1 /******************************************************************************
2 *
3 * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18 /**
19  *******************************************************************************
20  * @file
21  *  ihevc_itrans_recon_8x8.c
22  *
23  * @brief
24  *  Contains function definitions for inverse transform  and reconstruction 8x8
25  *
26  *
27  * @author
28  *  100470
29  *
30  * @par List of Functions:
31  *  - ihevc_itrans_recon_8x8()
32  *
33  * @remarks
34  *  None
35  *
36  *******************************************************************************
37  */
38 #include <stdio.h>
39 #include <string.h>
40 #include "ihevc_typedefs.h"
41 #include "ihevc_macros.h"
42 #include "ihevc_platform_macros.h"
43 #include "ihevc_defs.h"
44 #include "ihevc_trans_tables.h"
45 #include "ihevc_itrans_recon.h"
46 #include "ihevc_func_selector.h"
47 #include "ihevc_trans_macros.h"
48 
49 /**
50  *******************************************************************************
51  *
52  * @brief
53  *  This function performs Inverse transform  and reconstruction for 8x8
54  * input block
55  *
56  * @par Description:
57  *  Performs inverse transform and adds the prediction  data and clips output
58  * to 8 bit
59  *
60  * @param[in] pi2_src
61  *  Input 8x8 coefficients
62  *
63  * @param[in] pi2_tmp
64  *  Temporary 8x8 buffer for storing inverse
65  *
66  *  transform
67  *  1st stage output
68  *
69  * @param[in] pu1_pred
70  *  Prediction 8x8 block
71  *
72  * @param[out] pu1_dst
73  *  Output 8x8 block
74  *
75  * @param[in] src_strd
76  *  Input stride
77  *
78  * @param[in] pred_strd
79  *  Prediction stride
80  *
81  * @param[in] dst_strd
82  *  Output Stride
83  *
84  * @param[in] shift
85  *  Output shift
86  *
87  * @param[in] zero_cols
88  *  Zero columns in pi2_src
89  *
90  * @returns  Void
91  *
92  * @remarks
93  *  None
94  *
95  *******************************************************************************
96  */
97 
ihevc_itrans_recon_8x8(WORD16 * pi2_src,WORD16 * pi2_tmp,UWORD8 * pu1_pred,UWORD8 * pu1_dst,WORD32 src_strd,WORD32 pred_strd,WORD32 dst_strd,WORD32 zero_cols,WORD32 zero_rows)98 void ihevc_itrans_recon_8x8(WORD16 *pi2_src,
99                             WORD16 *pi2_tmp,
100                             UWORD8 *pu1_pred,
101                             UWORD8 *pu1_dst,
102                             WORD32 src_strd,
103                             WORD32 pred_strd,
104                             WORD32 dst_strd,
105                             WORD32 zero_cols,
106                             WORD32 zero_rows)
107 {
108     WORD32 j, k;
109     WORD32 e[4], o[4];
110     WORD32 ee[2], eo[2];
111     WORD32 add;
112     WORD32 shift;
113     WORD16 *pi2_tmp_orig;
114     WORD32 trans_size;
115     WORD32 zero_rows_2nd_stage = zero_cols;
116     WORD32 row_limit_2nd_stage;
117 
118     trans_size = TRANS_SIZE_8;
119 
120     pi2_tmp_orig = pi2_tmp;
121 
122     if((zero_cols & 0xF0) == 0xF0)
123         row_limit_2nd_stage = 4;
124     else
125         row_limit_2nd_stage = TRANS_SIZE_8;
126 
127 
128     if((zero_rows & 0xF0) == 0xF0) /* First 4 rows of input are non-zero */
129     {
130         /************************************************************************************************/
131         /**********************************START - IT_RECON_8x8******************************************/
132         /************************************************************************************************/
133 
134         /* Inverse Transform 1st stage */
135         shift = IT_SHIFT_STAGE_1;
136         add = 1 << (shift - 1);
137 
138         for(j = 0; j < row_limit_2nd_stage; j++)
139         {
140             /* Checking for Zero Cols */
141             if((zero_cols & 1) == 1)
142             {
143                 memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
144             }
145             else
146             {
147                 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
148                 for(k = 0; k < 4; k++)
149                 {
150                     o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd]
151                                     + g_ai2_ihevc_trans_8[3][k]
152                                                     * pi2_src[3 * src_strd];
153                 }
154                 eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd];
155                 eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd];
156                 ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0];
157                 ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0];
158 
159                 /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
160                 e[0] = ee[0] + eo[0];
161                 e[3] = ee[0] - eo[0];
162                 e[1] = ee[1] + eo[1];
163                 e[2] = ee[1] - eo[1];
164                 for(k = 0; k < 4; k++)
165                 {
166                     pi2_tmp[k] =
167                                     CLIP_S16(((e[k] + o[k] + add) >> shift));
168                     pi2_tmp[k + 4] =
169                                     CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
170                 }
171             }
172             pi2_src++;
173             pi2_tmp += trans_size;
174             zero_cols = zero_cols >> 1;
175         }
176 
177         pi2_tmp = pi2_tmp_orig;
178 
179         /* Inverse Transform 2nd stage */
180         shift = IT_SHIFT_STAGE_2;
181         add = 1 << (shift - 1);
182         if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */
183         {
184             for(j = 0; j < trans_size; j++)
185             {
186                 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
187                 for(k = 0; k < 4; k++)
188                 {
189                     o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
