1page.title=OpenGL ES 2page.tags=games 3@jd:body 4 5<div id="qv-wrapper"> 6 <div id="qv"> 7 <h2>In this document</h2> 8 9 <ol> 10 <li><a href="#basics">The Basics</a> 11 <ol> 12 <li><a href="#packages">OpenGL ES packages</a></li> 13 </ol> 14 <li><a href="#manifest">Declaring OpenGL Requirements</a></li> 15 <li><a href="#coordinate-mapping">Mapping Coordinates for Drawn Objects</a> 16 <ol> 17 <li><a href="#proj-es1">Projection and camera in ES 1.0</a></li> 18 <li><a href="#proj-es2">Projection and camera in ES 2.0 and higher</a></li> 19 </ol> 20 </li> 21 <li><a href="#faces-winding">Shape Faces and Winding</a></li> 22 <li><a href="#compatibility">OpenGL Versions and Device Compatibility</a> 23 <ol> 24 <li><a href="#textures">Texture compression support</a></li> 25 <li><a href="#gl-extension-query">Determining OpenGL extensions</a></li> 26 <li><a href="#version-check">Checking OpenGL ES Version</a></li> 27 </ol> 28 </li> 29 <li><a href="#choosing-version">Choosing an OpenGL API Version</a></li> 30 </ol> 31 <h2>Key classes</h2> 32 <ol> 33 <li>{@link android.opengl.GLSurfaceView}</li> 34 <li>{@link android.opengl.GLSurfaceView.Renderer}</li> 35 </ol> 36 <h2>See also</h2> 37 <ol> 38 <li><a href="{@docRoot}training/graphics/opengl/index.html"> 39 Displaying Graphics with OpenGL ES</a></li> 40 <li><a href="http://www.khronos.org/opengles/">OpenGL ES</a></li> 41 <li><a href="http://www.khronos.org/opengles/1_X/">OpenGL ES 1.x Specification</a></li> 42 <li><a href="http://www.khronos.org/opengles/2_X/">OpenGL ES 2.x specification</a></li> 43 <li><a href="http://www.khronos.org/opengles/3_X/">OpenGL ES 3.x specification</a></li> 44 </ol> 45 </div> 46</div> 47 48<p>Android includes support for high performance 2D and 3D graphics with the Open Graphics Library 49(OpenGL®), specifically, the OpenGL ES API. OpenGL is a cross-platform graphics API that 50specifies a 51standard software interface for 3D graphics processing hardware. OpenGL ES is a flavor of the OpenGL 52specification intended for embedded devices. Android supports several versions of the OpenGL ES 53API:</p> 54 55<ul> 56 <li>OpenGL ES 1.0 and 1.1 - This API specification is supported by Android 1.0 and higher.</li> 57 <li>OpenGL ES 2.0 - This API specification is supported by Android 2.2 (API level 8) and higher. 58 </li> 59 <li>OpenGL ES 3.0 - This API specification is supported by Android 4.3 (API level 18) and higher. 60 </li> 61 <li>OpenGL ES 3.1 - This API specification is supported by Android 5.0 (API level 21) and higher. 62 </li> 63</ul> 64 65<p class="caution"><strong>Caution:</strong> 66 Support of the OpenGL ES 3.0 API on a device requires an implementation of this graphics 67 pipeline provided by the device manufacturer. A device running Android 4.3 or higher <em>may 68 not support</em> the OpenGL ES 3.0 API. For information on checking what version of OpenGL ES 69 is supported at run time, see <a href="#version-check">Checking OpenGL ES Version</a>. 70</p> 71 72<p class="note"><strong>Note:</strong> 73 The specific API provided by the Android framework is similar to the J2ME JSR239 OpenGL ES API, 74 but is not identical. If you are familiar with J2ME JSR239 specification, be alert for 75 variations.</p> 76 77 78 79<h2 id="basics">The Basics</h2> 80 81<p>Android supports OpenGL both through its framework API and the Native Development 82Kit (NDK). This topic focuses on the Android framework interfaces. For more information about the 83NDK, see the <a href="{@docRoot}tools/sdk/ndk/index.html">Android NDK</a>. 84 85<p>There are two foundational classes in the Android framework that let you create and manipulate 86graphics with the OpenGL ES API: {@link android.opengl.GLSurfaceView} and {@link 87android.opengl.GLSurfaceView.Renderer}. If your goal is to use OpenGL in your Android application, 88understanding how to implement these classes in an activity should be your first objective. 89</p> 90 91<dl> 92 <dt><strong>{@link android.opengl.GLSurfaceView}</strong></dt> 93 <dd>This class is a {@link android.view.View} where you can draw and manipulate objects using 94 OpenGL API calls and is similar in function to a {@link android.view.SurfaceView}. You can use 95 this class by creating an instance of {@link android.opengl.GLSurfaceView} and adding your 96 {@link android.opengl.GLSurfaceView.Renderer Renderer} to it. However, if you want to capture 97 touch screen events, you should extend the {@link android.opengl.GLSurfaceView} class to 98 implement the touch listeners, as shown in OpenGL training lesson, 99 <a href="{@docRoot}training/graphics/opengl/touch.html">Responding to Touch Events</a>.