1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "codegen_arm64.h"
18
19 #include <inttypes.h>
20
21 #include <string>
22 #include <sstream>
23
24 #include "backend_arm64.h"
25 #include "base/logging.h"
26 #include "dex/mir_graph.h"
27 #include "dex/quick/mir_to_lir-inl.h"
28 #include "dex/reg_storage_eq.h"
29
30 namespace art {
31
32 static constexpr RegStorage core_regs_arr[] =
33 {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
34 rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15,
35 rs_w16, rs_w17, rs_w18, rs_w19, rs_w20, rs_w21, rs_w22, rs_w23,
36 rs_w24, rs_w25, rs_w26, rs_w27, rs_w28, rs_w29, rs_w30, rs_w31,
37 rs_wzr};
38 static constexpr RegStorage core64_regs_arr[] =
39 {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
40 rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15,
41 rs_x16, rs_x17, rs_x18, rs_x19, rs_x20, rs_x21, rs_x22, rs_x23,
42 rs_x24, rs_x25, rs_x26, rs_x27, rs_x28, rs_x29, rs_x30, rs_x31,
43 rs_xzr};
44 static constexpr RegStorage sp_regs_arr[] =
45 {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
46 rs_f8, rs_f9, rs_f10, rs_f11, rs_f12, rs_f13, rs_f14, rs_f15,
47 rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
48 rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
49 static constexpr RegStorage dp_regs_arr[] =
50 {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
51 rs_d8, rs_d9, rs_d10, rs_d11, rs_d12, rs_d13, rs_d14, rs_d15,
52 rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
53 rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
54 // Note: we are not able to call to C function since rs_xSELF is a special register need to be
55 // preserved but would be scratched by native functions follow aapcs64.
56 static constexpr RegStorage reserved_regs_arr[] = {rs_wSELF, rs_wsp, rs_wLR, rs_wzr};
57 static constexpr RegStorage reserved64_regs_arr[] = {rs_xSELF, rs_sp, rs_xLR, rs_xzr};
58
59 static constexpr RegStorage core_temps_arr[] =
60 {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
61 rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15, rs_w16,
62 rs_w17};
63 static constexpr RegStorage core64_temps_arr[] =
64 {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
65 rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15, rs_x16,
66 rs_x17};
67 static constexpr RegStorage sp_temps_arr[] =
68 {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
69 rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
70 rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
71 static constexpr RegStorage dp_temps_arr[] =
72 {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
73 rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
74 rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
75
76 static constexpr ArrayRef<const RegStorage> core_regs(core_regs_arr);
77 static constexpr ArrayRef<const RegStorage> core64_regs(core64_regs_arr);
78 static constexpr ArrayRef<const RegStorage> sp_regs(sp_regs_arr);
79 static constexpr ArrayRef<const RegStorage> dp_regs(dp_regs_arr);
80 static constexpr ArrayRef<const RegStorage> reserved_regs(reserved_regs_arr);
81 static constexpr ArrayRef<const RegStorage> reserved64_regs(reserved64_regs_arr);
82 static constexpr ArrayRef<const RegStorage> core_temps(core_temps_arr);
83 static constexpr ArrayRef<const RegStorage> core64_temps(core64_temps_arr);
84 static constexpr ArrayRef<const RegStorage> sp_temps(sp_temps_arr);
85 static constexpr ArrayRef<const RegStorage> dp_temps(dp_temps_arr);
86
LocCReturn()87 RegLocation Arm64Mir2Lir::LocCReturn() {
88 return a64_loc_c_return;
89 }
90
LocCReturnRef()91 RegLocation Arm64Mir2Lir::LocCReturnRef() {
92 return a64_loc_c_return_ref;
93 }
94
LocCReturnWide()95 RegLocation Arm64Mir2Lir::LocCReturnWide() {
96 return a64_loc_c_return_wide;
97 }
98
LocCReturnFloat()99 RegLocation Arm64Mir2Lir::LocCReturnFloat() {
100 return a64_loc_c_return_float;
101 }
102
LocCReturnDouble()103 RegLocation Arm64Mir2Lir::LocCReturnDouble() {
104 return a64_loc_c_return_double;
105 }
106
107 // Return a target-dependent special register.
