1 //===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which inserts x86 AVX vzeroupper instructions
11 // before calls to SSE encoded functions. This avoids transition latency
12 // penalty when transferring control between AVX encoded instructions and old
13 // SSE encoding mode.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "X86.h"
18 #include "X86InstrInfo.h"
19 #include "X86Subtarget.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "x86-vzeroupper"
31 
32 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
33 
34 namespace {
35 
36   class VZeroUpperInserter : public MachineFunctionPass {
37   public:
38 
VZeroUpperInserter()39     VZeroUpperInserter() : MachineFunctionPass(ID) {}
40     bool runOnMachineFunction(MachineFunction &MF) override;
getPassName() const41     const char *getPassName() const override {return "X86 vzeroupper inserter";}
42 
43   private:
44 
45     void processBasicBlock(MachineBasicBlock &MBB);
46     void insertVZeroUpper(MachineBasicBlock::iterator I,
47                           MachineBasicBlock &MBB);
48     void addDirtySuccessor(MachineBasicBlock &MBB);
49 
50     typedef enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY } BlockExitState;
51     static const char* getBlockExitStateName(BlockExitState ST);
52 
53     // Core algorithm state:
54     // BlockState - Each block is either:
55     //   - PASS_THROUGH: There are neither YMM dirtying instructions nor
56     //                   vzeroupper instructions in this block.
57     //   - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
58     //                  block that will ensure that YMM is clean on exit.
59     //   - EXITS_DIRTY: An instruction in the block dirties YMM and no
60     //                  subsequent vzeroupper in the block clears it.
61     //
62     // AddedToDirtySuccessors - This flag is raised when a block is added to the
63     //                          DirtySuccessors list to ensure that it's not
64     //                          added multiple times.
65     //
66     // FirstUnguardedCall - Records the location of the first unguarded call in
67     //                      each basic block that may need to be guarded by a
68     //                      vzeroupper. We won't know whether it actually needs
69     //                      to be guarded until we discover a predecessor that
70     //                      is DIRTY_OUT.
71     struct BlockState {
BlockState__anon41365ce50111::VZeroUpperInserter::BlockState72       BlockState() : ExitState(PASS_THROUGH), AddedToDirtySuccessors(false) {}
73       BlockExitState ExitState;
74       bool AddedToDirtySuccessors;
75       MachineBasicBlock::iterator FirstUnguardedCall;
76     };
77     typedef SmallVector<BlockState, 8> BlockStateMap;
78     typedef SmallVector<MachineBasicBlock*, 8> DirtySuccessorsWorkList;
79 
80     BlockStateMap BlockStates;
81     DirtySuccessorsWorkList DirtySuccessors;
82     bool EverMadeChange;
83     const TargetInstrInfo *TII;
84 
85     static char ID;
86   };
87 
88   char VZeroUpperInserter::ID = 0;
89 }
90 
createX86IssueVZeroUpperPass()91 FunctionPass *llvm::createX86IssueVZeroUpperPass() {
92   return new VZeroUpperInserter();
93 }
94 
getBlockExitStateName(BlockExitState ST)95 const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
96   switch (ST) {
97     case PASS_THROUGH: return "Pass-through";
98     case EXITS_DIRTY: return "Exits-dirty";
99     case EXITS_CLEAN: return "Exits-clean";
100   }
101   llvm_unreachable("Invalid block exit state.");
102 }
103 
isYmmReg(unsigned Reg)104 static bool isYmmReg(unsigned Reg) {
105   return (Reg >= X86::YMM0 && Reg <= X86::YMM15);
106 }
107 
checkFnHasLiveInYmm(MachineRegisterInfo & MRI)108 static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
109   for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
110        E = MRI.livein_end(); I != E; ++I)
111     if (isYmmReg(I->first))
112       return true;
113 
114   return false;
115 }
116 
clobbersAllYmmRegs(const MachineOperand & MO)117 static bool clobbersAllYmmRegs(const MachineOperand &MO) {
118   for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
119     if (!MO.clobbersPhysReg(reg))
120       return false;
121   }
122   return true;
123 }
124 
hasYmmReg(MachineInstr * MI)125 static bool hasYmmReg(MachineInstr *MI) {
126   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
127     const MachineOperand &MO = MI->getOperand(i);
128     if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
129       return true;
130     if (!MO.isReg())
131       continue;
132     if (MO.isDebug())
133       continue;
134     if (isYmmReg(MO.getReg()))
135       return true;
136   }
137   return false;
138 }
139 
140 /// clobbersAnyYmmReg() - Check if any YMM register will be clobbered by this
141 /// instruction.
callClobbersAnyYmmReg(MachineInstr * MI)142 static bool callClobbersAnyYmmReg(MachineInstr *MI) {
143   assert(MI->isCall() && "Can only be called on call instructions.");
144   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
145     const MachineOperand &MO = MI->getOperand(i);
146     if (!MO.isRegMask())
147       continue;
148     for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
149       if (MO.clobbersPhysReg(reg))
150         return true;
151     }
152   }
153   return false;
154 }
155 
156 // Insert a vzeroupper instruction before I.
insertVZeroUpper(MachineBasicBlock::iterator I,MachineBasicBlock & MBB)157 void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
158                                               MachineBasicBlock &MBB) {
159   DebugLoc dl = I->getDebugLoc();
160   BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
161   ++NumVZU;
162   EverMadeChange = true;
163 }
164 
165 // Add MBB to the DirtySuccessors list if it hasn't already been added.
addDirtySuccessor(MachineBasicBlock & MBB)166 void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
167   if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
168     DirtySuccessors.push_back(&MBB);
169     BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
170   }
171 }
172 
173 /// processBasicBlock - Loop over all of the instructions in the basic block,
174 /// inserting vzeroupper instructions before function calls.
processBasicBlock(MachineBasicBlock & MBB)175 void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
176 
177   // Start by assuming that the block PASS_THROUGH, which implies no unguarded
178   // calls.
