1 /************************************************************************
2  * Copyright (C) 1996-2012, International Business Machines Corporation
3  * and others. All Rights Reserved.
4  ************************************************************************
5  *  2003-nov-07   srl       Port from Java
6  */
7 
8 #include "astro.h"
9 
10 #if !UCONFIG_NO_FORMATTING
11 
12 #include "unicode/calendar.h"
13 #include <math.h>
14 #include <float.h>
15 #include "unicode/putil.h"
16 #include "uhash.h"
17 #include "umutex.h"
18 #include "ucln_in.h"
19 #include "putilimp.h"
20 #include <stdio.h>  // for toString()
21 
22 #if defined (PI)
23 #undef PI
24 #endif
25 
26 #ifdef U_DEBUG_ASTRO
27 # include "uresimp.h" // for debugging
28 
debug_astro_loc(const char * f,int32_t l)29 static void debug_astro_loc(const char *f, int32_t l)
30 {
31   fprintf(stderr, "%s:%d: ", f, l);
32 }
33 
debug_astro_msg(const char * pat,...)34 static void debug_astro_msg(const char *pat, ...)
35 {
36   va_list ap;
37   va_start(ap, pat);
38   vfprintf(stderr, pat, ap);
39   fflush(stderr);
40 }
41 #include "unicode/datefmt.h"
42 #include "unicode/ustring.h"
debug_astro_date(UDate d)43 static const char * debug_astro_date(UDate d) {
44   static char gStrBuf[1024];
45   static DateFormat *df = NULL;
46   if(df == NULL) {
47     df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
48     df->adoptTimeZone(TimeZone::getGMT()->clone());
49   }
50   UnicodeString str;
51   df->format(d,str);
52   u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
53   return gStrBuf;
54 }
55 
56 // must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4));
57 #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
58 #else
59 #define U_DEBUG_ASTRO_MSG(x)
60 #endif
61 
isINVALID(double d)62 static inline UBool isINVALID(double d) {
63   return(uprv_isNaN(d));
64 }
65 
66 static UMutex ccLock = U_MUTEX_INITIALIZER;
67 
68 U_CDECL_BEGIN
calendar_astro_cleanup(void)69 static UBool calendar_astro_cleanup(void) {
70   return TRUE;
71 }
72 U_CDECL_END
73 
74 U_NAMESPACE_BEGIN
75 
76 /**
77  * The number of standard hours in one sidereal day.
78  * Approximately 24.93.
79  * @internal
80  * @deprecated ICU 2.4. This class may be removed or modified.
81  */
82 #define SIDEREAL_DAY (23.93446960027)
83 
84 /**
85  * The number of sidereal hours in one mean solar day.
86  * Approximately 24.07.
87  * @internal
88  * @deprecated ICU 2.4. This class may be removed or modified.
89  */
90 #define SOLAR_DAY  (24.065709816)
91 
92 /**
93  * The average number of solar days from one new moon to the next.  This is the time
94  * it takes for the moon to return the same ecliptic longitude as the sun.
95  * It is longer than the sidereal month because the sun's longitude increases
96  * during the year due to the revolution of the earth around the sun.
97  * Approximately 29.53.
98  *
99  * @see #SIDEREAL_MONTH
100  * @internal
101  * @deprecated ICU 2.4. This class may be removed or modified.
102  */
103 const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;
104 
105 /**
106  * The average number of days it takes
107  * for the moon to return to the same ecliptic longitude relative to the
108  * stellar background.  This is referred to as the sidereal month.
109  * It is shorter than the synodic month due to
110  * the revolution of the earth around the sun.
111  * Approximately 27.32.
112  *
113  * @see #SYNODIC_MONTH
114  * @internal
115  * @deprecated ICU 2.4. This class may be removed or modified.
116  */
117 #define SIDEREAL_MONTH  27.32166
118 
119 /**
120  * The average number number of days between successive vernal equinoxes.
121  * Due to the precession of the earth's
122  * axis, this is not precisely the same as the sidereal year.
123  * Approximately 365.24
124  *
125  * @see #SIDEREAL_YEAR
126  * @internal
127  * @deprecated ICU 2.4. This class may be removed or modified.
128  */
129 #define TROPICAL_YEAR  365.242191
130 
131 /**
132  * The average number of days it takes
133  * for the sun to return to the same position against the fixed stellar
134  * background.  This is the duration of one orbit of the earth about the sun
135  * as it would appear to an outside observer.
136  * Due to the precession of the earth's
137  * axis, this is not precisely the same as the tropical year.
138  * Approximately 365.25.
139  *
140  * @see #TROPICAL_YEAR
141  * @internal
142  * @deprecated ICU 2.4. This class may be removed or modified.
143  */
144 #define SIDEREAL_YEAR  365.25636
145 
146 //-------------------------------------------------------------------------
147 // Time-related constants
148 //-------------------------------------------------------------------------
149 
150 /**
151  * The number of milliseconds in one second.
152  * @internal
153  * @deprecated ICU 2.4. This class may be removed or modified.
154  */
155 #define SECOND_MS  U_MILLIS_PER_SECOND
156 
157 /**
158  * The number of milliseconds in one minute.
159  * @internal
160  * @deprecated ICU 2.4. This class may be removed or modified.
161  */
162 #define MINUTE_MS  U_MILLIS_PER_MINUTE
163 
164 /**
165  * The number of milliseconds in one hour.
166  * @internal
167  * @deprecated ICU 2.4. This class may be removed or modified.
168  */
169 #define HOUR_MS   U_MILLIS_PER_HOUR
170 
171 /**
172  * The number of milliseconds in one day.
173  * @internal
174  * @deprecated ICU 2.4. This class may be removed or modified.
175  */
176 #define DAY_MS U_MILLIS_PER_DAY
177 
178 /**
179  * The start of the julian day numbering scheme used by astronomers, which
180  * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds
181  * since 1/1/1970 AD (Gregorian), a negative number.
182  * Note that julian day numbers and
183  * the Julian calendar are <em>not</em> the same thing.  Also note that
184  * julian days start at <em>noon</em>, not midnight.
185  * @internal
186  * @deprecated ICU 2.4. This class may be removed or modified.
187  */
188 #define JULIAN_EPOCH_MS  -210866760000000.0
189 
190 
191 /**
192  * Milliseconds value for 0.0 January 2000 AD.
193  */
194 #define EPOCH_2000_MS  946598400000.0
195 
196 //-------------------------------------------------------------------------
197 // Assorted private data used for conversions
198 //-------------------------------------------------------------------------
199 
200 // My own copies of these so compilers are more likely to optimize them away
201 const double CalendarAstronomer::PI = 3.14159265358979323846;
202 
203 #define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)
204 #define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours
205 #define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians
206 #define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees
207 
208 /***
209  * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
210  * The modulus operator.
211  */
normalize(double value,double range)212 inline static double normalize(double value, double range)  {
213     return value - range * ClockMath::floorDivide(value, range);
214 }
215 
216 /**
217  * Normalize an angle so that it's in the range 0 - 2pi.