TargetReg(SpecialTargetRegister reg)108 RegStorage Arm64Mir2Lir::TargetReg(SpecialTargetRegister reg) {
109 RegStorage res_reg = RegStorage::InvalidReg();
110 switch (reg) {
111 case kSelf: res_reg = rs_wSELF; break;
112 case kSuspend: res_reg = RegStorage::InvalidReg(); break;
113 case kLr: res_reg = rs_wLR; break;
114 case kPc: res_reg = RegStorage::InvalidReg(); break;
115 case kSp: res_reg = rs_wsp; break;
116 case kArg0: res_reg = rs_w0; break;
117 case kArg1: res_reg = rs_w1; break;
118 case kArg2: res_reg = rs_w2; break;
119 case kArg3: res_reg = rs_w3; break;
120 case kArg4: res_reg = rs_w4; break;
121 case kArg5: res_reg = rs_w5; break;
122 case kArg6: res_reg = rs_w6; break;
123 case kArg7: res_reg = rs_w7; break;
124 case kFArg0: res_reg = rs_f0; break;
125 case kFArg1: res_reg = rs_f1; break;
126 case kFArg2: res_reg = rs_f2; break;
127 case kFArg3: res_reg = rs_f3; break;
128 case kFArg4: res_reg = rs_f4; break;
129 case kFArg5: res_reg = rs_f5; break;
130 case kFArg6: res_reg = rs_f6; break;
131 case kFArg7: res_reg = rs_f7; break;
132 case kRet0: res_reg = rs_w0; break;
133 case kRet1: res_reg = rs_w1; break;
134 case kInvokeTgt: res_reg = rs_wLR; break;
135 case kHiddenArg: res_reg = rs_wIP1; break;
136 case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
137 case kCount: res_reg = RegStorage::InvalidReg(); break;
138 default: res_reg = RegStorage::InvalidReg();
139 }
140 return res_reg;
141 }
142
143 /*
144 * Decode the register id. This routine makes assumptions on the encoding made by RegStorage.
145 */
GetRegMaskCommon(const RegStorage & reg) const146 ResourceMask Arm64Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
147 // TODO(Arm64): this function depends too much on the internal RegStorage encoding. Refactor.
148
149 // Check if the shape mask is zero (i.e. invalid).
150 if (UNLIKELY(reg == rs_wzr || reg == rs_xzr)) {
151 // The zero register is not a true register. It is just an immediate zero.
152 return kEncodeNone;
153 }
154
155 return ResourceMask::Bit(
156 // FP register starts at bit position 32.
157 (reg.IsFloat() ? kA64FPReg0 : 0) + reg.GetRegNum());
158 }
159
GetPCUseDefEncoding() const160 ResourceMask Arm64Mir2Lir::GetPCUseDefEncoding() const {
161 // Note: On arm64, we are not able to set pc except branch instructions, which is regarded as a
162 // kind of barrier. All other instructions only use pc, which has no dependency between any
163 // of them. So it is fine to just return kEncodeNone here.
164 return kEncodeNone;
165 }
166
167 // Arm64 specific setup. TODO: inline?:
SetupTargetResourceMasks(LIR * lir,uint64_t flags,ResourceMask * use_mask,ResourceMask * def_mask)168 void Arm64Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
169 ResourceMask* use_mask, ResourceMask* def_mask) {
170 DCHECK_EQ(cu_->instruction_set, kArm64);
171 DCHECK(!lir->flags.use_def_invalid);
172
173 // Note: REG_USE_PC is ignored, the reason is the same with what we do in GetPCUseDefEncoding().
174 // These flags are somewhat uncommon - bypass if we can.
175 if ((flags & (REG_DEF_SP | REG_USE_SP | REG_DEF_LR)) != 0) {
176 if (flags & REG_DEF_SP) {
177 def_mask->SetBit(kA64RegSP);
178 }
179
180 if (flags & REG_USE_SP) {
181 use_mask->SetBit(kA64RegSP);
182 }
183
184 if (flags & REG_DEF_LR) {
185 def_mask->SetBit(kA64RegLR);
186 }
187 }
188 }
189
ArmConditionEncoding(ConditionCode ccode)190 ArmConditionCode Arm64Mir2Lir::ArmConditionEncoding(ConditionCode ccode) {
191 ArmConditionCode res;
192 switch (ccode) {
193 case kCondEq: res = kArmCondEq; break;
194 case kCondNe: res = kArmCondNe; break;
195 case kCondCs: res = kArmCondCs; break;
196 case kCondCc: res = kArmCondCc; break;
197 case kCondUlt: res = kArmCondCc; break;
198 case kCondUge: res = kArmCondCs; break;
199 case kCondMi: res = kArmCondMi; break;
200 case kCondPl: res = kArmCondPl; break;
201 case kCondVs: res = kArmCondVs; break;
202 case kCondVc: res = kArmCondVc; break;
203 case kCondHi: res = kArmCondHi; break;
204 case kCondLs: res = kArmCondLs; break;
205 case kCondGe: res = kArmCondGe; break;
206 case kCondLt: res = kArmCondLt; break;
207 case kCondGt: res = kArmCondGt; break;
