1page.title=OpenGL ES
2page.tags=games
3@jd:body
4
5<div id="qv-wrapper">
6  <div id="qv">
7    <h2>In this document</h2>
8
9    <ol>
10      <li><a href="#basics">The Basics</a>
11        <ol>
12          <li><a href="#packages">OpenGL ES packages</a></li>
13        </ol>
14      <li><a href="#manifest">Declaring OpenGL Requirements</a></li>
15      <li><a href="#coordinate-mapping">Mapping Coordinates for Drawn Objects</a>
16        <ol>
17          <li><a href="#proj-es1">Projection and camera in ES 1.0</a></li>
18          <li><a href="#proj-es2">Projection and camera in ES 2.0 and higher</a></li>
19        </ol>
20      </li>
21      <li><a href="#faces-winding">Shape Faces and Winding</a></li>
22      <li><a href="#compatibility">OpenGL Versions and Device Compatibility</a>
23        <ol>
24          <li><a href="#textures">Texture compression support</a></li>
25          <li><a href="#gl-extension-query">Determining OpenGL extensions</a></li>
26          <li><a href="#version-check">Checking OpenGL ES Version</a></li>
27        </ol>
28      </li>
29      <li><a href="#choosing-version">Choosing an OpenGL API Version</a></li>
30    </ol>
31    <h2>Key classes</h2>
32    <ol>
33      <li>{@link android.opengl.GLSurfaceView}</li>
34      <li>{@link android.opengl.GLSurfaceView.Renderer}</li>
35    </ol>
36    <h2>See also</h2>
37    <ol>
38      <li><a href="{@docRoot}training/graphics/opengl/index.html">
39          Displaying Graphics with OpenGL ES</a></li>
40      <li><a href="http://www.khronos.org/opengles/">OpenGL ES</a></li>
41      <li><a href="http://www.khronos.org/opengles/1_X/">OpenGL ES 1.x Specification</a></li>
42      <li><a href="http://www.khronos.org/opengles/2_X/">OpenGL ES 2.x specification</a></li>
43      <li><a href="http://www.khronos.org/opengles/3_X/">OpenGL ES 3.x specification</a></li>
44    </ol>
45  </div>
46</div>
47
48<p>Android includes support for high performance 2D and 3D graphics with the Open Graphics Library
49(OpenGL&reg;), specifically, the OpenGL ES API. OpenGL is a cross-platform graphics API that
50specifies a
51standard software interface for 3D graphics processing hardware. OpenGL ES is a flavor of the OpenGL
52specification intended for embedded devices. Android supports several versions of the OpenGL ES
53API:</p>
54
55<ul>
56  <li>OpenGL ES 1.0 and 1.1 - This API specification is supported by Android 1.0 and higher.</li>
57  <li>OpenGL ES 2.0 - This API specification is supported by Android 2.2 (API level 8) and higher.
58    </li>
59  <li>OpenGL ES 3.0 - This API specification is supported by Android 4.3 (API level 18) and higher.
60    </li>
61  <li>OpenGL ES 3.1 - This API specification is supported by Android 5.0 (API level 21) and higher.
62    </li>
63</ul>
64
65<p class="caution"><strong>Caution:</strong>
66  Support of the OpenGL ES 3.0 API on a device requires an implementation of this graphics
67  pipeline provided by the device manufacturer. A device running Android 4.3 or higher <em>may
68  not support</em> the OpenGL ES 3.0 API. For information on checking what version of OpenGL ES
69  is supported at run time, see <a href="#version-check">Checking OpenGL ES Version</a>.
70</p>
71
72<p class="note"><strong>Note:</strong>
73  The specific API provided by the Android framework is similar to the J2ME JSR239 OpenGL ES API,
74  but is not identical. If you are familiar with J2ME JSR239 specification, be alert for
75  variations.</p>
76
77
78
79<h2 id="basics">The Basics</h2>
80
81<p>Android supports OpenGL both through its framework API and the Native Development
82Kit (NDK). This topic focuses on the Android framework interfaces. For more information about the
83NDK, see the <a href="{@docRoot}tools/sdk/ndk/index.html">Android NDK</a>.
84
85<p>There are two foundational classes in the Android framework that let you create and manipulate
86graphics with the OpenGL ES API: {@link android.opengl.GLSurfaceView} and {@link
87android.opengl.GLSurfaceView.Renderer}. If your goal is to use OpenGL in your Android application,
88understanding how to implement these classes in an activity should be your first objective.
