1 #if !defined(_FX_JPEG_TURBO_)
2 /*
3  * jchuff.c
4  *
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains Huffman entropy encoding routines.
10  *
11  * Much of the complexity here has to do with supporting output suspension.
12  * If the data destination module demands suspension, we want to be able to
13  * back up to the start of the current MCU.  To do this, we copy state
14  * variables into local working storage, and update them back to the
15  * permanent JPEG objects only upon successful completion of an MCU.
16  */
17 
18 #define JPEG_INTERNALS
19 #include "jinclude.h"
20 #include "jpeglib.h"
21 #include "jchuff.h"		/* Declarations shared with jcphuff.c */
22 
23 #ifdef _FX_MANAGED_CODE_
24 #define savable_state	savable_state_c
25 #endif
26 
27 /* Expanded entropy encoder object for Huffman encoding.
28  *
29  * The savable_state subrecord contains fields that change within an MCU,
30  * but must not be updated permanently until we complete the MCU.
31  */
32 
33 typedef struct {
34   INT32 put_buffer;		/* current bit-accumulation buffer */
35   int put_bits;			/* # of bits now in it */
36   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
37 } savable_state;
38 
39 /* This macro is to work around compilers with missing or broken
40  * structure assignment.  You'll need to fix this code if you have
41  * such a compiler and you change MAX_COMPS_IN_SCAN.
42  */
43 
44 #ifndef NO_STRUCT_ASSIGN
45 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
46 #else
47 #if MAX_COMPS_IN_SCAN == 4
48 #define ASSIGN_STATE(dest,src)  \
49 	((dest).put_buffer = (src).put_buffer, \
50 	 (dest).put_bits = (src).put_bits, \
51 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
52 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
53 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
54 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
55 #endif
56 #endif
57 
58 
59 typedef struct {
60   struct jpeg_entropy_encoder pub; /* public fields */
61 
62   savable_state saved;		/* Bit buffer & DC state at start of MCU */
63 
64   /* These fields are NOT loaded into local working state. */
65   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
66   int next_restart_num;		/* next restart number to write (0-7) */
67 
68   /* Pointers to derived tables (these workspaces have image lifespan) */
69   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
70   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
71 
72 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
73   long * dc_count_ptrs[NUM_HUFF_TBLS];
74   long * ac_count_ptrs[NUM_HUFF_TBLS];
75 #endif
76 } huff_entropy_encoder;
77 
78 typedef huff_entropy_encoder * huff_entropy_ptr;
79 
80 /* Working state while writing an MCU.
81  * This struct contains all the fields that are needed by subroutines.
82  */
83 
84 typedef struct {
85   JOCTET * next_output_byte;	/* => next byte to write in buffer */
86   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
87   savable_state cur;		/* Current bit buffer & DC state */
88   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
89 } working_state;
90 
91 
92 /* Forward declarations */
93 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
94 					JBLOCKROW *MCU_data));
95 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
96 #ifdef ENTROPY_OPT_SUPPORTED
97 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
98 					  JBLOCKROW *MCU_data));
99 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
100 #endif
101 
102 
103 /*
104  * Initialize for a Huffman-compressed scan.
105  * If gather_statistics is TRUE, we do not output anything during the scan,
106  * just count the Huffman symbols used and generate Huffman code tables.