218  * For positive angles this is just (angle % 2pi), but the Java
219  * mod operator doesn't work that way for negative numbers....
220  */
norm2PI(double angle)221 inline static double norm2PI(double angle)  {
222     return normalize(angle, CalendarAstronomer::PI * 2.0);
223 }
224 
225 /**
226  * Normalize an angle into the range -PI - PI
227  */
normPI(double angle)228 inline static  double normPI(double angle)  {
229     return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
230 }
231 
232 //-------------------------------------------------------------------------
233 // Constructors
234 //-------------------------------------------------------------------------
235 
236 /**
237  * Construct a new <code>CalendarAstronomer</code> object that is initialized to
238  * the current date and time.
239  * @internal
240  * @deprecated ICU 2.4. This class may be removed or modified.
241  */
CalendarAstronomer()242 CalendarAstronomer::CalendarAstronomer():
243   fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
244   clearCache();
245 }
246 
247 /**
248  * Construct a new <code>CalendarAstronomer</code> object that is initialized to
249  * the specified date and time.
250  * @internal
251  * @deprecated ICU 2.4. This class may be removed or modified.
252  */
CalendarAstronomer(UDate d)253 CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
254   clearCache();
255 }
256 
257 /**
258  * Construct a new <code>CalendarAstronomer</code> object with the given
259  * latitude and longitude.  The object's time is set to the current
260  * date and time.
261  * <p>
262  * @param longitude The desired longitude, in <em>degrees</em> east of
263  *                  the Greenwich meridian.
264  *
265  * @param latitude  The desired latitude, in <em>degrees</em>.  Positive
266  *                  values signify North, negative South.
267  *
268  * @see java.util.Date#getTime()
269  * @internal
270  * @deprecated ICU 2.4. This class may be removed or modified.
271  */
CalendarAstronomer(double longitude,double latitude)272 CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
273   fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) {
274   fLongitude = normPI(longitude * (double)DEG_RAD);
275   fLatitude  = normPI(latitude  * (double)DEG_RAD);
276   fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
277   clearCache();
278 }
279 
~CalendarAstronomer()280 CalendarAstronomer::~CalendarAstronomer()
281 {
282 }
283 
284 //-------------------------------------------------------------------------
285 // Time and date getters and setters
286 //-------------------------------------------------------------------------
287 
288 /**
289  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
290  * astronomical calculations are performed based on this time setting.
291  *
292  * @param aTime the date and time, expressed as the number of milliseconds since
293  *              1/1/1970 0:00 GMT (Gregorian).
294  *
295  * @see #setDate
296  * @see #getTime
297  * @internal
298  * @deprecated ICU 2.4. This class may be removed or modified.
299  */
setTime(UDate aTime)300 void CalendarAstronomer::setTime(UDate aTime) {
301     fTime = aTime;
302     U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
303     clearCache();
304 }
305 
306 /**
307  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
308  * astronomical calculations are performed based on this time setting.
309  *
310  * @param jdn   the desired time, expressed as a "julian day number",
311  *              which is the number of elapsed days since
312  *              1/1/4713 BC (Julian), 12:00 GMT.  Note that julian day
313  *              numbers start at <em>noon</em>.  To get the jdn for
314  *              the corresponding midnight, subtract 0.5.
315  *
316  * @see #getJulianDay
317  * @see #JULIAN_EPOCH_MS
318  * @internal
319  * @deprecated ICU 2.4. This class may be removed or modified.
320  */
setJulianDay(double jdn)321 void CalendarAstronomer::setJulianDay(double jdn) {
322     fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
323     clearCache();
324     julianDay = jdn;
325 }
326 
327 /**
328  * Get the current time of this <code>CalendarAstronomer</code> object,
329  * represented as the number of milliseconds since
330  * 1/1/1970 AD 0:00 GMT (Gregorian).
331  *
332  * @see #setTime
333  * @see #getDate
334  * @internal
335  * @deprecated ICU 2.4. This class may be removed or modified.
336  */
getTime()337 UDate CalendarAstronomer::getTime() {
338     return fTime;
339 }
340 
341 /**
342  * Get the current time of this <code>CalendarAstronomer</code> object,
343  * expressed as a "julian day number", which is the number of elapsed
344  * days since 1/1/4713 BC (Julian), 12:00 GMT.
345  *
346  * @see #setJulianDay
347  * @see #JULIAN_EPOCH_MS
348  * @internal
349  * @deprecated ICU 2.4. This class may be removed or modified.
350  */
getJulianDay()351 double CalendarAstronomer::getJulianDay() {
352     if (isINVALID(julianDay)) {
353         julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
354     }
355     return julianDay;
356 }
357 
358 /**
359  * Return this object's time expressed in julian centuries:
360  * the number of centuries after 1/1/1900 AD, 12:00 GMT
361  *
362  * @see #getJulianDay
363  * @internal
364  * @deprecated ICU 2.4. This class may be removed or modified.
365  */
getJulianCentury()366 double CalendarAstronomer::getJulianCentury() {
367     if (isINVALID(julianCentury)) {
368         julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
369     }
370     return julianCentury;
371 }
372 
373 /**
374  * Returns the current Greenwich sidereal time, measured in hours
375  * @internal
376  * @deprecated ICU 2.4. This class may be removed or modified.
377  */
getGreenwichSidereal()378 double CalendarAstronomer::getGreenwichSidereal() {
379     if (isINVALID(siderealTime)) {
380         // See page 86 of "Practial Astronomy with your Calculator",
381         // by Peter Duffet-Smith, for details on the algorithm.
382 
383         double UT = normalize(fTime/(double)HOUR_MS, 24.);
384 
385         siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
386     }
387     return siderealTime;
388 }
389 
getSiderealOffset()390 double CalendarAstronomer::getSiderealOffset() {
391     if (isINVALID(siderealT0)) {
392         double JD  = uprv_floor(getJulianDay() - 0.5) + 0.5;
393         double S   = JD - 2451545.0;
394         double T   = S / 36525.0;
395         siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
396     }
397     return siderealT0;
398 }
399 
400 /**
401  * Returns the current local sidereal time, measured in hours
402  * @internal
403  * @deprecated ICU 2.4. This class may be removed or modified.
404  */
getLocalSidereal()405 double CalendarAstronomer::getLocalSidereal() {
406     return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
407 }
408 
409 /**
410  * Converts local sidereal time to Universal Time.
411  *
412  * @param lst   The Local Sidereal Time, in hours since sidereal midnight
413  *              on this object's current date.
414  *
415  * @return      The corresponding Universal Time, in milliseconds since
416  *              1 Jan 1970, GMT.
417  */
lstToUT(double lst)418 double CalendarAstronomer::lstToUT(double lst) {
419     // Convert to local mean time
420     double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
421 
422     // Then find local midnight on this day
423     double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
424 
425     //out("    lt  =" + lt + " hours");
426     //out("    base=" + new Date(base));
427 
428     return base + (long)(lt * HOUR_MS);
429 }
430 
431 
432 //-------------------------------------------------------------------------
433 // Coordinate transformations, all based on the current time of this object
434 //-------------------------------------------------------------------------
435 
436 /**
437  * Convert from ecliptic to equatorial coordinates.
