1 /*
2 **********************************************************************
3 * Copyright (C) 1997-2015, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 *
7 * File DIGITLST.CPP
8 *
9 * Modification History:
10 *
11 * Date Name Description
12 * 03/21/97 clhuang Converted from java.
13 * 03/21/97 clhuang Implemented with new APIs.
14 * 03/27/97 helena Updated to pass the simple test after code review.
15 * 03/31/97 aliu Moved isLONG_MIN to here, and fixed it.
16 * 04/15/97 aliu Changed MAX_COUNT to DBL_DIG. Changed Digit to char.
17 * Reworked representation by replacing fDecimalAt
18 * with fExponent.
19 * 04/16/97 aliu Rewrote set() and getDouble() to use sprintf/atof
20 * to do digit conversion.
21 * 09/09/97 aliu Modified for exponential notation support.
22 * 08/02/98 stephen Added nearest/even rounding
23 * Fixed bug in fitsIntoLong
24 ******************************************************************************
25 */
26
27 #include "digitlst.h"
28
29 #if !UCONFIG_NO_FORMATTING
30 #include "unicode/putil.h"
31 #include "charstr.h"
32 #include "cmemory.h"
33 #include "cstring.h"
34 #include "mutex.h"
35 #include "putilimp.h"
36 #include "uassert.h"
37 #include <stdlib.h>
38 #include <limits.h>
39 #include <string.h>
40 #include <stdio.h>
41 #include <limits>
42
43 // ***************************************************************************
44 // class DigitList
45 // A wrapper onto decNumber.
46 // Used to be standalone.
47 // ***************************************************************************
48
49 /**
50 * This is the zero digit. The base for the digits returned by getDigit()
51 * Note that it is the platform invariant digit, and is not Unicode.
52 */
53 #define kZero '0'
54
55
56 /* Only for 32 bit numbers. Ignore the negative sign. */
57 //static const char LONG_MIN_REP[] = "2147483648";
58 //static const char I64_MIN_REP[] = "9223372036854775808";
59
60
61 U_NAMESPACE_BEGIN
62
63 // -------------------------------------
64 // default constructor
65
DigitList()66 DigitList::DigitList()
67 {
68 uprv_decContextDefault(&fContext, DEC_INIT_BASE);
69 fContext.traps = 0;
70 uprv_decContextSetRounding(&fContext, DEC_ROUND_HALF_EVEN);
71 fContext.digits = fStorage.getCapacity();
72
73 fDecNumber = fStorage.getAlias();
74 uprv_decNumberZero(fDecNumber);
75
76 internalSetDouble(0.0);
77 }
78
79 // -------------------------------------
80
~DigitList()81 DigitList::~DigitList()
82 {
83 }
84
85 // -------------------------------------
86 // copy constructor
87
DigitList(const DigitList & other)88 DigitList::DigitList(const DigitList &other)
89 {
90 fDecNumber = fStorage.getAlias();
91 *this = other;
92 }
93
94
95 // -------------------------------------
96 // assignment operator
97
98 DigitList&
operator =(const DigitList & other)99 DigitList::operator=(const DigitList& other)
100 {
101 if (this != &other)
102 {
103 uprv_memcpy(&fContext, &other.fContext, sizeof(decContext));
104
105 if (other.fStorage.getCapacity() > fStorage.getCapacity()) {
106 fDecNumber = fStorage.resize(other.fStorage.getCapacity());
107 }
108 // Always reset the fContext.digits, even if fDecNumber was not reallocated,
109 // because above we copied fContext from other.fContext.
110 fContext.digits = fStorage.getCapacity();
111 uprv_decNumberCopy(fDecNumber, other.fDecNumber);
112
113 {
114 // fDouble is lazily created and cached.
115 // Avoid potential races with that happening with other.fDouble
116 // while we are doing the assignment.
117 Mutex mutex;
118
119 if(other.fHave==kDouble) {
120 fUnion.fDouble = other.fUnion.fDouble;
121 } else if(other.fHave==kInt64) {
122 fUnion.fInt64 = other.fUnion.fInt64;
123 }
124 fHave = other.fHave;
125 }
126 }
127 return *this;
128 }
129
130 // -------------------------------------
131 // operator == (does not exactly match the old DigitList function)
132
133 UBool
operator ==(const DigitList & that) const134 DigitList::operator==(const DigitList& that) const
135 {
136 if (this == &that) {
137 return TRUE;
138 }
139 decNumber n; // Has space for only a none digit value.