107  */
108 
109 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)110 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
111 {
112   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
113   int ci, dctbl, actbl;
114   jpeg_component_info * compptr;
115 
116   if (gather_statistics) {
117 #ifdef ENTROPY_OPT_SUPPORTED
118     entropy->pub.encode_mcu = encode_mcu_gather;
119     entropy->pub.finish_pass = finish_pass_gather;
120 #else
121     ERREXIT(cinfo, JERR_NOT_COMPILED);
122 #endif
123   } else {
124     entropy->pub.encode_mcu = encode_mcu_huff;
125     entropy->pub.finish_pass = finish_pass_huff;
126   }
127 
128   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
129     compptr = cinfo->cur_comp_info[ci];
130     dctbl = compptr->dc_tbl_no;
131     actbl = compptr->ac_tbl_no;
132     if (gather_statistics) {
133 #ifdef ENTROPY_OPT_SUPPORTED
134       /* Check for invalid table indexes */
135       /* (make_c_derived_tbl does this in the other path) */
136       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
137 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
138       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
139 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
140       /* Allocate and zero the statistics tables */
141       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
142       if (entropy->dc_count_ptrs[dctbl] == NULL)
143 	entropy->dc_count_ptrs[dctbl] = (long *)
144 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
145 				      257 * SIZEOF(long));
146       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
147       if (entropy->ac_count_ptrs[actbl] == NULL)
148 	entropy->ac_count_ptrs[actbl] = (long *)
149 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
150 				      257 * SIZEOF(long));
151       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
152 #endif
153     } else {
154       /* Compute derived values for Huffman tables */
155       /* We may do this more than once for a table, but it's not expensive */
156       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
157 			      & entropy->dc_derived_tbls[dctbl]);
158       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
159 			      & entropy->ac_derived_tbls[actbl]);
160     }
161     /* Initialize DC predictions to 0 */
162     entropy->saved.last_dc_val[ci] = 0;
163   }
164 
165   /* Initialize bit buffer to empty */
166   entropy->saved.put_buffer = 0;
167   entropy->saved.put_bits = 0;
168 
169   /* Initialize restart stuff */
170   entropy->restarts_to_go = cinfo->restart_interval;
171   entropy->next_restart_num = 0;
172 }
173 
174 
175 /*
176  * Compute the derived values for a Huffman table.
177  * This routine also performs some validation checks on the table.
178  *
179  * Note this is also used by jcphuff.c.
180  */
181 
182 GLOBAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)183 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
184 			 c_derived_tbl ** pdtbl)
185 {
186   JHUFF_TBL *htbl;
187   c_derived_tbl *dtbl;
188   int p, i, l, lastp, _si, maxsymbol;
189   char huffsize[257];
190   unsigned int huffcode[257];
191   unsigned int code;
192 
193   /* Note that huffsize[] and huffcode[] are filled in code-length order,
194    * paralleling the order of the symbols themselves in htbl->huffval[].
195    */
196 
197   /* Find the input Huffman table */
198   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
199     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
200   htbl =
201     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
202   if (htbl == NULL)
203     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
204 
205   /* Allocate a workspace if we haven't already done so. */
206   if (*pdtbl == NULL)
207     *pdtbl = (c_derived_tbl *)
208       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
209 				  SIZEOF(c_derived_tbl));
210   dtbl = *pdtbl;
211 
212   /* Figure C.1: make table of Huffman code length for each symbol */
213 
214   p = 0;
215   for (l = 1; l <= 16; l++) {
216     i = (int) htbl->bits[l];
217     if (i < 0 || p + i > 256)	/* protect against table overrun */
218       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
219     while (i--)
220       huffsize[p++] = (char) l;
221   }
222   huffsize[p] = 0;
223   lastp = p;
224 
225   /* Figure C.2: generate the codes themselves */
226   /* We also validate that the counts represent a legal Huffman code tree. */
227 
228   code = 0;
229   _si = huffsize[0];
230   p = 0;
231   while (huffsize[p]) {
232     while (((int) huffsize[p]) == _si) {
233       huffcode[p++] = code;
234       code++;
235     }
236     /* code is now 1 more than the last code used for codelength si; but
237      * it must still fit in si bits, since no code is allowed to be all ones.
238      */
239     if (((INT32) code) >= (((INT32) 1) << _si))
240       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
241     code <<= 1;
242     _si++;
243   }
244 
245   /* Figure C.3: generate encoding tables */
246   /* These are code and size indexed by symbol value */
247 
248   /* Set all codeless symbols to have code length 0;
249    * this lets us detect duplicate VAL entries here, and later
250    * allows emit_bits to detect any attempt to emit such symbols.
251    */
252   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
253 
254   /* This is also a convenient place to check for out-of-range
255    * and duplicated VAL entries.  We allow 0..255 for AC symbols
256    * but only 0..15 for DC.  (We could constrain them further
257    * based on data depth and mode, but this seems enough.)
