1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains some functions that are useful for math stuff. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H 15 #define LLVM_SUPPORT_MATHEXTRAS_H 16 17 #include "llvm/Support/Compiler.h" 18 #include "llvm/Support/SwapByteOrder.h" 19 #include <cassert> 20 #include <cstring> 21 #include <type_traits> 22 23 #ifdef _MSC_VER 24 #include <intrin.h> 25 #endif 26 27 namespace llvm { 28 /// \brief The behavior an operation has on an input of 0. 29 enum ZeroBehavior { 30 /// \brief The returned value is undefined. 31 ZB_Undefined, 32 /// \brief The returned value is numeric_limits<T>::max() 33 ZB_Max, 34 /// \brief The returned value is numeric_limits<T>::digits 35 ZB_Width 36 }; 37 38 namespace detail { 39 template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { countTrailingZerosCounter40 static std::size_t count(T Val, ZeroBehavior) { 41 if (!Val) 42 return std::numeric_limits<T>::digits; 43 if (Val & 0x1) 44 return 0; 45 46 // Bisection method. 47 std::size_t ZeroBits = 0; 48 T Shift = std::numeric_limits<T>::digits >> 1; 49 T Mask = std::numeric_limits<T>::max() >> Shift; 50 while (Shift) { 51 if ((Val & Mask) == 0) { 52 Val >>= Shift; 53 ZeroBits |= Shift; 54 } 55 Shift >>= 1; 56 Mask >>= Shift; 57 } 58 return ZeroBits; 59 } 60 }; 61 62 #if __GNUC__ >= 4 || _MSC_VER 63 template <typename T> struct TrailingZerosCounter<T, 4> { 64 static std::size_t count(T Val, ZeroBehavior ZB) { 65 if (ZB != ZB_Undefined && Val == 0) 66 return 32; 67 68 #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0) 69 return __builtin_ctz(Val); 70 #elif _MSC_VER 71 unsigned long Index; 72 _BitScanForward(&Index, Val); 73 return Index; 74 #endif 75 } 76 }; 77 78 #if !defined(_MSC_VER) || defined(_M_X64) 79 template <typename T> struct TrailingZerosCounter<T, 8> { 80 static std::size_t count(T Val, ZeroBehavior ZB) { 81 if (ZB != ZB_Undefined && Val == 0) 82 return 64; 83 84 #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0) 85 return __builtin_ctzll(Val); 86 #elif _MSC_VER 87 unsigned long Index; 88 _BitScanForward64(&Index, Val); 89 return Index; 90 #endif 91 } 92 }; 93 #endif 94 #endif 95 } // namespace detail 96 97 /// \brief Count number of 0's from the least significant bit to the most 98 /// stopping at the first 1. 99 /// 100 /// Only unsigned integral types are allowed. 101 /// 102 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are 103 /// valid arguments. 104 template <typename T> 105 std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { 106 static_assert(std::numeric_limits<T>::is_integer && 107 !std::numeric_limits<T>::is_signed, 108 "Only unsigned integral types are allowed."); 109 return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); 110 } 111 112 namespace detail { 113 template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { 114 static std::size_t count(T Val, ZeroBehavior) { 115 if (!Val) 116 return std::numeric_limits<T>::digits; 117 118 // Bisection method. 119 std::size_t ZeroBits = 0; 120 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { 121 T Tmp = Val >> Shift; 122 if (Tmp) 123 Val = Tmp; 124 else 125 ZeroBits |= Shift; 126 } 127 return ZeroBits; 128 } 129 }; 130 131 #if __GNUC__ >= 4 || _MSC_VER 132 template <typename T> struct LeadingZerosCounter<T, 4> { 133 static std::size_t count(T Val, ZeroBehavior ZB) { 134 if (ZB != ZB_Undefined && Val == 0) 135 return 32; 136 137 #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0) 138 return __builtin_clz(Val); 139 #elif _MSC_VER 140 unsigned long Index; 141 _BitScanReverse(&Index, Val); 142 return Index ^ 31; 143 #endif 144 } 145 }; 146 147 #if !defined(_MSC_VER) || defined(_M_X64) 148 template <typename T> struct LeadingZerosCounter<T, 8> { 149 static std::size_t count(T Val, ZeroBehavior ZB) { 150 if (ZB != ZB_Undefined && Val == 0) 151 return 64; 152 153 #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0) 154 return __builtin_clzll(Val); 155 #elif _MSC_VER 156 unsigned long Index; 157 _BitScanReverse64(&Index, Val); 158 return Index ^ 63; 159 #endif 160 } 161 }; 162 #endif 163 #endif 164 } // namespace detail 165 166 /// \brief Count number of 0's from the most significant bit to the least 167 /// stopping at the first 1. 