1 #if !defined(_FX_JPEG_TURBO_)
2 /*
3  * jcdctmgr.c
4  *
5  * Copyright (C) 1994-1996, Thomas G. Lane.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains the forward-DCT management logic.
10  * This code selects a particular DCT implementation to be used,
11  * and it performs related housekeeping chores including coefficient
12  * quantization.
13  */
14 
15 #define JPEG_INTERNALS
16 #include "jinclude.h"
17 #include "jpeglib.h"
18 #include "jdct.h"		/* Private declarations for DCT subsystem */
19 
20 
21 /* Private subobject for this module */
22 
23 typedef struct {
24   struct jpeg_forward_dct pub;	/* public fields */
25 
26   /* Pointer to the DCT routine actually in use */
27   forward_DCT_method_ptr do_dct;
28 
29   /* The actual post-DCT divisors --- not identical to the quant table
30    * entries, because of scaling (especially for an unnormalized DCT).
31    * Each table is given in normal array order.
32    */
33   DCTELEM * divisors[NUM_QUANT_TBLS];
34 
35 #ifdef DCT_FLOAT_SUPPORTED
36   /* Same as above for the floating-point case. */
37   float_DCT_method_ptr do_float_dct;
38   FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
39 #endif
40 } my_fdct_controller;
41 
42 typedef my_fdct_controller * my_fdct_ptr;
43 
44 
45 /*
46  * Initialize for a processing pass.
47  * Verify that all referenced Q-tables are present, and set up
48  * the divisor table for each one.
49  * In the current implementation, DCT of all components is done during
50  * the first pass, even if only some components will be output in the
51  * first scan.  Hence all components should be examined here.
52  */
53 
54 METHODDEF(void)
start_pass_fdctmgr(j_compress_ptr cinfo)55 start_pass_fdctmgr (j_compress_ptr cinfo)
56 {
57   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
58   int ci, qtblno, i;
59   jpeg_component_info *compptr;
60   JQUANT_TBL * qtbl;
61   DCTELEM * dtbl;
62 
63   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
64        ci++, compptr++) {
65     qtblno = compptr->quant_tbl_no;
66     /* Make sure specified quantization table is present */
67     if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
68 	cinfo->quant_tbl_ptrs[qtblno] == NULL)
69       ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
70     qtbl = cinfo->quant_tbl_ptrs[qtblno];
71     /* Compute divisors for this quant table */
72     /* We may do this more than once for same table, but it's not a big deal */
73     switch (cinfo->dct_method) {
74 #ifdef DCT_ISLOW_SUPPORTED
75     case JDCT_ISLOW:
76       /* For LL&M IDCT method, divisors are equal to raw quantization
77        * coefficients multiplied by 8 (to counteract scaling).
78        */
79       if (fdct->divisors[qtblno] == NULL) {
80 	fdct->divisors[qtblno] = (DCTELEM *)
81 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
82 				      DCTSIZE2 * SIZEOF(DCTELEM));
83       }
84       dtbl = fdct->divisors[qtblno];
85       for (i = 0; i < DCTSIZE2; i++) {
86 	dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
87       }
88       break;
89 #endif
90 #ifdef DCT_IFAST_SUPPORTED
91     case JDCT_IFAST:
92       {
93 	/* For AA&N IDCT method, divisors are equal to quantization
94 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
95 	 *   scalefactor[0] = 1
96 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
97 	 * We apply a further scale factor of 8.
98 	 */
99 #define CONST_BITS 14
100 	static const INT16 aanscales[DCTSIZE2] = {
101 	  /* precomputed values scaled up by 14 bits */
102 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
103 	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
104 	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
105 	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
106 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
107 	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
108 	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
109 	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
110 	};
111 	SHIFT_TEMPS
112 
113 	if (fdct->divisors[qtblno] == NULL) {
114 	  fdct->divisors[qtblno] = (DCTELEM *)
115 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
116 					DCTSIZE2 * SIZEOF(DCTELEM));
117 	}
118 	dtbl = fdct->divisors[qtblno];
119 	for (i = 0; i < DCTSIZE2; i++) {
120 	  dtbl[i] = (DCTELEM)
121 	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
122 				  (INT32) aanscales[i]),
123 		    CONST_BITS-3);
124 	}
125       }
126       break;
127 #endif
128 #ifdef DCT_FLOAT_SUPPORTED
129     case JDCT_FLOAT:
130       {
131 	/* For float AA&N IDCT method, divisors are equal to quantization
132 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
133 	 *   scalefactor[0] = 1
134 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
135 	 * We apply a further scale factor of 8.
