1 //===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the SDNode class and derived classes, which are used to
11 // represent the nodes and operations present in a SelectionDAG.  These nodes
12 // and operations are machine code level operations, with some similarities to
13 // the GCC RTL representation.
14 //
15 // Clients should include the SelectionDAG.h file instead of this file directly.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
21 
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/FoldingSet.h"
24 #include "llvm/ADT/GraphTraits.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator_range.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/Support/DataTypes.h"
37 #include "llvm/Support/MathExtras.h"
38 #include <cassert>
39 
40 namespace llvm {
41 
42 class SelectionDAG;
43 class GlobalValue;
44 class MachineBasicBlock;
45 class MachineConstantPoolValue;
46 class SDNode;
47 class Value;
48 class MCSymbol;
49 template <typename T> struct DenseMapInfo;
50 template <typename T> struct simplify_type;
51 template <typename T> struct ilist_traits;
52 
53 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
54                     bool force = false);
55 
56 /// This represents a list of ValueType's that has been intern'd by
57 /// a SelectionDAG.  Instances of this simple value class are returned by
58 /// SelectionDAG::getVTList(...).
59 ///
60 struct SDVTList {
61   const EVT *VTs;
62   unsigned int NumVTs;
63 };
64 
65 namespace ISD {
66   /// Node predicates
67 
68   /// Return true if the specified node is a
69   /// BUILD_VECTOR where all of the elements are ~0 or undef.
70   bool isBuildVectorAllOnes(const SDNode *N);
71 
72   /// Return true if the specified node is a
73   /// BUILD_VECTOR where all of the elements are 0 or undef.
74   bool isBuildVectorAllZeros(const SDNode *N);
75 
76   /// \brief Return true if the specified node is a BUILD_VECTOR node of
77   /// all ConstantSDNode or undef.
78   bool isBuildVectorOfConstantSDNodes(const SDNode *N);
79 
80   /// \brief Return true if the specified node is a BUILD_VECTOR node of
81   /// all ConstantFPSDNode or undef.
82   bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
83 
84   /// Return true if the specified node is a
85   /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
86   /// element is not an undef.
87   bool isScalarToVector(const SDNode *N);
88 
89   /// Return true if the node has at least one operand
90   /// and all operands of the specified node are ISD::UNDEF.
91   bool allOperandsUndef(const SDNode *N);
92 }  // end llvm:ISD namespace
93 
94 //===----------------------------------------------------------------------===//
95 /// Unlike LLVM values, Selection DAG nodes may return multiple
96 /// values as the result of a computation.  Many nodes return multiple values,
97 /// from loads (which define a token and a return value) to ADDC (which returns
98 /// a result and a carry value), to calls (which may return an arbitrary number
99 /// of values).
100 ///
101 /// As such, each use of a SelectionDAG computation must indicate the node that
102 /// computes it as well as which return value to use from that node.  This pair
103 /// of information is represented with the SDValue value type.
104 ///
105 class SDValue {
106   friend struct DenseMapInfo<SDValue>;
107 
108   SDNode *Node;       // The node defining the value we are using.
109   unsigned ResNo;     // Which return value of the node we are using.
110 public:
111   SDValue() : Node(nullptr), ResNo(0) {}
112   SDValue(SDNode *node, unsigned resno);
113 
114   /// get the index which selects a specific result in the SDNode
115   unsigned getResNo() const { return ResNo; }
116 
117   /// get the SDNode which holds the desired result
118   SDNode *getNode() const { return Node; }
119 
120   /// set the SDNode
121   void setNode(SDNode *N) { Node = N; }
122 
123   inline SDNode *operator->() const { return Node; }
124 
125   bool operator==(const SDValue &O) const {
126     return Node == O.Node && ResNo == O.ResNo;
127   }
128   bool operator!=(const SDValue &O) const {
129     return !operator==(O);
130   }
131   bool operator<(const SDValue &O) const {
132     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
133   }
134   explicit operator bool() const {
135     return Node != nullptr;
136   }
137 
138   SDValue getValue(unsigned R) const {
139     return SDValue(Node, R);
140   }
141 
142   // Return true if this node is an operand of N.
143   bool isOperandOf(SDNode *N) const;
144 
145   /// Return the ValueType of the referenced return value.
146   inline EVT getValueType() const;
147 
148   /// Return the simple ValueType of the referenced return value.
149   MVT getSimpleValueType() const {
150     return getValueType().getSimpleVT();
151   }
152 
153   /// Returns the size of the value in bits.
154   unsigned getValueSizeInBits() const {
155     return getValueType().getSizeInBits();
156   }
157 
158   unsigned getScalarValueSizeInBits() const {
159     return getValueType().getScalarType().getSizeInBits();
160   }
161 
162   // Forwarding methods - These forward to the corresponding methods in SDNode.
163   inline unsigned getOpcode() const;
164   inline unsigned getNumOperands() const;
165   inline const SDValue &getOperand(unsigned i) const;
166   inline uint64_t getConstantOperandVal(unsigned i) const;
167   inline bool isTargetMemoryOpcode() const;
168   inline bool isTargetOpcode() const;
169   inline bool isMachineOpcode() const;
170   inline unsigned getMachineOpcode() const;
171   inline const DebugLoc &getDebugLoc() const;
172   inline void dump() const;
173   inline void dumpr() const;
174 
175   /// Return true if this operand (which must be a chain) reaches the
176   /// specified operand without crossing any side-effecting instructions.
177   /// In practice, this looks through token factors and non-volatile loads.
178   /// In order to remain efficient, this only
179   /// looks a couple of nodes in, it does not do an exhaustive search.
180   bool reachesChainWithoutSideEffects(SDValue Dest,
181                                       unsigned Depth = 2) const;
182 
183   /// Return true if there are no nodes using value ResNo of Node.
184   inline bool use_empty() const;
185 
186   /// Return true if there is exactly one node using value ResNo of Node.
187   inline bool hasOneUse() const;
188 };
189 
190 
191 template<> struct DenseMapInfo<SDValue> {
192   static inline SDValue getEmptyKey() {
193     SDValue V;
194     V.ResNo = -1U;
195     return V;
196   }
197   static inline SDValue getTombstoneKey() {
198     SDValue V;
199     V.ResNo = -2U;
200     return V;
201   }
202   static unsigned getHashValue(const SDValue &Val) {
203     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
204             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
205   }
206   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
207     return LHS == RHS;
208   }
209 };
210 template <> struct isPodLike<SDValue> { static const bool value = true; };
211 
212 
213 /// Allow casting operators to work directly on
214 /// SDValues as if they were SDNode*'s.
215 template<> struct simplify_type<SDValue> {
216   typedef SDNode* SimpleType;
217   static SimpleType getSimplifiedValue(SDValue &Val) {
218     return Val.getNode();
219   }
220 };
221 template<> struct simplify_type<const SDValue> {
222   typedef /*const*/ SDNode* SimpleType;
223   static SimpleType getSimplifiedValue(const SDValue &Val) {
224     return Val.getNode();
225   }
226 };
227 
228 /// Represents a use of a SDNode. This class holds an SDValue,
229 /// which records the SDNode being used and the result number, a
230 /// pointer to the SDNode using the value, and Next and Prev pointers,
231 /// which link together all the uses of an SDNode.
