1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // An example of solving a dynamically sized problem with various
32 // solvers and loss functions.
33 //
34 // For a simpler bare bones example of doing bundle adjustment with
35 // Ceres, please see simple_bundle_adjuster.cc.
36 //
37 // NOTE: This example will not compile without gflags and SuiteSparse.
38 //
39 // The problem being solved here is known as a Bundle Adjustment
40 // problem in computer vision. Given a set of 3d points X_1, ..., X_n,
41 // a set of cameras P_1, ..., P_m. If the point X_i is visible in
42 // image j, then there is a 2D observation u_ij that is the expected
43 // projection of X_i using P_j. The aim of this optimization is to
44 // find values of X_i and P_j such that the reprojection error
45 //
46 // E(X,P) = sum_ij |u_ij - P_j X_i|^2
47 //
48 // is minimized.
49 //
50 // The problem used here comes from a collection of bundle adjustment
51 // problems published at University of Washington.
52 // http://grail.cs.washington.edu/projects/bal
53
54 #include <algorithm>
55 #include <cmath>
56 #include <cstdio>
57 #include <cstdlib>
58 #include <string>
59 #include <vector>
60
61 #include "bal_problem.h"
62 #include "ceres/ceres.h"
63 #include "gflags/gflags.h"
64 #include "glog/logging.h"
65 #include "snavely_reprojection_error.h"
66
67 DEFINE_string(input, "", "Input File name");
68 DEFINE_string(trust_region_strategy, "levenberg_marquardt",
69 "Options are: levenberg_marquardt, dogleg.");
70 DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"
71 "subspace_dogleg.");
72
73 DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "
74 "refine each successful trust region step.");
75
76 DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "
77 "automatic, cameras, points, cameras,points, points,cameras");
78
79 DEFINE_string(linear_solver, "sparse_schur", "Options are: "
80 "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, "
81 "dense_qr, dense_normal_cholesky and cgnr.");
82 DEFINE_string(preconditioner, "jacobi", "Options are: "
83 "identity, jacobi, schur_jacobi, cluster_jacobi, "
84 "cluster_tridiagonal.");
85 DEFINE_string(visibility_clustering, "canonical_views",
86 "single_linkage, canonical_views");
87
88 DEFINE_string(sparse_linear_algebra_library, "suite_sparse",
89 "Options are: suite_sparse and cx_sparse.");
90 DEFINE_string(dense_linear_algebra_library, "eigen",
91 "Options are: eigen and lapack.");
92 DEFINE_string(ordering, "automatic", "Options are: automatic, user.");
93
94 DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
95 "rotations. If false, angle axis is used.");
96 DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "
97 "parameterization.");
98 DEFINE_bool(robustify, false, "Use a robust loss function.");
99
100 DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "
101 "accuracy of each linear solve of the truncated newton step. "
102 "Changing this parameter can affect solve performance.");
103
104 DEFINE_int32(num_threads, 1, "Number of threads.");
105 DEFINE_int32(num_iterations, 5, "Number of iterations.");
106 DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");
107 DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
108 " nonmonotic steps.");
109
110 DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "
111 "perturbation.");
112 DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "
113 "translation perturbation.");
114 DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "
115 "perturbation.");
116 DEFINE_int32(random_seed, 38401, "Random seed used to set the state "
117 "of the pseudo random number generator used to generate "
118 "the pertubations.");
119 DEFINE_bool(line_search, false, "Use a line search instead of trust region "
120 "algorithm.");
121
122 namespace ceres {
123 namespace examples {
124
SetLinearSolver(Solver::Options * options)125 void SetLinearSolver(Solver::Options* options) {
126 CHECK(StringToLinearSolverType(FLAGS_linear_solver,
127 &options->linear_solver_type));