140 decContext c;
141 uprv_decContextDefault(&c, DEC_INIT_BASE);
142 c.digits = 1;
143 c.traps = 0;
144
145 uprv_decNumberCompare(&n, this->fDecNumber, that.fDecNumber, &c);
146 UBool result = decNumberIsZero(&n);
147 return result;
148 }
149
150 // -------------------------------------
151 // comparison function. Returns
152 // Not Comparable : -2
153 // < : -1
154 // == : 0
155 // > : +1
compare(const DigitList & other)156 int32_t DigitList::compare(const DigitList &other) {
157 decNumber result;
158 int32_t savedDigits = fContext.digits;
159 fContext.digits = 1;
160 uprv_decNumberCompare(&result, this->fDecNumber, other.fDecNumber, &fContext);
161 fContext.digits = savedDigits;
162 if (decNumberIsZero(&result)) {
163 return 0;
164 } else if (decNumberIsSpecial(&result)) {
165 return -2;
166 } else if (result.bits & DECNEG) {
167 return -1;
168 } else {
169 return 1;
170 }
171 }
172
173
174 // -------------------------------------
175 // Reduce - remove trailing zero digits.
176 void
reduce()177 DigitList::reduce() {
178 uprv_decNumberReduce(fDecNumber, fDecNumber, &fContext);
179 }
180
181
182 // -------------------------------------
183 // trim - remove trailing fraction zero digits.
184 void
trim()185 DigitList::trim() {
186 uprv_decNumberTrim(fDecNumber);
187 }
188
189 // -------------------------------------
190 // Resets the digit list; sets all the digits to zero.
191
192 void
clear()193 DigitList::clear()
194 {
195 uprv_decNumberZero(fDecNumber);
196 uprv_decContextSetRounding(&fContext, DEC_ROUND_HALF_EVEN);
197 internalSetDouble(0.0);
198 }
199
200
201 /**
202 * Formats a int64_t number into a base 10 string representation, and NULL terminates it.
203 * @param number The number to format
204 * @param outputStr The string to output to. Must be at least MAX_DIGITS+2 in length (21),
205 * to hold the longest int64_t value.
206 * @return the number of digits written, not including the sign.
207 */
208 static int32_t
formatBase10(int64_t number,char * outputStr)209 formatBase10(int64_t number, char *outputStr) {
210 // The number is output backwards, starting with the LSD.
211 // Fill the buffer from the far end. After the number is complete,
212 // slide the string contents to the front.
213
214 const int32_t MAX_IDX = MAX_DIGITS+2;
215 int32_t destIdx = MAX_IDX;
216 outputStr[--destIdx] = 0;
217
218 int64_t n = number;
219 if (number < 0) { // Negative numbers are slightly larger than a postive
220 outputStr[--destIdx] = (char)(-(n % 10) + kZero);
221 n /= -10;
222 }
223 do {
224 outputStr[--destIdx] = (char)(n % 10 + kZero);
225 n /= 10;
226 } while (n > 0);
227
228 if (number < 0) {
229 outputStr[--destIdx] = '-';
230 }
231
232 // Slide the number to the start of the output str
233 U_ASSERT(destIdx >= 0);
234 int32_t length = MAX_IDX - destIdx;
235 uprv_memmove(outputStr, outputStr+MAX_IDX-length, length);
236
237 return length;
238 }
239
240
241 // -------------------------------------
242 //
243 // setRoundingMode()
244 // For most modes, the meaning and names are the same between the decNumber library
245 // (which DigitList follows) and the ICU Formatting Rounding Mode values.
246 // The flag constants are different, however.
247 //
248 // Note that ICU's kRoundingUnnecessary is not implemented directly by DigitList.
249 // This mode, inherited from Java, means that numbers that would not format exactly
250 // will return an error when formatting is attempted.