232 ///
233 class SDUse {
234   /// Val - The value being used.
235   SDValue Val;
236   /// User - The user of this value.
237   SDNode *User;
238   /// Prev, Next - Pointers to the uses list of the SDNode referred by
239   /// this operand.
240   SDUse **Prev, *Next;
241 
242   SDUse(const SDUse &U) = delete;
243   void operator=(const SDUse &U) = delete;
244 
245 public:
246   SDUse() : Val(), User(nullptr), Prev(nullptr), Next(nullptr) {}
247 
248   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
249   operator const SDValue&() const { return Val; }
250 
251   /// If implicit conversion to SDValue doesn't work, the get() method returns
252   /// the SDValue.
253   const SDValue &get() const { return Val; }
254 
255   /// This returns the SDNode that contains this Use.
256   SDNode *getUser() { return User; }
257 
258   /// Get the next SDUse in the use list.
259   SDUse *getNext() const { return Next; }
260 
261   /// Convenience function for get().getNode().
262   SDNode *getNode() const { return Val.getNode(); }
263   /// Convenience function for get().getResNo().
264   unsigned getResNo() const { return Val.getResNo(); }
265   /// Convenience function for get().getValueType().
266   EVT getValueType() const { return Val.getValueType(); }
267 
268   /// Convenience function for get().operator==
269   bool operator==(const SDValue &V) const {
270     return Val == V;
271   }
272 
273   /// Convenience function for get().operator!=
274   bool operator!=(const SDValue &V) const {
275     return Val != V;
276   }
277 
278   /// Convenience function for get().operator<
279   bool operator<(const SDValue &V) const {
280     return Val < V;
281   }
282 
283 private:
284   friend class SelectionDAG;
285   friend class SDNode;
286 
287   void setUser(SDNode *p) { User = p; }
288 
289   /// Remove this use from its existing use list, assign it the
290   /// given value, and add it to the new value's node's use list.
291   inline void set(const SDValue &V);
292   /// Like set, but only supports initializing a newly-allocated
293   /// SDUse with a non-null value.
294   inline void setInitial(const SDValue &V);
295   /// Like set, but only sets the Node portion of the value,
296   /// leaving the ResNo portion unmodified.
297   inline void setNode(SDNode *N);
298 
299   void addToList(SDUse **List) {
300     Next = *List;
301     if (Next) Next->Prev = &Next;
302     Prev = List;
303     *List = this;
304   }
305 
306   void removeFromList() {
307     *Prev = Next;
308     if (Next) Next->Prev = Prev;
309   }
310 };
311 
312 /// simplify_type specializations - Allow casting operators to work directly on
313 /// SDValues as if they were SDNode*'s.
314 template<> struct simplify_type<SDUse> {
315   typedef SDNode* SimpleType;
316   static SimpleType getSimplifiedValue(SDUse &Val) {
317     return Val.getNode();
318   }
319 };
320 
321 
322 /// Represents one node in the SelectionDAG.
323 ///
324 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
325 private:
326   /// The operation that this node performs.
327   int16_t NodeType;
328 
329   /// This is true if OperandList was new[]'d.  If true,
330   /// then they will be delete[]'d when the node is destroyed.
331   uint16_t OperandsNeedDelete : 1;
332 
333   /// This tracks whether this node has one or more dbg_value
334   /// nodes corresponding to it.
335   uint16_t HasDebugValue : 1;
336 
337 protected:
338   /// This member is defined by this class, but is not used for
339   /// anything.  Subclasses can use it to hold whatever state they find useful.
340   /// This field is initialized to zero by the ctor.
341   uint16_t SubclassData : 14;
342 
343 private:
344   /// Unique id per SDNode in the DAG.
345   int NodeId;
346 
347   /// The values that are used by this operation.
348   SDUse *OperandList;
349 
350   /// The types of the values this node defines.  SDNode's may
351   /// define multiple values simultaneously.
352   const EVT *ValueList;
353 
354   /// List of uses for this SDNode.
355   SDUse *UseList;
356 
357   /// The number of entries in the Operand/Value list.
358   unsigned short NumOperands, NumValues;
359 
360   /// Source line information.
361   DebugLoc debugLoc;
362 
363   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
364   // original LLVM instructions.
365   // This is used for turning off scheduling, because we'll forgo
366   // the normal scheduling algorithms and output the instructions according to
367   // this ordering.
368   unsigned IROrder;
369 
370   /// Return a pointer to the specified value type.
371   static const EVT *getValueTypeList(EVT VT);
372 
373   friend class SelectionDAG;
374   friend struct ilist_traits<SDNode>;
375 
376 public:
377   //===--------------------------------------------------------------------===//
378   //  Accessors
379   //
380 
381   /// Return the SelectionDAG opcode value for this node. For
382   /// pre-isel nodes (those for which isMachineOpcode returns false), these
383   /// are the opcode values in the ISD and <target>ISD namespaces. For
384   /// post-isel opcodes, see getMachineOpcode.
385   unsigned getOpcode()  const { return (unsigned short)NodeType; }
386 
387   /// Test if this node has a target-specific opcode (in the
388   /// \<target\>ISD namespace).
389   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
390 
391   /// Test if this node has a target-specific
392   /// memory-referencing opcode (in the \<target\>ISD namespace and
393   /// greater than FIRST_TARGET_MEMORY_OPCODE).
394   bool isTargetMemoryOpcode() const {
395     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
396   }
397 
398   /// Test if this node is a memory intrinsic (with valid pointer information).
399   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
400   /// non-memory intrinsics (with chains) that are not really instances of
401   /// MemSDNode. For such nodes, we need some extra state to determine the
402   /// proper classof relationship.
403   bool isMemIntrinsic() const {
404     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
405             NodeType == ISD::INTRINSIC_VOID) && ((SubclassData >> 13) & 1);
406   }
407 
408   /// Test if this node has a post-isel opcode, directly
409   /// corresponding to a MachineInstr opcode.
410   bool isMachineOpcode() const { return NodeType < 0; }
411 
412   /// This may only be called if isMachineOpcode returns
413   /// true. It returns the MachineInstr opcode value that the node's opcode
414   /// corresponds to.
415   unsigned getMachineOpcode() const {
416     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
417     return ~NodeType;
418   }
419 
420   /// Get this bit.
421   bool getHasDebugValue() const { return HasDebugValue; }
422 
423   /// Set this bit.
424   void setHasDebugValue(bool b) { HasDebugValue = b; }
425 
426   /// Return true if there are no uses of this node.
427   bool use_empty() const { return UseList == nullptr; }
428 
429   /// Return true if there is exactly one use of this node.
430   bool hasOneUse() const {
431     return !use_empty() && std::next(use_begin()) == use_end();
432   }
433 
434   /// Return the number of uses of this node. This method takes
435   /// time proportional to the number of uses.