89</p>
90
91<dl>
92  <dt><strong>{@link android.opengl.GLSurfaceView}</strong></dt>
93  <dd>This class is a {@link android.view.View} where you can draw and manipulate objects using
94    OpenGL API calls and is similar in function to a {@link android.view.SurfaceView}. You can use
95    this class by creating an instance of {@link android.opengl.GLSurfaceView} and adding your
96    {@link android.opengl.GLSurfaceView.Renderer Renderer} to it. However, if you want to capture
97    touch screen events, you should extend the {@link android.opengl.GLSurfaceView} class to
98    implement the touch listeners, as shown in OpenGL training lesson,
99    <a href="{@docRoot}training/graphics/opengl/touch.html">Responding to Touch Events</a>.</dd>
100
101  <dt><strong>{@link android.opengl.GLSurfaceView.Renderer}</strong></dt>
102  <dd>This interface defines the methods required for drawing graphics in a {@link
103    android.opengl.GLSurfaceView}. You must provide an implementation of this interface as a
104    separate class and attach it to your {@link android.opengl.GLSurfaceView} instance using
105    {@link android.opengl.GLSurfaceView#setRenderer(android.opengl.GLSurfaceView.Renderer)
106    GLSurfaceView.setRenderer()}.
107
108    <p>The {@link android.opengl.GLSurfaceView.Renderer} interface requires that you implement the
109      following methods:</p>
110    <ul>
111      <li>
112        {@link
113    android.opengl.GLSurfaceView.Renderer#onSurfaceCreated(javax.microedition.khronos.opengles.GL10,
114    javax.microedition.khronos.egl.EGLConfig) onSurfaceCreated()}: The system calls this
115    method once, when creating the {@link android.opengl.GLSurfaceView}. Use this method to perform
116    actions that need to happen only once, such as setting OpenGL environment parameters or
117    initializing OpenGL graphic objects.
118      </li>
119      <li>
120        {@link
121        android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10)
122        onDrawFrame()}: The system calls this method on each redraw of the {@link
123        android.opengl.GLSurfaceView}. Use this method as the primary execution point for
124        drawing (and re-drawing) graphic objects.</li>
125      <li>
126        {@link
127    android.opengl.GLSurfaceView.Renderer#onSurfaceChanged(javax.microedition.khronos.opengles.GL10,
128    int, int) onSurfaceChanged()}: The system calls this method when the {@link
129    android.opengl.GLSurfaceView} geometry changes, including changes in size of the {@link
130    android.opengl.GLSurfaceView} or orientation of the device screen. For example, the system calls
131    this method when the device changes from portrait to landscape orientation. Use this method to
132    respond to changes in the {@link android.opengl.GLSurfaceView} container.
133      </li>
134    </ul>
135    </dd>
136</dl>
137
138<h3 id="packages">OpenGL ES packages</h3>
139<p>Once you have established a container view for OpenGL ES using {@link
140android.opengl.GLSurfaceView} and {@link android.opengl.GLSurfaceView.Renderer}, you can begin
141calling OpenGL APIs using the following classes:</p>
142
143<ul>
144  <li>OpenGL ES 1.0/1.1 API Packages
145    <ul>
146      <li>{@link android.opengl} - This package provides a static interface to the OpenGL ES
147        1.0/1.1 classes and better performance than the {@code javax.microedition.khronos} package
148        interfaces.
149        <ul>
150          <li>{@link android.opengl.GLES10}</li>
151          <li>{@link android.opengl.GLES10Ext}</li>
152          <li>{@link android.opengl.GLES11}</li>
153          <li>{@link android.opengl.GLES11Ext}</li>
154        </ul>
155      </li>
156      <li>{@link javax.microedition.khronos.opengles} - This package provides the standard
157        implementation of OpenGL ES 1.0/1.1.
158        <ul>
159          <li>{@link javax.microedition.khronos.opengles.GL10}</li>
160          <li>{@link javax.microedition.khronos.opengles.GL10Ext}</li>
161          <li>{@link javax.microedition.khronos.opengles.GL11}</li>
162          <li>{@link javax.microedition.khronos.opengles.GL11Ext}</li>
163          <li>{@link javax.microedition.khronos.opengles.GL11ExtensionPack}</li>
164        </ul>
165        </li>
166      </ul>
167  </li>
168  <li>OpenGL ES 2.0 API Class
169    <ul>
170      <li>{@link android.opengl.GLES20 android.opengl.GLES20} - This package provides the
171        interface to OpenGL ES 2.0 and is available starting with Android 2.2 (API level 8).</li>
172    </ul>
173  </li>
174  </li>
175  <li>OpenGL ES 3.0/3.1 API Packages
176    <ul>
177      <li>{@link android.opengl} - This package provides the interface to the OpenGL ES 3.0/3.1
178classes.
179      Version 3.0 is available starting with Android 4.3 (API level 18). Version 3.1 is available
180starting with Android 5.0 (API level 21).