</dd> 100 101 <dt><strong>{@link android.opengl.GLSurfaceView.Renderer}</strong></dt> 102 <dd>This interface defines the methods required for drawing graphics in a {@link 103 android.opengl.GLSurfaceView}. You must provide an implementation of this interface as a 104 separate class and attach it to your {@link android.opengl.GLSurfaceView} instance using 105 {@link android.opengl.GLSurfaceView#setRenderer(android.opengl.GLSurfaceView.Renderer) 106 GLSurfaceView.setRenderer()}. 107 108 <p>The {@link android.opengl.GLSurfaceView.Renderer} interface requires that you implement the 109 following methods:</p> 110 <ul> 111 <li> 112 {@link 113 android.opengl.GLSurfaceView.Renderer#onSurfaceCreated(javax.microedition.khronos.opengles.GL10, 114 javax.microedition.khronos.egl.EGLConfig) onSurfaceCreated()}: The system calls this 115 method once, when creating the {@link android.opengl.GLSurfaceView}. Use this method to perform 116 actions that need to happen only once, such as setting OpenGL environment parameters or 117 initializing OpenGL graphic objects. 118 </li> 119 <li> 120 {@link 121 android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10) 122 onDrawFrame()}: The system calls this method on each redraw of the {@link 123 android.opengl.GLSurfaceView}. Use this method as the primary execution point for 124 drawing (and re-drawing) graphic objects.</li> 125 <li> 126 {@link 127 android.opengl.GLSurfaceView.Renderer#onSurfaceChanged(javax.microedition.khronos.opengles.GL10, 128 int, int) onSurfaceChanged()}: The system calls this method when the {@link 129 android.opengl.GLSurfaceView} geometry changes, including changes in size of the {@link 130 android.opengl.GLSurfaceView} or orientation of the device screen. For example, the system calls 131 this method when the device changes from portrait to landscape orientation. Use this method to 132 respond to changes in the {@link android.opengl.GLSurfaceView} container. 133 </li> 134 </ul> 135 </dd> 136</dl> 137 138<h3 id="packages">OpenGL ES packages</h3> 139<p>Once you have established a container view for OpenGL ES using {@link 140android.opengl.GLSurfaceView} and {@link android.opengl.GLSurfaceView.Renderer}, you can begin 141calling OpenGL APIs using the following classes:</p> 142 143<ul> 144 <li>OpenGL ES 1.0/1.1 API Packages 145 <ul> 146 <li>{@link android.opengl} - This package provides a static interface to the OpenGL ES 147 1.0/1.1 classes and better performance than the {@code javax.microedition.khronos} package 148 interfaces. 149 <ul> 150 <li>{@link android.opengl.GLES10}</li> 151 <li>{@link android.opengl.GLES10Ext}</li> 152 <li>{@link android.opengl.GLES11}</li> 153 <li>{@link android.opengl.GLES11Ext}</li> 154 </ul> 155 </li> 156 <li>{@link javax.microedition.khronos.opengles} - This package provides the standard 157 implementation of OpenGL ES 1.0/1.1. 158 <ul> 159 <li>{@link javax.microedition.khronos.opengles.GL10}</li> 160 <li>{@link javax.microedition.khronos.opengles.GL10Ext}</li> 161 <li>{@link javax.microedition.khronos.opengles.GL11}</li> 162 <li>{@link javax.microedition.khronos.opengles.GL11Ext}</li> 163 <li>{@link javax.microedition.khronos.opengles.GL11ExtensionPack}</li> 164 </ul> 165 </li> 166 </ul> 167 </li> 168 <li>OpenGL ES 2.0 API Class 169 <ul> 170 <li>{@link android.opengl.GLES20 android.opengl.GLES20} - This package provides the 171 interface to OpenGL ES 2.0 and is available starting with Android 2.2 (API level 8).</li> 172 </ul> 173 </li> 174 </li> 175 <li>OpenGL ES 3.0/3.1 API Packages 176 <ul> 177 <li>{@link android.opengl} - This package provides the interface to the OpenGL ES 3.0/3.1 178classes. 179 Version 3.0 is available starting with Android 4.3 (API level 18). Version 3.1 is available 180starting with Android 5.0 (API level 21). 181 <ul> 182 <li>{@link android.opengl.GLES30}</li> 183 <li>{@link android.opengl.GLES31} </li> 184 <li>{@link android.opengl.GLES31Ext} (<a href="#aep">Android Extension Pack</a>)</li> 185 </ul> 186 </ul> 187 </li> 188</ul> 189 190<p>If you want to start building an app with OpenGL ES right away, follow the 191<a href="{@docRoot}training/graphics/opengl/index.html">Displaying Graphics with OpenGL ES</a> 192class. 193</p> 194 195<h2 id="manifest">Declaring OpenGL Requirements</h2> 196<p>If your application uses OpenGL features that are not available on all devices, you must include 197these requirements in your <a 198href="{@docRoot}guide/topics/manifest/manifest-intro.html">AndroidManifest.xml</a> file. 199Here are the most common OpenGL manifest declarations:</p> 200 201<ul> 202 <li><strong>OpenGL ES version requirements</strong> - If your application requires a specific 203version of 204 OpenGL ES, you must declare that requirement by adding the following settings to your manifest as 205shown below.