168 /// 169 /// Only unsigned integral types are allowed. 170 /// 171 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are 172 /// valid arguments. 173 template <typename T> 174 std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { 175 static_assert(std::numeric_limits<T>::is_integer && 176 !std::numeric_limits<T>::is_signed, 177 "Only unsigned integral types are allowed."); 178 return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); 179 } 180 181 /// \brief Get the index of the first set bit starting from the least 182 /// significant bit. 183 /// 184 /// Only unsigned integral types are allowed. 185 /// 186 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are 187 /// valid arguments. 188 template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { 189 if (ZB == ZB_Max && Val == 0) 190 return std::numeric_limits<T>::max(); 191 192 return countTrailingZeros(Val, ZB_Undefined); 193 } 194 195 /// \brief Get the index of the last set bit starting from the least 196 /// significant bit. 197 /// 198 /// Only unsigned integral types are allowed. 199 /// 200 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are 201 /// valid arguments. 202 template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { 203 if (ZB == ZB_Max && Val == 0) 204 return std::numeric_limits<T>::max(); 205 206 // Use ^ instead of - because both gcc and llvm can remove the associated ^ 207 // in the __builtin_clz intrinsic on x86. 208 return countLeadingZeros(Val, ZB_Undefined) ^ 209 (std::numeric_limits<T>::digits - 1); 210 } 211 212 /// \brief Macro compressed bit reversal table for 256 bits. 213 /// 214 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable 215 static const unsigned char BitReverseTable256[256] = { 216 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 217 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) 218 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) 219 R6(0), R6(2), R6(1), R6(3) 220 #undef R2 221 #undef R4 222 #undef R6 223 }; 224 225 /// \brief Reverse the bits in \p Val. 226 template <typename T> 227 T reverseBits(T Val) { 228 unsigned char in[sizeof(Val)]; 229 unsigned char out[sizeof(Val)]; 230 std::memcpy(in, &Val, sizeof(Val)); 231 for (unsigned i = 0; i < sizeof(Val); ++i) 232 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; 233 std::memcpy(&Val, out, sizeof(Val)); 234 return Val; 235 } 236 237 // NOTE: The following support functions use the _32/_64 extensions instead of 238 // type overloading so that signed and unsigned integers can be used without 239 // ambiguity. 240 241 /// Hi_32 - This function returns the high 32 bits of a 64 bit value. 242 inline uint32_t Hi_32(uint64_t Value) { 243 return static_cast<uint32_t>(Value >> 32); 244 } 245 246 /// Lo_32 - This function returns the low 32 bits of a 64 bit value. 247 inline uint32_t Lo_32(uint64_t Value) { 248 return static_cast<uint32_t>(Value); 249 } 250 251 /// Make_64 - This functions makes a 64-bit integer from a high / low pair of 252 /// 32-bit integers. 253 inline uint64_t Make_64(uint32_t High, uint32_t Low) { 254 return ((uint64_t)High << 32) | (uint64_t)Low; 255 } 256 257 /// isInt - Checks if an integer fits into the given bit width. 258 template<unsigned N> 259 inline bool isInt(int64_t x) { 260 return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); 261 } 262 // Template specializations to get better code for common cases. 263 template<> 264 inline bool isInt<8>(int64_t x) { 265 return static_cast<int8_t>(x) == x; 266 } 267 template<> 268 inline bool isInt<16>(int64_t x) { 269 return static_cast<int16_t>(x) == x; 270 } 271 template<> 272 inline bool isInt<32>(int64_t x) { 273 return static_cast<int32_t>(x) == x; 274 } 275 276 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted 277 /// left by S. 278 template<unsigned N, unsigned S> 279 inline bool isShiftedInt(int64_t x) { 280 return isInt<N+S>(x) && (x % (1<<S) == 0); 281 } 282 283 /// isUInt - Checks if an unsigned integer fits into the given bit width. 