251
252 void
setRoundingMode(DecimalFormat::ERoundingMode m)253 DigitList::setRoundingMode(DecimalFormat::ERoundingMode m) {
254 enum rounding r;
255
256 switch (m) {
257 case DecimalFormat::kRoundCeiling: r = DEC_ROUND_CEILING; break;
258 case DecimalFormat::kRoundFloor: r = DEC_ROUND_FLOOR; break;
259 case DecimalFormat::kRoundDown: r = DEC_ROUND_DOWN; break;
260 case DecimalFormat::kRoundUp: r = DEC_ROUND_UP; break;
261 case DecimalFormat::kRoundHalfEven: r = DEC_ROUND_HALF_EVEN; break;
262 case DecimalFormat::kRoundHalfDown: r = DEC_ROUND_HALF_DOWN; break;
263 case DecimalFormat::kRoundHalfUp: r = DEC_ROUND_HALF_UP; break;
264 case DecimalFormat::kRoundUnnecessary: r = DEC_ROUND_HALF_EVEN; break;
265 default:
266 // TODO: how to report the problem?
267 // Leave existing mode unchanged.
268 r = uprv_decContextGetRounding(&fContext);
269 }
270 uprv_decContextSetRounding(&fContext, r);
271
272 }
273
274
275 // -------------------------------------
276
277 void
setPositive(UBool s)278 DigitList::setPositive(UBool s) {
279 if (s) {
280 fDecNumber->bits &= ~DECNEG;
281 } else {
282 fDecNumber->bits |= DECNEG;
283 }
284 internalClear();
285 }
286 // -------------------------------------
287
288 void
setDecimalAt(int32_t d)289 DigitList::setDecimalAt(int32_t d) {
290 U_ASSERT((fDecNumber->bits & DECSPECIAL) == 0); // Not Infinity or NaN
291 U_ASSERT(d-1>-999999999);
292 U_ASSERT(d-1< 999999999);
293 int32_t adjustedDigits = fDecNumber->digits;
294 if (decNumberIsZero(fDecNumber)) {
295 // Account for difference in how zero is represented between DigitList & decNumber.
296 adjustedDigits = 0;
297 }
298 fDecNumber->exponent = d - adjustedDigits;
299 internalClear();
300 }
301
302 int32_t
getDecimalAt()303 DigitList::getDecimalAt() {
304 U_ASSERT((fDecNumber->bits & DECSPECIAL) == 0); // Not Infinity or NaN
305 if (decNumberIsZero(fDecNumber) || ((fDecNumber->bits & DECSPECIAL) != 0)) {
306 return fDecNumber->exponent; // Exponent should be zero for these cases.
307 }
308 return fDecNumber->exponent + fDecNumber->digits;
309 }
310
311 void
setCount(int32_t c)312 DigitList::setCount(int32_t c) {
313 U_ASSERT(c <= fContext.digits);
314 if (c == 0) {
315 // For a value of zero, DigitList sets all fields to zero, while
316 // decNumber keeps one digit (with that digit being a zero)
317 c = 1;
318 fDecNumber->lsu[0] = 0;
319 }
320 fDecNumber->digits = c;
321 internalClear();
322 }
323
324 int32_t
getCount() const325 DigitList::getCount() const {
326 if (decNumberIsZero(fDecNumber) && fDecNumber->exponent==0) {
327 // The extra test for exponent==0 is needed because parsing sometimes appends
328 // zero digits. It's bogus, decimalFormatter parsing needs to be cleaned up.
329 return 0;
330 } else {
331 return fDecNumber->digits;
332 }
333 }
334
335 void
setDigit(int32_t i,char v)336 DigitList::setDigit(int32_t i, char v) {
337 int32_t count = fDecNumber->digits;
338 U_ASSERT(i<count);
339 U_ASSERT(v>='0' && v<='9');
340 v &= 0x0f;
341 fDecNumber->lsu[count-i-1] = v;
342 internalClear();
343 }
344
345 char
getDigit(int32_t i)346 DigitList::getDigit(int32_t i) {
347 int32_t count = fDecNumber->digits;
348 U_ASSERT(i<count);
349 return fDecNumber->lsu[count-i-1] + '0';
350 }
351
352 // copied from DigitList::getDigit()
353 uint8_t
getDigitValue(int32_t i)354 DigitList::getDigitValue(int32_t i) {
355 int32_t count = fDecNumber->digits;
356 U_ASSERT(i<count);
357 return fDecNumber->lsu[count-i-1];
358 }
359
360 // -------------------------------------
361 // Appends the digit to the digit list if it's not out of scope.
362 // Ignores the digit, otherwise.
363 //
364 // This function is horribly inefficient to implement with decNumber because
365 // the digits are stored least significant first, which requires moving all
366 // existing digits down one to make space for the new one to be appended.
