1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/ceres.h"
32 #include "glog/logging.h"
33 
34 using ceres::AutoDiffCostFunction;
35 using ceres::CostFunction;
36 using ceres::Problem;
37 using ceres::Solver;
38 using ceres::Solve;
39 
40 // Data generated using the following octave code.
41 //   randn('seed', 23497);
42 //   m = 0.3;
43 //   c = 0.1;
44 //   x=[0:0.075:5];
45 //   y = exp(m * x + c);
46 //   noise = randn(size(x)) * 0.2;
47 //   y_observed = y + noise;
48 //   data = [x', y_observed'];
49 
50 const int kNumObservations = 67;
51 const double data[] = {
52   0.000000e+00, 1.133898e+00,
53   7.500000e-02, 1.334902e+00,
54   1.500000e-01, 1.213546e+00,
55   2.250000e-01, 1.252016e+00,
56   3.000000e-01, 1.392265e+00,
57   3.750000e-01, 1.314458e+00,
58   4.500000e-01, 1.472541e+00,
59   5.250000e-01, 1.536218e+00,
60   6.000000e-01, 1.355679e+00,
61   6.750000e-01, 1.463566e+00,
62   7.500000e-01, 1.490201e+00,
63   8.250000e-01, 1.658699e+00,
64   9.000000e-01, 1.067574e+00,
65   9.750000e-01, 1.464629e+00,
66   1.050000e+00, 1.402653e+00,
67   1.125000e+00, 1.713141e+00,
68   1.200000e+00, 1.527021e+00,
69   1.275000e+00, 1.702632e+00,
70   1.350000e+00, 1.423899e+00,
71   1.425000e+00, 1.543078e+00,
72   1.500000e+00, 1.664015e+00,
73   1.575000e+00, 1.732484e+00,
74   1.650000e+00, 1.543296e+00,
75   1.725000e+00, 1.959523e+00,
76   1.800000e+00, 1.685132e+00,
77   1.875000e+00, 1.951791e+00,
78   1.950000e+00, 2.095346e+00,
79   2.025000e+00, 2.361460e+00,
80   2.100000e+00, 2.169119e+00,
81   2.175000e+00, 2.061745e+00,
82   2.250000e+00, 2.178641e+00,
83   2.325000e+00, 2.104346e+00,
84   2.400000e+00, 2.584470e+00,
85   2.475000e+00, 1.914158e+00,
86   2.550000e+00, 2.368375e+00,
87   2.625000e+00, 2.686125e+00,
88   2.700000e+00, 2.712395e+00,
89   2.775000e+00, 2.499511e+00,
90   2.850000e+00, 2.558897e+00,
91   2.925000e+00, 2.309154e+00,
92   3.000000e+00, 2.869503e+00,
93   3.075000e+00, 3.116645e+00,
94   3.150000e+00, 3.094907e+00,
95   3.225000e+00, 2.471759e+00,
96   3.300000e+00, 3.017131e+00,
97   3.375000e+00, 3.232381e+00,
98   3.450000e+00, 2.944596e+00,
99   3.525000e+00, 3.385343e+00,
100   3.600000e+00, 3.199826e+00,
101   3.675000e+00, 3.423039e+00,
102   3.750000e+00, 3.621552e+00,
103   3.825000e+00, 3.559255e+00,
104   3.900000e+00, 3.530713e+00,
105   3.975000e+00, 3.561766e+00,
106   4.050000e+00, 3.544574e+00,
107   4.125000e+00, 3.867945e+00,
108   4.200000e+00, 4.049776e+00,
109   4.275000e+00, 3.885601e+00,
110   4.350000e+00, 4.110505e+00,
111   4.425000e+00, 4.345320e+00,
112   4.500000e+00, 4.161241e+00,
113   4.575000e+00, 4.363407e+00,
114   4.650000e+00, 4.161576e+00,
115   4.725000e+00, 4.619728e+00,
116   4.800000e+00, 4.737410e+00,
117   4.875000e+00, 4.727863e+00,
118   4.950000e+00, 4.669206e+00,
119 };
120 
121 struct ExponentialResidual {
ExponentialResidualExponentialResidual122   ExponentialResidual(double x, double y)
123       : x_(x), y_(y) {}
124 
operator ()ExponentialResidual125   template <typename T> bool operator()(const T* const m,
126                                         const T* const c,
127                                         T* residual) const {
128     residual[0] = T(y_) - exp(m[0] * T(x_) + c[0]);
129     return true;
130   }
131 
132  private:
133   const double x_;
134   const double y_;
135 };
136 
main(int argc,char ** argv)137 int main(int argc, char** argv) {
138   google::InitGoogleLogging(argv[0]);
139 
140   double m = 0.0;
141   double c = 0.0;
142 
143   Problem problem;
144   for (int i = 0; i < kNumObservations; ++i) {
145     problem.AddResidualBlock(
146         new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
147             new ExponentialResidual(data[2 * i], data[2 * i + 1])),
148         NULL,
149         &m, &c);
150   }
151 
152   Solver::Options options;
153   options.max_num_iterations = 25;
154   options.linear_solver_type = ceres::DENSE_QR;
155   options.minimizer_progress_to_stdout = true;
156 
157   Solver::Summary summary;
158   Solve(options, &problem, &summary);
159   std::cout << summary.BriefReport() << "\n";
160   std::cout << "Initial m: " << 0.0 << " c: " << 0.0 << "\n";
161   std::cout << "Final   m: " << m << " c: " << c << "\n";
162   return 0;
163 }
164