181      <ul>
182      <li>{@link android.opengl.GLES30}</li>
183      <li>{@link android.opengl.GLES31} </li>
184      <li>{@link android.opengl.GLES31Ext} (<a href="#aep">Android Extension Pack</a>)</li>
185      </ul>
186    </ul>
187  </li>
188</ul>
189
190<p>If you want to start building an app with OpenGL ES right away, follow the
191<a href="{@docRoot}training/graphics/opengl/index.html">Displaying Graphics with OpenGL ES</a>
192class.
193</p>
194
195<h2 id="manifest">Declaring OpenGL Requirements</h2>
196<p>If your application uses OpenGL features that are not available on all devices, you must include
197these requirements in your <a
198href="{@docRoot}guide/topics/manifest/manifest-intro.html">AndroidManifest.xml</a> file.
199Here are the most common OpenGL manifest declarations:</p>
200
201<ul>
202  <li><strong>OpenGL ES version requirements</strong> - If your application requires a specific
203version of
204  OpenGL ES, you must declare that requirement by adding the following settings to your manifest as
205shown below.</li>
206
207<p>For OpenGL ES 2.0:</p>
208
209<pre>
210&lt;!-- Tell the system this app requires OpenGL ES 2.0. --&gt;
211&lt;uses-feature android:glEsVersion="0x00020000" android:required="true" /&gt;
212</pre>
213
214    <p>Adding this declaration causes Google Play to restrict your application from being
215    installed on devices that do not support OpenGL ES 2.0. If your application is exclusively for
216    devices that support OpenGL ES 3.0, you can also specify this in your manifest:</p>
217
218<p>For OpenGL ES 3.0:</p>
219
220<pre>
221&lt;!-- Tell the system this app requires OpenGL ES 3.0. --&gt;
222&lt;uses-feature android:glEsVersion="0x00030000" android:required="true" /&gt;
223</pre>
224
225<p>For OpenGL ES 3.1:</p>
226
227<pre>
228&lt;!-- Tell the system this app requires OpenGL ES 3.1. --&gt;
229&lt;uses-feature android:glEsVersion="0x00030001" android:required="true" /&gt;
230</pre>
231
232    <p class="note"><strong>Note:</strong>
233      The OpenGL ES 3.x API is backwards-compatible with the 2.0 API, which means you can be more
234      flexible with your implementation of OpenGL ES in your application. By declaring the OpenGL
235      ES 2.0 API as a requirement in your manifest, you can use that API version as a default, check
236      for the availability of the 3.x API at run time and then use OpenGL ES 3.x features if the
237      device supports it. For more information about checking the OpenGL ES version supported by a
238      device, see <a href="#version-check">Checking OpenGL ES Version</a>.
239    </p>
240
241  </li>
242  <li><strong>Texture compression requirements</strong> - If your application uses texture
243compression formats, you must declare the formats your application supports in your manifest file
244using <a href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html">{@code
245&lt;supports-gl-texture&gt;}</a>. For more information about available texture compression
246formats, see <a href="#textures">Texture compression support</a>.
247
248<p>Declaring texture compression requirements in your manifest hides your application from users
249with devices that do not support at least one of your declared compression types. For more
250information on how Google Play filtering works for texture compressions, see the <a
251href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html#market-texture-filtering">
252Google Play and texture compression filtering</a> section of the {@code
253&lt;supports-gl-texture&gt;} documentation.</p>
254  </li>
255</ul>
256
257
258<h2 id="coordinate-mapping">Mapping Coordinates for Drawn Objects</h2>
259
260<p>One of the basic problems in displaying graphics on Android devices is that their screens can
261vary in size and shape. OpenGL assumes a square, uniform coordinate system and, by default, happily
262draws those coordinates onto your typically non-square screen as if it is perfectly square.</p>
263
264<img src="{@docRoot}images/opengl/coordinates.png">
265<p class="img-caption">
266  <strong>Figure 1.</strong> Default OpenGL coordinate system (left) mapped to a typical Android
267device screen (right).
268</p>
269
270<p>The illustration above shows the uniform coordinate system assumed for an OpenGL frame on the
271left, and how these coordinates actually map to a typical device screen in landscape orientation
272on the right. To solve this problem, you can apply OpenGL projection modes and camera views to
273transform coordinates so your graphic objects have the correct proportions on any display.</p>
274
275<p>In order to apply projection and camera views, you create a projection matrix and a camera view
276matrix and apply them to the OpenGL rendering pipeline. The projection matrix recalculates the
277coordinates of your graphics so that they map correctly to Android device screens. The camera view
278matrix creates a transformation that renders objects from a specific eye position.</p>
279
280
281<h3 id="proj-es1">Projection and camera view in OpenGL ES 1.0</h3>
282<p>In the ES 1.0 API, you apply projection and camera view by creating each matrix and then
283adding them to the OpenGL environment.</p>
284
285<ol>
286<li><strong>Projection matrix</strong> - Create a projection matrix using the geometry of the
287device screen in order to recalculate object coordinates so they are drawn with correct proportions.