284 template<unsigned N> 285 inline bool isUInt(uint64_t x) { 286 return N >= 64 || x < (UINT64_C(1)<<(N)); 287 } 288 // Template specializations to get better code for common cases. 289 template<> 290 inline bool isUInt<8>(uint64_t x) { 291 return static_cast<uint8_t>(x) == x; 292 } 293 template<> 294 inline bool isUInt<16>(uint64_t x) { 295 return static_cast<uint16_t>(x) == x; 296 } 297 template<> 298 inline bool isUInt<32>(uint64_t x) { 299 return static_cast<uint32_t>(x) == x; 300 } 301 302 /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted 303 /// left by S. 304 template<unsigned N, unsigned S> 305 inline bool isShiftedUInt(uint64_t x) { 306 return isUInt<N+S>(x) && (x % (1<<S) == 0); 307 } 308 309 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic) 310 /// bit width. 311 inline bool isUIntN(unsigned N, uint64_t x) { 312 return x == (x & (~0ULL >> (64 - N))); 313 } 314 315 /// isIntN - Checks if an signed integer fits into the given (dynamic) 316 /// bit width. 317 inline bool isIntN(unsigned N, int64_t x) { 318 return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); 319 } 320 321 /// isMask_32 - This function returns true if the argument is a non-empty 322 /// sequence of ones starting at the least significant bit with the remainder 323 /// zero (32 bit version). Ex. isMask_32(0x0000FFFFU) == true. 324 inline bool isMask_32(uint32_t Value) { 325 return Value && ((Value + 1) & Value) == 0; 326 } 327 328 /// isMask_64 - This function returns true if the argument is a non-empty 329 /// sequence of ones starting at the least significant bit with the remainder 330 /// zero (64 bit version). 331 inline bool isMask_64(uint64_t Value) { 332 return Value && ((Value + 1) & Value) == 0; 333 } 334 335 /// isShiftedMask_32 - This function returns true if the argument contains a 336 /// non-empty sequence of ones with the remainder zero (32 bit version.) 337 /// Ex. isShiftedMask_32(0x0000FF00U) == true. 338 inline bool isShiftedMask_32(uint32_t Value) { 339 return Value && isMask_32((Value - 1) | Value); 340 } 341 342 /// isShiftedMask_64 - This function returns true if the argument contains a 343 /// non-empty sequence of ones with the remainder zero (64 bit version.) 344 inline bool isShiftedMask_64(uint64_t Value) { 345 return Value && isMask_64((Value - 1) | Value); 346 } 347 348 /// isPowerOf2_32 - This function returns true if the argument is a power of 349 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) 350 inline bool isPowerOf2_32(uint32_t Value) { 351 return Value && !(Value & (Value - 1)); 352 } 353 354 /// isPowerOf2_64 - This function returns true if the argument is a power of two 355 /// > 0 (64 bit edition.) 356 inline bool isPowerOf2_64(uint64_t Value) { 357 return Value && !(Value & (Value - int64_t(1L))); 358 } 359 360 /// ByteSwap_16 - This function returns a byte-swapped representation of the 361 /// 16-bit argument, Value. 362 inline uint16_t ByteSwap_16(uint16_t Value) { 363 return sys::SwapByteOrder_16(Value); 364 } 365 366 /// ByteSwap_32 - This function returns a byte-swapped representation of the 367 /// 32-bit argument, Value. 368 inline uint32_t ByteSwap_32(uint32_t Value) { 369 return sys::SwapByteOrder_32(Value); 370 } 371 372 /// ByteSwap_64 - This function returns a byte-swapped representation of the 373 /// 64-bit argument, Value. 374 inline uint64_t ByteSwap_64(uint64_t Value) { 375 return sys::SwapByteOrder_64(Value); 376 } 377 378 /// \brief Count the number of ones from the most significant bit to the first 379 /// zero bit. 380 /// 381 /// Ex. CountLeadingOnes(0xFF0FFF00) == 8. 382 /// Only unsigned integral types are allowed. 383 /// 384 /// \param ZB the behavior on an input of all ones. Only ZB_Width and 385 /// ZB_Undefined are valid arguments. 386 template <typename T> 387 std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { 388 static_assert(std::numeric_limits<T>::is_integer && 389 !std::numeric_limits<T>::is_signed, 390 "Only unsigned integral types are allowed."); 391 return countLeadingZeros(~Value, ZB); 392 } 393 394 /// \brief Count the number of ones from the least significant bit to the first 395 /// zero bit. 396 /// 397 /// Ex. countTrailingOnes(0x00FF00FF) == 8. 