258    */
259   maxsymbol = isDC ? 15 : 255;
260 
261   for (p = 0; p < lastp; p++) {
262     i = htbl->huffval[p];
263     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
264       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
265     dtbl->ehufco[i] = huffcode[p];
266     dtbl->ehufsi[i] = huffsize[p];
267   }
268 }
269 
270 
271 /* Outputting bytes to the file */
272 
273 /* Emit a byte, taking 'action' if must suspend. */
274 #define emit_byte(state,val,action)  \
275 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
276 	  if (--(state)->free_in_buffer == 0)  \
277 	    if (! dump_buffer(state))  \
278 	      { action; } }
279 
280 
281 LOCAL(boolean)
dump_buffer(working_state * state)282 dump_buffer (working_state * state)
283 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
284 {
285   struct jpeg_destination_mgr * dest = state->cinfo->dest;
286 
287   if (! (*dest->empty_output_buffer) (state->cinfo))
288     return FALSE;
289   /* After a successful buffer dump, must reset buffer pointers */
290   state->next_output_byte = dest->next_output_byte;
291   state->free_in_buffer = dest->free_in_buffer;
292   return TRUE;
293 }
294 
295 
296 /* Outputting bits to the file */
297 
298 /* Only the right 24 bits of put_buffer are used; the valid bits are
299  * left-justified in this part.  At most 16 bits can be passed to emit_bits
300  * in one call, and we never retain more than 7 bits in put_buffer
301  * between calls, so 24 bits are sufficient.
302  */
303 
304 INLINE
LOCAL(boolean)305 LOCAL(boolean)
306 emit_bits (working_state * state, unsigned int code, int size)
307 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
308 {
309   /* This routine is heavily used, so it's worth coding tightly. */
310   register INT32 put_buffer = (INT32) code;
311   register int put_bits = state->cur.put_bits;
312 
313   /* if size is 0, caller used an invalid Huffman table entry */
314   if (size == 0)
315     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
316 
317   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
318 
319   put_bits += size;		/* new number of bits in buffer */
320 
321   put_buffer <<= 24 - put_bits; /* align incoming bits */
322 
323   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
324 
325   while (put_bits >= 8) {
326     int c = (int) ((put_buffer >> 16) & 0xFF);
327 
328     emit_byte(state, c, return FALSE);
329     if (c == 0xFF) {		/* need to stuff a zero byte? */
330       emit_byte(state, 0, return FALSE);
331     }
332     put_buffer <<= 8;
333     put_bits -= 8;
334   }
335 
336   state->cur.put_buffer = put_buffer; /* update state variables */
337   state->cur.put_bits = put_bits;
338 
339   return TRUE;
340 }
341 
342 
343 LOCAL(boolean)
flush_bits(working_state * state)344 flush_bits (working_state * state)
345 {
346   if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
347     return FALSE;
348   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
349   state->cur.put_bits = 0;
350   return TRUE;
351 }
352 
353 
354 /* Encode a single block's worth of coefficients */
355 
356 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)357 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
358 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
359 {
360   register int temp, temp2;
361   register int nbits;
362   register int k, r, i;
363 
364   /* Encode the DC coefficient difference per section F.1.2.1 */
365 
366   temp = temp2 = block[0] - last_dc_val;
367 
368   if (temp < 0) {
369     temp = -temp;		/* temp is abs value of input */
370     /* For a negative input, want temp2 = bitwise complement of abs(input) */
371     /* This code assumes we are on a two's complement machine */
372     temp2--;
373   }
374 
375   /* Find the number of bits needed for the magnitude of the coefficient */
376   nbits = 0;
377   while (temp) {
378     nbits++;
379     temp >>= 1;
380   }
381   /* Check for out-of-range coefficient values.
382    * Since we're encoding a difference, the range limit is twice as much.