436   size_t use_size() const { return std::distance(use_begin(), use_end()); }
437 
438   /// Return the unique node id.
439   int getNodeId() const { return NodeId; }
440 
441   /// Set unique node id.
442   void setNodeId(int Id) { NodeId = Id; }
443 
444   /// Return the node ordering.
445   unsigned getIROrder() const { return IROrder; }
446 
447   /// Set the node ordering.
448   void setIROrder(unsigned Order) { IROrder = Order; }
449 
450   /// Return the source location info.
451   const DebugLoc &getDebugLoc() const { return debugLoc; }
452 
453   /// Set source location info.  Try to avoid this, putting
454   /// it in the constructor is preferable.
455   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
456 
457   /// This class provides iterator support for SDUse
458   /// operands that use a specific SDNode.
459   class use_iterator
460     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
461     SDUse *Op;
462     explicit use_iterator(SDUse *op) : Op(op) {
463     }
464     friend class SDNode;
465   public:
466     typedef std::iterator<std::forward_iterator_tag,
467                           SDUse, ptrdiff_t>::reference reference;
468     typedef std::iterator<std::forward_iterator_tag,
469                           SDUse, ptrdiff_t>::pointer pointer;
470 
471     use_iterator(const use_iterator &I) : Op(I.Op) {}
472     use_iterator() : Op(nullptr) {}
473 
474     bool operator==(const use_iterator &x) const {
475       return Op == x.Op;
476     }
477     bool operator!=(const use_iterator &x) const {
478       return !operator==(x);
479     }
480 
481     /// Return true if this iterator is at the end of uses list.
482     bool atEnd() const { return Op == nullptr; }
483 
484     // Iterator traversal: forward iteration only.
485     use_iterator &operator++() {          // Preincrement
486       assert(Op && "Cannot increment end iterator!");
487       Op = Op->getNext();
488       return *this;
489     }
490 
491     use_iterator operator++(int) {        // Postincrement
492       use_iterator tmp = *this; ++*this; return tmp;
493     }
494 
495     /// Retrieve a pointer to the current user node.
496     SDNode *operator*() const {
497       assert(Op && "Cannot dereference end iterator!");
498       return Op->getUser();
499     }
500 
501     SDNode *operator->() const { return operator*(); }
502 
503     SDUse &getUse() const { return *Op; }
504 
505     /// Retrieve the operand # of this use in its user.
506     unsigned getOperandNo() const {
507       assert(Op && "Cannot dereference end iterator!");
508       return (unsigned)(Op - Op->getUser()->OperandList);
509     }
510   };
511 
512   /// Provide iteration support to walk over all uses of an SDNode.
513   use_iterator use_begin() const {
514     return use_iterator(UseList);
515   }
516 
517   static use_iterator use_end() { return use_iterator(nullptr); }
518 
519   inline iterator_range<use_iterator> uses() {
520     return iterator_range<use_iterator>(use_begin(), use_end());
521   }
522   inline iterator_range<use_iterator> uses() const {
523     return iterator_range<use_iterator>(use_begin(), use_end());
524   }
525 
526   /// Return true if there are exactly NUSES uses of the indicated value.
527   /// This method ignores uses of other values defined by this operation.
528   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
529 
530   /// Return true if there are any use of the indicated value.
531   /// This method ignores uses of other values defined by this operation.
532   bool hasAnyUseOfValue(unsigned Value) const;
533 
534   /// Return true if this node is the only use of N.
535   bool isOnlyUserOf(SDNode *N) const;
536 
537   /// Return true if this node is an operand of N.
538   bool isOperandOf(SDNode *N) const;
539 
540   /// Return true if this node is a predecessor of N.
541   /// NOTE: Implemented on top of hasPredecessor and every bit as
542   /// expensive. Use carefully.
543   bool isPredecessorOf(const SDNode *N) const {
544     return N->hasPredecessor(this);
545   }
546 
547   /// Return true if N is a predecessor of this node.
548   /// N is either an operand of this node, or can be reached by recursively
549   /// traversing up the operands.
550   /// NOTE: This is an expensive method. Use it carefully.
551   bool hasPredecessor(const SDNode *N) const;
552 
553   /// Return true if N is a predecessor of this node.
554   /// N is either an operand of this node, or can be reached by recursively
555   /// traversing up the operands.
556   /// In this helper the Visited and worklist sets are held externally to
557   /// cache predecessors over multiple invocations. If you want to test for
558   /// multiple predecessors this method is preferable to multiple calls to
559   /// hasPredecessor. Be sure to clear Visited and Worklist if the DAG
560   /// changes.
561   /// NOTE: This is still very expensive. Use carefully.
562   bool hasPredecessorHelper(const SDNode *N,
563                             SmallPtrSetImpl<const SDNode *> &Visited,
564                             SmallVectorImpl<const SDNode *> &Worklist) const;
565 
566   /// Return the number of values used by this operation.
567   unsigned getNumOperands() const { return NumOperands; }
568 
569   /// Helper method returns the integer value of a ConstantSDNode operand.
570   uint64_t getConstantOperandVal(unsigned Num) const;
571 
572   const SDValue &getOperand(unsigned Num) const {
573     assert(Num < NumOperands && "Invalid child # of SDNode!");
574     return OperandList[Num];
575   }
576 
577   typedef SDUse* op_iterator;
578   op_iterator op_begin() const { return OperandList; }
579   op_iterator op_end() const { return OperandList+NumOperands; }
580   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
581 
582   SDVTList getVTList() const {
583     SDVTList X = { ValueList, NumValues };
584     return X;
585   }
586 
587   /// If this node has a glue operand, return the node
588   /// to which the glue operand points. Otherwise return NULL.
589   SDNode *getGluedNode() const {
590     if (getNumOperands() != 0 &&
591       getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
592       return getOperand(getNumOperands()-1).getNode();
593     return nullptr;
594   }
595 
596   // If this is a pseudo op, like copyfromreg, look to see if there is a
597   // real target node glued to it.  If so, return the target node.
598   const SDNode *getGluedMachineNode() const {
599     const SDNode *FoundNode = this;
600 
601     // Climb up glue edges until a machine-opcode node is found, or the
602     // end of the chain is reached.
603     while (!FoundNode->isMachineOpcode()) {
604       const SDNode *N = FoundNode->getGluedNode();
605       if (!N) break;
606       FoundNode = N;
607     }
608 
609     return FoundNode;
610   }
611 
612   /// If this node has a glue value with a user, return
613   /// the user (there is at most one). Otherwise return NULL.
614   SDNode *getGluedUser() const {
615     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
616       if (UI.getUse().get().getValueType() == MVT::Glue)
617         return *UI;
618     return nullptr;
619   }
620 
621   /// Return the number of values defined/returned by this operator.
622   unsigned getNumValues() const { return NumValues; }
623 
624   /// Return the type of a specified result.