398 /// Only unsigned integral types are allowed. 399 /// 400 /// \param ZB the behavior on an input of all ones. Only ZB_Width and 401 /// ZB_Undefined are valid arguments. 402 template <typename T> 403 std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { 404 static_assert(std::numeric_limits<T>::is_integer && 405 !std::numeric_limits<T>::is_signed, 406 "Only unsigned integral types are allowed."); 407 return countTrailingZeros(~Value, ZB); 408 } 409 410 namespace detail { 411 template <typename T, std::size_t SizeOfT> struct PopulationCounter { 412 static unsigned count(T Value) { 413 // Generic version, forward to 32 bits. 414 static_assert(SizeOfT <= 4, "Not implemented!"); 415 #if __GNUC__ >= 4 416 return __builtin_popcount(Value); 417 #else 418 uint32_t v = Value; 419 v = v - ((v >> 1) & 0x55555555); 420 v = (v & 0x33333333) + ((v >> 2) & 0x33333333); 421 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; 422 #endif 423 } 424 }; 425 426 template <typename T> struct PopulationCounter<T, 8> { 427 static unsigned count(T Value) { 428 #if __GNUC__ >= 4 429 return __builtin_popcountll(Value); 430 #else 431 uint64_t v = Value; 432 v = v - ((v >> 1) & 0x5555555555555555ULL); 433 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); 434 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; 435 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); 436 #endif 437 } 438 }; 439 } // namespace detail 440 441 /// \brief Count the number of set bits in a value. 442 /// Ex. countPopulation(0xF000F000) = 8 443 /// Returns 0 if the word is zero. 444 template <typename T> 445 inline unsigned countPopulation(T Value) { 446 static_assert(std::numeric_limits<T>::is_integer && 447 !std::numeric_limits<T>::is_signed, 448 "Only unsigned integral types are allowed."); 449 return detail::PopulationCounter<T, sizeof(T)>::count(Value); 450 } 451 452 /// Log2_32 - This function returns the floor log base 2 of the specified value, 453 /// -1 if the value is zero. (32 bit edition.) 454 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 455 inline unsigned Log2_32(uint32_t Value) { 456 return 31 - countLeadingZeros(Value); 457 } 458 459 /// Log2_64 - This function returns the floor log base 2 of the specified value, 460 /// -1 if the value is zero. (64 bit edition.) 461 inline unsigned Log2_64(uint64_t Value) { 462 return 63 - countLeadingZeros(Value); 463 } 464 465 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified 466 /// value, 32 if the value is zero. (32 bit edition). 467 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 468 inline unsigned Log2_32_Ceil(uint32_t Value) { 469 return 32 - countLeadingZeros(Value - 1); 470 } 471 472 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified 473 /// value, 64 if the value is zero. (64 bit edition.) 474 inline unsigned Log2_64_Ceil(uint64_t Value) { 475 return 64 - countLeadingZeros(Value - 1); 476 } 477 478 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two 479 /// values using Euclid's algorithm. 480 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { 481 while (B) { 482 uint64_t T = B; 483 B = A % B; 484 A = T; 485 } 486 return A; 487 } 488 489 /// BitsToDouble - This function takes a 64-bit integer and returns the bit 490 /// equivalent double. 491 inline double BitsToDouble(uint64_t Bits) { 492 union { 493 uint64_t L; 494 double D; 495 } T; 496 T.L = Bits; 497 return T.D; 498 } 499 500 /// BitsToFloat - This function takes a 32-bit integer and returns the bit 501 /// equivalent float. 502 inline float BitsToFloat(uint32_t Bits) { 503 union { 504 uint32_t I; 505 float F; 506 } T; 507 T.I = Bits; 508 return T.F; 509 } 510 511 /// DoubleToBits - This function takes a double and returns the bit 512 /// equivalent 64-bit integer. Note that copying doubles around 513 /// changes the bits of NaNs on some hosts, notably x86, so this 514 /// routine cannot be used if these bits are needed. 