208 case kCondLe: res = kArmCondLe; break;
209 case kCondAl: res = kArmCondAl; break;
210 case kCondNv: res = kArmCondNv; break;
211 default:
212 LOG(FATAL) << "Bad condition code " << ccode;
213 res = static_cast<ArmConditionCode>(0); // Quiet gcc
214 }
215 return res;
216 }
217
218 static const char *shift_names[4] = {
219 "lsl",
220 "lsr",
221 "asr",
222 "ror"
223 };
224
225 static const char* extend_names[8] = {
226 "uxtb",
227 "uxth",
228 "uxtw",
229 "uxtx",
230 "sxtb",
231 "sxth",
232 "sxtw",
233 "sxtx",
234 };
235
236 /* Decode and print a register extension (e.g. ", uxtb #1") */
DecodeRegExtendOrShift(int operand,char * buf,size_t buf_size)237 static void DecodeRegExtendOrShift(int operand, char *buf, size_t buf_size) {
238 if ((operand & (1 << 6)) == 0) {
239 const char *shift_name = shift_names[(operand >> 7) & 0x3];
240 int amount = operand & 0x3f;
241 snprintf(buf, buf_size, ", %s #%d", shift_name, amount);
242 } else {
243 const char *extend_name = extend_names[(operand >> 3) & 0x7];
244 int amount = operand & 0x7;
245 if (amount == 0) {
246 snprintf(buf, buf_size, ", %s", extend_name);
247 } else {
248 snprintf(buf, buf_size, ", %s #%d", extend_name, amount);
249 }
250 }
251 }
252
bit_mask(unsigned width)253 static uint64_t bit_mask(unsigned width) {
254 DCHECK_LE(width, 64U);
255 return (width == 64) ? static_cast<uint64_t>(-1) : ((UINT64_C(1) << (width)) - UINT64_C(1));
256 }
257
RotateRight(uint64_t value,unsigned rotate,unsigned width)258 static uint64_t RotateRight(uint64_t value, unsigned rotate, unsigned width) {
259 DCHECK_LE(width, 64U);
260 rotate &= 63;
261 value = value & bit_mask(width);
262 return ((value & bit_mask(rotate)) << (width - rotate)) | (value >> rotate);
263 }
264
RepeatBitsAcrossReg(bool is_wide,uint64_t value,unsigned width)265 static uint64_t RepeatBitsAcrossReg(bool is_wide, uint64_t value, unsigned width) {
266 unsigned i;
267 unsigned reg_size = (is_wide) ? 64 : 32;
268 uint64_t result = value & bit_mask(width);
269 for (i = width; i < reg_size; i *= 2) {
270 result |= (result << i);
271 }
272 DCHECK_EQ(i, reg_size);
273 return result;
274 }
275
276 /**
277 * @brief Decode an immediate in the form required by logical instructions.
278 *
279 * @param is_wide Whether @p value encodes a 64-bit (as opposed to 32-bit) immediate.
280 * @param value The encoded logical immediates that is to be decoded.
281 * @return The decoded logical immediate.
282 * @note This is the inverse of Arm64Mir2Lir::EncodeLogicalImmediate().
283 */
DecodeLogicalImmediate(bool is_wide,int value)284 uint64_t Arm64Mir2Lir::DecodeLogicalImmediate(bool is_wide, int value) {
285 unsigned n = (value >> 12) & 0x01;
286 unsigned imm_r = (value >> 6) & 0x3f;
287 unsigned imm_s = (value >> 0) & 0x3f;
288
289 // An integer is constructed from the n, imm_s and imm_r bits according to
290 // the following table:
291 //
292 // N imms immr size S R
293 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
294 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
295 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
296 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
297 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
298 // 0 11110s xxxxxr 2 UInt(s) UInt(r)
299 // (s bits must not be all set)
300 //
301 // A pattern is constructed of size bits, where the least significant S+1
302 // bits are set. The pattern is rotated right by R, and repeated across a
303 // 32 or 64-bit value, depending on destination register width.
304
305 if (n == 1) {
306 DCHECK_NE(imm_s, 0x3fU);
307 uint64_t bits = bit_mask(imm_s + 1);
308 return RotateRight(bits, imm_r, 64);
309 } else {
310 DCHECK_NE((imm_s >> 1), 0x1fU);
311 for (unsigned width = 0x20; width >= 0x2; width >>= 1) {
312 if ((imm_s & width) == 0) {
313 unsigned mask = (unsigned)(width - 1);
314 DCHECK_NE((imm_s & mask), mask);
315 uint64_t bits = bit_mask((imm_s & mask) + 1);
316 return RepeatBitsAcrossReg(is_wide, RotateRight(bits, imm_r & mask, width), width);
317 }
318 }
319 }
320 return 0;
321 }
322
323 /**
324 * @brief Decode an 8-bit single point number encoded with EncodeImmSingle().