625   EVT getValueType(unsigned ResNo) const {
626     assert(ResNo < NumValues && "Illegal result number!");
627     return ValueList[ResNo];
628   }
629 
630   /// Return the type of a specified result as a simple type.
631   MVT getSimpleValueType(unsigned ResNo) const {
632     return getValueType(ResNo).getSimpleVT();
633   }
634 
635   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
636   unsigned getValueSizeInBits(unsigned ResNo) const {
637     return getValueType(ResNo).getSizeInBits();
638   }
639 
640   typedef const EVT* value_iterator;
641   value_iterator value_begin() const { return ValueList; }
642   value_iterator value_end() const { return ValueList+NumValues; }
643 
644   /// Return the opcode of this operation for printing.
645   std::string getOperationName(const SelectionDAG *G = nullptr) const;
646   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
647   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
648   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
649   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
650   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
651 
652   /// Print a SelectionDAG node and all children down to
653   /// the leaves.  The given SelectionDAG allows target-specific nodes
654   /// to be printed in human-readable form.  Unlike printr, this will
655   /// print the whole DAG, including children that appear multiple
656   /// times.
657   ///
658   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
659 
660   /// Print a SelectionDAG node and children up to
661   /// depth "depth."  The given SelectionDAG allows target-specific
662   /// nodes to be printed in human-readable form.  Unlike printr, this
663   /// will print children that appear multiple times wherever they are
664   /// used.
665   ///
666   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
667                        unsigned depth = 100) const;
668 
669 
670   /// Dump this node, for debugging.
671   void dump() const;
672 
673   /// Dump (recursively) this node and its use-def subgraph.
674   void dumpr() const;
675 
676   /// Dump this node, for debugging.
677   /// The given SelectionDAG allows target-specific nodes to be printed
678   /// in human-readable form.
679   void dump(const SelectionDAG *G) const;
680 
681   /// Dump (recursively) this node and its use-def subgraph.
682   /// The given SelectionDAG allows target-specific nodes to be printed
683   /// in human-readable form.
684   void dumpr(const SelectionDAG *G) const;
685 
686   /// printrFull to dbgs().  The given SelectionDAG allows
687   /// target-specific nodes to be printed in human-readable form.
688   /// Unlike dumpr, this will print the whole DAG, including children
689   /// that appear multiple times.
690   void dumprFull(const SelectionDAG *G = nullptr) const;
691 
692   /// printrWithDepth to dbgs().  The given
693   /// SelectionDAG allows target-specific nodes to be printed in
694   /// human-readable form.  Unlike dumpr, this will print children
695   /// that appear multiple times wherever they are used.
696   ///
697   void dumprWithDepth(const SelectionDAG *G = nullptr,
698                       unsigned depth = 100) const;
699 
700   /// Gather unique data for the node.
701   void Profile(FoldingSetNodeID &ID) const;
702 
703   /// This method should only be used by the SDUse class.
704   void addUse(SDUse &U) { U.addToList(&UseList); }
705 
706 protected:
707   static SDVTList getSDVTList(EVT VT) {
708     SDVTList Ret = { getValueTypeList(VT), 1 };
709     return Ret;
710   }
711 
712   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
713          ArrayRef<SDValue> Ops)
714       : NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false),
715         SubclassData(0), NodeId(-1),
716         OperandList(Ops.size() ? new SDUse[Ops.size()] : nullptr),
717         ValueList(VTs.VTs), UseList(nullptr), NumOperands(Ops.size()),
718         NumValues(VTs.NumVTs), debugLoc(std::move(dl)), IROrder(Order) {
719     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
720     assert(NumOperands == Ops.size() &&
721            "NumOperands wasn't wide enough for its operands!");
722     assert(NumValues == VTs.NumVTs &&
723            "NumValues wasn't wide enough for its operands!");
724     for (unsigned i = 0; i != Ops.size(); ++i) {
725       assert(OperandList && "no operands available");
726       OperandList[i].setUser(this);
727       OperandList[i].setInitial(Ops[i]);
728     }
729     checkForCycles(this);
730   }
731 
732   /// This constructor adds no operands itself; operands can be
733   /// set later with InitOperands.
734   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
735       : NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false),
736         SubclassData(0), NodeId(-1), OperandList(nullptr), ValueList(VTs.VTs),
737         UseList(nullptr), NumOperands(0), NumValues(VTs.NumVTs),
738         debugLoc(std::move(dl)), IROrder(Order) {
739     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
740     assert(NumValues == VTs.NumVTs &&
741            "NumValues wasn't wide enough for its operands!");
742   }
743 
744   /// Initialize the operands list of this with 1 operand.
745   void InitOperands(SDUse *Ops, const SDValue &Op0) {
746     Ops[0].setUser(this);
747     Ops[0].setInitial(Op0);
748     NumOperands = 1;
749     OperandList = Ops;
750     checkForCycles(this);
751   }
752 
753   /// Initialize the operands list of this with 2 operands.
754   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
755     Ops[0].setUser(this);
756     Ops[0].setInitial(Op0);
757     Ops[1].setUser(this);
758     Ops[1].setInitial(Op1);
759     NumOperands = 2;
760     OperandList = Ops;
761     checkForCycles(this);
762   }
763 
764   /// Initialize the operands list of this with 3 operands.
765   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
766                     const SDValue &Op2) {
767     Ops[0].setUser(this);
768     Ops[0].setInitial(Op0);
769     Ops[1].setUser(this);
770     Ops[1].setInitial(Op1);
771     Ops[2].setUser(this);
772     Ops[2].setInitial(Op2);
773     NumOperands = 3;
774     OperandList = Ops;
775     checkForCycles(this);
776   }
777 
778   /// Initialize the operands list of this with 4 operands.
779   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
780                     const SDValue &Op2, const SDValue &Op3) {
781     Ops[0].setUser(this);
782     Ops[0].setInitial(Op0);
783     Ops[1].setUser(this);
784     Ops[1].setInitial(Op1);
785     Ops[2].setUser(this);
786     Ops[2].setInitial(Op2);
787     Ops[3].setUser(this);
788     Ops[3].setInitial(Op3);
789     NumOperands = 4;
790     OperandList = Ops;
791     checkForCycles(this);
792   }
793 
794   /// Initialize the operands list of this with N operands.
795   void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
796     for (unsigned i = 0; i != N; ++i) {
797       Ops[i].setUser(this);
798       Ops[i].setInitial(Vals[i]);
799     }
800     NumOperands = N;
801     assert(NumOperands == N &&
802            "NumOperands wasn't wide enough for its operands!");
803     OperandList = Ops;
804     checkForCycles(this);
805   }
806 
807   /// Release the operands and set this node to have zero operands.
808   void DropOperands();
809 };
810 
811 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
812 /// into SDNode creation functions.
813 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
814 /// from the original Instruction, and IROrder is the ordinal position of
815 /// the instruction.
816 /// When an SDNode is created after the DAG is being built, both DebugLoc and
817 /// the IROrder are propagated from the original SDNode.
