction.
6359       I->eraseFromParent();
6360 
6361       return Copy;
6362     }
6363 
6364     // Create a virtal register in *TLSBaseAddrReg, and populate it by
6365     // inserting a copy instruction after I. Returns the new instruction.
SetRegister__anon9af0d4bf0411::LDTLSCleanup6366     MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
6367       MachineFunction *MF = I->getParent()->getParent();
6368       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
6369       const bool is64Bit = STI.is64Bit();
6370       const X86InstrInfo *TII = STI.getInstrInfo();
6371 
6372       // Create a virtual register for the TLS base address.
6373       MachineRegisterInfo &RegInfo = MF->getRegInfo();
6374       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
6375                                                       ? &X86::GR64RegClass
6376                                                       : &X86::GR32RegClass);
6377 
6378       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
6379       MachineInstr *Next = I->getNextNode();
6380       MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
6381                                    TII->get(TargetOpcode::COPY),
6382                                    *TLSBaseAddrReg)
6383                                    .addReg(is64Bit ? X86::RAX : X86::EAX);
6384 
6385       return Copy;
6386     }
6387 
getPassName__anon9af0d4bf0411::LDTLSCleanup6388     const char *getPassName() const override {
6389       return "Local Dynamic TLS Access Clean-up";
6390     }
6391 
getAnalysisUsage__anon9af0d4bf0411::LDTLSCleanup6392     void getAnalysisUsage(AnalysisUsage &AU) const override {
6393       AU.setPreservesCFG();
6394       AU.addRequired<MachineDominatorTree>();
6395       MachineFunctionPass::getAnalysisUsage(AU);
6396     }
6397   };
6398 }
6399 
6400 char LDTLSCleanup::ID = 0;
6401 FunctionPass*
createCleanupLocalDynamicTLSPass()6402 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
6403