325 */
DecodeImmSingle(uint8_t small_float)326 static float DecodeImmSingle(uint8_t small_float) {
327 int mantissa = (small_float & 0x0f) + 0x10;
328 int sign = ((small_float & 0x80) == 0) ? 1 : -1;
329 float signed_mantissa = static_cast<float>(sign*mantissa);
330 int exponent = (((small_float >> 4) & 0x7) + 4) & 0x7;
331 return signed_mantissa*static_cast<float>(1 << exponent)*0.0078125f;
332 }
333
334 static const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
335 "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"};
336 /*
337 * Interpret a format string and build a string no longer than size
338 * See format key in assemble_arm64.cc.
339 */
BuildInsnString(const char * fmt,LIR * lir,unsigned char * base_addr)340 std::string Arm64Mir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) {
341 std::string buf;
342 const char* fmt_end = &fmt[strlen(fmt)];
343 char tbuf[256];
344 const char* name;
345 char nc;
346 while (fmt < fmt_end) {
347 int operand;
348 if (*fmt == '!') {
349 fmt++;
350 DCHECK_LT(fmt, fmt_end);
351 nc = *fmt++;
352 if (nc == '!') {
353 strcpy(tbuf, "!");
354 } else {
355 DCHECK_LT(fmt, fmt_end);
356 DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
357 operand = lir->operands[nc-'0'];
358 switch (*fmt++) {
359 case 'e': {
360 // Omit ", uxtw #0" in strings like "add w0, w1, w3, uxtw #0" and
361 // ", uxtx #0" in strings like "add x0, x1, x3, uxtx #0"
362 int omittable = ((IS_WIDE(lir->opcode)) ? EncodeExtend(kA64Uxtw, 0) :
363 EncodeExtend(kA64Uxtw, 0));
364 if (LIKELY(operand == omittable)) {
365 strcpy(tbuf, "");
366 } else {
367 DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
368 }
369 }
370 break;
371 case 'o':
372 // Omit ", lsl #0"
373 if (LIKELY(operand == EncodeShift(kA64Lsl, 0))) {
374 strcpy(tbuf, "");
375 } else {
376 DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
377 }
378 break;
379 case 'B':
380 switch (operand) {
381 case kSY:
382 name = "sy";
383 break;
384 case kST:
385 name = "st";
386 break;
387 case kISH:
388 name = "ish";
389 break;
390 case kISHST:
391 name = "ishst";
392 break;
393 case kNSH:
394 name = "nsh";
395 break;
396 case kNSHST:
397 name = "shst";
398 break;
399 default:
400 name = "DecodeError2";
401 break;
402 }
403 strcpy(tbuf, name);
404 break;
405 case 's':
406 snprintf(tbuf, arraysize(tbuf), "s%d", operand & RegStorage::kRegNumMask);
407 break;
408 case 'S':
409 snprintf(tbuf, arraysize(tbuf), "d%d", operand & RegStorage::kRegNumMask);
410 break;
411 case 'f':
412 snprintf(tbuf, arraysize(tbuf), "%c%d", (IS_WIDE(lir->opcode)) ? 'd' : 's',
413 operand & RegStorage::kRegNumMask);
414 break;
415 case 'l': {
416 bool is_wide = IS_WIDE(lir->opcode);
417 uint64_t imm = DecodeLogicalImmediate(is_wide, operand);
418 snprintf(tbuf, arraysize(tbuf), "%" PRId64 " (%#" PRIx64 ")", imm, imm);
419 }
420 break;
421 case 'I':
422 snprintf(tbuf, arraysize(tbuf), "%f", DecodeImmSingle(operand));
423 break;
424 case 'M':
425 if (LIKELY(operand == 0))
426 strcpy(tbuf, "");
427 else
428 snprintf(tbuf, arraysize(tbuf), ", lsl #%d", 16*operand);
429 break;
430 case 'd':
431 snprintf(tbuf, arraysize(tbuf), "%d", operand);
432 break;
433 case 'w':
434 if (LIKELY(operand != rwzr))
435 snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
436 else
437 strcpy(tbuf, "wzr");
438 break;
439 case 'W':
440 if (LIKELY(operand != rwsp))
441 snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
442 else
443 strcpy(tbuf, "wsp");
444 break;
445 case 'x':
446 if (LIKELY(operand != rxzr))
447 snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
448 else
449 strcpy(tbuf, "xzr");
450 break;
451 case 'X':
452 if (LIKELY(operand != rsp))
453 snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
454 else
455 strcpy(tbuf, "sp");
456 break;
457 case 'D':
458 snprintf(tbuf, arraysize(tbuf), "%d", operand*((IS_WIDE(lir->opcode)) ? 8 : 4));
459 break;
460 case 'E':
461 snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