438  *
439  * @param ecliptic  A point in the sky in ecliptic coordinates.
440  * @return          The corresponding point in equatorial coordinates.
441  * @internal
442  * @deprecated ICU 2.4. This class may be removed or modified.
443  */
eclipticToEquatorial(CalendarAstronomer::Equatorial & result,const CalendarAstronomer::Ecliptic & ecliptic)444 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
445 {
446     return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
447 }
448 
449 /**
450  * Convert from ecliptic to equatorial coordinates.
451  *
452  * @param eclipLong     The ecliptic longitude
453  * @param eclipLat      The ecliptic latitude
454  *
455  * @return              The corresponding point in equatorial coordinates.
456  * @internal
457  * @deprecated ICU 2.4. This class may be removed or modified.
458  */
eclipticToEquatorial(CalendarAstronomer::Equatorial & result,double eclipLong,double eclipLat)459 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
460 {
461     // See page 42 of "Practial Astronomy with your Calculator",
462     // by Peter Duffet-Smith, for details on the algorithm.
463 
464     double obliq = eclipticObliquity();
465     double sinE = ::sin(obliq);
466     double cosE = cos(obliq);
467 
468     double sinL = ::sin(eclipLong);
469     double cosL = cos(eclipLong);
470 
471     double sinB = ::sin(eclipLat);
472     double cosB = cos(eclipLat);
473     double tanB = tan(eclipLat);
474 
475     result.set(atan2(sinL*cosE - tanB*sinE, cosL),
476         asin(sinB*cosE + cosB*sinE*sinL) );
477     return result;
478 }
479 
480 /**
481  * Convert from ecliptic longitude to equatorial coordinates.
482  *
483  * @param eclipLong     The ecliptic longitude
484  *
485  * @return              The corresponding point in equatorial coordinates.
486  * @internal
487  * @deprecated ICU 2.4. This class may be removed or modified.
488  */
eclipticToEquatorial(CalendarAstronomer::Equatorial & result,double eclipLong)489 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
490 {
491     return eclipticToEquatorial(result, eclipLong, 0);  // TODO: optimize
492 }
493 
494 /**
495  * @internal
496  * @deprecated ICU 2.4. This class may be removed or modified.
497  */
eclipticToHorizon(CalendarAstronomer::Horizon & result,double eclipLong)498 CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
499 {
500     Equatorial equatorial;
501     eclipticToEquatorial(equatorial, eclipLong);
502 
503     double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension;     // Hour-angle
504 
505     double sinH = ::sin(H);
506     double cosH = cos(H);
507     double sinD = ::sin(equatorial.declination);
508     double cosD = cos(equatorial.declination);
509     double sinL = ::sin(fLatitude);
510     double cosL = cos(fLatitude);
511 
512     double altitude = asin(sinD*sinL + cosD*cosL*cosH);
513     double azimuth  = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
514 
515     result.set(azimuth, altitude);
516     return result;
517 }
518 
519 
520 //-------------------------------------------------------------------------
521 // The Sun
522 //-------------------------------------------------------------------------
523 
524 //
525 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
526 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
527 //
528 #define JD_EPOCH  2447891.5 // Julian day of epoch
529 
530 #define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
531 #define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
532 #define SUN_E         0.016713          // Eccentricity of orbit
533 //double sunR0        1.495585e8        // Semi-major axis in KM
534 //double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
535 
536 // The following three methods, which compute the sun parameters
537 // given above for an arbitrary epoch (whatever time the object is
538 // set to), make only a small difference as compared to using the
539 // above constants.  E.g., Sunset times might differ by ~12
540 // seconds.  Furthermore, the eta-g computation is befuddled by
541 // Duffet-Smith's incorrect coefficients (p.86).  I've corrected
542 // the first-order coefficient but the others may be off too - no
543 // way of knowing without consulting another source.
544 
545 //  /**
546 //   * Return the sun's ecliptic longitude at perigee for the current time.
547 //   * See Duffett-Smith, p. 86.
548 //   * @return radians
549 //   */
550 //  private double getSunOmegaG() {
551 //      double T = getJulianCentury();
552 //      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
553 //  }
554 
555 //  /**
556 //   * Return the sun's ecliptic longitude for the current time.
557 //   * See Duffett-Smith, p. 86.
558 //   * @return radians
559 //   */
560 //  private double getSunEtaG() {
561 //      double T = getJulianCentury();
562 //      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
563 //      //
564 //      // The above line is from Duffett-Smith, and yields manifestly wrong
565 //      // results.  The below constant is derived empirically to match the
566 //      // constant he gives for the 1990 EPOCH.
567 //      //
568 //      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
569 //  }
570 
571 //  /**
572 //   * Return the sun's eccentricity of orbit for the current time.
573 //   * See Duffett-Smith, p. 86.
574 //   * @return double
575 //   */
576 //  private double getSunE() {
577 //      double T = getJulianCentury();
578 //      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
579 //  }
580 
581 /**
582  * Find the "true anomaly" (longitude) of an object from
583  * its mean anomaly and the eccentricity of its orbit.  This uses
584  * an iterative solution to Kepler's equation.
585  *
586  * @param meanAnomaly   The object's longitude calculated as if it were in
587  *                      a regular, circular orbit, measured in radians
588  *                      from the point of perigee.
589  *
590  * @param eccentricity  The eccentricity of the orbit
591  *
592  * @return The true anomaly (longitude) measured in radians
593  */
trueAnomaly(double meanAnomaly,double eccentricity)594 static double trueAnomaly(double meanAnomaly, double eccentricity)
595 {
596     // First, solve Kepler's equation iteratively
597     // Duffett-Smith, p.90
598     double delta;
599     double E = meanAnomaly;
600     do {
601         delta = E - eccentricity * ::sin(E) - meanAnomaly;
602         E = E - delta / (1 - eccentricity * ::cos(E));
603     }
604     while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
605 
606     return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
607                                              /(1-eccentricity) ) );
608 }
609 
610 /**
611  * The longitude of the sun at the time specified by this object.
612  * The longitude is measured in radians along the ecliptic
613  * from the "first point of Aries," the point at which the ecliptic
614  * crosses the earth's equatorial plane at the vernal equinox.
615  * <p>
616  * Currently, this method uses an approximation of the two-body Kepler's
617  * equation for the earth and the sun.  It does not take into account the
618  * perturbations caused by the other planets, the moon, etc.
619  * @internal
620  * @deprecated ICU 2.4. This class may be removed or modified.
621  */
getSunLongitude()622 double CalendarAstronomer::getSunLongitude()
623 {
624     // See page 86 of "Practial Astronomy with your Calculator",
625     // by Peter Duffet-Smith, for details on the algorithm.
626 
627     if (isINVALID(sunLongitude)) {
628         getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
629     }
630     return sunLongitude;
631 }
632 
633 /**
634  * TODO Make this public when the entire class is package-private.
