1
2 /*--------------------------------------------------------------------*/
3 /*--- Branch predictor simulation cg_branchpred.c ---*/
4 /*--------------------------------------------------------------------*/
5
6 /*
7 This file is part of Cachegrind, a Valgrind tool for cache
8 profiling programs.
9
10 Copyright (C) 2002-2013 Nicholas Nethercote
11 njn@valgrind.org
12
13 This program is free software; you can redistribute it and/or
14 modify it under the terms of the GNU General Public License as
15 published by the Free Software Foundation; either version 2 of the
16 License, or (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26 02111-1307, USA.
27
28 The GNU General Public License is contained in the file COPYING.
29 */
30
31
32 /* This file contains the actual branch predictor simulator and its
33 associated state. As with cg_sim.c it is #included directly into
34 cg_main.c. It provides:
35
36 - a taken/not-taken predictor for conditional branches
37 - a branch target address predictor for indirect branches
38
39 Function return-address prediction is not modelled, on the basis
40 that return stack predictors almost always predict correctly, and
41 also that it is difficult for Valgrind to robustly identify
42 function calls and returns.
43 */
44
45 /* How many bits at the bottom of an instruction address are
46 guaranteed to be zero? */
47 #if defined(VGA_ppc32) || defined(VGA_ppc64be) || defined(VGA_ppc64le) \
48 || defined(VGA_mips32) || defined(VGA_mips64) || defined(VGA_arm64)
49 # define N_IADDR_LO_ZERO_BITS 2
50 #elif defined(VGA_x86) || defined(VGA_amd64)
51 # define N_IADDR_LO_ZERO_BITS 0
52 #elif defined(VGA_s390x) || defined(VGA_arm)
53 # define N_IADDR_LO_ZERO_BITS 1
54 #elif defined(VGA_tilegx)
55 # define N_IADDR_LO_ZERO_BITS 3
56 #else
57 # error "Unsupported architecture"
58 #endif
59
60
61 /* Get a taken/not-taken prediction for the instruction (presumably a
62 conditional branch) at instr_addr. Once that's done, update the
63 predictor state based on whether or not it was actually taken, as
64 indicated by 'taken'. Finally, return 1 for a mispredict and 0 for
65 a successful predict.
66
67 The predictor is an array of 16k (== 2^14) 2-bit saturating
68 counters. Given the address of the branch instruction, the array
69 index to use is computed both from the low order bits of the branch
70 instruction's address, and the global history - that is, from the
71 taken/not-taken behaviour of the most recent few branches. This
72 makes the predictor able to correlate this branch's behaviour with
73 that of other branches.
74
75 TODO: use predictor written by someone who understands this stuff.
76 Perhaps it would be better to move to a standard GShare predictor
77 and/or tournament predictor.
78 */
79 /* The index is composed of N_HIST bits at the top and N_IADD bits at
80 the bottom. These numbers chosen somewhat arbitrarily, but note
81 that making N_IADD_BITS too small (eg 4) can cause large amounts of
82 aliasing, and hence misprediction, particularly if the history bits
83 are mostly unchanging. */
84 #define N_HIST_BITS 7
85 #define N_IADD_BITS 7
86
87 #define N_BITS (N_HIST_BITS + N_IADD_BITS)
88 #define N_COUNTERS (1 << N_BITS)
89
90 static UWord shift_register = 0; /* Contains global history */
91 static UChar counters[N_COUNTERS]; /* Counter array; presumably auto-zeroed */
92
93
do_cond_branch_predict(Addr instr_addr,Word takenW)94 static ULong do_cond_branch_predict ( Addr instr_addr, Word takenW )
95 {
96 UWord indx;
97 Bool predicted_taken, actually_taken, mispredict;
98
99 const UWord hist_mask = (1 << N_HIST_BITS) - 1;
100 const UWord iadd_mask = (1 << N_IADD_BITS) - 1;
101 UWord hist_bits = shift_register & hist_mask;
102 UWord iadd_bits = (instr_addr >> N_IADDR_LO_ZERO_BITS)
103 & iadd_mask;
104
105 tl_assert(hist_bits <= hist_mask);
106 tl_assert(iadd_bits <= iadd_mask);
107 indx = (hist_bits << N_IADD_BITS) | iadd_bits;
108 tl_assert(indx < N_COUNTERS);
109 if (0) VG_(printf)("index = %d\n", (Int)indx);
110
111 tl_assert(takenW <= 1);
112 predicted_taken = counters[ indx ] >= 2;
113 actually_taken = takenW > 0;
114
115 mispredict = (actually_taken && (!predicted_taken))
116 || ((!actually_taken) && predicted_taken);
117
118 shift_register <<= 1;
119 shift_register |= (actually_taken ? 1 : 0);
120
121 if (actually_taken) {
122 if (counters[indx] < 3)
123 counters[indx]++;
124 } else {
125 if (counters[indx] > 0)
126 counters[indx]--;
127 }
128
129 tl_assert(counters[indx] <= 3);
130
131 return mispredict ? 1 : 0;
132 }
133
134
135 /* A very simple indirect branch predictor. Use the branch's address
136 to index a table which records the previous target address for this
137 branch (or whatever aliased with it) and use that as the
138 prediction. */
139 #define N_BTAC_BITS 9
140 #define N_BTAC (1 << N_BTAC_BITS)
141 static Addr btac[N_BTAC]; /* BTAC; presumably auto-zeroed */
142
do_ind_branch_predict(Addr instr_addr,Addr actual)143 static ULong do_ind_branch_predict ( Addr instr_addr, Addr actual )
144 {
145 Bool mispredict;
146 const UWord mask = (1 << N_BTAC_BITS) - 1;
147 UWord indx = (instr_addr >> N_IADDR_LO_ZERO_BITS)
148 & mask;
149 tl_assert(indx < N_BTAC);
150 mispredict = btac[indx] != actual;
151 btac[indx] = actual;
152 return mispredict ? 1 : 0;
153 }
154
155
156 /*--------------------------------------------------------------------*/
157 /*--- end cg_branchpred.c ---*/
158 /*--------------------------------------------------------------------*/
159
160