462 break;
463 case 'F':
464 snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
465 break;
466 case 'G':
467 if (LIKELY(operand == 0))
468 strcpy(tbuf, "");
469 else
470 strcpy(tbuf, (IS_WIDE(lir->opcode)) ? ", lsl #3" : ", lsl #2");
471 break;
472 case 'c':
473 strcpy(tbuf, cc_names[operand]);
474 break;
475 case 't':
476 snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
477 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + (operand << 2),
478 lir->target);
479 break;
480 case 'r': {
481 bool is_wide = IS_WIDE(lir->opcode);
482 if (LIKELY(operand != rwzr && operand != rxzr)) {
483 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
484 operand & RegStorage::kRegNumMask);
485 } else {
486 strcpy(tbuf, (is_wide) ? "xzr" : "wzr");
487 }
488 }
489 break;
490 case 'R': {
491 bool is_wide = IS_WIDE(lir->opcode);
492 if (LIKELY(operand != rwsp && operand != rsp)) {
493 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
494 operand & RegStorage::kRegNumMask);
495 } else {
496 strcpy(tbuf, (is_wide) ? "sp" : "wsp");
497 }
498 }
499 break;
500 case 'p':
501 snprintf(tbuf, arraysize(tbuf), ".+%d (addr %#" PRIxPTR ")", 4*operand,
502 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4*operand);
503 break;
504 case 'T':
505 if (LIKELY(operand == 0))
506 strcpy(tbuf, "");
507 else if (operand == 1)
508 strcpy(tbuf, ", lsl #12");
509 else
510 strcpy(tbuf, ", DecodeError3");
511 break;
512 case 'h':
513 snprintf(tbuf, arraysize(tbuf), "%d", operand);
514 break;
515 default:
516 strcpy(tbuf, "DecodeError1");
517 break;
518 }
519 buf += tbuf;
520 }
521 } else {
522 buf += *fmt++;
523 }
524 }
525 // Dump thread offset.
526 std::string fmt_str = GetTargetInstFmt(lir->opcode);
527 if (std::string::npos != fmt_str.find(", [!1X, #!2") && rxSELF == lir->operands[1] &&
528 std::string::npos != buf.find(", [")) {
529 int offset = lir->operands[2];
530 if (std::string::npos != fmt_str.find("#!2d")) {
531 } else if (std::string::npos != fmt_str.find("#!2D")) {
532 offset *= (IS_WIDE(lir->opcode)) ? 8 : 4;
533 } else if (std::string::npos != fmt_str.find("#!2F")) {
534 offset *= 2;
535 } else {
536 LOG(FATAL) << "Should not reach here";
537 }
538 std::ostringstream tmp_stream;
539 Thread::DumpThreadOffset<8>(tmp_stream, offset);
540 buf += " ; ";
541 buf += tmp_stream.str();
542 }
543 return buf;
544 }
545
DumpResourceMask(LIR * arm_lir,const ResourceMask & mask,const char * prefix)546 void Arm64Mir2Lir::DumpResourceMask(LIR* arm_lir, const ResourceMask& mask, const char* prefix) {
547 char buf[256];
548 buf[0] = 0;
549
550 if (mask.Equals(kEncodeAll)) {
551 strcpy(buf, "all");
552 } else {
553 char num[8];
554 int i;
555
556 for (i = 0; i < kA64RegEnd; i++) {
557 if (mask.HasBit(i)) {
558 snprintf(num, arraysize(num), "%d ", i);
559 strcat(buf, num);
560 }
561 }
562
563 if (mask.HasBit(ResourceMask::kCCode)) {
564 strcat(buf, "cc ");
565 }
566 if (mask.HasBit(ResourceMask::kFPStatus)) {
567 strcat(buf, "fpcc ");
568 }
569
570 /* Memory bits */
571 if (arm_lir && (mask.HasBit(ResourceMask::kDalvikReg))) {
572 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
573 DECODE_ALIAS_INFO_REG(arm_lir->flags.alias_info),
574 DECODE_ALIAS_INFO_WIDE(arm_lir->flags.alias_info) ? "(+1)" : "");
575 }
576 if (mask.HasBit(ResourceMask::kLiteral)) {
577 strcat(buf, "lit ");
578 }
579
580 if (mask.HasBit(ResourceMask::kHeapRef)) {
581 strcat(buf, "heap ");
582 }
583 if (mask.HasBit(ResourceMask::kMustNotAlias)) {
584 strcat(buf, "noalias ");
585 }
586 }
587 if (buf[0]) {
588 LOG(INFO) << prefix << ": " << buf;
589 }
590 }
591
IsUnconditionalBranch(LIR * lir)592 bool Arm64Mir2Lir::IsUnconditionalBranch(LIR* lir) {
593 return (lir->opcode == kA64B1t);
594 }
595
RegClassForFieldLoadStore(OpSize size,bool is_volatile)596 RegisterClass Arm64Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
597 if (UNLIKELY(is_volatile)) {
598 // On arm64, fp register load/store is atomic only for single bytes.