</li> 206 207<p>For OpenGL ES 2.0:</p> 208 209<pre> 210<!-- Tell the system this app requires OpenGL ES 2.0. --> 211<uses-feature android:glEsVersion="0x00020000" android:required="true" /> 212</pre> 213 214 <p>Adding this declaration causes Google Play to restrict your application from being 215 installed on devices that do not support OpenGL ES 2.0. If your application is exclusively for 216 devices that support OpenGL ES 3.0, you can also specify this in your manifest:</p> 217 218<p>For OpenGL ES 3.0:</p> 219 220<pre> 221<!-- Tell the system this app requires OpenGL ES 3.0. --> 222<uses-feature android:glEsVersion="0x00030000" android:required="true" /> 223</pre> 224 225<p>For OpenGL ES 3.1:</p> 226 227<pre> 228<!-- Tell the system this app requires OpenGL ES 3.1. --> 229<uses-feature android:glEsVersion="0x00030001" android:required="true" /> 230</pre> 231 232 <p class="note"><strong>Note:</strong> 233 The OpenGL ES 3.x API is backwards-compatible with the 2.0 API, which means you can be more 234 flexible with your implementation of OpenGL ES in your application. By declaring the OpenGL 235 ES 2.0 API as a requirement in your manifest, you can use that API version as a default, check 236 for the availability of the 3.x API at run time and then use OpenGL ES 3.x features if the 237 device supports it. For more information about checking the OpenGL ES version supported by a 238 device, see <a href="#version-check">Checking OpenGL ES Version</a>. 239 </p> 240 241 </li> 242 <li><strong>Texture compression requirements</strong> - If your application uses texture 243compression formats, you must declare the formats your application supports in your manifest file 244using <a href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html">{@code 245<supports-gl-texture>}</a>. For more information about available texture compression 246formats, see <a href="#textures">Texture compression support</a>. 247 248<p>Declaring texture compression requirements in your manifest hides your application from users 249with devices that do not support at least one of your declared compression types. For more 250information on how Google Play filtering works for texture compressions, see the <a 251href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html#market-texture-filtering"> 252Google Play and texture compression filtering</a> section of the {@code 253<supports-gl-texture>} documentation.</p> 254 </li> 255</ul> 256 257 258<h2 id="coordinate-mapping">Mapping Coordinates for Drawn Objects</h2> 259 260<p>One of the basic problems in displaying graphics on Android devices is that their screens can 261vary in size and shape. OpenGL assumes a square, uniform coordinate system and, by default, happily 262draws those coordinates onto your typically non-square screen as if it is perfectly square.</p> 263 264<img src="{@docRoot}images/opengl/coordinates.png"> 265<p class="img-caption"> 266 <strong>Figure 1.</strong> Default OpenGL coordinate system (left) mapped to a typical Android 267device screen (right). 268</p> 269 270<p>The illustration above shows the uniform coordinate system assumed for an OpenGL frame on the 271left, and how these coordinates actually map to a typical device screen in landscape orientation 272on the right. To solve this problem, you can apply OpenGL projection modes and camera views to 273transform coordinates so your graphic objects have the correct proportions on any display.</p> 274 275<p>In order to apply projection and camera views, you create a projection matrix and a camera view 276matrix and apply them to the OpenGL rendering pipeline. The projection matrix recalculates the 277coordinates of your graphics so that they map correctly to Android device screens. The camera view 278matrix creates a transformation that renders objects from a specific eye position.</p> 279 280 281<h3 id="proj-es1">Projection and camera view in OpenGL ES 1.0</h3> 282<p>In the ES 1.0 API, you apply projection and camera view by creating each matrix and then 283adding them to the OpenGL environment.</p> 284 285<ol> 286<li><strong>Projection matrix</strong> - Create a projection matrix using the geometry of the 287device screen in order to recalculate object coordinates so they are drawn with correct proportions. 288The following example code demonstrates how to modify the {@link 289android.opengl.GLSurfaceView.Renderer#onSurfaceChanged(javax.microedition.khronos.opengles.GL10, 290int, int) onSurfaceChanged()} method of a {@link android.opengl.GLSurfaceView.Renderer} 291implementation to create a projection matrix based on the screen's aspect ratio and apply it to the 292OpenGL rendering environment. 