367 //
368 void
append(char digit)369 DigitList::append(char digit)
370 {
371 U_ASSERT(digit>='0' && digit<='9');
372 // Ignore digits which exceed the precision we can represent
373 // And don't fix for larger precision. Fix callers instead.
374 if (decNumberIsZero(fDecNumber)) {
375 // Zero needs to be special cased because of the difference in the way
376 // that the old DigitList and decNumber represent it.
377 // digit cout was zero for digitList, is one for decNumber
378 fDecNumber->lsu[0] = digit & 0x0f;
379 fDecNumber->digits = 1;
380 fDecNumber->exponent--; // To match the old digit list implementation.
381 } else {
382 int32_t nDigits = fDecNumber->digits;
383 if (nDigits < fContext.digits) {
384 int i;
385 for (i=nDigits; i>0; i--) {
386 fDecNumber->lsu[i] = fDecNumber->lsu[i-1];
387 }
388 fDecNumber->lsu[0] = digit & 0x0f;
389 fDecNumber->digits++;
390 // DigitList emulation - appending doesn't change the magnitude of existing
391 // digits. With decNumber's decimal being after the
392 // least signficant digit, we need to adjust the exponent.
393 fDecNumber->exponent--;
394 }
395 }
396 internalClear();
397 }
398
399 // -------------------------------------
400
401 /**
402 * Currently, getDouble() depends on strtod() to do its conversion.
403 *
404 * WARNING!!
405 * This is an extremely costly function. ~1/2 of the conversion time
406 * can be linked to this function.
407 */
408 double
getDouble() const409 DigitList::getDouble() const
410 {
411 static char gDecimal = 0;
412 char decimalSeparator;
413 {
414 Mutex mutex;
415 if (fHave == kDouble) {
416 return fUnion.fDouble;
417 } else if(fHave == kInt64) {
418 return (double)fUnion.fInt64;
419 }
420 decimalSeparator = gDecimal;
421 }
422
423 if (decimalSeparator == 0) {
424 // We need to know the decimal separator character that will be used with strtod().
425 // Depends on the C runtime global locale.
426 // Most commonly is '.'
427 // TODO: caching could fail if the global locale is changed on the fly.
428 char rep[MAX_DIGITS];
429 sprintf(rep, "%+1.1f", 1.0);
430 decimalSeparator = rep[2];
431 }
432
433 double tDouble = 0.0;
434 if (isZero()) {
435 tDouble = 0.0;
436 if (decNumberIsNegative(fDecNumber)) {
437 tDouble /= -1;
438 }
439 } else if (isInfinite()) {
440 if (std::numeric_limits<double>::has_infinity) {
441 tDouble = std::numeric_limits<double>::infinity();
442 } else {
443 tDouble = std::numeric_limits<double>::max();
444 }
445 if (!isPositive()) {
446 tDouble = -tDouble; //this was incorrectly "-fDouble" originally.
447 }
448 } else {
449 MaybeStackArray<char, MAX_DBL_DIGITS+18> s;
450 // Note: 14 is a magic constant from the decNumber library documentation,
451 // the max number of extra characters beyond the number of digits
452 // needed to represent the number in string form. Add a few more
453 // for the additional digits we retain.
454
455 // Round down to appx. double precision, if the number is longer than that.
456 // Copy the number first, so that we don't modify the original.
457 if (getCount() > MAX_DBL_DIGITS + 3) {
458 DigitList numToConvert(*this);
459 numToConvert.reduce(); // Removes any trailing zeros, so that digit count is good.
460 numToConvert.round(MAX_DBL_DIGITS+3);
461 uprv_decNumberToString(numToConvert.fDecNumber, s.getAlias());
462 // TODO: how many extra digits should be included for an accurate conversion?
463 } else {
464 uprv_decNumberToString(this->fDecNumber, s.getAlias());
465 }
466 U_ASSERT(uprv_strlen(&s[0]) < MAX_DBL_DIGITS+18);
467
468 if (decimalSeparator != '.') {
469 char *decimalPt = strchr(s.getAlias(), '.');
470 if (decimalPt != NULL) {
471 *decimalPt = decimalSeparator;
472 }
473 }
474 char *end = NULL;
475 tDouble = uprv_strtod(s.getAlias(), &end);
476 }
477 {
478 Mutex mutex;
479 DigitList *nonConstThis = const_cast<DigitList *>(this);
480 nonConstThis->internalSetDouble(tDouble);
481 gDecimal = decimalSeparator;
482 }
483 return tDouble;
484 }
485
486 // -------------------------------------
487
488 /**
489 * convert this number to an int32_t. Round if there is a fractional part.