599 if (size != kSignedByte && size != kUnsignedByte) {
600 return (size == kReference) ? kRefReg : kCoreReg;
601 }
602 }
603 return RegClassBySize(size);
604 }
605
Arm64Mir2Lir(CompilationUnit * cu,MIRGraph * mir_graph,ArenaAllocator * arena)606 Arm64Mir2Lir::Arm64Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
607 : Mir2Lir(cu, mir_graph, arena),
608 call_method_insns_(arena->Adapter()),
609 dex_cache_access_insns_(arena->Adapter()) {
610 // Sanity check - make sure encoding map lines up.
611 for (int i = 0; i < kA64Last; i++) {
612 DCHECK_EQ(UNWIDE(Arm64Mir2Lir::EncodingMap[i].opcode), i)
613 << "Encoding order for " << Arm64Mir2Lir::EncodingMap[i].name
614 << " is wrong: expecting " << i << ", seeing "
615 << static_cast<int>(Arm64Mir2Lir::EncodingMap[i].opcode);
616 }
617 }
618
Arm64CodeGenerator(CompilationUnit * const cu,MIRGraph * const mir_graph,ArenaAllocator * const arena)619 Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
620 ArenaAllocator* const arena) {
621 return new Arm64Mir2Lir(cu, mir_graph, arena);
622 }
623
CompilerInitializeRegAlloc()624 void Arm64Mir2Lir::CompilerInitializeRegAlloc() {
625 reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs, core64_regs, sp_regs, dp_regs,
626 reserved_regs, reserved64_regs,
627 core_temps, core64_temps, sp_temps, dp_temps));
628
629 // Target-specific adjustments.
630 // Alias single precision float registers to corresponding double registers.
631 for (RegisterInfo* info : reg_pool_->sp_regs_) {
632 int fp_reg_num = info->GetReg().GetRegNum();
633 RegStorage dp_reg = RegStorage::FloatSolo64(fp_reg_num);
634 RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
635 // Double precision register's master storage should refer to itself.
636 DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
637 // Redirect single precision's master storage to master.
638 info->SetMaster(dp_reg_info);
639 // Singles should show a single 32-bit mask bit, at first referring to the low half.
640 DCHECK_EQ(info->StorageMask(), 0x1U);
641 }
642
643 // Alias 32bit W registers to corresponding 64bit X registers.
644 for (RegisterInfo* info : reg_pool_->core_regs_) {
645 int x_reg_num = info->GetReg().GetRegNum();
646 RegStorage x_reg = RegStorage::Solo64(x_reg_num);
647 RegisterInfo* x_reg_info = GetRegInfo(x_reg);
648 // 64bit X register's master storage should refer to itself.
649 DCHECK_EQ(x_reg_info, x_reg_info->Master());
650 // Redirect 32bit W master storage to 64bit X.
651 info->SetMaster(x_reg_info);
652 // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
653 DCHECK_EQ(info->StorageMask(), 0x1U);
654 }
655
656 // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
657 // TODO: adjust when we roll to hard float calling convention.
658 reg_pool_->next_core_reg_ = 2;
659 reg_pool_->next_sp_reg_ = 0;
660 reg_pool_->next_dp_reg_ = 0;
661 }
662
663 /*
664 * TUNING: is true leaf? Can't just use METHOD_IS_LEAF to determine as some
665 * instructions might call out to C/assembly helper functions. Until
666 * machinery is in place, always spill lr.