128 CHECK(StringToPreconditionerType(FLAGS_preconditioner,
129 &options->preconditioner_type));
130 CHECK(StringToVisibilityClusteringType(FLAGS_visibility_clustering,
131 &options->visibility_clustering_type));
132 CHECK(StringToSparseLinearAlgebraLibraryType(
133 FLAGS_sparse_linear_algebra_library,
134 &options->sparse_linear_algebra_library_type));
135 CHECK(StringToDenseLinearAlgebraLibraryType(
136 FLAGS_dense_linear_algebra_library,
137 &options->dense_linear_algebra_library_type));
138 options->num_linear_solver_threads = FLAGS_num_threads;
139 }
140
SetOrdering(BALProblem * bal_problem,Solver::Options * options)141 void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
142 const int num_points = bal_problem->num_points();
143 const int point_block_size = bal_problem->point_block_size();
144 double* points = bal_problem->mutable_points();
145
146 const int num_cameras = bal_problem->num_cameras();
147 const int camera_block_size = bal_problem->camera_block_size();
148 double* cameras = bal_problem->mutable_cameras();
149
150 if (options->use_inner_iterations) {
151 if (FLAGS_blocks_for_inner_iterations == "cameras") {
152 LOG(INFO) << "Camera blocks for inner iterations";
153 options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
154 for (int i = 0; i < num_cameras; ++i) {
155 options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
156 }
157 } else if (FLAGS_blocks_for_inner_iterations == "points") {
158 LOG(INFO) << "Point blocks for inner iterations";
159 options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
160 for (int i = 0; i < num_points; ++i) {
161 options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
162 }
163 } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") {
164 LOG(INFO) << "Camera followed by point blocks for inner iterations";
165 options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
166 for (int i = 0; i < num_cameras; ++i) {
167 options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
168 }
169 for (int i = 0; i < num_points; ++i) {
170 options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1);
171 }
172 } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") {
173 LOG(INFO) << "Point followed by camera blocks for inner iterations";
174 options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
175 for (int i = 0; i < num_cameras; ++i) {
176 options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
177 }
178 for (int i = 0; i < num_points; ++i) {
179 options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
180 }
181 } else if (FLAGS_blocks_for_inner_iterations == "automatic") {
182 LOG(INFO) << "Choosing automatic blocks for inner iterations";
183 } else {
184 LOG(FATAL) << "Unknown block type for inner iterations: "
185 << FLAGS_blocks_for_inner_iterations;
186 }
187 }
188
189 // Bundle adjustment problems have a sparsity structure that makes
190 // them amenable to more specialized and much more efficient
191 // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
192 // ITERATIVE_SCHUR solvers make use of this specialized
193 // structure.
194 //
195 // This can either be done by specifying Options::ordering_type =
196 // ceres::SCHUR, in which case Ceres will automatically determine
197 // the right ParameterBlock ordering, or by manually specifying a
198 // suitable ordering vector and defining
199 // Options::num_eliminate_blocks.
200 if (FLAGS_ordering == "automatic") {
201 return;
202 }
203
204 ceres::ParameterBlockOrdering* ordering =
205 new ceres::ParameterBlockOrdering;
206
207 // The points come before the cameras.
208 for (int i = 0; i < num_points; ++i) {
209 ordering->AddElementToGroup(points + point_block_size * i, 0);
210 }
211
212 for (int i = 0; i < num_cameras; ++i) {
213 // When using axis-angle, there is a single parameter block for
214 // the entire camera.
215 ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
216 // If quaternions are used, there are two blocks, so add the
217 // second block to the ordering.