190                                     + g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size];
191                 }
192                 eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size];
193                 eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size];
194                 ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0];
195                 ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0];
196 
197                 /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
198                 e[0] = ee[0] + eo[0];
199                 e[3] = ee[0] - eo[0];
200                 e[1] = ee[1] + eo[1];
201                 e[2] = ee[1] - eo[1];
202                 for(k = 0; k < 4; k++)
203                 {
204                     WORD32 itrans_out;
205                     itrans_out =
206                                     CLIP_S16(((e[k] + o[k] + add) >> shift));
207                     pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
208                     itrans_out =
209                                     CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
210                     pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
211                 }
212                 pi2_tmp++;
213                 pu1_pred += pred_strd;
214                 pu1_dst += dst_strd;
215             }
216         }
217         else /* All rows of output of 1st stage are non-zero */
218         {
219             for(j = 0; j < trans_size; j++)
220             {
221                 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
222                 for(k = 0; k < 4; k++)
223                 {
224                     o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
225                                     + g_ai2_ihevc_trans_8[3][k]
226                                                     * pi2_tmp[3 * trans_size]
227                                     + g_ai2_ihevc_trans_8[5][k]
228                                                     * pi2_tmp[5 * trans_size]
229                                     + g_ai2_ihevc_trans_8[7][k]
230                                                     * pi2_tmp[7 * trans_size];
231                 }
232 
233                 eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]
234                                 + g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size];
235                 eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]
236                                 + g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size];
237                 ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]
238                                 + g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size];
239                 ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]
240                                 + g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size];
241 
242                 /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
243                 e[0] = ee[0] + eo[0];
244                 e[3] = ee[0] - eo[0];
245                 e[1] = ee[1] + eo[1];
246                 e[2] = ee[1] - eo[1];
247                 for(k = 0; k < 4; k++)
248                 {
249                     WORD32 itrans_out;
250                     itrans_out =
251                                     CLIP_S16(((e[k] + o[k] + add) >> shift));
252                     pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
253                     itrans_out =
254                                     CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
255                     pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
256                 }
257                 pi2_tmp++;
258                 pu1_pred += pred_strd;
259                 pu1_dst += dst_strd;
260             }
261         }
262         /************************************************************************************************/
263         /************************************END - IT_RECON_8x8******************************************/
264         /************************************************************************************************/
265     }
266     else /* All rows of input are non-zero */
267     {
268         /************************************************************************************************/
269         /**********************************START - IT_RECON_8x8******************************************/
270         /************************************************************************************************/
271 
272         /* Inverse Transform 1st stage */
273         shift = IT_SHIFT_STAGE_1;
274         add = 1 << (shift - 1);
275 
276         for(j = 0; j < row_limit_2nd_stage; j++)
277         {
278             /* Checking for Zero Cols */
279             if((zero_cols & 1) == 1)
280             {
281                 memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
282             }
283             else
284             {
285                 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
286                 for(k = 0; k < 4; k++)
287                 {
288                     o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd]
289                                     + g_ai2_ihevc_trans_8[3][k]
290                                                     * pi2_src[3 * src_strd]
291                                     + g_ai2_ihevc_trans_8[5][k]
292                                                     * pi2_src[5 * src_strd]
293                                     + g_ai2_ihevc_trans_8[7][k]
294                                                     * pi2_src[7 * src_strd];
295                 }
296 
297                 eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd]
298                                 + g_ai2_ihevc_trans_8[6][0] * pi2_src[6 * src_strd];
299                 eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd]