293 294<pre> 295public void onSurfaceChanged(GL10 gl, int width, int height) { 296 gl.glViewport(0, 0, width, height); 297 298 // make adjustments for screen ratio 299 float ratio = (float) width / height; 300 gl.glMatrixMode(GL10.GL_PROJECTION); // set matrix to projection mode 301 gl.glLoadIdentity(); // reset the matrix to its default state 302 gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7); // apply the projection matrix 303} 304</pre> 305</li> 306 307<li><strong>Camera transformation matrix</strong> - Once you have adjusted the coordinate system 308using a projection matrix, you must also apply a camera view. The following example code shows how 309to modify the {@link 310android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10) 311onDrawFrame()} method of a {@link android.opengl.GLSurfaceView.Renderer} 312implementation to apply a model view and use the 313{@link android.opengl.GLU#gluLookAt(javax.microedition.khronos.opengles.GL10, float, float, float, 314float, float, float, float, float, float) GLU.gluLookAt()} utility to create a viewing tranformation 315which simulates a camera position. 316 317<pre> 318public void onDrawFrame(GL10 gl) { 319 ... 320 // Set GL_MODELVIEW transformation mode 321 gl.glMatrixMode(GL10.GL_MODELVIEW); 322 gl.glLoadIdentity(); // reset the matrix to its default state 323 324 // When using GL_MODELVIEW, you must set the camera view 325 GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f); 326 ... 327} 328</pre> 329</li> 330</ol> 331 332 333<h3 id="proj-es2">Projection and camera view in OpenGL ES 2.0 and higher</h3> 334 335<p>In the ES 2.0 and 3.0 APIs, you apply projection and camera view by first adding a matrix member 336to the vertex shaders of your graphics objects. With this matrix member added, you can then 337generate and apply projection and camera viewing matrices to your objects.</p> 338 339<ol> 340<li><strong>Add matrix to vertex shaders</strong> - Create a variable for the view projection matrix 341and include it as a multiplier of the shader's position. In the following example vertex shader 342code, the included {@code uMVPMatrix} member allows you to apply projection and camera viewing 343matrices to the coordinates of objects that use this shader. 344 345<pre> 346private final String vertexShaderCode = 347 348 // This matrix member variable provides a hook to manipulate 349 // the coordinates of objects that use this vertex shader. 350 "uniform mat4 uMVPMatrix; \n" + 351 352 "attribute vec4 vPosition; \n" + 353 "void main(){ \n" + 354 // The matrix must be included as part of gl_Position 355 // Note that the uMVPMatrix factor *must be first* in order 356 // for the matrix multiplication product to be correct. 357 " gl_Position = uMVPMatrix * vPosition; \n" + 358 359 "} \n"; 360</pre> 361 <p class="note"><strong>Note:</strong> The example above defines a single transformation matrix 362member in the vertex shader into which you apply a combined projection matrix and camera view 363matrix. Depending on your application requirements, you may want to define separate projection 364matrix and camera viewing matrix members in your vertex shaders so you can change them 365independently.</p> 366</li> 367<li><strong>Access the shader matrix</strong> - After creating a hook in your vertex shaders to 368apply projection and camera view, you can then access that variable to apply projection and 369camera viewing matrices. The following code shows how to modify the {@link 370android.opengl.GLSurfaceView.Renderer#onSurfaceCreated(javax.microedition.khronos.opengles.GL10, 371javax.microedition.khronos.egl.EGLConfig) onSurfaceCreated()} method of a {@link 372android.opengl.GLSurfaceView.Renderer} implementation to access the matrix 373variable defined in the vertex shader above. 374 375<pre> 376public void onSurfaceCreated(GL10 unused, EGLConfig config) { 377 ... 378 muMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix"); 379 ... 380} 381</pre> 382</li> 383<li><strong>Create projection and camera viewing matrices</strong> - Generate the projection and 384viewing matrices to be applied the graphic objects. The following example code shows how to modify 385the {@link android.opengl.GLSurfaceView.Renderer#onSurfaceCreated onSurfaceCreated()} and 386{@link android.opengl.GLSurfaceView.Renderer#onSurfaceChanged onSurfaceChanged()} methods of a 387{@link android.opengl.GLSurfaceView.Renderer} implementation to create camera view matrix and a 388projection matrix based on the screen aspect ratio of the device. 389 390<pre> 391public void onSurfaceCreated(GL10 unused, EGLConfig config) { 392 ... 