635  */
getSunLongitude(double jDay,double & longitude,double & meanAnomaly)636 /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
637 {
638     // See page 86 of "Practial Astronomy with your Calculator",
639     // by Peter Duffet-Smith, for details on the algorithm.
640 
641     double day = jDay - JD_EPOCH;       // Days since epoch
642 
643     // Find the angular distance the sun in a fictitious
644     // circular orbit has travelled since the epoch.
645     double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
646 
647     // The epoch wasn't at the sun's perigee; find the angular distance
648     // since perigee, which is called the "mean anomaly"
649     meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
650 
651     // Now find the "true anomaly", e.g. the real solar longitude
652     // by solving Kepler's equation for an elliptical orbit
653     // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
654     // equations; omega_g is to be correct.
655     longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
656 }
657 
658 /**
659  * The position of the sun at this object's current date and time,
660  * in equatorial coordinates.
661  * @internal
662  * @deprecated ICU 2.4. This class may be removed or modified.
663  */
getSunPosition(CalendarAstronomer::Equatorial & result)664 CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
665     return eclipticToEquatorial(result, getSunLongitude(), 0);
666 }
667 
668 
669 /**
670  * Constant representing the vernal equinox.
671  * For use with {@link #getSunTime getSunTime}.
672  * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
673  * @internal
674  * @deprecated ICU 2.4. This class may be removed or modified.
675  */
676 /*double CalendarAstronomer::VERNAL_EQUINOX() {
677   return 0;
678 }*/
679 
680 /**
681  * Constant representing the summer solstice.
682  * For use with {@link #getSunTime getSunTime}.
683  * Note: In this case, "summer" refers to the northern hemisphere's seasons.
684  * @internal
685  * @deprecated ICU 2.4. This class may be removed or modified.
686  */
SUMMER_SOLSTICE()687 double CalendarAstronomer::SUMMER_SOLSTICE() {
688     return  (CalendarAstronomer::PI/2);
689 }
690 
691 /**
692  * Constant representing the autumnal equinox.
693  * For use with {@link #getSunTime getSunTime}.
694  * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
695  * @internal
696  * @deprecated ICU 2.4. This class may be removed or modified.
697  */
698 /*double CalendarAstronomer::AUTUMN_EQUINOX() {
699   return  (CalendarAstronomer::PI);
700 }*/
701 
702 /**
703  * Constant representing the winter solstice.
704  * For use with {@link #getSunTime getSunTime}.
705  * Note: In this case, "winter" refers to the northern hemisphere's seasons.
706  * @internal
707  * @deprecated ICU 2.4. This class may be removed or modified.
708  */
WINTER_SOLSTICE()709 double CalendarAstronomer::WINTER_SOLSTICE() {
710     return  ((CalendarAstronomer::PI*3)/2);
711 }
712 
~AngleFunc()713 CalendarAstronomer::AngleFunc::~AngleFunc() {}
714 
715 /**
716  * Find the next time at which the sun's ecliptic longitude will have
717  * the desired value.
718  * @internal
719  * @deprecated ICU 2.4. This class may be removed or modified.
720  */
721 class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
722 public:
723     virtual ~SunTimeAngleFunc();
eval(CalendarAstronomer & a)724     virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); }
725 };
726 
~SunTimeAngleFunc()727 SunTimeAngleFunc::~SunTimeAngleFunc() {}
728 
getSunTime(double desired,UBool next)729 UDate CalendarAstronomer::getSunTime(double desired, UBool next)
730 {
731     SunTimeAngleFunc func;
732     return timeOfAngle( func,
733                         desired,
734                         TROPICAL_YEAR,
735                         MINUTE_MS,
736                         next);
737 }
738 
~CoordFunc()739 CalendarAstronomer::CoordFunc::~CoordFunc() {}
740 
741 class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
742 public:
743     virtual ~RiseSetCoordFunc();
eval(CalendarAstronomer::Equatorial & result,CalendarAstronomer & a)744     virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) {  a.getSunPosition(result); }
745 };
746 
~RiseSetCoordFunc()747 RiseSetCoordFunc::~RiseSetCoordFunc() {}
748 
getSunRiseSet(UBool rise)749 UDate CalendarAstronomer::getSunRiseSet(UBool rise)
750 {
751     UDate t0 = fTime;
752 
753     // Make a rough guess: 6am or 6pm local time on the current day
754     double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
755 
756     U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
757     setTime(noon +  ((rise ? -6 : 6) * HOUR_MS));
758     U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
759 
760     RiseSetCoordFunc func;
761     double t = riseOrSet(func,
762                          rise,
763                          .533 * DEG_RAD,        // Angular Diameter
764                          34. /60.0 * DEG_RAD,    // Refraction correction
765                          MINUTE_MS / 12.);       // Desired accuracy
766 
767     setTime(t0);
768     return t;
769 }
770 
771 // Commented out - currently unused. ICU 2.6, Alan
772 //    //-------------------------------------------------------------------------
773 //    // Alternate Sun Rise/Set
774 //    // See Duffett-Smith p.93
775 //    //-------------------------------------------------------------------------
776 //
777 //    // This yields worse results (as compared to USNO data) than getSunRiseSet().
778 //    /**
779 //     * TODO Make this when the entire class is package-private.
780 //     */
781 //    /*public*/ long getSunRiseSet2(boolean rise) {
782 //        // 1. Calculate coordinates of the sun's center for midnight
783 //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
784 //        double[] sl = getSunLongitude(jd);//        double lambda1 = sl[0];
785 //        Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
786 //
787 //        // 2. Add ... to lambda to get position 24 hours later
788 //        double lambda2 = lambda1 + 0.985647*DEG_RAD;
789 //        Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
790 //
791 //        // 3. Calculate LSTs of rising and setting for these two positions
792 //        double tanL = ::tan(fLatitude);
793 //        double H = ::acos(-tanL * ::tan(pos1.declination));
794 //        double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
795 //        double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
796 //               H = ::acos(-tanL * ::tan(pos2.declination));
797 //        double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
798 //        double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
799 //        if (lst1r > 24) lst1r -= 24;
800 //        if (lst1s > 24) lst1s -= 24;
801 //        if (lst2r > 24) lst2r -= 24;
802 //        if (lst2s > 24) lst2s -= 24;
803 //
804 //        // 4. Convert LSTs to GSTs.  If GST1 > GST2, add 24 to GST2.
805 //        double gst1r = lstToGst(lst1r);
806 //        double gst1s = lstToGst(lst1s);
807 //        double gst2r = lstToGst(lst2r);
808 //        double gst2s = lstToGst(lst2s);
809 //        if (gst1r > gst2r) gst2r += 24;
810 //        if (gst1s > gst2s) gst2s += 24;
811 //
812 //        // 5. Calculate GST at 0h UT of this date
813 //        double t00 = utToGst(0);
814 //
815 //        // 6. Calculate GST at 0h on the observer's longitude
816 //        double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
817 //        double t00p = t00 - offset*1.002737909;
818 //        if (t00p < 0) t00p += 24; // do NOT normalize
819 //
820 //        // 7. Adjust
821 //        if (gst1r < t00p) {
822 //            gst1r += 24;
823 //            gst2r += 24;
824 //        }
825 //        if (gst1s < t00p) {
826 //            gst1s += 24;
827 //            gst2s += 24;
828 //        }
829 //
830 //        // 8.