490 * Return zero if the number cannot be represented.
491 */
getLong()492 int32_t DigitList::getLong() /*const*/
493 {
494 int32_t result = 0;
495 if (fDecNumber->digits + fDecNumber->exponent > 10) {
496 // Overflow, absolute value too big.
497 return result;
498 }
499 if (fDecNumber->exponent != 0) {
500 // Force to an integer, with zero exponent, rounding if necessary.
501 // (decNumberToInt32 will only work if the exponent is exactly zero.)
502 DigitList copy(*this);
503 DigitList zero;
504 uprv_decNumberQuantize(copy.fDecNumber, copy.fDecNumber, zero.fDecNumber, &fContext);
505 result = uprv_decNumberToInt32(copy.fDecNumber, &fContext);
506 } else {
507 result = uprv_decNumberToInt32(fDecNumber, &fContext);
508 }
509 return result;
510 }
511
512
513 /**
514 * convert this number to an int64_t. Truncate if there is a fractional part.
515 * Return zero if the number cannot be represented.
516 */
getInt64()517 int64_t DigitList::getInt64() /*const*/ {
518 if(fHave==kInt64) {
519 return fUnion.fInt64;
520 }
521 // Truncate if non-integer.
522 // Return 0 if out of range.
523 // Range of in64_t is -9223372036854775808 to 9223372036854775807 (19 digits)
524 //
525 if (fDecNumber->digits + fDecNumber->exponent > 19) {
526 // Overflow, absolute value too big.
527 return 0;
528 }
529
530 // The number of integer digits may differ from the number of digits stored
531 // in the decimal number.
532 // for 12.345 numIntDigits = 2, number->digits = 5
533 // for 12E4 numIntDigits = 6, number->digits = 2
534 // The conversion ignores the fraction digits in the first case,
535 // and fakes up extra zero digits in the second.
536 // TODO: It would be faster to store a table of powers of ten to multiply by
537 // instead of looping over zero digits, multiplying each time.
538
539 int32_t numIntDigits = fDecNumber->digits + fDecNumber->exponent;
540 uint64_t value = 0;
541 for (int32_t i = 0; i < numIntDigits; i++) {
542 // Loop is iterating over digits starting with the most significant.
543 // Numbers are stored with the least significant digit at index zero.
544 int32_t digitIndex = fDecNumber->digits - i - 1;
545 int32_t v = (digitIndex >= 0) ? fDecNumber->lsu[digitIndex] : 0;
546 value = value * (uint64_t)10 + (uint64_t)v;
547 }
548
549 if (decNumberIsNegative(fDecNumber)) {
550 value = ~value;
551 value += 1;
552 }
553 int64_t svalue = (int64_t)value;
554
555 // Check overflow. It's convenient that the MSD is 9 only on overflow, the amount of
556 // overflow can't wrap too far. The test will also fail -0, but
557 // that does no harm; the right answer is 0.
558 if (numIntDigits == 19) {
559 if (( decNumberIsNegative(fDecNumber) && svalue>0) ||
560 (!decNumberIsNegative(fDecNumber) && svalue<0)) {
561 svalue = 0;
562 }
563 }
564
565 return svalue;
566 }
567
568
569 /**
570 * Return a string form of this number.
571 * Format is as defined by the decNumber library, for interchange of
572 * decimal numbers.
573 */
getDecimal(CharString & str,UErrorCode & status)574 void DigitList::getDecimal(CharString &str, UErrorCode &status) {
575 if (U_FAILURE(status)) {
576 return;
577 }
578
579 // A decimal number in string form can, worst case, be 14 characters longer
580 // than the number of digits. So says the decNumber library doc.
581 int32_t maxLength = fDecNumber->digits + 14;
582 int32_t capacity = 0;
583 char *buffer = str.clear().getAppendBuffer(maxLength, 0, capacity, status);
584 if (U_FAILURE(status)) {
585 return; // Memory allocation error on growing the string.