818 /// So SDLoc class provides two constructors besides the default one, one to
819 /// be used by the DAGBuilder, the other to be used by others.
820 class SDLoc {
821 private:
822   // Ptr could be used for either Instruction* or SDNode*. It is used for
823   // Instruction* if IROrder is not -1.
824   const void *Ptr;
825   int IROrder;
826 
827 public:
828   SDLoc() : Ptr(nullptr), IROrder(0) {}
829   SDLoc(const SDNode *N) : Ptr(N), IROrder(-1) {
830     assert(N && "null SDNode");
831   }
832   SDLoc(const SDValue V) : Ptr(V.getNode()), IROrder(-1) {
833     assert(Ptr && "null SDNode");
834   }
835   SDLoc(const Instruction *I, int Order) : Ptr(I), IROrder(Order) {
836     assert(Order >= 0 && "bad IROrder");
837   }
838   unsigned getIROrder() {
839     if (IROrder >= 0 || Ptr == nullptr) {
840       return (unsigned)IROrder;
841     }
842     const SDNode *N = (const SDNode*)(Ptr);
843     return N->getIROrder();
844   }
845   DebugLoc getDebugLoc() {
846     if (!Ptr) {
847       return DebugLoc();
848     }
849     if (IROrder >= 0) {
850       const Instruction *I = (const Instruction*)(Ptr);
851       return I->getDebugLoc();
852     }
853     const SDNode *N = (const SDNode*)(Ptr);
854     return N->getDebugLoc();
855   }
856 };
857 
858 
859 // Define inline functions from the SDValue class.
860 
861 inline SDValue::SDValue(SDNode *node, unsigned resno)
862     : Node(node), ResNo(resno) {
863   assert((!Node || ResNo < Node->getNumValues()) &&
864          "Invalid result number for the given node!");
865   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
866 }
867 
868 inline unsigned SDValue::getOpcode() const {
869   return Node->getOpcode();
870 }
871 inline EVT SDValue::getValueType() const {
872   return Node->getValueType(ResNo);
873 }
874 inline unsigned SDValue::getNumOperands() const {
875   return Node->getNumOperands();
876 }
877 inline const SDValue &SDValue::getOperand(unsigned i) const {
878   return Node->getOperand(i);
879 }
880 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
881   return Node->getConstantOperandVal(i);
882 }
883 inline bool SDValue::isTargetOpcode() const {
884   return Node->isTargetOpcode();
885 }
886 inline bool SDValue::isTargetMemoryOpcode() const {
887   return Node->isTargetMemoryOpcode();
888 }
889 inline bool SDValue::isMachineOpcode() const {
890   return Node->isMachineOpcode();
891 }
892 inline unsigned SDValue::getMachineOpcode() const {
893   return Node->getMachineOpcode();
894 }
895 inline bool SDValue::use_empty() const {
896   return !Node->hasAnyUseOfValue(ResNo);
897 }
898 inline bool SDValue::hasOneUse() const {
899   return Node->hasNUsesOfValue(1, ResNo);
900 }
901 inline const DebugLoc &SDValue::getDebugLoc() const {
902   return Node->getDebugLoc();
903 }
904 inline void SDValue::dump() const {
905   return Node->dump();
906 }
907 inline void SDValue::dumpr() const {
908   return Node->dumpr();
909 }
910 // Define inline functions from the SDUse class.
911 
912 inline void SDUse::set(const SDValue &V) {
913   if (Val.getNode()) removeFromList();
914   Val = V;
915   if (V.getNode()) V.getNode()->addUse(*this);
916 }
917 
918 inline void SDUse::setInitial(const SDValue &V) {
919   Val = V;
920   V.getNode()->addUse(*this);
921 }
922 
923 inline void SDUse::setNode(SDNode *N) {
924   if (Val.getNode()) removeFromList();
925   Val.setNode(N);
926   if (N) N->addUse(*this);
927 }
928 
929 /// This class is used for single-operand SDNodes.  This is solely
930 /// to allow co-allocation of node operands with the node itself.
931 class UnarySDNode : public SDNode {
932   SDUse Op;
933 public:
934   UnarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
935               SDValue X)
936     : SDNode(Opc, Order, dl, VTs) {
937     InitOperands(&Op, X);
938   }
939 };
940 
941 /// This class is used for two-operand SDNodes.  This is solely
942 /// to allow co-allocation of node operands with the node itself.
943 class BinarySDNode : public SDNode {
944   SDUse Ops[2];
945 public:
946   BinarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
947                SDValue X, SDValue Y)
948     : SDNode(Opc, Order, dl, VTs) {
949     InitOperands(Ops, X, Y);
950   }
951 };
952 
953 /// Returns true if the opcode is a binary operation with flags.
954 static bool isBinOpWithFlags(unsigned Opcode) {
955   switch (Opcode) {
956   case ISD::SDIV:
957   case ISD::UDIV:
958   case ISD::SRA:
959   case ISD::SRL:
960   case ISD::MUL:
961   case ISD::ADD:
962   case ISD::SUB:
963   case ISD::SHL:
964     return true;
965   default:
966     return false;
967   }
968 }
969 
970 /// This class is an extension of BinarySDNode
971 /// used from those opcodes that have associated extra flags.
972 class BinaryWithFlagsSDNode : public BinarySDNode {
973   enum { NUW = (1 << 0), NSW = (1 << 1), EXACT = (1 << 2) };
974 
975 public:
976   BinaryWithFlagsSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
977                         SDValue X, SDValue Y)
978       : BinarySDNode(Opc, Order, dl, VTs, X, Y) {}
979   /// Return the SubclassData value, which contains an encoding of the flags.
980   /// This function should be used to add subclass data to the NodeID value.
981   unsigned getRawSubclassData() const { return SubclassData; }
982   void setHasNoUnsignedWrap(bool b) {
983     SubclassData = (SubclassData & ~NUW) | (b ? NUW : 0);
984   }
985   void setHasNoSignedWrap(bool b) {
986     SubclassData = (SubclassData & ~NSW) | (b ? NSW : 0);
987   }
988   void setIsExact(bool b) {
989     SubclassData = (SubclassData & ~EXACT) | (b ? EXACT : 0);
990   }
991   bool hasNoUnsignedWrap() const { return SubclassData & NUW; }
992   bool hasNoSignedWrap() const { return SubclassData & NSW; }
993   bool isExact() const { return SubclassData & EXACT; }
994   static bool classof(const SDNode *N) {
995     return isBinOpWithFlags(N->getOpcode());
996   }
997 };
998 
999 /// This class is used for three-operand SDNodes. This is solely
1000 /// to allow co-allocation of node operands with the node itself.
1001 class TernarySDNode : public SDNode {
1002   SDUse Ops[3];
1003 public:
1004   TernarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1005                 SDValue X, SDValue Y, SDValue Z)
1006     : SDNode(Opc, Order, dl, VTs) {
1007     InitOperands(Ops, X, Y, Z);
1008   }
1009 };
1010 
1011 
1012 /// This class is used to form a handle around another node that
1013 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1014 /// operand.  This node should be directly created by end-users and not added to
1015 /// the AllNodes list.