288The following example code demonstrates how to modify the {@link
289android.opengl.GLSurfaceView.Renderer#onSurfaceChanged(javax.microedition.khronos.opengles.GL10,
290int, int) onSurfaceChanged()} method of a {@link android.opengl.GLSurfaceView.Renderer}
291implementation to create a projection matrix based on the screen's aspect ratio and apply it to the
292OpenGL rendering environment.
293
294<pre>
295public void onSurfaceChanged(GL10 gl, int width, int height) {
296    gl.glViewport(0, 0, width, height);
297
298    // make adjustments for screen ratio
299    float ratio = (float) width / height;
300    gl.glMatrixMode(GL10.GL_PROJECTION);        // set matrix to projection mode
301    gl.glLoadIdentity();                        // reset the matrix to its default state
302    gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);  // apply the projection matrix
303}
304</pre>
305</li>
306
307<li><strong>Camera transformation matrix</strong> - Once you have adjusted the coordinate system
308using a projection matrix, you must also apply a camera view. The following example code shows how
309to modify the {@link
310android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10)
311onDrawFrame()} method of a {@link android.opengl.GLSurfaceView.Renderer}
312implementation to apply a model view and use the
313{@link android.opengl.GLU#gluLookAt(javax.microedition.khronos.opengles.GL10, float, float, float,
314float, float, float, float, float, float) GLU.gluLookAt()} utility to create a viewing tranformation
315which simulates a camera position.
316
317<pre>
318public void onDrawFrame(GL10 gl) {
319    ...
320    // Set GL_MODELVIEW transformation mode
321    gl.glMatrixMode(GL10.GL_MODELVIEW);
322    gl.glLoadIdentity();                      // reset the matrix to its default state
323
324    // When using GL_MODELVIEW, you must set the camera view
325    GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
326    ...
327}
328</pre>
329</li>
330</ol>
331
332
333<h3 id="proj-es2">Projection and camera view in OpenGL ES 2.0 and higher</h3>
334
335<p>In the ES 2.0 and 3.0 APIs, you apply projection and camera view by first adding a matrix member
336to the vertex shaders of your graphics objects. With this matrix member added, you can then
337generate and apply projection and camera viewing matrices to your objects.</p>
338
339<ol>
340<li><strong>Add matrix to vertex shaders</strong> - Create a variable for the view projection matrix
341and include it as a multiplier of the shader's position. In the following example vertex shader
342code, the included {@code uMVPMatrix} member allows you to apply projection and camera viewing
343matrices to the coordinates of objects that use this shader.
344
345<pre>
346private final String vertexShaderCode =
347
348    // This matrix member variable provides a hook to manipulate
349    // the coordinates of objects that use this vertex shader.
350    "uniform mat4 uMVPMatrix;   \n" +
351
352    "attribute vec4 vPosition;  \n" +
353    "void main(){               \n" +
354    // The matrix must be included as part of gl_Position
355    // Note that the uMVPMatrix factor *must be first* in order
356    // for the matrix multiplication product to be correct.
357    " gl_Position = uMVPMatrix * vPosition; \n" +
358
359    "}  \n";
360</pre>
361  <p class="note"><strong>Note:</strong> The example above defines a single transformation matrix
362member in the vertex shader into which you apply a combined projection matrix and camera view
363matrix. Depending on your application requirements, you may want to define separate projection
364matrix and camera viewing matrix members in your vertex shaders so you can change them
365independently.</p>
366</li>
367<li><strong>Access the shader matrix</strong> - After creating a hook in your vertex shaders to
368apply projection and camera view, you can then access that variable to apply projection and
369camera viewing matrices. The following code shows how to modify the {@link
370android.opengl.GLSurfaceView.Renderer#onSurfaceCreated(javax.microedition.khronos.opengles.GL10,
371javax.microedition.khronos.egl.EGLConfig) onSurfaceCreated()} method of a {@link
372android.opengl.GLSurfaceView.Renderer} implementation to access the matrix
373variable defined in the vertex shader above.
374
375<pre>
376public void onSurfaceCreated(GL10 unused, EGLConfig config) {
377    ...
378    muMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");
379    ...