586 }
587 U_ASSERT(capacity >= maxLength);
588 uprv_decNumberToString(this->fDecNumber, buffer);
589 U_ASSERT((int32_t)uprv_strlen(buffer) <= maxLength);
590 str.append(buffer, -1, status);
591 }
592
593 /**
594 * Return true if this is an integer value that can be held
595 * by an int32_t type.
596 */
597 UBool
fitsIntoLong(UBool ignoreNegativeZero)598 DigitList::fitsIntoLong(UBool ignoreNegativeZero) /*const*/
599 {
600 if (decNumberIsSpecial(this->fDecNumber)) {
601 // NaN or Infinity. Does not fit in int32.
602 return FALSE;
603 }
604 uprv_decNumberTrim(this->fDecNumber);
605 if (fDecNumber->exponent < 0) {
606 // Number contains fraction digits.
607 return FALSE;
608 }
609 if (decNumberIsZero(this->fDecNumber) && !ignoreNegativeZero &&
610 (fDecNumber->bits & DECNEG) != 0) {
611 // Negative Zero, not ingored. Cannot represent as a long.
612 return FALSE;
613 }
614 if (fDecNumber->digits + fDecNumber->exponent < 10) {
615 // The number is 9 or fewer digits.
616 // The max and min int32 are 10 digts, so this number fits.
617 // This is the common case.
618 return TRUE;
619 }
620
621 // TODO: Should cache these constants; construction is relatively costly.
622 // But not of huge consequence; they're only needed for 10 digit ints.
623 UErrorCode status = U_ZERO_ERROR;
624 DigitList min32; min32.set("-2147483648", status);
625 if (this->compare(min32) < 0) {
626 return FALSE;
627 }
628 DigitList max32; max32.set("2147483647", status);
629 if (this->compare(max32) > 0) {
630 return FALSE;
631 }
632 if (U_FAILURE(status)) {
633 return FALSE;
634 }
635 return true;
636 }
637
638
639
640 /**
641 * Return true if the number represented by this object can fit into
642 * a long.
643 */
644 UBool
fitsIntoInt64(UBool ignoreNegativeZero)645 DigitList::fitsIntoInt64(UBool ignoreNegativeZero) /*const*/
646 {
647 if (decNumberIsSpecial(this->fDecNumber)) {
648 // NaN or Infinity. Does not fit in int32.
649 return FALSE;
650 }
651 uprv_decNumberTrim(this->fDecNumber);
652 if (fDecNumber->exponent < 0) {
653 // Number contains fraction digits.
654 return FALSE;
655 }
656 if (decNumberIsZero(this->fDecNumber) && !ignoreNegativeZero &&
657 (fDecNumber->bits & DECNEG) != 0) {
658 // Negative Zero, not ingored. Cannot represent as a long.
659 return FALSE;
660 }
661 if (fDecNumber->digits + fDecNumber->exponent < 19) {
662 // The number is 18 or fewer digits.
663 // The max and min int64 are 19 digts, so this number fits.
664 // This is the common case.
665 return TRUE;
666 }
667
668 // TODO: Should cache these constants; construction is relatively costly.
669 // But not of huge consequence; they're only needed for 19 digit ints.
670 UErrorCode status = U_ZERO_ERROR;
671 DigitList min64; min64.set("-9223372036854775808", status);
672 if (this->compare(min64) < 0) {
673 return FALSE;
674 }
675 DigitList max64; max64.set("9223372036854775807", status);
676 if (this->compare(max64) > 0) {
677 return FALSE;
678 }
679 if (U_FAILURE(status)) {
680 return FALSE;
681 }
682 return true;
683 }
684
685
686 // -------------------------------------
687
688 void
set(int32_t source)689 DigitList::set(int32_t source)
690 {
691 set((int64_t)source);
692 internalSetDouble(source);
693 }
694
695 // -------------------------------------
696 /**
697 * Set an int64, via decnumber
698 */
699 void
set(int64_t source)700 DigitList::set(int64_t source)
701 {
702 char str[MAX_DIGITS+2]; // Leave room for sign and trailing nul.