1016 class HandleSDNode : public SDNode {
1017   SDUse Op;
1018 public:
1019   explicit HandleSDNode(SDValue X)
1020     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1021     InitOperands(&Op, X);
1022   }
1023   ~HandleSDNode();
1024   const SDValue &getValue() const { return Op; }
1025 };
1026 
1027 class AddrSpaceCastSDNode : public UnarySDNode {
1028 private:
1029   unsigned SrcAddrSpace;
1030   unsigned DestAddrSpace;
1031 
1032 public:
1033   AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT, SDValue X,
1034                       unsigned SrcAS, unsigned DestAS);
1035 
1036   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1037   unsigned getDestAddressSpace() const { return DestAddrSpace; }
1038 
1039   static bool classof(const SDNode *N) {
1040     return N->getOpcode() == ISD::ADDRSPACECAST;
1041   }
1042 };
1043 
1044 /// Abstact virtual class for operations for memory operations
1045 class MemSDNode : public SDNode {
1046 private:
1047   // VT of in-memory value.
1048   EVT MemoryVT;
1049 
1050 protected:
1051   /// Memory reference information.
1052   MachineMemOperand *MMO;
1053 
1054 public:
1055   MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1056             EVT MemoryVT, MachineMemOperand *MMO);
1057 
1058   MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1059             ArrayRef<SDValue> Ops, EVT MemoryVT, MachineMemOperand *MMO);
1060 
1061   bool readMem() const { return MMO->isLoad(); }
1062   bool writeMem() const { return MMO->isStore(); }
1063 
1064   /// Returns alignment and volatility of the memory access
1065   unsigned getOriginalAlignment() const {
1066     return MMO->getBaseAlignment();
1067   }
1068   unsigned getAlignment() const {
1069     return MMO->getAlignment();
1070   }
1071 
1072   /// Return the SubclassData value, which contains an
1073   /// encoding of the volatile flag, as well as bits used by subclasses. This
1074   /// function should only be used to compute a FoldingSetNodeID value.
1075   unsigned getRawSubclassData() const {
1076     return SubclassData;
1077   }
1078 
1079   // We access subclass data here so that we can check consistency
1080   // with MachineMemOperand information.
1081   bool isVolatile() const { return (SubclassData >> 5) & 1; }
1082   bool isNonTemporal() const { return (SubclassData >> 6) & 1; }
1083   bool isInvariant() const { return (SubclassData >> 7) & 1; }
1084 
1085   AtomicOrdering getOrdering() const {
1086     return AtomicOrdering((SubclassData >> 8) & 15);
1087   }
1088   SynchronizationScope getSynchScope() const {
1089     return SynchronizationScope((SubclassData >> 12) & 1);
1090   }
1091 
1092   // Returns the offset from the location of the access.
1093   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1094 
1095   /// Returns the AA info that describes the dereference.
1096   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1097 
1098   /// Returns the Ranges that describes the dereference.
1099   const MDNode *getRanges() const { return MMO->getRanges(); }
1100 
1101   /// Return the type of the in-memory value.
1102   EVT getMemoryVT() const { return MemoryVT; }
1103 
1104   /// Return a MachineMemOperand object describing the memory
1105   /// reference performed by operation.
1106   MachineMemOperand *getMemOperand() const { return MMO; }
1107 
1108   const MachinePointerInfo &getPointerInfo() const {
1109     return MMO->getPointerInfo();
1110   }
1111 
1112   /// Return the address space for the associated pointer
1113   unsigned getAddressSpace() const {
1114     return getPointerInfo().getAddrSpace();
1115   }
1116 
1117   /// Update this MemSDNode's MachineMemOperand information
1118   /// to reflect the alignment of NewMMO, if it has a greater alignment.
1119   /// This must only be used when the new alignment applies to all users of
1120   /// this MachineMemOperand.
1121   void refineAlignment(const MachineMemOperand *NewMMO) {
1122     MMO->refineAlignment(NewMMO);
1123   }
1124 
1125   const SDValue &getChain() const { return getOperand(0); }
1126   const SDValue &getBasePtr() const {
1127     return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1128   }
1129 
1130   // Methods to support isa and dyn_cast
1131   static bool classof(const SDNode *N) {
1132     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1133     // with either an intrinsic or a target opcode.
1134     return N->getOpcode() == ISD::LOAD                ||
1135            N->getOpcode() == ISD::STORE               ||
1136            N->getOpcode() == ISD::PREFETCH            ||
1137            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1138            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1139            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1140            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1141            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1142            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1143            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1144            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1145            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1146            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1147            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1148            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1149            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1150            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1151            N->getOpcode() == ISD::ATOMIC_STORE        ||
1152            N->getOpcode() == ISD::MLOAD               ||
1153            N->getOpcode() == ISD::MSTORE              ||
1154            N->isMemIntrinsic()                        ||
1155            N->isTargetMemoryOpcode();
1156   }
1157 };
1158 
1159 /// A SDNode reprenting atomic operations.
1160 class AtomicSDNode : public MemSDNode {
1161   SDUse Ops[4];
1162 
1163   /// For cmpxchg instructions, the ordering requirements when a store does not
1164   /// occur.
1165   AtomicOrdering FailureOrdering;
1166 
1167   void InitAtomic(AtomicOrdering SuccessOrdering,
1168                   AtomicOrdering FailureOrdering,
1169                   SynchronizationScope SynchScope) {
1170     // This must match encodeMemSDNodeFlags() in SelectionDAG.cpp.