831 //        double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
832 //        double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
833 //
834 //        // 9. Correct for parallax, refraction, and sun's diameter
835 //        double dec = (pos1.declination + pos2.declination) / 2;
836 //        double psi = ::acos(sin(fLatitude) / cos(dec));
837 //        double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
838 //        double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
839 //        double delta_t = 240 * y / cos(dec) / 3600; // hours
840 //
841 //        // 10. Add correction to GSTs, subtract from GSTr
842 //        gstr -= delta_t;
843 //        gsts += delta_t;
844 //
845 //        // 11. Convert GST to UT and then to local civil time
846 //        double ut = gstToUt(rise ? gstr : gsts);
847 //        //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
848 //        long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
849 //        return midnight + (long) (ut * 3600000);
850 //    }
851 
852 // Commented out - currently unused. ICU 2.6, Alan
853 //    /**
854 //     * Convert local sidereal time to Greenwich sidereal time.
855 //     * Section 15.  Duffett-Smith p.21
856 //     * @param lst in hours (0..24)
857 //     * @return GST in hours (0..24)
858 //     */
859 //    double lstToGst(double lst) {
860 //        double delta = fLongitude * 24 / CalendarAstronomer_PI2;
861 //        return normalize(lst - delta, 24);
862 //    }
863 
864 // Commented out - currently unused. ICU 2.6, Alan
865 //    /**
866 //     * Convert UT to GST on this date.
867 //     * Section 12.  Duffett-Smith p.17
868 //     * @param ut in hours
869 //     * @return GST in hours
870 //     */
871 //    double utToGst(double ut) {
872 //        return normalize(getT0() + ut*1.002737909, 24);
873 //    }
874 
875 // Commented out - currently unused. ICU 2.6, Alan
876 //    /**
877 //     * Convert GST to UT on this date.
878 //     * Section 13.  Duffett-Smith p.18
879 //     * @param gst in hours
880 //     * @return UT in hours
881 //     */
882 //    double gstToUt(double gst) {
883 //        return normalize(gst - getT0(), 24) * 0.9972695663;
884 //    }
885 
886 // Commented out - currently unused. ICU 2.6, Alan
887 //    double getT0() {
888 //        // Common computation for UT <=> GST
889 //
890 //        // Find JD for 0h UT
891 //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
892 //
893 //        double s = jd - 2451545.0;
894 //        double t = s / 36525.0;
895 //        double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
896 //        return t0;
897 //    }
898 
899 // Commented out - currently unused. ICU 2.6, Alan
900 //    //-------------------------------------------------------------------------
901 //    // Alternate Sun Rise/Set
902 //    // See sci.astro FAQ
903 //    // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
904 //    //-------------------------------------------------------------------------
905 //
906 //    // Note: This method appears to produce inferior accuracy as
907 //    // compared to getSunRiseSet().
908 //
909 //    /**
910 //     * TODO Make this when the entire class is package-private.
911 //     */
912 //    /*public*/ long getSunRiseSet3(boolean rise) {
913 //
914 //        // Compute day number for 0.0 Jan 2000 epoch
915 //        double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
916 //
917 //        // Now compute the Local Sidereal Time, LST:
918 //        //
919 //        double LST  =  98.9818  +  0.985647352 * d  +  /*UT*15  +  long*/
920 //            fLongitude*RAD_DEG;
921 //        //
922 //        // (east long. positive).  Note that LST is here expressed in degrees,
923 //        // where 15 degrees corresponds to one hour.  Since LST really is an angle,
924 //        // it's convenient to use one unit---degrees---throughout.
925 //
926 //        //    COMPUTING THE SUN'S POSITION
927 //        //    ----------------------------
928 //        //
929 //        // To be able to compute the Sun's rise/set times, you need to be able to
930 //        // compute the Sun's position at any time.  First compute the "day
931 //        // number" d as outlined above, for the desired moment.  Next compute:
932 //        //
933 //        double oblecl = 23.4393 - 3.563E-7 * d;
934 //        //
935 //        double w  =  282.9404  +  4.70935E-5   * d;
936 //        double M  =  356.0470  +  0.9856002585 * d;
937 //        double e  =  0.016709  -  1.151E-9     * d;
938 //        //
939 //        // This is the obliquity of the ecliptic, plus some of the elements of
940 //        // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
941 //        // argument of perihelion, M = mean anomaly, e = eccentricity.
942 //        // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
943 //        // true, this is still an accurate approximation).  Next compute E, the
944 //        // eccentric anomaly:
945 //        //
946 //        double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
947 //        //
948 //        // where E and M are in degrees.  This is it---no further iterations are
949 //        // needed because we know e has a sufficiently small value.  Next compute
950 //        // the true anomaly, v, and the distance, r:
951 //        //
952 //        /*      r * cos(v)  =  */ double A  =  cos(E*DEG_RAD) - e;
953 //        /*      r * ::sin(v)  =  */ double B  =  ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
954 //        //
955 //        // and
956 //        //
957 //        //      r  =  sqrt( A*A + B*B )
958 //        double v  =  ::atan2( B, A )*RAD_DEG;
959 //        //
960 //        // The Sun's true longitude, slon, can now be computed:
961 //        //
962 //        double slon  =  v + w;
963 //        //
964 //        // Since the Sun is always at the ecliptic (or at least very very close to
965 //        // it), we can use simplified formulae to convert slon (the Sun's ecliptic
966 //        // longitude) to sRA and sDec (the Sun's RA and Dec):
967 //        //
968 //        //                   ::sin(slon) * cos(oblecl)
969 //        //     tan(sRA)  =  -------------------------
970 //        //            cos(slon)
971 //        //
972 //        //     ::sin(sDec) =  ::sin(oblecl) * ::sin(slon)
973 //        //
974 //        // As was the case when computing az, the Azimuth, if possible use an
975 //        // atan2() function to compute sRA.
976 //
977 //        double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
978 //
979 //        double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
980 //        double sDec = ::asin(sin_sDec)*RAD_DEG;
981 //
982 //        //    COMPUTING RISE AND SET TIMES
983 //        //    ----------------------------
984 //        //
985 //        // To compute when an object rises or sets, you must compute when it
986 //        // passes the meridian and the HA of rise/set.  Then the rise time is
987 //        // the meridian time minus HA for rise/set, and the set time is the
988 //        // meridian time plus the HA for rise/set.