136 	 * What's actually stored is 1/divisor so that the inner loop can
137 	 * use a multiplication rather than a division.
138 	 */
139 	FAST_FLOAT * fdtbl;
140 	int row, col;
141 	static const double aanscalefactor[DCTSIZE] = {
142 	  1.0, 1.387039845, 1.306562965, 1.175875602,
143 	  1.0, 0.785694958, 0.541196100, 0.275899379
144 	};
145 
146 	if (fdct->float_divisors[qtblno] == NULL) {
147 	  fdct->float_divisors[qtblno] = (FAST_FLOAT *)
148 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
149 					DCTSIZE2 * SIZEOF(FAST_FLOAT));
150 	}
151 	fdtbl = fdct->float_divisors[qtblno];
152 	i = 0;
153 	for (row = 0; row < DCTSIZE; row++) {
154 	  for (col = 0; col < DCTSIZE; col++) {
155 	    fdtbl[i] = (FAST_FLOAT)
156 	      (1.0 / (((double) qtbl->quantval[i] *
157 		       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
158 	    i++;
159 	  }
160 	}
161       }
162       break;
163 #endif
164     default:
165       ERREXIT(cinfo, JERR_NOT_COMPILED);
166       break;
167     }
168   }
169 }
170 
171 
172 /*
173  * Perform forward DCT on one or more blocks of a component.
174  *
175  * The input samples are taken from the sample_data[] array starting at
176  * position start_row/start_col, and moving to the right for any additional
177  * blocks. The quantized coefficients are returned in coef_blocks[].
178  */
179 
180 METHODDEF(void)
forward_DCT(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY sample_data,JBLOCKROW coef_blocks,JDIMENSION start_row,JDIMENSION start_col,JDIMENSION num_blocks)181 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
182 	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
183 	     JDIMENSION start_row, JDIMENSION start_col,
184 	     JDIMENSION num_blocks)
185 /* This version is used for integer DCT implementations. */
186 {
187   /* This routine is heavily used, so it's worth coding it tightly. */
188   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
189   forward_DCT_method_ptr do_dct = fdct->do_dct;
190   DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
191   DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */
192   JDIMENSION bi;
193 
194   sample_data += start_row;	/* fold in the vertical offset once */
195 
196   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
197     /* Load data into workspace, applying unsigned->signed conversion */
198     { register DCTELEM *workspaceptr;
199       register JSAMPROW elemptr;
200       register int elemr;
201 
202       workspaceptr = workspace;
203       for (elemr = 0; elemr < DCTSIZE; elemr++) {
204 	elemptr = sample_data[elemr] + start_col;
205 #if DCTSIZE == 8		/* unroll the inner loop */
206 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
207 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
208 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
209 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
210 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
211 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
212 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
213 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
214 #else
215 	{ register int elemc;
216 	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
217 	    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
218 	  }
219 	}
220 #endif
221       }
222     }
223 
224     /* Perform the DCT */
225     (*do_dct) (workspace);
226 
227     /* Quantize/descale the coefficients, and store into coef_blocks[] */
228     { register DCTELEM temp, qval;
229       register int i;
230       register JCOEFPTR output_ptr = coef_blocks[bi];
231 
232       for (i = 0; i < DCTSIZE2; i++) {
233 	qval = divisors[i];
234 	temp = workspace[i];
235 	/* Divide the coefficient value by qval, ensuring proper rounding.
236 	 * Since C does not specify the direction of rounding for negative
237 	 * quotients, we have to force the dividend positive for portability.
238 	 *
239 	 * In most files, at least half of the output values will be zero
240 	 * (at default quantization settings, more like three-quarters...)
241 	 * so we should ensure that this case is fast.  On many machines,
242 	 * a comparison is enough cheaper than a divide to make a special test
243 	 * a win.  Since both inputs will be nonnegative, we need only test
244 	 * for a < b to discover whether a/b is 0.
245 	 * If your machine's division is fast enough, define FAST_DIVIDE.