1171     assert((SuccessOrdering & 15) == SuccessOrdering &&
1172            "Ordering may not require more than 4 bits!");
1173     assert((FailureOrdering & 15) == FailureOrdering &&
1174            "Ordering may not require more than 4 bits!");
1175     assert((SynchScope & 1) == SynchScope &&
1176            "SynchScope may not require more than 1 bit!");
1177     SubclassData |= SuccessOrdering << 8;
1178     SubclassData |= SynchScope << 12;
1179     this->FailureOrdering = FailureOrdering;
1180     assert(getSuccessOrdering() == SuccessOrdering &&
1181            "Ordering encoding error!");
1182     assert(getFailureOrdering() == FailureOrdering &&
1183            "Ordering encoding error!");
1184     assert(getSynchScope() == SynchScope && "Synch-scope encoding error!");
1185   }
1186 
1187 public:
1188   // Opc:   opcode for atomic
1189   // VTL:    value type list
1190   // Chain:  memory chain for operaand
1191   // Ptr:    address to update as a SDValue
1192   // Cmp:    compare value
1193   // Swp:    swap value
1194   // SrcVal: address to update as a Value (used for MemOperand)
1195   // Align:  alignment of memory
1196   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
1197                EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp,
1198                MachineMemOperand *MMO, AtomicOrdering Ordering,
1199                SynchronizationScope SynchScope)
1200       : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1201     InitAtomic(Ordering, Ordering, SynchScope);
1202     InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1203   }
1204   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
1205                EVT MemVT,
1206                SDValue Chain, SDValue Ptr,
1207                SDValue Val, MachineMemOperand *MMO,
1208                AtomicOrdering Ordering, SynchronizationScope SynchScope)
1209     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1210     InitAtomic(Ordering, Ordering, SynchScope);
1211     InitOperands(Ops, Chain, Ptr, Val);
1212   }
1213   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
1214                EVT MemVT,
1215                SDValue Chain, SDValue Ptr,
1216                MachineMemOperand *MMO,
1217                AtomicOrdering Ordering, SynchronizationScope SynchScope)
1218     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1219     InitAtomic(Ordering, Ordering, SynchScope);
1220     InitOperands(Ops, Chain, Ptr);
1221   }
1222   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL, EVT MemVT,
1223                const SDValue* AllOps, SDUse *DynOps, unsigned NumOps,
1224                MachineMemOperand *MMO,
1225                AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
1226                SynchronizationScope SynchScope)
1227     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1228     InitAtomic(SuccessOrdering, FailureOrdering, SynchScope);
1229     assert((DynOps || NumOps <= array_lengthof(Ops)) &&
1230            "Too many ops for internal storage!");
1231     InitOperands(DynOps ? DynOps : Ops, AllOps, NumOps);
1232   }
1233 
1234   const SDValue &getBasePtr() const { return getOperand(1); }
1235   const SDValue &getVal() const { return getOperand(2); }
1236 
1237   AtomicOrdering getSuccessOrdering() const {
1238     return getOrdering();
1239   }
1240 
1241   // Not quite enough room in SubclassData for everything, so failure gets its
1242   // own field.
1243   AtomicOrdering getFailureOrdering() const {
1244     return FailureOrdering;
1245   }
1246 
1247   bool isCompareAndSwap() const {
1248     unsigned Op = getOpcode();
1249     return Op == ISD::ATOMIC_CMP_SWAP || Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1250   }
1251 
1252   // Methods to support isa and dyn_cast
1253   static bool classof(const SDNode *N) {
1254     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1255            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1256            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1257            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1258            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1259            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1260            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1261            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1262            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1263            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1264            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1265            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1266            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1267            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1268            N->getOpcode() == ISD::ATOMIC_STORE;
1269   }
1270 };
1271 
1272 /// This SDNode is used for target intrinsics that touch
1273 /// memory and need an associated MachineMemOperand. Its opcode may be
1274 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1275 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1276 class MemIntrinsicSDNode : public MemSDNode {
1277 public:
1278   MemIntrinsicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1279                      ArrayRef<SDValue> Ops, EVT MemoryVT,
1280                      MachineMemOperand *MMO)
1281     : MemSDNode(Opc, Order, dl, VTs, Ops, MemoryVT, MMO) {
1282     SubclassData |= 1u << 13;
1283   }
1284 
1285   // Methods to support isa and dyn_cast
1286   static bool classof(const SDNode *N) {
1287     // We lower some target intrinsics to their target opcode
1288     // early a node with a target opcode can be of this class
1289     return N->isMemIntrinsic()             ||
1290            N->getOpcode() == ISD::PREFETCH ||
1291            N->isTargetMemoryOpcode();
1292   }
1293 };
1294 
1295 /// This SDNode is used to implement the code generator
1296 /// support for the llvm IR shufflevector instruction.  It combines elements
1297 /// from two input vectors into a new input vector, with the selection and
1298 /// ordering of elements determined by an array of integers, referred to as
1299 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1300 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1301 /// An index of -1 is treated as undef, such that the code generator may put
1302 /// any value in the corresponding element of the result.
1303 class ShuffleVectorSDNode : public SDNode {
1304   SDUse Ops[2];
1305 
1306   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1307   // is freed when the SelectionDAG object is destroyed.
1308   const int *Mask;
1309 protected:
1310   friend class SelectionDAG;
1311   ShuffleVectorSDNode(EVT VT, unsigned Order, DebugLoc dl, SDValue N1,
1312                       SDValue N2, const int *M)
1313     : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {
1314     InitOperands(Ops, N1, N2);
1315   }
1316 public:
1317 
1318   ArrayRef<int> getMask() const {
1319     EVT VT = getValueType(0);
1320     return makeArrayRef(Mask, VT.getVectorNumElements());
1321   }
1322   int getMaskElt(unsigned Idx) const {
1323     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1324     return Mask[Idx];
1325   }
1326 
1327   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1328   int  getSplatIndex() const {
1329     assert(isSplat() && "Cannot get splat index for non-splat!");
1330     EVT VT = getValueType(0);
1331     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
1332       if (Mask[i] >= 0)
1333         return Mask[i];
1334     }
1335     llvm_unreachable("Splat with all undef indices?");
1336   }
1337   static bool isSplatMask(const int *Mask, EVT VT);
1338 
1339   /// Change values in a shuffle permute mask assuming
1340   /// the two vector operands have swapped position.
1341   static void commuteMask(SmallVectorImpl<int> &Mask) {
1342     unsigned NumElems = Mask.size();
1343     for (unsigned i = 0; i != NumElems; ++i) {
1344       int idx = Mask[i];
1345       if (idx < 0)
1346         continue;
1347       else if (idx < (int)NumElems)
1348         Mask[i] = idx + NumElems;
1349       else
1350         Mask[i] = idx - NumElems;
1351     }
1352   }
1353 
1354   static bool classof(const SDNode *N) {
1355     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1356   }
1357 };
1358 
1359 class ConstantSDNode : public SDNode {
1360   const ConstantInt *Value;
1361   friend class SelectionDAG;
1362   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1363     : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1364              0, DebugLoc(), getSDVTList(VT)), Value(val) {
1365     SubclassData |= (uint16_t)isOpaque;
1366   }
1367 public:
1368 
1369   const ConstantInt *getConstantIntValue() const { return Value; }
1370   const APInt &getAPIntValue() const { return Value->getValue(); }
1371   uint64_t getZExtValue() const { return Value->getZExtValue(); }
1372   int64_t getSExtValue() const { return Value->getSExtValue(); }
1373 
1374   bool isOne() const { return Value->isOne(); }
1375   bool isNullValue() const { return Value->isNullValue(); }
1376   bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1377 
1378   bool isOpaque() const { return SubclassData & 1; }
1379 
1380   static bool classof(const SDNode *N) {
1381     return N->getOpcode() == ISD::Constant ||
1382            N->getOpcode() == ISD::TargetConstant;
1383   }
1384 };
1385 
1386 class ConstantFPSDNode : public SDNode {
1387   const ConstantFP *Value;
1388   friend class SelectionDAG;
1389   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1390     : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1391              0, DebugLoc(), getSDVTList(VT)), Value(val) {
1392   }
1393 public:
1394 
1395   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1396   const ConstantFP *getConstantFPValue() const { return Value; }
1397 
1398   /// Return true if the value is positive or negative zero.
1399   bool isZero() const { return Value->isZero(); }
1400 
1401   /// Return true if the value is a NaN.