218 if (FLAGS_use_quaternions) {
219 ordering->AddElementToGroup(cameras + camera_block_size * i + 4, 1);
220 }
221 }
222
223 options->linear_solver_ordering.reset(ordering);
224 }
225
SetMinimizerOptions(Solver::Options * options)226 void SetMinimizerOptions(Solver::Options* options) {
227 options->max_num_iterations = FLAGS_num_iterations;
228 options->minimizer_progress_to_stdout = true;
229 options->num_threads = FLAGS_num_threads;
230 options->eta = FLAGS_eta;
231 options->max_solver_time_in_seconds = FLAGS_max_solver_time;
232 options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;
233 if (FLAGS_line_search) {
234 options->minimizer_type = ceres::LINE_SEARCH;
235 }
236
237 CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy,
238 &options->trust_region_strategy_type));
239 CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));
240 options->use_inner_iterations = FLAGS_inner_iterations;
241 }
242
SetSolverOptionsFromFlags(BALProblem * bal_problem,Solver::Options * options)243 void SetSolverOptionsFromFlags(BALProblem* bal_problem,
244 Solver::Options* options) {
245 SetMinimizerOptions(options);
246 SetLinearSolver(options);
247 SetOrdering(bal_problem, options);
248 }
249
BuildProblem(BALProblem * bal_problem,Problem * problem)250 void BuildProblem(BALProblem* bal_problem, Problem* problem) {
251 const int point_block_size = bal_problem->point_block_size();
252 const int camera_block_size = bal_problem->camera_block_size();
253 double* points = bal_problem->mutable_points();
254 double* cameras = bal_problem->mutable_cameras();
255
256 // Observations is 2*num_observations long array observations =
257 // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
258 // and y positions of the observation.
259 const double* observations = bal_problem->observations();
260
261 for (int i = 0; i < bal_problem->num_observations(); ++i) {
262 CostFunction* cost_function;
263 // Each Residual block takes a point and a camera as input and
264 // outputs a 2 dimensional residual.
265 cost_function =
266 (FLAGS_use_quaternions)
267 ? SnavelyReprojectionErrorWithQuaternions::Create(
268 observations[2 * i + 0],
269 observations[2 * i + 1])
270 : SnavelyReprojectionError::Create(
271 observations[2 * i + 0],
272 observations[2 * i + 1]);
273
274 // If enabled use Huber's loss function.
275 LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;
276
277 // Each observation correponds to a pair of a camera and a point
278 // which are identified by camera_index()[i] and point_index()[i]
279 // respectively.
280 double* camera =
281 cameras + camera_block_size * bal_problem->camera_index()[i];
282 double* point = points + point_block_size * bal_problem->point_index()[i];
283
284 if (FLAGS_use_quaternions) {
285 // When using quaternions, we split the camera into two
286 // parameter blocks. One of size 4 for the quaternion and the
287 // other of size 6 containing the translation, focal length and
288 // the radial distortion parameters.
289 problem->AddResidualBlock(cost_function,
290 loss_function,
291 camera,
292 camera + 4,
293 point);
294 } else {
295 problem->AddResidualBlock(cost_function, loss_function, camera, point);
296 }
297 }
298
299 if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {
300 LocalParameterization* quaternion_parameterization =
301 new QuaternionParameterization;
302 for (int i = 0; i < bal_problem->num_cameras(); ++i) {
303 problem->SetParameterization(cameras + camera_block_size * i,
304 quaternion_parameterization);
305 }
306 }
307 }
308
SolveProblem(const char * filename)309 void SolveProblem(const char* filename) {
310 BALProblem bal_problem(filename, FLAGS_use_quaternions);
311 Problem problem;
312
313 srand(FLAGS_random_seed);
314 bal_problem.Normalize();
315 bal_problem.Perturb(FLAGS_rotation_sigma,
316 FLAGS_translation_sigma,
317 FLAGS_point_sigma);
318
319 BuildProblem(&bal_problem, &problem);
320 Solver::Options options;
321 SetSolverOptionsFromFlags(&bal_problem, &options);
322 options.gradient_tolerance = 1e-16;
323 options.function_tolerance = 1e-16;
324 Solver::Summary summary;
325 Solve(options, &problem, &summary);
326 std::cout << summary.FullReport() << "\n";
327 }
328
329 } // namespace examples
330 } // namespace ceres
331
main(int argc,char ** argv)332 int main(int argc, char** argv) {
333 google::ParseCommandLineFlags(&argc, &argv, true);
334 google::InitGoogleLogging(argv[0]);
335 if (FLAGS_input.empty()) {
336 LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem";
337 return 1;
338 }
339
340 CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)
341 << "--use_local_parameterization can only be used with "
342 << "--use_quaternions.";
343 ceres::examples::SolveProblem(FLAGS_input.c_str());
344 return 0;
345 }
346