383    */
384   if (nbits > MAX_COEF_BITS+1)
385     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
386 
387   /* Emit the Huffman-coded symbol for the number of bits */
388   if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
389     return FALSE;
390 
391   /* Emit that number of bits of the value, if positive, */
392   /* or the complement of its magnitude, if negative. */
393   if (nbits)			/* emit_bits rejects calls with size 0 */
394     if (! emit_bits(state, (unsigned int) temp2, nbits))
395       return FALSE;
396 
397   /* Encode the AC coefficients per section F.1.2.2 */
398 
399   r = 0;			/* r = run length of zeros */
400 
401   for (k = 1; k < DCTSIZE2; k++) {
402     if ((temp = block[jpeg_natural_order[k]]) == 0) {
403       r++;
404     } else {
405       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
406       while (r > 15) {
407 	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
408 	  return FALSE;
409 	r -= 16;
410       }
411 
412       temp2 = temp;
413       if (temp < 0) {
414 	temp = -temp;		/* temp is abs value of input */
415 	/* This code assumes we are on a two's complement machine */
416 	temp2--;
417       }
418 
419       /* Find the number of bits needed for the magnitude of the coefficient */
420       nbits = 1;		/* there must be at least one 1 bit */
421       while ((temp >>= 1))
422 	nbits++;
423       /* Check for out-of-range coefficient values */
424       if (nbits > MAX_COEF_BITS)
425 	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
426 
427       /* Emit Huffman symbol for run length / number of bits */
428       i = (r << 4) + nbits;
429       if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
430 	return FALSE;
431 
432       /* Emit that number of bits of the value, if positive, */
433       /* or the complement of its magnitude, if negative. */
434       if (! emit_bits(state, (unsigned int) temp2, nbits))
435 	return FALSE;
436 
437       r = 0;
438     }
439   }
440 
441   /* If the last coef(s) were zero, emit an end-of-block code */
442   if (r > 0)
443     if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
444       return FALSE;
445 
446   return TRUE;
447 }
448 
449 
450 /*
451  * Emit a restart marker & resynchronize predictions.
452  */
453 
454 LOCAL(boolean)
emit_restart(working_state * state,int restart_num)455 emit_restart (working_state * state, int restart_num)
456 {
457   int ci;
458 
459   if (! flush_bits(state))
460     return FALSE;
461 
462   emit_byte(state, 0xFF, return FALSE);
463   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
464 
465   /* Re-initialize DC predictions to 0 */
466   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
467     state->cur.last_dc_val[ci] = 0;
468 
469   /* The restart counter is not updated until we successfully write the MCU. */
470 
471   return TRUE;
472 }
473 
474 
475 /*
476  * Encode and output one MCU's worth of Huffman-compressed coefficients.
477  */
478 
479 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)480 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
481 {
482   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
483   working_state state;
484   int blkn, ci;
485   jpeg_component_info * compptr;
486 
487   /* Load up working state */
488   state.next_output_byte = cinfo->dest->next_output_byte;
489   state.free_in_buffer = cinfo->dest->free_in_buffer;
490   ASSIGN_STATE(state.cur, entropy->saved);
491   state.cinfo = cinfo;
492 
493   /* Emit restart marker if needed */
494   if (cinfo->restart_interval) {
495     if (entropy->restarts_to_go == 0)
496       if (! emit_restart(&state, entropy->next_restart_num))
497 	return FALSE;
498   }
499 
500   /* Encode the MCU data blocks */
501   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
502     ci = cinfo->MCU_membership[blkn];
503     compptr = cinfo->cur_comp_info[ci];
504     if (! encode_one_block(&state,
505 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
506 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
507 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
508       return FALSE;
509     /* Update last_dc_val */
510     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
511   }
512 
513   /* Completed MCU, so update state */
514   cinfo->dest->next_output_byte = state.next_output_byte;
515   cinfo->dest->free_in_buffer = state.free_in_buffer;
516   ASSIGN_STATE(entropy->saved, state.cur);
517 
518   /* Update restart-interval state too */
519   if (cinfo->restart_interval) {
520     if (entropy->restarts_to_go == 0) {
521       entropy->restarts_to_go = cinfo->restart_interval;
522       entropy->next_restart_num++;
523       entropy->next_restart_num &= 7;
524     }
525     entropy->restarts_to_go--;
526   }
527 
528   return TRUE;
529 }
530 
531 
532 /*
533  * Finish up at the end of a Huffman-compressed scan.