989 //        //
990 //        // To find the meridian time, compute the Local Sidereal Time at 0h local
991 //        // time (or 0h UT if you prefer to work in UT) as outlined above---name
992 //        // that quantity LST0.  The Meridian Time, MT, will now be:
993 //        //
994 //        //     MT  =  RA - LST0
995 //        double MT = normalize(sRA - LST, 360);
996 //        //
997 //        // where "RA" is the object's Right Ascension (in degrees!).  If negative,
998 //        // add 360 deg to MT.  If the object is the Sun, leave the time as it is,
999 //        // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
1000 //        // sidereal to solar time.  Now, compute HA for rise/set, name that
1001 //        // quantity HA0:
1002 //        //
1003 //        //                 ::sin(h0)  -  ::sin(lat) * ::sin(Dec)
1004 //        // cos(HA0)  =  ---------------------------------
1005 //        //                      cos(lat) * cos(Dec)
1006 //        //
1007 //        // where h0 is the altitude selected to represent rise/set.  For a purely
1008 //        // mathematical horizon, set h0 = 0 and simplify to:
1009 //        //
1010 //        //    cos(HA0)  =  - tan(lat) * tan(Dec)
1011 //        //
1012 //        // If you want to account for refraction on the atmosphere, set h0 = -35/60
1013 //        // degrees (-35 arc minutes), and if you want to compute the rise/set times
1014 //        // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
1015 //        //
1016 //        double h0 = -50/60 * DEG_RAD;
1017 //
1018 //        double HA0 = ::acos(
1019 //          (sin(h0) - ::sin(fLatitude) * sin_sDec) /
1020 //          (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
1021 //
1022 //        // When HA0 has been computed, leave it as it is for the Sun but multiply
1023 //        // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
1024 //        // solar time.  Finally compute:
1025 //        //
1026 //        //    Rise time  =  MT - HA0
1027 //        //    Set  time  =  MT + HA0
1028 //        //
1029 //        // convert the times from degrees to hours by dividing by 15.
1030 //        //
1031 //        // If you'd like to check that your calculations are accurate or just
1032 //        // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
1033 //        // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
1034 //
1035 //        double result = MT + (rise ? -HA0 : HA0); // in degrees
1036 //
1037 //        // Find UT midnight on this day
1038 //        long midnight = DAY_MS * (time / DAY_MS);
1039 //
1040 //        return midnight + (long) (result * 3600000 / 15);
1041 //    }
1042 
1043 //-------------------------------------------------------------------------
1044 // The Moon
1045 //-------------------------------------------------------------------------
1046 
1047 #define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch
1048 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee
1049 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node
1050 #define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit
1051 #define moonE  (   0.054900 )            // Eccentricity of orbit
1052 
1053 // These aren't used right now
1054 #define moonA  (   3.84401e5 )           // semi-major axis (km)
1055 #define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A
1056 #define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A
1057 
1058 /**
1059  * The position of the moon at the time set on this
1060  * object, in equatorial coordinates.
1061  * @internal
1062  * @deprecated ICU 2.4. This class may be removed or modified.
1063  */
getMoonPosition()1064 const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
1065 {
1066     //
1067     // See page 142 of "Practial Astronomy with your Calculator",
1068     // by Peter Duffet-Smith, for details on the algorithm.
1069     //
1070     if (moonPositionSet == FALSE) {
1071         // Calculate the solar longitude.  Has the side effect of
1072         // filling in "meanAnomalySun" as well.
1073         getSunLongitude();
1074 
1075         //
1076         // Find the # of days since the epoch of our orbital parameters.
1077         // TODO: Convert the time of day portion into ephemeris time
1078         //
1079         double day = getJulianDay() - JD_EPOCH;       // Days since epoch
1080 
1081         // Calculate the mean longitude and anomaly of the moon, based on
1082         // a circular orbit.  Similar to the corresponding solar calculation.
1083         double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
1084         meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
1085 
1086         //
1087         // Calculate the following corrections:
1088         //  Evection:   the sun's gravity affects the moon's eccentricity
1089         //  Annual Eqn: variation in the effect due to earth-sun distance
1090         //  A3:         correction factor (for ???)
1091         //
1092         double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
1093             - meanAnomalyMoon);
1094         double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);
1095         double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);
1096 
1097         meanAnomalyMoon += evection - annual - a3;
1098 
1099         //
1100         // More correction factors:
1101         //  center  equation of the center correction
1102         //  a4      yet another error correction (???)
1103         //
1104         // TODO: Skip the equation of the center correction and solve Kepler's eqn?
1105         //
1106         double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
1107         double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
1108 
1109         // Now find the moon's corrected longitude
1110         moonLongitude = meanLongitude + evection + center - annual + a4;
1111 
1112         //
1113         // And finally, find the variation, caused by the fact that the sun's
1114         // gravitational pull on the moon varies depending on which side of
1115         // the earth the moon is on
1116         //
1117         double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
1118 
1119         moonLongitude += variation;
1120 
1121         //
1122         // What we've calculated so far is the moon's longitude in the plane
1123         // of its own orbit.  Now map to the ecliptic to get the latitude
1124         // and longitude.  First we need to find the longitude of the ascending
1125         // node, the position on the ecliptic where it is crossed by the moon's
1126         // orbit as it crosses from the southern to the northern hemisphere.
1127         //
1128         double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
1129 
1130         nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
1131 
1132         double y = ::sin(moonLongitude - nodeLongitude);
1133         double x = cos(moonLongitude - nodeLongitude);
1134 
1135         moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
1136         double moonEclipLat = ::asin(y * ::sin(moonI));
1137 
1138         eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
1139         moonPositionSet = TRUE;
1140     }
1141     return moonPosition;
1142 }
1143 
1144 /**
1145  * The "age" of the moon at the time specified in this object.
1146  * This is really the angle between the
1147  * current ecliptic longitudes of the sun and the moon,
1148  * measured in radians.
1149  *
1150  * @see #getMoonPhase
1151  * @internal
1152  * @deprecated ICU 2.4. This class may be removed or modified.
1153  */
getMoonAge()1154 double CalendarAstronomer::getMoonAge() {
1155     // See page 147 of "Practial Astronomy with your Calculator",
1156     // by Peter Duffet-Smith, for details on the algorithm.
1157     //
1158     // Force the moon's position to be calculated.  We're going to use
1159     // some the intermediate results cached during that calculation.
1160     //
1161     getMoonPosition();
1162 
1163     return norm2PI(moonEclipLong - sunLongitude);
1164 }
1165 
1166 /**
1167  * Calculate the phase of the moon at the time set in this object.
1168  * The returned phase is a <code>double</code> in the range
1169  * <code>0 <= phase < 1</code>, interpreted as follows:
1170  * <ul>
1171  * <li>0.00: New moon
1172  * <li>0.25: First quarter
1173  * <li>0.50: Full moon
1174  * <li>0.75: Last quarter
1175  * </ul>
1176  *
1177  * @see #getMoonAge
1178  * @internal
1179  * @deprecated ICU 2.4. This class may be removed or modified.
1180  */
getMoonPhase()1181 double CalendarAstronomer::getMoonPhase() {
1182     // See page 147 of "Practial Astronomy with your Calculator",
1183     // by Peter Duffet-Smith, for details on the algorithm.
1184     return 0.5 * (1 - cos(getMoonAge()));
1185 }
1186 
1187 /**
1188  * Constant representing a new moon.