380}
381</pre>
382</li>
383<li><strong>Create projection and camera viewing matrices</strong> - Generate the projection and
384viewing matrices to be applied the graphic objects. The following example code shows how to modify
385the {@link android.opengl.GLSurfaceView.Renderer#onSurfaceCreated onSurfaceCreated()} and
386{@link android.opengl.GLSurfaceView.Renderer#onSurfaceChanged onSurfaceChanged()} methods of a
387{@link android.opengl.GLSurfaceView.Renderer} implementation to create camera view matrix and a
388projection matrix based on the screen aspect ratio of the device.
389
390<pre>
391public void onSurfaceCreated(GL10 unused, EGLConfig config) {
392    ...
393    // Create a camera view matrix
394    Matrix.setLookAtM(mVMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
395}
396
397public void onSurfaceChanged(GL10 unused, int width, int height) {
398    GLES20.glViewport(0, 0, width, height);
399
400    float ratio = (float) width / height;
401
402    // create a projection matrix from device screen geometry
403    Matrix.frustumM(mProjMatrix, 0, -ratio, ratio, -1, 1, 3, 7);
404}
405</pre>
406</li>
407
408<li><strong>Apply projection and camera viewing matrices</strong> - To apply the projection and
409camera view transformations, multiply the matrices together and then set them into the vertex
410shader. The following example code shows how modify the {@link
411android.opengl.GLSurfaceView.Renderer#onDrawFrame(javax.microedition.khronos.opengles.GL10)
412onDrawFrame()} method of a {@link android.opengl.GLSurfaceView.Renderer} implementation to combine
413the projection matrix and camera view created in the code above and then apply it to the graphic
414objects to be rendered by OpenGL.
415
416<pre>
417public void onDrawFrame(GL10 unused) {
418    ...
419    // Combine the projection and camera view matrices
420    Matrix.multiplyMM(mMVPMatrix, 0, mProjMatrix, 0, mVMatrix, 0);
421
422    // Apply the combined projection and camera view transformations
423    GLES20.glUniformMatrix4fv(muMVPMatrixHandle, 1, false, mMVPMatrix, 0);
424
425    // Draw objects
426    ...
427}
428</pre>
429</li>
430</ol>
431<p>For a complete example of how to apply projection and camera view with OpenGL ES 2.0, see the <a
432href="{@docRoot}training/graphics/opengl/index.html">Displaying Graphics with OpenGL ES</a>
433class.</p>
434
435
436<h2 id="faces-winding">Shape Faces and Winding</h2>
437
438<p>In OpenGL, the face of a shape is a surface defined by three or more points in three-dimensional
439space. A set of three or more three-dimensional points (called vertices in OpenGL) have a front face
440and a back face. How do you know which face is front and which is the back? Good question. The
441answer has to do with winding, or, the direction in which you define the points of a shape.</p>
442
443<img src="{@docRoot}images/opengl/ccw-winding.png">
444<p class="img-caption">
445  <strong>Figure 1.</strong> Illustration of a coordinate list which translates into a
446counterclockwise drawing order.</p>
447
448<p>In this example, the points of the triangle are defined in an order such that they are drawn in a
449counterclockwise direction. The order in which these coordinates are drawn defines the winding
450direction for the shape. By default, in OpenGL, the face which is drawn counterclockwise is the
451front face. The triangle shown in Figure 1 is defined so that you are looking at the front face of
452the shape (as interpreted by OpenGL) and the other side is the back face.</p>
453
454<p>Why is it important to know which face of a shape is the front face? The answer has to do with a
455commonly used feature of OpenGL, called face culling. Face culling is an option for the OpenGL
456environment which allows the rendering pipeline to ignore (not calculate or draw) the back face of a
457shape, saving time, memory and processing cycles:</p>
458
459<pre>
460// enable face culling feature
461gl.glEnable(GL10.GL_CULL_FACE);
462// specify which faces to not draw
463gl.glCullFace(GL10.GL_BACK);
464</pre>
465
466<p>If you try to use the face culling feature without knowing which sides of your shapes are the
467front and back, your OpenGL graphics are going to look a bit thin, or possibly not show up at all.
468So, always define the coordinates of your OpenGL shapes in a counterclockwise drawing order.</p>
469
470<p class="note"><strong>Note:</strong> It is possible to set an OpenGL environment to treat the
471clockwise face as the front face, but doing so requires more code and is likely to confuse
472experienced OpenGL developers when you ask them for help. So don’t do that.</p>
473
474
475<h2 id="compatibility">OpenGL Versions and Device Compatibility</h2>
476
477<p>The OpenGL ES 1.0 and 1.1 API specifications have been supported since Android 1.0.