534  */
535 
536 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)537 finish_pass_huff (j_compress_ptr cinfo)
538 {
539   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
540   working_state state;
541 
542   /* Load up working state ... flush_bits needs it */
543   state.next_output_byte = cinfo->dest->next_output_byte;
544   state.free_in_buffer = cinfo->dest->free_in_buffer;
545   ASSIGN_STATE(state.cur, entropy->saved);
546   state.cinfo = cinfo;
547 
548   /* Flush out the last data */
549   if (! flush_bits(&state))
550     ERREXIT(cinfo, JERR_CANT_SUSPEND);
551 
552   /* Update state */
553   cinfo->dest->next_output_byte = state.next_output_byte;
554   cinfo->dest->free_in_buffer = state.free_in_buffer;
555   ASSIGN_STATE(entropy->saved, state.cur);
556 }
557 
558 
559 /*
560  * Huffman coding optimization.
561  *
562  * We first scan the supplied data and count the number of uses of each symbol
563  * that is to be Huffman-coded. (This process MUST agree with the code above.)
564  * Then we build a Huffman coding tree for the observed counts.
565  * Symbols which are not needed at all for the particular image are not
566  * assigned any code, which saves space in the DHT marker as well as in
567  * the compressed data.
568  */
569 
570 #ifdef ENTROPY_OPT_SUPPORTED
571 
572 
573 /* Process a single block's worth of coefficients */
574 
575 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])576 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
577 		 long dc_counts[], long ac_counts[])
578 {
579   register int temp;
580   register int nbits;
581   register int k, r;
582 
583   /* Encode the DC coefficient difference per section F.1.2.1 */
584 
585   temp = block[0] - last_dc_val;
586   if (temp < 0)
587     temp = -temp;
588 
589   /* Find the number of bits needed for the magnitude of the coefficient */
590   nbits = 0;
591   while (temp) {
592     nbits++;
593     temp >>= 1;
594   }
595   /* Check for out-of-range coefficient values.
596    * Since we're encoding a difference, the range limit is twice as much.
597    */
598   if (nbits > MAX_COEF_BITS+1)
599     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
600 
601   /* Count the Huffman symbol for the number of bits */
602   dc_counts[nbits]++;
603 
604   /* Encode the AC coefficients per section F.1.2.2 */
605 
606   r = 0;			/* r = run length of zeros */
607 
608   for (k = 1; k < DCTSIZE2; k++) {
609     if ((temp = block[jpeg_natural_order[k]]) == 0) {
610       r++;
611     } else {
612       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
613       while (r > 15) {
614 	ac_counts[0xF0]++;
615 	r -= 16;
616       }
617 
618       /* Find the number of bits needed for the magnitude of the coefficient */
619       if (temp < 0)
620 	temp = -temp;
621 
622       /* Find the number of bits needed for the magnitude of the coefficient */
623       nbits = 1;		/* there must be at least one 1 bit */
624       while ((temp >>= 1))
625 	nbits++;
626       /* Check for out-of-range coefficient values */
627       if (nbits > MAX_COEF_BITS)
628 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
629 
630       /* Count Huffman symbol for run length / number of bits */
631       ac_counts[(r << 4) + nbits]++;
632 
633       r = 0;
634     }
635   }
636 
637   /* If the last coef(s) were zero, emit an end-of-block code */
638   if (r > 0)
639     ac_counts[0]++;
640 }
641 
642 
643 /*
644  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
645  * No data is actually output, so no suspension return is possible.
646  */
647 
648 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)649 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
650 {
651   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
652   int blkn, ci;
653   jpeg_component_info * compptr;
654 
655   /* Take care of restart intervals if needed */
656   if (cinfo->restart_interval) {
657     if (entropy->restarts_to_go == 0) {
658       /* Re-initialize DC predictions to 0 */
659       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
660 	entropy->saved.last_dc_val[ci] = 0;
661       /* Update restart state */
662       entropy->restarts_to_go = cinfo->restart_interval;
663     }
664     entropy->restarts_to_go--;
665   }
666 
667   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
668     ci = cinfo->MCU_membership[blkn];
669     compptr = cinfo->cur_comp_info[ci];
670     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
671 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
672 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
673     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
674   }
675 
676   return TRUE;
677 }
678 
679 
680 /*
681  * Generate the best Huffman code table for the given counts, fill htbl.