1189  * For use with {@link #getMoonTime getMoonTime}
1190  * @internal
1191  * @deprecated ICU 2.4. This class may be removed or modified.
1192  */
NEW_MOON()1193 const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
1194     return  CalendarAstronomer::MoonAge(0);
1195 }
1196 
1197 /**
1198  * Constant representing the moon's first quarter.
1199  * For use with {@link #getMoonTime getMoonTime}
1200  * @internal
1201  * @deprecated ICU 2.4. This class may be removed or modified.
1202  */
1203 /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
1204   return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
1205 }*/
1206 
1207 /**
1208  * Constant representing a full moon.
1209  * For use with {@link #getMoonTime getMoonTime}
1210  * @internal
1211  * @deprecated ICU 2.4. This class may be removed or modified.
1212  */
FULL_MOON()1213 const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
1214     return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
1215 }
1216 /**
1217  * Constant representing the moon's last quarter.
1218  * For use with {@link #getMoonTime getMoonTime}
1219  * @internal
1220  * @deprecated ICU 2.4. This class may be removed or modified.
1221  */
1222 
1223 class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
1224 public:
1225     virtual ~MoonTimeAngleFunc();
eval(CalendarAstronomer & a)1226     virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); }
1227 };
1228 
~MoonTimeAngleFunc()1229 MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
1230 
1231 /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
1232   return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
1233 }*/
1234 
1235 /**
1236  * Find the next or previous time at which the Moon's ecliptic
1237  * longitude will have the desired value.
1238  * <p>
1239  * @param desired   The desired longitude.
1240  * @param next      <tt>true</tt> if the next occurrance of the phase
1241  *                  is desired, <tt>false</tt> for the previous occurrance.
1242  * @internal
1243  * @deprecated ICU 2.4. This class may be removed or modified.
1244  */
getMoonTime(double desired,UBool next)1245 UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
1246 {
1247     MoonTimeAngleFunc func;
1248     return timeOfAngle( func,
1249                         desired,
1250                         SYNODIC_MONTH,
1251                         MINUTE_MS,
1252                         next);
1253 }
1254 
1255 /**
1256  * Find the next or previous time at which the moon will be in the
1257  * desired phase.
1258  * <p>
1259  * @param desired   The desired phase of the moon.
1260  * @param next      <tt>true</tt> if the next occurrance of the phase
1261  *                  is desired, <tt>false</tt> for the previous occurrance.
1262  * @internal
1263  * @deprecated ICU 2.4. This class may be removed or modified.
1264  */
getMoonTime(const CalendarAstronomer::MoonAge & desired,UBool next)1265 UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
1266     return getMoonTime(desired.value, next);
1267 }
1268 
1269 class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
1270 public:
1271     virtual ~MoonRiseSetCoordFunc();
eval(CalendarAstronomer::Equatorial & result,CalendarAstronomer & a)1272     virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); }
1273 };
1274 
~MoonRiseSetCoordFunc()1275 MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {}
1276 
1277 /**
1278  * Returns the time (GMT) of sunrise or sunset on the local date to which
1279  * this calendar is currently set.
1280  * @internal
1281  * @deprecated ICU 2.4. This class may be removed or modified.
1282  */
getMoonRiseSet(UBool rise)1283 UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
1284 {
1285     MoonRiseSetCoordFunc func;
1286     return riseOrSet(func,
1287                      rise,
1288                      .533 * DEG_RAD,        // Angular Diameter
1289                      34 /60.0 * DEG_RAD,    // Refraction correction
1290                      MINUTE_MS);            // Desired accuracy
1291 }
1292 
1293 //-------------------------------------------------------------------------
1294 // Interpolation methods for finding the time at which a given event occurs
1295 //-------------------------------------------------------------------------
1296 
timeOfAngle(AngleFunc & func,double desired,double periodDays,double epsilon,UBool next)1297 UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
1298                                       double periodDays, double epsilon, UBool next)
1299 {
1300     // Find the value of the function at the current time
1301     double lastAngle = func.eval(*this);
1302 
1303     // Find out how far we are from the desired angle
1304     double deltaAngle = norm2PI(desired - lastAngle) ;
1305 
1306     // Using the average period, estimate the next (or previous) time at
1307     // which the desired angle occurs.
1308     double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
1309 
1310     double lastDeltaT = deltaT; // Liu
1311     UDate startTime = fTime; // Liu
1312 
1313     setTime(fTime + uprv_ceil(deltaT));
1314 
1315     // Now iterate until we get the error below epsilon.  Throughout
1316     // this loop we use normPI to get values in the range -Pi to Pi,
1317     // since we're using them as correction factors rather than absolute angles.
1318     do {
1319         // Evaluate the function at the time we've estimated
1320         double angle = func.eval(*this);
1321 
1322         // Find the # of milliseconds per radian at this point on the curve
1323         double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
1324 
1325         // Correct the time estimate based on how far off the angle is
1326         deltaT = normPI(desired - angle) * factor;
1327 
1328         // HACK:
1329         //
1330         // If abs(deltaT) begins to diverge we need to quit this loop.
1331         // This only appears to happen when attempting to locate, for
1332         // example, a new moon on the day of the new moon.  E.g.:
1333         //
1334         // This result is correct:
1335         // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
1336         //   Sun Jul 22 10:57:41 CST 1990
1337         //
1338         // But attempting to make the same call a day earlier causes deltaT
1339         // to diverge:
1340         // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
1341         //   1.3649828540224032E9
1342         // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
1343         //   Sun Jul 08 13:56:15 CST 1990
1344         //
1345         // As a temporary solution, we catch this specific condition and
1346         // adjust our start time by one eighth period days (either forward
1347         // or backward) and try again.
1348         // Liu 11/9/00
1349         if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
1350             double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
1351             setTime(startTime + (next ? delta : -delta));
1352             return timeOfAngle(func, desired, periodDays, epsilon, next);
1353         }
1354 
1355         lastDeltaT = deltaT;
1356         lastAngle = angle;
1357 
1358         setTime(fTime + uprv_ceil(deltaT));
1359     }
1360     while (uprv_fabs(deltaT) > epsilon);
1361 
1362     return fTime;
1363 }
1364 
riseOrSet(CoordFunc & func,UBool rise,double diameter,double refraction,double epsilon)1365 UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
1366                                     double diameter, double refraction,
1367                                     double epsilon)
1368 {
1369     Equatorial pos;
1370     double      tanL   = ::tan(fLatitude);
1371     double     deltaT = 0;
1372     int32_t         count = 0;
1373 
1374     //
1375     // Calculate the object's position at the current time, then use that
1376     // position to calculate the time of rising or setting.  The position
1377     // will be different at that time, so iterate until the error is allowable.
1378     //
1379     U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
1380         rise?"T":"F", diameter, refraction, epsilon));
1381     do {
1382         // See "Practical Astronomy With Your Calculator, section 33.
1383         func.eval(pos, *this);
1384         double angle = ::acos(-tanL * ::tan(pos.declination));
1385         double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
1386 
1387         // Convert from LST to Universal Time.