393 // Create a camera view matrix 394 Matrix.setLookAtM(mVMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f); 395} 396 397public void onSurfaceChanged(GL10 unused, int width, int height) { 398 GLES20.glViewport(0, 0, width, height); 399 400 float ratio = (float) width / height; 401 402 // create a projection matrix from device screen geometry 403 Matrix.frustumM(mProjMatrix, 0, -ratio, ratio, -1, 1, 3, 7); 404} 405</pre> 406</li> 407 408<li><strong>Apply projection and camera viewing matrices</strong> - To apply the projection and 409camera view transformations, multiply the matrices together and then set them into the vertex 410shader. The following example code shows how modify the {@link 411android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10) 412onDrawFrame()} method of a {@link android.opengl.GLSurfaceView.Renderer} implementation to combine 413the projection matrix and camera view created in the code above and then apply it to the graphic 414objects to be rendered by OpenGL. 415 416<pre> 417public void onDrawFrame(GL10 unused) { 418 ... 419 // Combine the projection and camera view matrices 420 Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mVMatrix, 0); 421 422 // Apply the combined projection and camera view transformations 423 GLES20.glUniformMatrix4fv(muMVPMatrixHandle, 1, false, mMVPMatrix, 0); 424 425 // Draw objects 426 ... 427} 428</pre> 429</li> 430</ol> 431<p>For a complete example of how to apply projection and camera view with OpenGL ES 2.0, see the <a 432href="{@docRoot}training/graphics/opengl/index.html">Displaying Graphics with OpenGL ES</a> 433class.</p> 434 435 436<h2 id="faces-winding">Shape Faces and Winding</h2> 437 438<p>In OpenGL, the face of a shape is a surface defined by three or more points in three-dimensional 439space. A set of three or more three-dimensional points (called vertices in OpenGL) have a front face 440and a back face. How do you know which face is front and which is the back? Good question. The 441answer has to do with winding, or, the direction in which you define the points of a shape.</p> 442 443<img src="{@docRoot}images/opengl/ccw-winding.png"> 444<p class="img-caption"> 445 <strong>Figure 1.</strong> Illustration of a coordinate list which translates into a 446counterclockwise drawing order.</p> 447 448<p>In this example, the points of the triangle are defined in an order such that they are drawn in a 449counterclockwise direction. The order in which these coordinates are drawn defines the winding 450direction for the shape. By default, in OpenGL, the face which is drawn counterclockwise is the 451front face. The triangle shown in Figure 1 is defined so that you are looking at the front face of 452the shape (as interpreted by OpenGL) and the other side is the back face.</p> 453 454<p>Why is it important to know which face of a shape is the front face? The answer has to do with a 455commonly used feature of OpenGL, called face culling. Face culling is an option for the OpenGL 456environment which allows the rendering pipeline to ignore (not calculate or draw) the back face of a 457shape, saving time, memory and processing cycles:</p> 458 459<pre> 460// enable face culling feature 461gl.glEnable(GL10.GL_CULL_FACE); 462// specify which faces to not draw 463gl.glCullFace(GL10.GL_BACK); 464</pre> 465 466<p>If you try to use the face culling feature without knowing which sides of your shapes are the 467front and back, your OpenGL graphics are going to look a bit thin, or possibly not show up at all. 468So, always define the coordinates of your OpenGL shapes in a counterclockwise drawing order.</p> 469 470<p class="note"><strong>Note:</strong> It is possible to set an OpenGL environment to treat the 471clockwise face as the front face, but doing so requires more code and is likely to confuse 472experienced OpenGL developers when you ask them for help. So don’t do that.</p> 473 474 475<h2 id="compatibility">OpenGL Versions and Device Compatibility</h2> 476 477<p>The OpenGL ES 1.0 and 1.1 API specifications have been supported since Android 1.0. 478Beginning with Android 2.2 (API level 8), the framework supports the OpenGL ES 2.0 API 479specification. OpenGL ES 2.0 is supported by most Android devices and is recommended for new 480applications being developed with OpenGL. OpenGL ES 3.0 is supported with Android 4.3 481(API level 18) and higher, on devices that provide an implementation of the OpenGL ES 3.0 API. 482For information about the relative number of Android-powered devices 483that support a given version of OpenGL ES, see the 484<a href="{@docRoot}about/dashboards/index.html#OpenGL">OpenGL ES Version Dashboard</a>.