515 inline uint64_t DoubleToBits(double Double) { 516 union { 517 uint64_t L; 518 double D; 519 } T; 520 T.D = Double; 521 return T.L; 522 } 523 524 /// FloatToBits - This function takes a float and returns the bit 525 /// equivalent 32-bit integer. Note that copying floats around 526 /// changes the bits of NaNs on some hosts, notably x86, so this 527 /// routine cannot be used if these bits are needed. 528 inline uint32_t FloatToBits(float Float) { 529 union { 530 uint32_t I; 531 float F; 532 } T; 533 T.F = Float; 534 return T.I; 535 } 536 537 /// MinAlign - A and B are either alignments or offsets. Return the minimum 538 /// alignment that may be assumed after adding the two together. 539 inline uint64_t MinAlign(uint64_t A, uint64_t B) { 540 // The largest power of 2 that divides both A and B. 541 // 542 // Replace "-Value" by "1+~Value" in the following commented code to avoid 543 // MSVC warning C4146 544 // return (A | B) & -(A | B); 545 return (A | B) & (1 + ~(A | B)); 546 } 547 548 /// \brief Aligns \c Addr to \c Alignment bytes, rounding up. 549 /// 550 /// Alignment should be a power of two. This method rounds up, so 551 /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8. 552 inline uintptr_t alignAddr(void *Addr, size_t Alignment) { 553 assert(Alignment && isPowerOf2_64((uint64_t)Alignment) && 554 "Alignment is not a power of two!"); 555 556 assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr); 557 558 return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1)); 559 } 560 561 /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment 562 /// bytes, rounding up. 563 inline size_t alignmentAdjustment(void *Ptr, size_t Alignment) { 564 return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr; 565 } 566 567 /// NextPowerOf2 - Returns the next power of two (in 64-bits) 568 /// that is strictly greater than A. Returns zero on overflow. 569 inline uint64_t NextPowerOf2(uint64_t A) { 570 A |= (A >> 1); 571 A |= (A >> 2); 572 A |= (A >> 4); 573 A |= (A >> 8); 574 A |= (A >> 16); 575 A |= (A >> 32); 576 return A + 1; 577 } 578 579 /// Returns the power of two which is less than or equal to the given value. 580 /// Essentially, it is a floor operation across the domain of powers of two. 581 inline uint64_t PowerOf2Floor(uint64_t A) { 582 if (!A) return 0; 583 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); 584 } 585 586 /// Returns the next integer (mod 2**64) that is greater than or equal to 587 /// \p Value and is a multiple of \p Align. \p Align must be non-zero. 588 /// 589 /// Examples: 590 /// \code 591 /// RoundUpToAlignment(5, 8) = 8 592 /// RoundUpToAlignment(17, 8) = 24 593 /// RoundUpToAlignment(~0LL, 8) = 0 594 /// RoundUpToAlignment(321, 255) = 510 595 /// \endcode 596 inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) { 597 return (Value + Align - 1) / Align * Align; 598 } 599 600 /// Returns the offset to the next integer (mod 2**64) that is greater than 601 /// or equal to \p Value and is a multiple of \p Align. \p Align must be 602 /// non-zero. 603 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { 604 return RoundUpToAlignment(Value, Align) - Value; 605 } 606 607 /// SignExtend32 - Sign extend B-bit number x to 32-bit int. 608 /// Usage int32_t r = SignExtend32<5>(x); 609 template <unsigned B> inline int32_t SignExtend32(uint32_t x) { 610 return int32_t(x << (32 - B)) >> (32 - B); 611 } 612 613 /// \brief Sign extend number in the bottom B bits of X to a 32-bit int. 614 /// Requires 0 < B <= 32. 615 inline int32_t SignExtend32(uint32_t X, unsigned B) { 616 return int32_t(X << (32 - B)) >> (32 - B); 617 } 618 619 /// SignExtend64 - Sign extend B-bit number x to 64-bit int. 620 /// Usage int64_t r = SignExtend64<5>(x); 621 template <unsigned B> inline int64_t SignExtend64(uint64_t x) { 622 return int64_t(x << (64 - B)) >> (64 - B); 623 } 624 625 /// \brief Sign extend number in the bottom B bits of X to a 64-bit int. 626 /// Requires 0 < B <= 64. 627 inline int64_t SignExtend64(uint64_t X, unsigned B) { 628 return int64_t(X << (64 - B)) >> (64 - B); 629 } 630 631 extern const float huge_valf; 632 } // End llvm namespace 633 634 #endif 635