682  * Note this is also used by jcphuff.c.
683  *
684  * The JPEG standard requires that no symbol be assigned a codeword of all
685  * one bits (so that padding bits added at the end of a compressed segment
686  * can't look like a valid code).  Because of the canonical ordering of
687  * codewords, this just means that there must be an unused slot in the
688  * longest codeword length category.  Section K.2 of the JPEG spec suggests
689  * reserving such a slot by pretending that symbol 256 is a valid symbol
690  * with count 1.  In theory that's not optimal; giving it count zero but
691  * including it in the symbol set anyway should give a better Huffman code.
692  * But the theoretically better code actually seems to come out worse in
693  * practice, because it produces more all-ones bytes (which incur stuffed
694  * zero bytes in the final file).  In any case the difference is tiny.
695  *
696  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
697  * If some symbols have a very small but nonzero probability, the Huffman tree
698  * must be adjusted to meet the code length restriction.  We currently use
699  * the adjustment method suggested in JPEG section K.2.  This method is *not*
700  * optimal; it may not choose the best possible limited-length code.  But
701  * typically only very-low-frequency symbols will be given less-than-optimal
702  * lengths, so the code is almost optimal.  Experimental comparisons against
703  * an optimal limited-length-code algorithm indicate that the difference is
704  * microscopic --- usually less than a hundredth of a percent of total size.
705  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
706  */
707 
708 GLOBAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])709 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
710 {
711 #define MAX_CLEN 32		/* assumed maximum initial code length */
712   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
713   int codesize[257];		/* codesize[k] = code length of symbol k */
714   int others[257];		/* next symbol in current branch of tree */
715   int c1, c2;
716   int p, i, j;
717   long v;
718 
719   /* This algorithm is explained in section K.2 of the JPEG standard */
720 
721   MEMZERO(bits, SIZEOF(bits));
722   MEMZERO(codesize, SIZEOF(codesize));
723   for (i = 0; i < 257; i++)
724     others[i] = -1;		/* init links to empty */
725 
726   freq[256] = 1;		/* make sure 256 has a nonzero count */
727   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
728    * that no real symbol is given code-value of all ones, because 256
729    * will be placed last in the largest codeword category.
730    */
731 
732   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
733 
734   for (;;) {
735     /* Find the smallest nonzero frequency, set c1 = its symbol */
736     /* In case of ties, take the larger symbol number */
737     c1 = -1;
738     v = 1000000000L;
739     for (i = 0; i <= 256; i++) {
740       if (freq[i] && freq[i] <= v) {
741 	v = freq[i];
742 	c1 = i;
743       }
744     }
745 
746     /* Find the next smallest nonzero frequency, set c2 = its symbol */
747     /* In case of ties, take the larger symbol number */
748     c2 = -1;
749     v = 1000000000L;
750     for (i = 0; i <= 256; i++) {
751       if (freq[i] && freq[i] <= v && i != c1) {
752 	v = freq[i];
753 	c2 = i;
754       }
755     }
756 
757     /* Done if we've merged everything into one frequency */
758     if (c2 < 0)
759       break;
760 
761     /* Else merge the two counts/trees */
762     freq[c1] += freq[c2];
763     freq[c2] = 0;
764 
765     /* Increment the codesize of everything in c1's tree branch */
766     codesize[c1]++;
767     while (others[c1] >= 0) {
768       c1 = others[c1];
769       codesize[c1]++;
770     }
771 
772     others[c1] = c2;		/* chain c2 onto c1's tree branch */
773 
774     /* Increment the codesize of everything in c2's tree branch */
775     codesize[c2]++;
776     while (others[c2] >= 0) {
777       c2 = others[c2];
778       codesize[c2]++;
779     }
780   }
781 
782   /* Now count the number of symbols of each code length */
783   for (i = 0; i <= 256; i++) {
784     if (codesize[i]) {
785       /* The JPEG standard seems to think that this can't happen, */
786       /* but I'm paranoid... */
787       if (codesize[i] > MAX_CLEN)
788 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
789 
790       bits[codesize[i]]++;
791     }
792   }
793 
794   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
795    * Huffman procedure assigned any such lengths, we must adjust the coding.