</p> 485 486<p>Graphics programming with OpenGL ES 1.0/1.1 API is significantly different than using the 2.0 487and higher versions. The 1.x version of the API has more convenience methods and a fixed graphics 488pipeline, while the OpenGL ES 2.0 and 3.0 APIs provide more direct control of the pipeline through 489use of OpenGL shaders. You should carefully consider the graphics requirements and choose the API 490version that works best for your application. For more information, see 491<a href="#choosing-version">Choosing an OpenGL API Version</a>.</p> 492 493<p>The OpenGL ES 3.0 API provides additional features and better performance than the 2.0 API and is 494also backward compatible. This means that you can potentially write your application targeting 495OpenGL ES 2.0 and conditionally include OpenGL ES 3.0 graphics features if they are available. For 496more information on checking for availability of the 3.0 API, see 497<a href="#version-check">Checking OpenGL ES Version</a></p> 498 499 500<h3 id="textures">Texture compression support</h3> 501 502<p>Texture compression can significantly increase the performance of your OpenGL application by 503reducing memory requirements and making more efficient use of memory bandwidth. The Android 504framework provides support for the ETC1 compression format as a standard feature, including a {@link 505android.opengl.ETC1Util} utility class and the {@code etc1tool} compression tool (located in the 506Android SDK at {@code <sdk>/tools/}). For an example of an Android application that uses 507texture compression, see the {@code CompressedTextureActivity} code sample in Android SDK 508({@code <sdk>/samples/<version>/ApiDemos/src/com/example/android/apis/graphics/}).</p> 509 510<p class="caution"><strong>Caution:</strong> The ETC1 format is supported by most Android devices, 511but it not guaranteed to be available. To check if the ETC1 format is supported on a device, call 512the {@link android.opengl.ETC1Util#isETC1Supported() ETC1Util.isETC1Supported()} method.</p> 513 514<p class="note"><b>Note:</b> The ETC1 texture compression format does not support textures with an 515transparency (alpha channel). If your application requires textures with transparency, you should 516investigate other texture compression formats available on your target devices.</p> 517 518<p>The ETC2/EAC texture compression formats are guaranteed to be available when using the OpenGL ES 5193.0 API. This texture format offers excellent compression ratios with high visual quality and the 520format also supports transparency (alpha channel).</p> 521 522<p>Beyond the ETC formats, Android devices have varied support for texture compression based on 523their GPU chipsets and OpenGL implementations. You should investigate texture compression support on 524the devices you are are targeting to determine what compression types your application should 525support. In order to determine what texture formats are supported on a given device, you must <a 526href="#gl-extension-query">query the device</a> and review the <em>OpenGL extension names</em>, 527which identify what texture compression formats (and other OpenGL features) are supported by the 528device. Some commonly supported texture compression formats are as follows:</p> 529 530<ul> 531 <li><strong>ATITC (ATC)</strong> - ATI texture compression (ATITC or ATC) is available on a 532wide variety of devices and supports fixed rate compression for RGB textures with and without 533an alpha channel. This format may be represented by several OpenGL extension names, for example: 534 <ul> 535 <li>{@code GL_AMD_compressed_ATC_texture}</li> 536 <li>{@code GL_ATI_texture_compression_atitc}</li> 537 </ul> 538 </li> 539 <li><strong>PVRTC</strong> - PowerVR texture compression (PVRTC) is available on a wide 540variety of devices and supports 2-bit and 4-bit per pixel textures with or without an alpha channel. 541This format is represented by the following OpenGL extension name: 542 <ul> 543 <li>{@code GL_IMG_texture_compression_pvrtc}</li> 544 </ul> 545 </li> 546 <li><strong>S3TC (DXT<em>n</em>/DXTC)</strong> - S3 texture compression (S3TC) has several 547format variations (DXT1 to DXT5) and is less widely available. The format supports RGB textures with 5484-bit alpha or 8-bit alpha channels. This format may be represented by several OpenGL extension 549names, for example: 550 <ul> 551 <li>{@code GL_OES_texture_compression_S3TC}</li> 552 <li>{@code GL_EXT_texture_compression_s3tc}</li> 553 <li>{@code GL_EXT_texture_compression_dxt1}</li> 554 <li>{@code GL_EXT_texture_compression_dxt3}</li> 555 <li>{@code GL_EXT_texture_compression_dxt5}</li> 556 </ul> 557 </li> 558 <li><strong>3DC</strong> - 3DC texture compression (3DC) is a less widely available format that 559supports RGB textures with an alpha channel. This format is represented by the following OpenGL 560extension name: 561 <ul> 562 <li>{@code GL_AMD_compressed_3DC_texture}</li> 563 </ul> 564 </li> 565</ul> 566 567<p class="warning"><strong>Warning:</strong> These texture compression formats are <em>not 568supported</em> on all devices. Support for these formats can vary by manufacturer and device. For 569information on how to determine what texture compression formats are on a particular device, see 570the next section. 