478Beginning with Android 2.2 (API level 8), the framework supports the OpenGL ES 2.0 API
479specification. OpenGL ES 2.0 is supported by most Android devices and is recommended for new
480applications being developed with OpenGL. OpenGL ES 3.0 is supported with Android 4.3
481(API level 18) and higher, on devices that provide an implementation of the OpenGL ES 3.0 API.
482For information about the relative number of Android-powered devices
483that support a given version of OpenGL ES, see the
484<a href="{@docRoot}about/dashboards/index.html#OpenGL">OpenGL ES Version Dashboard</a>.</p>
485
486<p>Graphics programming with OpenGL ES 1.0/1.1 API is significantly different than using the 2.0
487and higher versions. The 1.x version of the API has more convenience methods and a fixed graphics
488pipeline, while the OpenGL ES 2.0 and 3.0 APIs provide more direct control of the pipeline through
489use of OpenGL shaders. You should carefully consider the graphics requirements and choose the API
490version that works best for your application. For more information, see
491<a href="#choosing-version">Choosing an OpenGL API Version</a>.</p>
492
493<p>The OpenGL ES 3.0 API provides additional features and better performance than the 2.0 API and is
494also backward compatible. This means that you can potentially write your application targeting
495OpenGL ES 2.0 and conditionally include OpenGL ES 3.0 graphics features if they are available. For
496more information on checking for availability of the 3.0 API, see
497<a href="#version-check">Checking OpenGL ES Version</a></p>
498
499
500<h3 id="textures">Texture compression support</h3>
501
502<p>Texture compression can significantly increase the performance of your OpenGL application by
503reducing memory requirements and making more efficient use of memory bandwidth. The Android
504framework provides support for the ETC1 compression format as a standard feature, including a {@link
505android.opengl.ETC1Util} utility class and the {@code etc1tool} compression tool (located in the
506Android SDK at {@code &lt;sdk&gt;/tools/}). For an example of an Android application that uses
507texture compression, see the {@code CompressedTextureActivity} code sample in Android SDK
508({@code &lt;sdk&gt;/samples/&lt;version&gt;/ApiDemos/src/com/example/android/apis/graphics/}).</p>
509
510<p class="caution"><strong>Caution:</strong> The ETC1 format is supported by most Android devices,
511but it not guaranteed to be available. To check if the ETC1 format is supported on a device, call
512the {@link android.opengl.ETC1Util#isETC1Supported() ETC1Util.isETC1Supported()} method.</p>
513
514<p class="note"><b>Note:</b> The ETC1 texture compression format does not support textures with an
515transparency (alpha channel). If your application requires textures with transparency, you should
516investigate other texture compression formats available on your target devices.</p>
517
518<p>The ETC2/EAC texture compression formats are guaranteed to be available when using the OpenGL ES
5193.0 API. This texture format offers excellent compression ratios with high visual quality and the
520format also supports transparency (alpha channel).</p>
521
522<p>Beyond the ETC formats, Android devices have varied support for texture compression based on
523their GPU chipsets and OpenGL implementations. You should investigate texture compression support on
524the devices you are are targeting to determine what compression types your application should
525support. In order to determine what texture formats are supported on a given device, you must <a
526href="#gl-extension-query">query the device</a> and review the <em>OpenGL extension names</em>,
527which identify what texture compression formats (and other OpenGL features) are supported by the
528device. Some commonly supported texture compression formats are as follows:</p>
529
530<ul>
531  <li><strong>ATITC (ATC)</strong> - ATI texture compression (ATITC or ATC) is available on a
532wide variety of devices and supports fixed rate compression for RGB textures with and without
533an alpha channel. This format may be represented by several OpenGL extension names, for example:
534    <ul>
535      <li>{@code GL_AMD_compressed_ATC_texture}</li>
536      <li>{@code GL_ATI_texture_compression_atitc}</li>
537    </ul>
538  </li>
539  <li><strong>PVRTC</strong> - PowerVR texture compression (PVRTC) is available on a wide
540variety of devices and supports 2-bit and 4-bit per pixel textures with or without an alpha channel.