179   BlockExitState CurState = PASS_THROUGH;
180   BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
181 
182   for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
183     MachineInstr *MI = I;
184     bool isControlFlow = MI->isCall() || MI->isReturn();
185 
186     // Shortcut: don't need to check regular instructions in dirty state.
187     if (!isControlFlow && CurState == EXITS_DIRTY)
188       continue;
189 
190     if (hasYmmReg(MI)) {
191       // We found a ymm-using instruction; this could be an AVX instruction,
192       // or it could be control flow.
193       CurState = EXITS_DIRTY;
194       continue;
195     }
196 
197     // Check for control-flow out of the current function (which might
198     // indirectly execute SSE instructions).
199     if (!isControlFlow)
200       continue;
201 
202     // If the call won't clobber any YMM register, skip it as well. It usually
203     // happens on helper function calls (such as '_chkstk', '_ftol2') where
204     // standard calling convention is not used (RegMask is not used to mark
205     // register clobbered and register usage (def/imp-def/use) is well-defined
206     // and explicitly specified.
207     if (MI->isCall() && !callClobbersAnyYmmReg(MI))
208       continue;
209 
210     // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
211     // registers. This instruction has zero latency. In addition, the processor
212     // changes back to Clean state, after which execution of Intel SSE
213     // instructions or Intel AVX instructions has no transition penalty. Add
214     // the VZEROUPPER instruction before any function call/return that might
215     // execute SSE code.
216     // FIXME: In some cases, we may want to move the VZEROUPPER into a
217     // predecessor block.
218     if (CurState == EXITS_DIRTY) {
219       // After the inserted VZEROUPPER the state becomes clean again, but
220       // other YMM may appear before other subsequent calls or even before
221       // the end of the BB.
222       insertVZeroUpper(I, MBB);
223       CurState = EXITS_CLEAN;
224     } else if (CurState == PASS_THROUGH) {
225       // If this block is currently in pass-through state and we encounter a
226       // call then whether we need a vzeroupper or not depends on whether this
227       // block has successors that exit dirty. Record the location of the call,
228       // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
229       // It will be inserted later if necessary.
230       BlockStates[MBB.getNumber()].FirstUnguardedCall = I;
231       CurState = EXITS_CLEAN;
232     }
233   }
234 
235   DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
236                << getBlockExitStateName(CurState) << '\n');
237 
238   if (CurState == EXITS_DIRTY)
239     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
240                                           SE = MBB.succ_end();
241          SI != SE; ++SI)
242       addDirtySuccessor(**SI);
243 
244   BlockStates[MBB.getNumber()].ExitState = CurState;
245 }
246 
247 /// runOnMachineFunction - Loop over all of the basic blocks, inserting
248 /// vzeroupper instructions before function calls.
runOnMachineFunction(MachineFunction & MF)249 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
250   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
251   if (!ST.hasAVX() || ST.hasAVX512())
252     return false;
253   TII = ST.getInstrInfo();
254   MachineRegisterInfo &MRI = MF.getRegInfo();
255   EverMadeChange = false;
256 
257   bool FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
258 
259   // Fast check: if the function doesn't use any ymm registers, we don't need
260   // to insert any VZEROUPPER instructions.  This is constant-time, so it is
261   // cheap in the common case of no ymm use.
262   bool YMMUsed = FnHasLiveInYmm;
263   if (!YMMUsed) {
264     const TargetRegisterClass *RC = &X86::VR256RegClass;
265     for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
266          i++) {
267       if (!MRI.reg_nodbg_empty(*i)) {
268         YMMUsed = true;
269         break;
270       }
271     }
272   }
273   if (!YMMUsed) {
274     return false;
275   }
276 
277   assert(BlockStates.empty() && DirtySuccessors.empty() &&
278          "X86VZeroUpper state should be clear");
279   BlockStates.resize(MF.getNumBlockIDs());
280 
281   // Process all blocks. This will compute block exit states, record the first
282   // unguarded call in each block, and add successors of dirty blocks to the
283   // DirtySuccessors list.
284   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
285     processBasicBlock(*I);
286 
287   // If any YMM regs are live in to this function, add the entry block to the
288   // DirtySuccessors list
289   if (FnHasLiveInYmm)
290     addDirtySuccessor(MF.front());
291 
292   // Re-visit all blocks that are successors of EXITS_DIRTY bsocks. Add
293   // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
294   // through PASS_THROUGH blocks.
295   while (!DirtySuccessors.empty()) {
296     MachineBasicBlock &MBB = *DirtySuccessors.back();
297     DirtySuccessors.pop_back();
298     BlockState &BBState = BlockStates[MBB.getNumber()];
299 
300     // MBB is a successor of a dirty block, so its first call needs to be
301     // guarded.
302     if (BBState.FirstUnguardedCall != MBB.end())
303       insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
304 
305     // If this successor was a pass-through block then it is now dirty, and its
306     // successors need to be added to the worklist (if they haven't been
307     // already).
308     if (BBState.ExitState == PASS_THROUGH) {
309       DEBUG(dbgs() << "MBB #" << MBB.getNumber()
310                    << " was Pass-through, is now Dirty-out.\n");
311       for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
312                                             SE = MBB.succ_end();
313            SI != SE; ++SI)
314         addDirtySuccessor(**SI);
315     }
316   }
317 
318   BlockStates.clear();
319   return EverMadeChange;
320 }
321