667 */
668
AdjustSpillMask()669 void Arm64Mir2Lir::AdjustSpillMask() {
670 core_spill_mask_ |= (1 << rs_xLR.GetRegNum());
671 num_core_spills_++;
672 }
673
674 /* Clobber all regs that might be used by an external C call */
ClobberCallerSave()675 void Arm64Mir2Lir::ClobberCallerSave() {
676 Clobber(rs_x0);
677 Clobber(rs_x1);
678 Clobber(rs_x2);
679 Clobber(rs_x3);
680 Clobber(rs_x4);
681 Clobber(rs_x5);
682 Clobber(rs_x6);
683 Clobber(rs_x7);
684 Clobber(rs_x8);
685 Clobber(rs_x9);
686 Clobber(rs_x10);
687 Clobber(rs_x11);
688 Clobber(rs_x12);
689 Clobber(rs_x13);
690 Clobber(rs_x14);
691 Clobber(rs_x15);
692 Clobber(rs_x16);
693 Clobber(rs_x17);
694 Clobber(rs_x30);
695
696 Clobber(rs_f0);
697 Clobber(rs_f1);
698 Clobber(rs_f2);
699 Clobber(rs_f3);
700 Clobber(rs_f4);
701 Clobber(rs_f5);
702 Clobber(rs_f6);
703 Clobber(rs_f7);
704 Clobber(rs_f16);
705 Clobber(rs_f17);
706 Clobber(rs_f18);
707 Clobber(rs_f19);
708 Clobber(rs_f20);
709 Clobber(rs_f21);
710 Clobber(rs_f22);
711 Clobber(rs_f23);
712 Clobber(rs_f24);
713 Clobber(rs_f25);
714 Clobber(rs_f26);
715 Clobber(rs_f27);
716 Clobber(rs_f28);
717 Clobber(rs_f29);
718 Clobber(rs_f30);
719 Clobber(rs_f31);
720 }
721
GetReturnWideAlt()722 RegLocation Arm64Mir2Lir::GetReturnWideAlt() {
723 RegLocation res = LocCReturnWide();
724 res.reg.SetReg(rx2);
725 res.reg.SetHighReg(rx3);
726 Clobber(rs_x2);
727 Clobber(rs_x3);
728 MarkInUse(rs_x2);
729 MarkInUse(rs_x3);
730 MarkWide(res.reg);
731 return res;
732 }
733
GetReturnAlt()734 RegLocation Arm64Mir2Lir::GetReturnAlt() {
735 RegLocation res = LocCReturn();
736 res.reg.SetReg(rx1);
737 Clobber(rs_x1);
738 MarkInUse(rs_x1);
739 return res;
740 }
741
742 /* To be used when explicitly managing register use */
LockCallTemps()743 void Arm64Mir2Lir::LockCallTemps() {
744 // TODO: needs cleanup.
745 LockTemp(rs_x0);
746 LockTemp(rs_x1);
747 LockTemp(rs_x2);
748 LockTemp(rs_x3);
749 LockTemp(rs_x4);
750 LockTemp(rs_x5);
751 LockTemp(rs_x6);
752 LockTemp(rs_x7);
753 LockTemp(rs_f0);
754 LockTemp(rs_f1);
755 LockTemp(rs_f2);
756 LockTemp(rs_f3);
757 LockTemp(rs_f4);
758 LockTemp(rs_f5);
759 LockTemp(rs_f6);
760 LockTemp(rs_f7);
761 }
762
763 /* To be used when explicitly managing register use */
FreeCallTemps()764 void Arm64Mir2Lir::FreeCallTemps() {
765 // TODO: needs cleanup.
766 FreeTemp(rs_x0);
767 FreeTemp(rs_x1);
768 FreeTemp(rs_x2);
769 FreeTemp(rs_x3);
770 FreeTemp(rs_x4);
771 FreeTemp(rs_x5);
772 FreeTemp(rs_x6);
773 FreeTemp(rs_x7);
774 FreeTemp(rs_f0);
775 FreeTemp(rs_f1);
776 FreeTemp(rs_f2);
777 FreeTemp(rs_f3);
778 FreeTemp(rs_f4);
779 FreeTemp(rs_f5);
780 FreeTemp(rs_f6);
781 FreeTemp(rs_f7);
782 FreeTemp(TargetReg(kHiddenArg));
783 }
784
LoadHelper(QuickEntrypointEnum trampoline)785 RegStorage Arm64Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
786 // TODO(Arm64): use LoadWordDisp instead.
787 // e.g. LoadWordDisp(rs_rA64_SELF, offset.Int32Value(), rs_rA64_LR);
788 LoadBaseDisp(rs_xSELF, GetThreadOffset<8>(trampoline).Int32Value(), rs_xLR, k64, kNotVolatile);
789 return rs_xLR;
790 }
791
CheckSuspendUsingLoad()792 LIR* Arm64Mir2Lir::CheckSuspendUsingLoad() {
793 RegStorage tmp = rs_x0;
794 LoadWordDisp(rs_xSELF, Thread::ThreadSuspendTriggerOffset<8>().Int32Value(), tmp);
795 LIR* load2 = LoadWordDisp(tmp, 0, tmp);
796 return load2;
797 }
798
GetTargetInstFlags(int opcode)799 uint64_t Arm64Mir2Lir::GetTargetInstFlags(int opcode) {
800 DCHECK(!IsPseudoLirOp(opcode));
801 return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].flags;
802 }
803
GetTargetInstName(int opcode)804 const char* Arm64Mir2Lir::GetTargetInstName(int opcode) {
805 DCHECK(!IsPseudoLirOp(opcode));
806 return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].name;
807 }
808
GetTargetInstFmt(int opcode)809 const char* Arm64Mir2Lir::GetTargetInstFmt(int opcode) {
810 DCHECK(!IsPseudoLirOp(opcode));
811 return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].fmt;
812 }
813
GetNextReg(ShortyArg arg)814 RegStorage Arm64Mir2Lir::InToRegStorageArm64Mapper::GetNextReg(ShortyArg arg) {
815 const RegStorage coreArgMappingToPhysicalReg[] =
816 {rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7};
817 const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
818 const RegStorage fpArgMappingToPhysicalReg[] =
819 {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7};
820 const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
821
822 RegStorage result = RegStorage::InvalidReg();
823 if (arg.IsFP()) {
824 if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
825 DCHECK(!arg.IsRef());
826 result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
827 if (result.Valid()) {
828 // TODO: switching between widths remains a bit ugly. Better way?