703 formatBase10(source, str);
704 U_ASSERT(uprv_strlen(str) < sizeof(str));
705
706 uprv_decNumberFromString(fDecNumber, str, &fContext);
707 internalSetDouble(static_cast<double>(source));
708 }
709
710 /**
711 * Set an int64, with no decnumber
712 */
713 void
setInteger(int64_t source)714 DigitList::setInteger(int64_t source)
715 {
716 fDecNumber=NULL;
717 internalSetInt64(source);
718 }
719
720
721 // -------------------------------------
722 /**
723 * Set the DigitList from a decimal number string.
724 *
725 * The incoming string _must_ be nul terminated, even though it is arriving
726 * as a StringPiece because that is what the decNumber library wants.
727 * We can get away with this for an internal function; it would not
728 * be acceptable for a public API.
729 */
730 void
set(const StringPiece & source,UErrorCode & status,uint32_t)731 DigitList::set(const StringPiece &source, UErrorCode &status, uint32_t /*fastpathBits*/) {
732 if (U_FAILURE(status)) {
733 return;
734 }
735
736 #if 0
737 if(fastpathBits==(kFastpathOk|kNoDecimal)) {
738 int32_t size = source.size();
739 const char *data = source.data();
740 int64_t r = 0;
741 int64_t m = 1;
742 // fast parse
743 while(size>0) {
744 char ch = data[--size];
745 if(ch=='+') {
746 break;
747 } else if(ch=='-') {
748 r = -r;
749 break;
750 } else {
751 int64_t d = ch-'0';
752 //printf("CH[%d]=%c, %d, *=%d\n", size,ch, (int)d, (int)m);
753 r+=(d)*m;
754 m *= 10;
755 }
756 }
757 //printf("R=%d\n", r);
758 set(r);
759 } else
760 #endif
761 {
762 // Figure out a max number of digits to use during the conversion, and
763 // resize the number up if necessary.
764 int32_t numDigits = source.length();
765 if (numDigits > fContext.digits) {
766 // fContext.digits == fStorage.getCapacity()
767 decNumber *t = fStorage.resize(numDigits, fStorage.getCapacity());
768 if (t == NULL) {
769 status = U_MEMORY_ALLOCATION_ERROR;
770 return;
771 }
772 fDecNumber = t;
773 fContext.digits = numDigits;
774 }
775
776 fContext.status = 0;
777 uprv_decNumberFromString(fDecNumber, source.data(), &fContext);
778 if ((fContext.status & DEC_Conversion_syntax) != 0) {
779 status = U_DECIMAL_NUMBER_SYNTAX_ERROR;
780 }
781 }
782 internalClear();
783 }
784
785 /**
786 * Set the digit list to a representation of the given double value.
787 * This method supports both fixed-point and exponential notation.
788 * @param source Value to be converted.
789 */
790 void
set(double source)791 DigitList::set(double source)
792 {
793 // for now, simple implementation; later, do proper IEEE stuff
794 char rep[MAX_DIGITS + 8]; // Extra space for '+', '.', e+NNN, and '\0' (actually +8 is enough)
795
796 // Generate a representation of the form /[+-][0-9].[0-9]+e[+-][0-9]+/
797 // Can also generate /[+-]nan/ or /[+-]inf/
798 // TODO: Use something other than sprintf() here, since it's behavior is somewhat platform specific.
799 // That is why infinity is special cased here.
800 if (uprv_isInfinite(source)) {
801 if (uprv_isNegativeInfinity(source)) {
802 uprv_strcpy(rep,"-inf"); // Handle negative infinity
803 } else {
804 uprv_strcpy(rep,"inf");
805 }
806 } else {
807 sprintf(rep, "%+1.*e", MAX_DBL_DIGITS - 1, source);
808 }
809 U_ASSERT(uprv_strlen(rep) < sizeof(rep));
810
811 // uprv_decNumberFromString() will parse the string expecting '.' as a
812 // decimal separator, however sprintf() can use ',' in certain locales.
813 // Overwrite a ',' with '.' here before proceeding.
814 char *decimalSeparator = strchr(rep, ',');
815 if (decimalSeparator != NULL) {
816 *decimalSeparator = '.';
817 }
818
819 // Create a decNumber from the string.
820 uprv_decNumberFromString(fDecNumber, rep, &fContext);
821 uprv_decNumberTrim(fDecNumber);
822 internalSetDouble(source);
823 }
824
825 // -------------------------------------
826
827 /*
828 * Multiply
829 * The number will be expanded if need be to retain full precision.
830 * In practice, for formatting, multiply is by 10, 100 or 1000, so more digits
831 * will not be required for this use.