571</p> 572 573<p class="note"><strong>Note:</strong> Once you decide which texture compression formats your 574application will support, make sure you declare them in your manifest using <a 575href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html"><supports-gl-texture> 576</a>. Using this declaration enables filtering by external services such as Google Play, so that 577your app is installed only on devices that support the formats your app requires. For details, see 578<a 579href="{@docRoot}guide/topics/graphics/opengl.html#manifest">OpenGL manifest declarations</a>.</p> 580 581 582<h3 id="gl-extension-query">Determining OpenGL extensions</h3> 583<p>Implementations of OpenGL vary by Android device in terms of the extensions to the OpenGL ES API 584that are supported. These extensions include texture compressions, but typically also include other 585extensions to the OpenGL feature set.</p> 586 587<p>To determine what texture compression formats, and other OpenGL extensions, are supported on a 588particular device:</p> 589<ol> 590 <li>Run the following code on your target devices to determine what texture compression 591formats are supported: 592<pre> 593String extensions = javax.microedition.khronos.opengles.GL10.glGetString( 594 GL10.GL_EXTENSIONS); 595</pre> 596 <p class="warning"><b>Warning:</b> The results of this call <em>vary by device model!</em> You 597must run this call on several target devices to determine what compression types are commonly 598supported.</p> 599 </li> 600 <li>Review the output of this method to determine what OpenGL extensions are supported on the 601device.</li> 602</ol> 603 604<h4 id="aep">Android Extension Pack (AEP)</h4> 605 606<p> The AEP ensures that your application supports a standardized set of OpenGL extensions above 607and beyond 608the core set described in the OpenGL 3.1 specification. Packaging these extensions together 609encourages a consistent set of functionality across devices, while allowing developers to take full 610advantage of the latest crop of mobile GPU devices.</p> 611 612<p>The AEP also improves support for images, shader storage buffers, and atomic counters in 613fragment shaders.</p> 614 615<p>For your app to be able to use the AEP, the app's manifest must declare that the AEP is required. 616In addition, the platform version must support it. </p> 617 618<p>Declare the AEP requirement in the manifest as follows:</p> 619 620<pre> 621<uses feature android:name="android.hardware.opengles.aep" 622 android:required="true" /> 623</pre> 624 625<p>To verify that the platform version supports the AEP, use the 626{@link android.content.pm.PackageManager#hasSystemFeature} method, passing in 627{@link android.content.pm.PackageManager#FEATURE_OPENGLES_EXTENSION_PACK} as the argument. The following code snippet 628shows an example of how to do so:</p> 629 630<pre> 631boolean deviceSupportsAEP = getPackageManager().hasSystemFeature 632 (PackageManager.FEATURE_OPENGLES_EXTENSION_PACK); 633</pre> 634 635<p>If the method returns true, AEP is supported.<p> 636 637<p>For more information about the AEP, visit its page at the <a 638href="https://www.khronos.org/registry/gles/extensions/ANDROID/ANDROID_extension_pack_es31a.txt"> 639Khronos OpenGL ES Registry</a>. 640 641 642<h3 id="version-check">Checking the OpenGL ES Version</h3> 643 644<p>There are several versions of OpenGL ES available on Android devices. You can specify the 645minimum version of the API your application requires in your <a href="#manifest">manifest</a>, but 646you may also want to take advantage of features in a newer API at the same time. For example, 647the OpenGL ES 3.0 API is backward-compatible with the 2.0 version of the API, so you may want to 648write your application so that it uses OpenGL ES 3.0 features, but falls back to the 2.0 API if the 6493.0 API is not available.</p> 650 651<p>Before using OpenGL ES features from a version higher than the minimum required in your 652application manifest, your application should check the version of the API available on the device. 653You can do this in one of two ways:</p> 654 655<ol> 656 <li>Attempt to create the higher-level OpenGL ES context ({@link android.opengl.EGLContext}) and 657 check the result.</li> 658 <li>Create a minimum-supported OpenGL ES context and check the version value.