829 int res_reg = result.GetReg();
830 result = arg.IsWide() ? RegStorage::FloatSolo64(res_reg) : RegStorage::FloatSolo32(res_reg);
831 }
832 }
833 } else {
834 if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
835 result = coreArgMappingToPhysicalReg[cur_core_reg_++];
836 if (result.Valid()) {
837 // TODO: switching between widths remains a bit ugly. Better way?
838 int res_reg = result.GetReg();
839 DCHECK(!(arg.IsWide() && arg.IsRef()));
840 result = (arg.IsWide() || arg.IsRef()) ?
841 RegStorage::Solo64(res_reg) : RegStorage::Solo32(res_reg);
842 }
843 }
844 }
845 return result;
846 }
847
InstallLiteralPools()848 void Arm64Mir2Lir::InstallLiteralPools() {
849 patches_.reserve(call_method_insns_.size() + dex_cache_access_insns_.size());
850
851 // PC-relative calls to methods.
852 for (LIR* p : call_method_insns_) {
853 DCHECK_EQ(p->opcode, kA64Bl1t);
854 uint32_t target_method_idx = p->operands[1];
855 const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[2]);
856 patches_.push_back(LinkerPatch::RelativeCodePatch(p->offset,
857 target_dex_file, target_method_idx));
858 }
859
860 // PC-relative references to dex cache arrays.
861 for (LIR* p : dex_cache_access_insns_) {
862 auto non_wide = UNWIDE(p->opcode); // May be a wide load for ArtMethod*.
863 DCHECK(non_wide == kA64Adrp2xd || non_wide == kA64Ldr3rXD) << p->opcode << " " << non_wide;
864 const LIR* adrp = UnwrapPointer<LIR>(p->operands[4]);
865 DCHECK_EQ(adrp->opcode, kA64Adrp2xd);
866 const DexFile* dex_file = UnwrapPointer<DexFile>(adrp->operands[2]);
867 uint32_t offset = adrp->operands[3];
868 DCHECK(!p->flags.is_nop);
869 DCHECK(!adrp->flags.is_nop);
870 patches_.push_back(LinkerPatch::DexCacheArrayPatch(p->offset, dex_file, adrp->offset, offset));
871 }
872
873 // And do the normal processing.
874 Mir2Lir::InstallLiteralPools();
875 }
876
GenDalvikArgsBulkCopy(CallInfo *,int,int count)877 int Arm64Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* /*info*/, int /*first*/, int count) {
878 /*
879 * TODO: Improve by adding block copy for large number of arguments. For now, just
880 * copy a Dalvik vreg at a time.
881 */
882 return count;
883 }
884
GenMachineSpecificExtendedMethodMIR(BasicBlock * bb,MIR * mir)885 void Arm64Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
886 UNUSED(bb);
887 DCHECK(MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode));
888 RegLocation rl_src[3];
889 RegLocation rl_dest = mir_graph_->GetBadLoc();
890 rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc();
891 ExtendedMIROpcode opcode = static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode);
892 switch (opcode) {
893 case kMirOpMaddInt:
894 case kMirOpMsubInt:
895 rl_dest = mir_graph_->GetDest(mir);
896 rl_src[0] = mir_graph_->GetSrc(mir, 0);
897 rl_src[1] = mir_graph_->GetSrc(mir, 1);
898 rl_src[2]= mir_graph_->GetSrc(mir, 2);
899 GenMaddMsubInt(rl_dest, rl_src[0], rl_src[1], rl_src[2], opcode == kMirOpMsubInt);
900 break;
901 case kMirOpMaddLong:
902 case kMirOpMsubLong:
903 rl_dest = mir_graph_->GetDestWide(mir);
904 rl_src[0] = mir_graph_->GetSrcWide(mir, 0);
905 rl_src[1] = mir_graph_->GetSrcWide(mir, 2);
906 rl_src[2] = mir_graph_->GetSrcWide(mir, 4);
907 GenMaddMsubLong(rl_dest, rl_src[0], rl_src[1], rl_src[2], opcode == kMirOpMsubLong);
908 break;
909 default:
910 LOG(FATAL) << "Unexpected opcode: " << static_cast<int>(opcode);
911 }
912 }
913
914 } // namespace art
915