1388         UDate newTime = lstToUT( lst );
1389 
1390         deltaT = newTime - fTime;
1391         setTime(newTime);
1392         U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf,   A=%.3lf/D=%.3lf\n",
1393             count, deltaT, angle, lst, pos.ascension, pos.declination));
1394     }
1395     while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
1396 
1397     // Calculate the correction due to refraction and the object's angular diameter
1398     double cosD  = ::cos(pos.declination);
1399     double psi   = ::acos(sin(fLatitude) / cosD);
1400     double x     = diameter / 2 + refraction;
1401     double y     = ::asin(sin(x) / ::sin(psi));
1402     long  delta  = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
1403 
1404     return fTime + (rise ? -delta : delta);
1405 }
1406 											   /**
1407  * Return the obliquity of the ecliptic (the angle between the ecliptic
1408  * and the earth's equator) at the current time.  This varies due to
1409  * the precession of the earth's axis.
1410  *
1411  * @return  the obliquity of the ecliptic relative to the equator,
1412  *          measured in radians.
1413  */
eclipticObliquity()1414 double CalendarAstronomer::eclipticObliquity() {
1415     if (isINVALID(eclipObliquity)) {
1416         const double epoch = 2451545.0;     // 2000 AD, January 1.5
1417 
1418         double T = (getJulianDay() - epoch) / 36525;
1419 
1420         eclipObliquity = 23.439292
1421             - 46.815/3600 * T
1422             - 0.0006/3600 * T*T
1423             + 0.00181/3600 * T*T*T;
1424 
1425         eclipObliquity *= DEG_RAD;
1426     }
1427     return eclipObliquity;
1428 }
1429 
1430 
1431 //-------------------------------------------------------------------------
1432 // Private data
1433 //-------------------------------------------------------------------------
clearCache()1434 void CalendarAstronomer::clearCache() {
1435     const double INVALID = uprv_getNaN();
1436 
1437     julianDay       = INVALID;
1438     julianCentury   = INVALID;
1439     sunLongitude    = INVALID;
1440     meanAnomalySun  = INVALID;
1441     moonLongitude   = INVALID;
1442     moonEclipLong   = INVALID;
1443     meanAnomalyMoon = INVALID;
1444     eclipObliquity  = INVALID;
1445     siderealTime    = INVALID;
1446     siderealT0      = INVALID;
1447     moonPositionSet = FALSE;
1448 }
1449 
1450 //private static void out(String s) {
1451 //    System.out.println(s);
1452 //}
1453 
1454 //private static String deg(double rad) {
1455 //    return Double.toString(rad * RAD_DEG);
1456 //}
1457 
1458 //private static String hours(long ms) {
1459 //    return Double.toString((double)ms / HOUR_MS) + " hours";
1460 //}
1461 
1462 /**
1463  * @internal
1464  * @deprecated ICU 2.4. This class may be removed or modified.
1465  */
1466 /*UDate CalendarAstronomer::local(UDate localMillis) {
1467   // TODO - srl ?
1468   TimeZone *tz = TimeZone::createDefault();
1469   int32_t rawOffset;
1470   int32_t dstOffset;
1471   UErrorCode status = U_ZERO_ERROR;
1472   tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
1473   delete tz;
1474   return localMillis - rawOffset;
1475 }*/
1476 
1477 // Debugging functions
toString() const1478 UnicodeString CalendarAstronomer::Ecliptic::toString() const
1479 {
1480 #ifdef U_DEBUG_ASTRO
1481     char tmp[800];
1482     sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
1483     return UnicodeString(tmp, "");
1484 #else
1485     return UnicodeString();
1486 #endif
1487 }
1488 
toString() const1489 UnicodeString CalendarAstronomer::Equatorial::toString() const
1490 {
1491 #ifdef U_DEBUG_ASTRO
1492     char tmp[400];
1493     sprintf(tmp, "%f,%f",
1494         (ascension*RAD_DEG), (declination*RAD_DEG));
1495     return UnicodeString(tmp, "");
1496 #else
1497     return UnicodeString();
1498 #endif
1499 }
1500 
toString() const1501 UnicodeString CalendarAstronomer::Horizon::toString() const
1502 {
1503 #ifdef U_DEBUG_ASTRO
1504     char tmp[800];
1505     sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
1506     return UnicodeString(tmp, "");
1507 #else
1508     return UnicodeString();
1509 #endif
1510 }
1511 
1512 
1513 //  static private String radToHms(double angle) {
1514 //    int hrs = (int) (angle*RAD_HOUR);
1515 //    int min = (int)((angle*RAD_HOUR - hrs) * 60);
1516 //    int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
1517 
1518 //    return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
1519 //  }
1520 
1521 //  static private String radToDms(double angle) {
1522 //    int deg = (int) (angle*RAD_DEG);
1523 //    int min = (int)((angle*RAD_DEG - deg) * 60);
1524 //    int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
1525 
1526 //    return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
1527 //  }
1528 
1529 // =============== Calendar Cache ================
1530 
createCache(CalendarCache ** cache,UErrorCode & status)1531 void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
1532     ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
1533     if(cache == NULL) {
1534         status = U_MEMORY_ALLOCATION_ERROR;
1535     } else {
1536         *cache = new CalendarCache(32, status);
1537         if(U_FAILURE(status)) {
1538             delete *cache;
1539             *cache = NULL;
1540         }
1541     }
1542 }
1543 
get(CalendarCache ** cache,int32_t key,UErrorCode & status)1544 int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
1545     int32_t res;
1546 
1547     if(U_FAILURE(status)) {
1548         return 0;
1549     }
1550     umtx_lock(&ccLock);
1551 
1552     if(*cache == NULL) {
1553         createCache(cache, status);
1554         if(U_FAILURE(status)) {
1555             umtx_unlock(&ccLock);
1556             return 0;
1557         }
1558     }
1559 
1560     res = uhash_igeti((*cache)->fTable, key);
1561     U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
1562 
1563     umtx_unlock(&ccLock);
1564     return res;
1565 }
1566 
put(CalendarCache ** cache,int32_t key,int32_t value,UErrorCode & status)1567 void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
1568     if(U_FAILURE(status)) {
1569         return;
1570     }
1571     umtx_lock(&ccLock);
1572 
1573     if(*cache == NULL) {
1574         createCache(cache, status);
1575         if(U_FAILURE(status)) {
1576             umtx_unlock(&ccLock);
1577             return;
1578         }
1579     }
1580 
1581     uhash_iputi((*cache)->fTable, key, value, &status);
1582     U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
1583 
1584     umtx_unlock(&ccLock);
1585 }
1586 
CalendarCache(int32_t size,UErrorCode & status)1587 CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
1588     fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status);
1589     U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
1590 }
1591 
~CalendarCache()1592 CalendarCache::~CalendarCache() {
1593     if(fTable != NULL) {
1594         U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
1595         uhash_close(fTable);
1596     }
1597 }
1598 
1599 U_NAMESPACE_END
1600 
1601 #endif //  !UCONFIG_NO_FORMATTING
1602