796    * Here is what the JPEG spec says about how this next bit works:
797    * Since symbols are paired for the longest Huffman code, the symbols are
798    * removed from this length category two at a time.  The prefix for the pair
799    * (which is one bit shorter) is allocated to one of the pair; then,
800    * skipping the BITS entry for that prefix length, a code word from the next
801    * shortest nonzero BITS entry is converted into a prefix for two code words
802    * one bit longer.
803    */
804 
805   for (i = MAX_CLEN; i > 16; i--) {
806     while (bits[i] > 0) {
807       j = i - 2;		/* find length of new prefix to be used */
808       while (bits[j] == 0)
809 	j--;
810 
811       bits[i] -= 2;		/* remove two symbols */
812       bits[i-1]++;		/* one goes in this length */
813       bits[j+1] += 2;		/* two new symbols in this length */
814       bits[j]--;		/* symbol of this length is now a prefix */
815     }
816   }
817 
818   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
819   while (bits[i] == 0)		/* find largest codelength still in use */
820     i--;
821   bits[i]--;
822 
823   /* Return final symbol counts (only for lengths 0..16) */
824   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
825 
826   /* Return a list of the symbols sorted by code length */
827   /* It's not real clear to me why we don't need to consider the codelength
828    * changes made above, but the JPEG spec seems to think this works.
829    */
830   p = 0;
831   for (i = 1; i <= MAX_CLEN; i++) {
832     for (j = 0; j <= 255; j++) {
833       if (codesize[j] == i) {
834 	htbl->huffval[p] = (UINT8) j;
835 	p++;
836       }
837     }
838   }
839 
840   /* Set sent_table FALSE so updated table will be written to JPEG file. */
841   htbl->sent_table = FALSE;
842 }
843 
844 
845 /*
846  * Finish up a statistics-gathering pass and create the new Huffman tables.
847  */
848 
849 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)850 finish_pass_gather (j_compress_ptr cinfo)
851 {
852   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
853   int ci, dctbl, actbl;
854   jpeg_component_info * compptr;
855   JHUFF_TBL **htblptr;
856   boolean did_dc[NUM_HUFF_TBLS];
857   boolean did_ac[NUM_HUFF_TBLS];
858 
859   /* It's important not to apply jpeg_gen_optimal_table more than once
860    * per table, because it clobbers the input frequency counts!
861    */
862   MEMZERO(did_dc, SIZEOF(did_dc));
863   MEMZERO(did_ac, SIZEOF(did_ac));
864 
865   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
866     compptr = cinfo->cur_comp_info[ci];
867     dctbl = compptr->dc_tbl_no;
868     actbl = compptr->ac_tbl_no;
869     if (! did_dc[dctbl]) {
870       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
871       if (*htblptr == NULL)
872 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
873       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
874       did_dc[dctbl] = TRUE;
875     }
876     if (! did_ac[actbl]) {
877       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
878       if (*htblptr == NULL)
879 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
880       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
881       did_ac[actbl] = TRUE;
882     }
883   }
884 }
885 
886 
887 #endif /* ENTROPY_OPT_SUPPORTED */
888 
889 
890 /*
891  * Module initialization routine for Huffman entropy encoding.
892  */
893 
894 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)895 jinit_huff_encoder (j_compress_ptr cinfo)
896 {
897   huff_entropy_ptr entropy;
898   int i;
899 
900   entropy = (huff_entropy_ptr)
901     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
902 				SIZEOF(huff_entropy_encoder));
903   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
904   entropy->pub.start_pass = start_pass_huff;
905 
906   /* Mark tables unallocated */
907   for (i = 0; i < NUM_HUFF_TBLS; i++) {
908     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
909 #ifdef ENTROPY_OPT_SUPPORTED
910     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
911 #endif
912   }
913 }
914 
915 #endif //_FX_JPEG_TURBO_
916