1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "vpx_ports/mem.h"
12 #include "vpx_mem/vpx_mem.h"
13 
14 #include "vp9/decoder/vp9_reader.h"
15 
16 // This is meant to be a large, positive constant that can still be efficiently
17 // loaded as an immediate (on platforms like ARM, for example).
18 // Even relatively modest values like 100 would work fine.
19 #define LOTS_OF_BITS 0x40000000
20 
vp9_reader_init(vp9_reader * r,const uint8_t * buffer,size_t size,vpx_decrypt_cb decrypt_cb,void * decrypt_state)21 int vp9_reader_init(vp9_reader *r,
22                     const uint8_t *buffer,
23                     size_t size,
24                     vpx_decrypt_cb decrypt_cb,
25                     void *decrypt_state) {
26   if (size && !buffer) {
27     return 1;
28   } else {
29     r->buffer_end = buffer + size;
30     r->buffer = buffer;
31     r->value = 0;
32     r->count = -8;
33     r->range = 255;
34     r->decrypt_cb = decrypt_cb;
35     r->decrypt_state = decrypt_state;
36     vp9_reader_fill(r);
37     return vp9_read_bit(r) != 0;  // marker bit
38   }
39 }
40 
vp9_reader_fill(vp9_reader * r)41 void vp9_reader_fill(vp9_reader *r) {
42   const uint8_t *const buffer_end = r->buffer_end;
43   const uint8_t *buffer = r->buffer;
44   const uint8_t *buffer_start = buffer;
45   BD_VALUE value = r->value;
46   int count = r->count;
47   int shift = BD_VALUE_SIZE - CHAR_BIT - (count + CHAR_BIT);
48   int loop_end = 0;
49   const size_t bytes_left = buffer_end - buffer;
50   const size_t bits_left = bytes_left * CHAR_BIT;
51   const int x = (int)(shift + CHAR_BIT - bits_left);
52 
53   if (r->decrypt_cb) {
54     size_t n = MIN(sizeof(r->clear_buffer), bytes_left);
55     r->decrypt_cb(r->decrypt_state, buffer, r->clear_buffer, (int)n);
56     buffer = r->clear_buffer;
57     buffer_start = r->clear_buffer;
58   }
59 
60   if (x >= 0) {
61     count += LOTS_OF_BITS;
62     loop_end = x;
63   }
64 
65   if (x < 0 || bits_left) {
66     while (shift >= loop_end) {
67       count += CHAR_BIT;
68       value |= (BD_VALUE)*buffer++ << shift;
69       shift -= CHAR_BIT;
70     }
71   }
72 
73   // NOTE: Variable 'buffer' may not relate to 'r->buffer' after decryption,
74   // so we increase 'r->buffer' by the amount that 'buffer' moved, rather than
75   // assign 'buffer' to 'r->buffer'.
76   r->buffer += buffer - buffer_start;
77   r->value = value;
78   r->count = count;
79 }
80 
vp9_reader_find_end(vp9_reader * r)81 const uint8_t *vp9_reader_find_end(vp9_reader *r) {
82   // Find the end of the coded buffer
83   while (r->count > CHAR_BIT && r->count < BD_VALUE_SIZE) {
84     r->count -= CHAR_BIT;
85     r->buffer--;
86   }
87   return r->buffer;
88 }
89 
vp9_reader_has_error(vp9_reader * r)90 int vp9_reader_has_error(vp9_reader *r) {
91   // Check if we have reached the end of the buffer.
92   //
93   // Variable 'count' stores the number of bits in the 'value' buffer, minus
94   // 8. The top byte is part of the algorithm, and the remainder is buffered
95   // to be shifted into it. So if count == 8, the top 16 bits of 'value' are
96   // occupied, 8 for the algorithm and 8 in the buffer.
97   //
98   // When reading a byte from the user's buffer, count is filled with 8 and
99   // one byte is filled into the value buffer. When we reach the end of the
100   // data, count is additionally filled with LOTS_OF_BITS. So when
101   // count == LOTS_OF_BITS - 1, the user's data has been exhausted.
102   //
103   // 1 if we have tried to decode bits after the end of stream was encountered.
104   // 0 No error.
105   return r->count > BD_VALUE_SIZE && r->count < LOTS_OF_BITS;
106 }
107