832 */
833 void
mult(const DigitList & other,UErrorCode & status)834 DigitList::mult(const DigitList &other, UErrorCode &status) {
835 fContext.status = 0;
836 int32_t requiredDigits = this->digits() + other.digits();
837 if (requiredDigits > fContext.digits) {
838 reduce(); // Remove any trailing zeros
839 int32_t requiredDigits = this->digits() + other.digits();
840 ensureCapacity(requiredDigits, status);
841 }
842 uprv_decNumberMultiply(fDecNumber, fDecNumber, other.fDecNumber, &fContext);
843 internalClear();
844 }
845
846 // -------------------------------------
847
848 /*
849 * Divide
850 * The number will _not_ be expanded for inexact results.
851 * TODO: probably should expand some, for rounding increments that
852 * could add a few digits, e.g. .25, but not expand arbitrarily.
853 */
854 void
div(const DigitList & other,UErrorCode & status)855 DigitList::div(const DigitList &other, UErrorCode &status) {
856 if (U_FAILURE(status)) {
857 return;
858 }
859 uprv_decNumberDivide(fDecNumber, fDecNumber, other.fDecNumber, &fContext);
860 internalClear();
861 }
862
863 // -------------------------------------
864
865 /*
866 * ensureCapacity. Grow the digit storage for the number if it's less than the requested
867 * amount. Never reduce it. Available size is kept in fContext.digits.
868 */
869 void
ensureCapacity(int32_t requestedCapacity,UErrorCode & status)870 DigitList::ensureCapacity(int32_t requestedCapacity, UErrorCode &status) {
871 if (U_FAILURE(status)) {
872 return;
873 }
874 if (requestedCapacity <= 0) {
875 status = U_ILLEGAL_ARGUMENT_ERROR;
876 return;
877 }
878 if (requestedCapacity > DEC_MAX_DIGITS) {
879 // Don't report an error for requesting too much.
880 // Arithemetic Results will be rounded to what can be supported.
881 // At 999,999,999 max digits, exceeding the limit is not too likely!
882 requestedCapacity = DEC_MAX_DIGITS;
883 }
884 if (requestedCapacity > fContext.digits) {
885 decNumber *newBuffer = fStorage.resize(requestedCapacity, fStorage.getCapacity());
886 if (newBuffer == NULL) {
887 status = U_MEMORY_ALLOCATION_ERROR;
888 return;
889 }
890 fContext.digits = requestedCapacity;
891 fDecNumber = newBuffer;
892 }
893 }
894
895 // -------------------------------------
896
897 /**
898 * Round the representation to the given number of digits.
899 * @param maximumDigits The maximum number of digits to be shown.
900 * Upon return, count will be less than or equal to maximumDigits.
901 */
902 void
round(int32_t maximumDigits)903 DigitList::round(int32_t maximumDigits)
904 {
905 int32_t savedDigits = fContext.digits;
906 fContext.digits = maximumDigits;
907 uprv_decNumberPlus(fDecNumber, fDecNumber, &fContext);
908 fContext.digits = savedDigits;
909 uprv_decNumberTrim(fDecNumber);
910 internalClear();
911 }
912
913
914 void
roundFixedPoint(int32_t maximumFractionDigits)915 DigitList::roundFixedPoint(int32_t maximumFractionDigits) {
916 trim(); // Remove trailing zeros.
917 if (fDecNumber->exponent >= -maximumFractionDigits) {
918 return;
919 }
920 decNumber scale; // Dummy decimal number, but with the desired number of
921 uprv_decNumberZero(&scale); // fraction digits.
922 scale.exponent = -maximumFractionDigits;
923 scale.lsu[0] = 1;
924
925 uprv_decNumberQuantize(fDecNumber, fDecNumber, &scale, &fContext);
926 trim();
927 internalClear();
928 }
929
930 // -------------------------------------
931
932 void
toIntegralValue()933 DigitList::toIntegralValue() {
934 uprv_decNumberToIntegralValue(fDecNumber, fDecNumber, &fContext);
935 }
936
937
938 // -------------------------------------
939 UBool
isZero() const940 DigitList::isZero() const
941 {
942 return decNumberIsZero(fDecNumber);
943 }
944
945 U_NAMESPACE_END
946 #endif // #if !UCONFIG_NO_FORMATTING
947
948 //eof
949