541This format is represented by the following OpenGL extension name:
542    <ul>
543      <li>{@code GL_IMG_texture_compression_pvrtc}</li>
544    </ul>
545  </li>
546  <li><strong>S3TC (DXT<em>n</em>/DXTC)</strong> - S3 texture compression (S3TC) has several
547format variations (DXT1 to DXT5) and is less widely available. The format supports RGB textures with
5484-bit alpha or 8-bit alpha channels. This format may be represented by several OpenGL extension
549names, for example:
550    <ul>
551      <li>{@code GL_OES_texture_compression_S3TC}</li>
552      <li>{@code GL_EXT_texture_compression_s3tc}</li>
553      <li>{@code GL_EXT_texture_compression_dxt1}</li>
554      <li>{@code GL_EXT_texture_compression_dxt3}</li>
555      <li>{@code GL_EXT_texture_compression_dxt5}</li>
556    </ul>
557  </li>
558  <li><strong>3DC</strong> - 3DC texture compression (3DC) is a less widely available format that
559supports RGB textures with an alpha channel. This format is represented by the following OpenGL
560extension name:
561    <ul>
562      <li>{@code GL_AMD_compressed_3DC_texture}</li>
563    </ul>
564  </li>
565</ul>
566
567<p class="warning"><strong>Warning:</strong> These texture compression formats are <em>not
568supported</em> on all devices. Support for these formats can vary by manufacturer and device. For
569information on how to determine what texture compression formats are on a particular device, see
570the next section.
571</p>
572
573<p class="note"><strong>Note:</strong> Once you decide which texture compression formats your
574application will support, make sure you declare them in your manifest using <a
575href="{@docRoot}guide/topics/manifest/supports-gl-texture-element.html">&lt;supports-gl-texture&gt;
576</a>. Using this declaration enables filtering by external services such as Google Play, so that
577your app is installed only on devices that support the formats your app requires. For details, see
578<a
579href="{@docRoot}guide/topics/graphics/opengl.html#manifest">OpenGL manifest declarations</a>.</p>
580
581
582<h3 id="gl-extension-query">Determining OpenGL extensions</h3>
583<p>Implementations of OpenGL vary by Android device in terms of the extensions to the OpenGL ES API
584that are supported. These extensions include texture compressions, but typically also include other
585extensions to the OpenGL feature set.</p>
586
587<p>To determine what texture compression formats, and other OpenGL extensions, are supported on a
588particular device:</p>
589<ol>
590  <li>Run the following code on your target devices to determine what texture compression
591formats are supported:
592<pre>
593String extensions = javax.microedition.khronos.opengles.GL10.glGetString(
594        GL10.GL_EXTENSIONS);
595</pre>
596  <p class="warning"><b>Warning:</b> The results of this call <em>vary by device model!</em> You
597must run this call on several target devices to determine what compression types are commonly
598supported.</p>
599  </li>
600  <li>Review the output of this method to determine what OpenGL extensions are supported on the
601device.</li>
602</ol>
603
604<h4 id="aep">Android Extension Pack (AEP)</h4>
605
606<p> The AEP ensures that your application supports a standardized set of OpenGL extensions above
607and beyond
608the core set described in the OpenGL 3.1 specification. Packaging these extensions together
609encourages a consistent set of functionality across devices, while allowing developers to take full
610advantage of the latest crop of mobile GPU devices.</p>
611
612<p>The AEP also improves support for images, shader storage buffers, and atomic counters in
613fragment shaders.</p>
614
615<p>For your app to be able to use the AEP, the app's manifest must declare that the AEP is required.
616In addition, the platform version must support it. </p>
617
618<p>Declare the AEP requirement in the manifest as follows:</p>
619
620<pre>
621&lt;uses feature android:name="android.hardware.opengles.aep"
622              android:required="true" /&gt;
623</pre>
624
625<p>To verify that the platform version supports the AEP, use the
626{@link android.content.pm.PackageManager#hasSystemFeature} method, passing in
627{@link android.content.pm.PackageManager#FEATURE_OPENGLES_EXTENSION_PACK} as the argument. The following code snippet
628shows an example of how to do so:</p>
629
630<pre>
631boolean deviceSupportsAEP = getPackageManager().hasSystemFeature
632     (PackageManager.FEATURE_OPENGLES_EXTENSION_PACK);
633</pre>
634
635<p>If the method returns true, AEP is supported.<p>
636
637<p>For more information about the AEP, visit its page at the <a
638href="https://www.khronos.org/registry/gles/extensions/ANDROID/ANDROID_extension_pack_es31a.txt">
639Khronos OpenGL ES Registry</a>.
640
641
642<h3 id="version-check">Checking the OpenGL ES Version</h3>
643
644<p>There are several versions of OpenGL ES available on Android devices. You can specify the
645minimum version of the API your application requires in your <a href="#manifest">manifest</a>, but
646you may also want to take advantage of features in a newer API at the same time. For example,
647the OpenGL ES 3.0 API is backward-compatible with the 2.0 version of the API, so you may want to
648write your application so that it uses OpenGL ES 3.0 features, but falls back to the 2.0 API if the
6493.0 API is not available.</p>
650
651<p>Before using OpenGL ES features from a version higher than the minimum required in your
652application manifest, your application should check the version of the API available on the device.