</li> 659</ol> 660 661<p>The following example code demonstrates how to check the available OpenGL ES version by creating 662an {@link android.opengl.EGLContext} and checking the result. This example shows how to check for 663OpenGL ES 3.0 version:</p> 664 665<pre> 666private static double glVersion = 3.0; 667 668private static class ContextFactory implements GLSurfaceView.EGLContextFactory { 669 670 private static int EGL_CONTEXT_CLIENT_VERSION = 0x3098; 671 672 public EGLContext createContext( 673 EGL10 egl, EGLDisplay display, EGLConfig eglConfig) { 674 675 Log.w(TAG, "creating OpenGL ES " + glVersion + " context"); 676 int[] attrib_list = {EGL_CONTEXT_CLIENT_VERSION, (int) glVersion, 677 EGL10.EGL_NONE }; 678 // attempt to create a OpenGL ES 3.0 context 679 EGLContext context = egl.eglCreateContext( 680 display, eglConfig, EGL10.EGL_NO_CONTEXT, attrib_list); 681 return context; // returns null if 3.0 is not supported; 682 } 683} 684</pre> 685 686<p>If the {@code createContext()} method show above returns null, your code should create a OpenGL 687ES 2.0 context instead and fall back to using only that API.</p> 688 689<p>The following code example demonstrates how to check the OpenGL ES version by creating a minimum 690supported context first, and then checking the version string:</p> 691 692<pre> 693// Create a minimum supported OpenGL ES context, then check: 694String version = javax.microedition.khronos.opengles.GL10.glGetString( 695 GL10.GL_VERSION); 696Log.w(TAG, "Version: " + version ); 697// The version format is displayed as: "OpenGL ES <major>.<minor>" 698// followed by optional content provided by the implementation. 699</pre> 700 701<p>With this approach, if you discover that the device supports a higher-level API version, you 702must destroy the minimum OpenGL ES context and create a new context with the higher 703available API version.</p> 704 705 706<h2 id="choosing-version">Choosing an OpenGL API Version</h2> 707 708<p>OpenGL ES 1.0 API version (and the 1.1 extensions), version 2.0, and version 3.0 all provide high 709performance graphics interfaces for creating 3D games, visualizations and user interfaces. Graphics 710progamming for OpenGL ES 2.0 and 3.0 is largely similar, with version 3.0 representing a superset 711of the 2.0 API with additional features. Programming for the OpenGL ES 1.0/1.1 API versus OpenGL ES 7122.0 and 3.0 differs significantly, and so developers should carefully consider the following 713factors before starting development with these APIs:</p> 714 715<ul> 716 <li><strong>Performance</strong> - In general, OpenGL ES 2.0 and 3.0 provide faster graphics 717 performance than the ES 1.0/1.1 APIs. However, the performance difference can vary depending on 718 the Android device your OpenGL application is running on, due to differences in hardware 719 manufacturer's implementation of the OpenGL ES graphics pipeline.</li> 720 <li><strong>Device Compatibility</strong> - Developers should consider the types of devices, 721 Android versions and the OpenGL ES versions available to their customers. For more information 722 on OpenGL compatibility across devices, see the <a href="#compatibility">OpenGL Versions and 723 Device Compatibility</a> section.</li> 724 <li><strong>Coding Convenience</strong> - The OpenGL ES 1.0/1.1 API provides a fixed function 725 pipeline and convenience functions which are not available in the OpenGL ES 2.0 or 3.0 APIs. 726 Developers who are new to OpenGL ES may find coding for version 1.0/1.1 faster and more 727 convenient.</li> 728 <li><strong>Graphics Control</strong> - The OpenGL ES 2.0 and 3.0 APIs provide a higher degree 729 of control by providing a fully programmable pipeline through the use of shaders. With more 730 direct control of the graphics processing pipeline, developers can create effects that would be 731 very difficult to generate using the 1.0/1.1 API.</li> 732 <li><strong>Texture Support</strong> - The OpenGL ES 3.0 API has the best support for texture 733 compression because it guarantees availability of the ETC2 compression format, which supports 734 transparency. The 1.x and 2.0 API implementations usually include support for ETC1, however 735 this texture format does not support transparency and so you must typically provide resources 736 in other compression formats supported by the devices you are targeting. For more information, 737 see <a href="#textures">Texture compression support</a>.</li> 738</ul> 739 740<p>While performance, compatibility, convenience, control and other factors may influence your 741decision, you should pick an OpenGL API version based on what you think provides the best experience 742for your users.</p> 743 744