246 	 */
247 #ifdef FAST_DIVIDE
248 #define DIVIDE_BY(a,b)	a /= b
249 #else
250 #define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0
251 #endif
252 	if (temp < 0) {
253 	  temp = -temp;
254 	  temp += qval>>1;	/* for rounding */
255 	  DIVIDE_BY(temp, qval);
256 	  temp = -temp;
257 	} else {
258 	  temp += qval>>1;	/* for rounding */
259 	  DIVIDE_BY(temp, qval);
260 	}
261 	output_ptr[i] = (JCOEF) temp;
262       }
263     }
264   }
265 }
266 
267 
268 #ifdef DCT_FLOAT_SUPPORTED
269 
270 METHODDEF(void)
forward_DCT_float(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY sample_data,JBLOCKROW coef_blocks,JDIMENSION start_row,JDIMENSION start_col,JDIMENSION num_blocks)271 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
272 		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
273 		   JDIMENSION start_row, JDIMENSION start_col,
274 		   JDIMENSION num_blocks)
275 /* This version is used for floating-point DCT implementations. */
276 {
277   /* This routine is heavily used, so it's worth coding it tightly. */
278   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
279   float_DCT_method_ptr do_dct = fdct->do_float_dct;
280   FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
281   FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
282   JDIMENSION bi;
283 
284   sample_data += start_row;	/* fold in the vertical offset once */
285 
286   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
287     /* Load data into workspace, applying unsigned->signed conversion */
288     { register FAST_FLOAT *workspaceptr;
289       register JSAMPROW elemptr;
290       register int elemr;
291 
292       workspaceptr = workspace;
293       for (elemr = 0; elemr < DCTSIZE; elemr++) {
294 	elemptr = sample_data[elemr] + start_col;
295 #if DCTSIZE == 8		/* unroll the inner loop */
296 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
297 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
298 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
299 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
300 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
301 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
302 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
303 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
304 #else
305 	{ register int elemc;
306 	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
307 	    *workspaceptr++ = (FAST_FLOAT)
308 	      (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
309 	  }
310 	}
311 #endif
312       }
313     }
314 
315     /* Perform the DCT */
316     (*do_dct) (workspace);
317 
318     /* Quantize/descale the coefficients, and store into coef_blocks[] */
319     { register FAST_FLOAT temp;
320       register int i;
321       register JCOEFPTR output_ptr = coef_blocks[bi];
322 
323       for (i = 0; i < DCTSIZE2; i++) {
324 	/* Apply the quantization and scaling factor */
325 	temp = workspace[i] * divisors[i];
326 	/* Round to nearest integer.
327 	 * Since C does not specify the direction of rounding for negative
328 	 * quotients, we have to force the dividend positive for portability.
329 	 * The maximum coefficient size is +-16K (for 12-bit data), so this
330 	 * code should work for either 16-bit or 32-bit ints.
331 	 */
332 	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
333       }
334     }
335   }
336 }
337 
338 #endif /* DCT_FLOAT_SUPPORTED */
339 
340 
341 /*
342  * Initialize FDCT manager.
343  */
344 
345 GLOBAL(void)
jinit_forward_dct(j_compress_ptr cinfo)346 jinit_forward_dct (j_compress_ptr cinfo)
347 {
348   my_fdct_ptr fdct;
349   int i;
350 
351   fdct = (my_fdct_ptr)
352     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
353 				SIZEOF(my_fdct_controller));
354   cinfo->fdct = (struct jpeg_forward_dct *) fdct;
355   fdct->pub.start_pass = start_pass_fdctmgr;
356 
357   switch (cinfo->dct_method) {
358 #ifdef DCT_ISLOW_SUPPORTED
359   case JDCT_ISLOW:
360     fdct->pub.forward_DCT = forward_DCT;
361     fdct->do_dct = jpeg_fdct_islow;
362     break;
363 #endif
364 #ifdef DCT_IFAST_SUPPORTED
365   case JDCT_IFAST:
366     fdct->pub.forward_DCT = forward_DCT;
367     fdct->do_dct = jpeg_fdct_ifast;
368     break;
369 #endif
370 #ifdef DCT_FLOAT_SUPPORTED
371   case JDCT_FLOAT:
372     fdct->pub.forward_DCT = forward_DCT_float;
373     fdct->do_float_dct = jpeg_fdct_float;
374     break;
375 #endif
376   default:
377     ERREXIT(cinfo, JERR_NOT_COMPILED);
378     break;
379   }
380 
381   /* Mark divisor tables unallocated */
382   for (i = 0; i < NUM_QUANT_TBLS; i++) {
383     fdct->divisors[i] = NULL;
384 #ifdef DCT_FLOAT_SUPPORTED
385     fdct->float_divisors[i] = NULL;
386 #endif
387   }
388 }
389 
390 #endif //_FX_JPEG_TURBO_
391