653You can do this in one of two ways:</p>
654
655<ol>
656  <li>Attempt to create the higher-level OpenGL ES context ({@link android.opengl.EGLContext}) and
657    check the result.</li>
658  <li>Create a minimum-supported OpenGL ES context and check the version value.</li>
659</ol>
660
661<p>The following example code demonstrates how to check the available OpenGL ES version by creating
662an {@link android.opengl.EGLContext} and checking the result. This example shows how to check for
663OpenGL ES 3.0 version:</p>
664
665<pre>
666private static double glVersion = 3.0;
667
668private static class ContextFactory implements GLSurfaceView.EGLContextFactory {
669
670  private static int EGL_CONTEXT_CLIENT_VERSION = 0x3098;
671
672  public EGLContext createContext(
673          EGL10 egl, EGLDisplay display, EGLConfig eglConfig) {
674
675      Log.w(TAG, "creating OpenGL ES " + glVersion + " context");
676      int[] attrib_list = {EGL_CONTEXT_CLIENT_VERSION, (int) glVersion,
677              EGL10.EGL_NONE };
678      // attempt to create a OpenGL ES 3.0 context
679      EGLContext context = egl.eglCreateContext(
680              display, eglConfig, EGL10.EGL_NO_CONTEXT, attrib_list);
681      return context; // returns null if 3.0 is not supported;
682  }
683}
684</pre>
685
686<p>If the {@code createContext()} method show above returns null, your code should create a OpenGL
687ES 2.0 context instead and fall back to using only that API.</p>
688
689<p>The following code example demonstrates how to check the OpenGL ES version by creating a minimum
690supported context first, and then checking the version string:</p>
691
692<pre>
693// Create a minimum supported OpenGL ES context, then check:
694String version = javax.microedition.khronos.opengles.GL10.glGetString(
695        GL10.GL_VERSION);
696Log.w(TAG, "Version: " + version );
697// The version format is displayed as: "OpenGL ES &lt;major&gt;.&lt;minor&gt;"
698// followed by optional content provided by the implementation.
699</pre>
700
701<p>With this approach, if you discover that the device supports a higher-level API version, you
702must destroy the minimum OpenGL ES context and create a new context with the higher
703available API version.</p>
704
705
706<h2 id="choosing-version">Choosing an OpenGL API Version</h2>
707
708<p>OpenGL ES 1.0 API version (and the 1.1 extensions), version 2.0, and version 3.0 all provide high
709performance graphics interfaces for creating 3D games, visualizations and user interfaces. Graphics
710progamming for OpenGL ES 2.0 and 3.0 is largely similar, with version 3.0 representing a superset
711of the 2.0 API with additional features. Programming for the OpenGL ES 1.0/1.1 API versus OpenGL ES
7122.0 and 3.0 differs significantly, and so developers should carefully consider the following
713factors before starting development with these APIs:</p>
714
715<ul>
716  <li><strong>Performance</strong> - In general, OpenGL ES 2.0 and 3.0 provide faster graphics
717    performance than the ES 1.0/1.1 APIs. However, the performance difference can vary depending on
718    the Android device your OpenGL application is running on, due to differences in hardware
719    manufacturer's implementation of the OpenGL ES graphics pipeline.</li>
720  <li><strong>Device Compatibility</strong> - Developers should consider the types of devices,
721    Android versions and the OpenGL ES versions available to their customers. For more information
722    on OpenGL compatibility across devices, see the <a href="#compatibility">OpenGL Versions and
723    Device Compatibility</a> section.</li>
724  <li><strong>Coding Convenience</strong> - The OpenGL ES 1.0/1.1 API provides a fixed function
725    pipeline and convenience functions which are not available in the OpenGL ES 2.0 or 3.0 APIs.
726    Developers who are new to OpenGL ES may find coding for version 1.0/1.1 faster and more
727    convenient.</li>
728  <li><strong>Graphics Control</strong> - The OpenGL ES 2.0 and 3.0 APIs provide a higher degree
729    of control by providing a fully programmable pipeline through the use of shaders. With more
730    direct control of the graphics processing pipeline, developers can create effects that would be
731    very difficult to generate using the 1.0/1.1 API.</li>
732  <li><strong>Texture Support</strong> - The OpenGL ES 3.0 API has the best support for texture
733    compression because it guarantees availability of the ETC2 compression format, which supports
734    transparency. The 1.x and 2.0 API implementations usually include support for ETC1, however
735    this texture format does not support transparency and so you must typically provide resources
736    in other compression formats supported by the devices you are targeting. For more information,
737    see <a href="#textures">Texture compression support</a>.</li>
738</ul>
739
740<p>While performance, compatibility, convenience, control and other factors may influence your
741decision, you should pick an OpenGL API version based on what you think provides the best experience
742for your users.</p>
743
744