300                                 + g_ai2_ihevc_trans_8[6][1] * pi2_src[6 * src_strd];
301                 ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0]
302                                 + g_ai2_ihevc_trans_8[4][0] * pi2_src[4 * src_strd];
303                 ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0]
304                                 + g_ai2_ihevc_trans_8[4][1] * pi2_src[4 * src_strd];
305 
306                 /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
307                 e[0] = ee[0] + eo[0];
308                 e[3] = ee[0] - eo[0];
309                 e[1] = ee[1] + eo[1];
310                 e[2] = ee[1] - eo[1];
311                 for(k = 0; k < 4; k++)
312                 {
313                     pi2_tmp[k] =
314                                     CLIP_S16(((e[k] + o[k] + add) >> shift));
315                     pi2_tmp[k + 4] =
316                                     CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
317                 }
318             }
319             pi2_src++;
320             pi2_tmp += trans_size;
321             zero_cols = zero_cols >> 1;
322         }
323 
324         pi2_tmp = pi2_tmp_orig;
325 
326         /* Inverse Transform 2nd stage */
327         shift = IT_SHIFT_STAGE_2;
328         add = 1 << (shift - 1);
329         if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */
330         {
331             for(j = 0; j < trans_size; j++)
332             {
333                 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
334                 for(k = 0; k < 4; k++)
335                 {
336                     o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
337                                     + g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size];
338                 }
339                 eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size];
340                 eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size];
341                 ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0];
342                 ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0];
343 
344                 /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
345                 e[0] = ee[0] + eo[0];
346                 e[3] = ee[0] - eo[0];
347                 e[1] = ee[1] + eo[1];
348                 e[2] = ee[1] - eo[1];
349                 for(k = 0; k < 4; k++)
350                 {
351                     WORD32 itrans_out;
352                     itrans_out =
353                                     CLIP_S16(((e[k] + o[k] + add) >> shift));
354                     pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
355                     itrans_out =
356                                     CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
357                     pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
358                 }
359                 pi2_tmp++;
360                 pu1_pred += pred_strd;
361                 pu1_dst += dst_strd;
362             }
363         }
364         else /* All rows of output of 1st stage are non-zero */
365         {
366             for(j = 0; j < trans_size; j++)
367             {
368                 /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
369                 for(k = 0; k < 4; k++)
370                 {
371                     o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
372                                     + g_ai2_ihevc_trans_8[3][k]
373                                                     * pi2_tmp[3 * trans_size]
374                                     + g_ai2_ihevc_trans_8[5][k]
375                                                     * pi2_tmp[5 * trans_size]
376                                     + g_ai2_ihevc_trans_8[7][k]
377                                                     * pi2_tmp[7 * trans_size];
378                 }
379 
380                 eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]
381                                 + g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size];
382                 eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]
383                                 + g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size];
384                 ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]
385                                 + g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size];
386                 ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]
387                                 + g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size];
388 
389                 /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
390                 e[0] = ee[0] + eo[0];
391                 e[3] = ee[0] - eo[0];
392                 e[1] = ee[1] + eo[1];
393                 e[2] = ee[1] - eo[1];
394                 for(k = 0; k < 4; k++)
395                 {
396                     WORD32 itrans_out;
397                     itrans_out =
398                                     CLIP_S16(((e[k] + o[k] + add) >> shift));
399                     pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
400                     itrans_out =
401                                     CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
402                     pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
403                 }
404                 pi2_tmp++;
405                 pu1_pred += pred_strd;
406                 pu1_dst += dst_strd;
407             }
408         }
409         /************************************************************************************************/
410         /************************************END - IT_RECON_8x8******************************************/
411         /************************************************************************************************/
412     }
413 }
414 
415