1402   bool isNaN() const { return Value->isNaN(); }
1403 
1404   /// Return true if the value is an infinity
1405   bool isInfinity() const { return Value->isInfinity(); }
1406 
1407   /// Return true if the value is negative.
1408   bool isNegative() const { return Value->isNegative(); }
1409 
1410   /// We don't rely on operator== working on double values, as
1411   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1412   /// As such, this method can be used to do an exact bit-for-bit comparison of
1413   /// two floating point values.
1414 
1415   /// We leave the version with the double argument here because it's just so
1416   /// convenient to write "2.0" and the like.  Without this function we'd
1417   /// have to duplicate its logic everywhere it's called.
1418   bool isExactlyValue(double V) const {
1419     bool ignored;
1420     APFloat Tmp(V);
1421     Tmp.convert(Value->getValueAPF().getSemantics(),
1422                 APFloat::rmNearestTiesToEven, &ignored);
1423     return isExactlyValue(Tmp);
1424   }
1425   bool isExactlyValue(const APFloat& V) const;
1426 
1427   static bool isValueValidForType(EVT VT, const APFloat& Val);
1428 
1429   static bool classof(const SDNode *N) {
1430     return N->getOpcode() == ISD::ConstantFP ||
1431            N->getOpcode() == ISD::TargetConstantFP;
1432   }
1433 };
1434 
1435 class GlobalAddressSDNode : public SDNode {
1436   const GlobalValue *TheGlobal;
1437   int64_t Offset;
1438   unsigned char TargetFlags;
1439   friend class SelectionDAG;
1440   GlobalAddressSDNode(unsigned Opc, unsigned Order, DebugLoc DL,
1441                       const GlobalValue *GA, EVT VT, int64_t o,
1442                       unsigned char TargetFlags);
1443 public:
1444 
1445   const GlobalValue *getGlobal() const { return TheGlobal; }
1446   int64_t getOffset() const { return Offset; }
1447   unsigned char getTargetFlags() const { return TargetFlags; }
1448   // Return the address space this GlobalAddress belongs to.
1449   unsigned getAddressSpace() const;
1450 
1451   static bool classof(const SDNode *N) {
1452     return N->getOpcode() == ISD::GlobalAddress ||
1453            N->getOpcode() == ISD::TargetGlobalAddress ||
1454            N->getOpcode() == ISD::GlobalTLSAddress ||
1455            N->getOpcode() == ISD::TargetGlobalTLSAddress;
1456   }
1457 };
1458 
1459 class FrameIndexSDNode : public SDNode {
1460   int FI;
1461   friend class SelectionDAG;
1462   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1463     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1464       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1465   }
1466 public:
1467 
1468   int getIndex() const { return FI; }
1469 
1470   static bool classof(const SDNode *N) {
1471     return N->getOpcode() == ISD::FrameIndex ||
1472            N->getOpcode() == ISD::TargetFrameIndex;
1473   }
1474 };
1475 
1476 class JumpTableSDNode : public SDNode {
1477   int JTI;
1478   unsigned char TargetFlags;
1479   friend class SelectionDAG;
1480   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1481     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1482       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1483   }
1484 public:
1485 
1486   int getIndex() const { return JTI; }
1487   unsigned char getTargetFlags() const { return TargetFlags; }
1488 
1489   static bool classof(const SDNode *N) {
1490     return N->getOpcode() == ISD::JumpTable ||
1491            N->getOpcode() == ISD::TargetJumpTable;
1492   }
1493 };
1494 
1495 class ConstantPoolSDNode : public SDNode {
1496   union {
1497     const Constant *ConstVal;
1498     MachineConstantPoolValue *MachineCPVal;
1499   } Val;
1500   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1501   unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1502   unsigned char TargetFlags;
1503   friend class SelectionDAG;
1504   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1505                      unsigned Align, unsigned char TF)
1506     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1507              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1508              TargetFlags(TF) {
1509     assert(Offset >= 0 && "Offset is too large");
1510     Val.ConstVal = c;
1511   }
1512   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1513                      EVT VT, int o, unsigned Align, unsigned char TF)
1514     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1515              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1516              TargetFlags(TF) {
1517     assert(Offset >= 0 && "Offset is too large");
1518     Val.MachineCPVal = v;
1519     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1520   }
1521 public:
1522 
1523   bool isMachineConstantPoolEntry() const {
1524     return Offset < 0;
1525   }
1526 
1527   const Constant *getConstVal() const {
1528     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1529     return Val.ConstVal;
1530   }
1531 
1532   MachineConstantPoolValue *getMachineCPVal() const {
1533     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1534     return Val.MachineCPVal;
1535   }
1536 
1537   int getOffset() const {
1538     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1539   }
1540 
1541   // Return the alignment of this constant pool object, which is either 0 (for
1542   // default alignment) or the desired value.
1543   unsigned getAlignment() const { return Alignment; }
1544   unsigned char getTargetFlags() const { return TargetFlags; }
1545 
1546   Type *getType() const;
1547 
1548   static bool classof(const SDNode *N) {
1549     return N->getOpcode() == ISD::ConstantPool ||
1550            N->getOpcode() == ISD::TargetConstantPool;
1551   }
1552 };
1553 
1554 /// Completely target-dependent object reference.
1555 class TargetIndexSDNode : public SDNode {
1556   unsigned char TargetFlags;
1557   int Index;
1558   int64_t Offset;
1559   friend class SelectionDAG;
1560 public:
1561 
1562   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
1563     : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1564       TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1565 public:
1566 
1567   unsigned char getTargetFlags() const { return TargetFlags; }
1568   int getIndex() const { return Index; }
1569   int64_t getOffset() const { return Offset; }
1570 
1571   static bool classof(const SDNode *N) {
1572     return N->getOpcode() == ISD::TargetIndex;
1573   }
1574 };
1575 
1576 class BasicBlockSDNode : public SDNode {
1577   MachineBasicBlock *MBB;
1578   friend class SelectionDAG;
1579   /// Debug info is meaningful and potentially useful here, but we create
1580   /// blocks out of order when they're jumped to, which makes it a bit
1581   /// harder.  Let's see if we need it first.
1582   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1583     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1584   {}
1585 public:
1586 
1587   MachineBasicBlock *getBasicBlock() const { return MBB; }
1588 
1589   static bool classof(const SDNode *N) {
1590     return N->getOpcode() == ISD::BasicBlock;
1591   }
1592 };
1593 
1594 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1595 class BuildVectorSDNode : public SDNode {
1596   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1597   explicit BuildVectorSDNode() = delete;
1598 public:
1599   /// Check if this is a constant splat, and if so, find the
1600   /// smallest element size that splats the vector.  If MinSplatBits is
1601   /// nonzero, the element size must be at least that large.  Note that the
1602   /// splat element may be the entire vector (i.e., a one element vector).
1603   /// Returns the splat element value in SplatValue.  Any undefined bits in
1604   /// that value are zero, and the corresponding bits in the SplatUndef mask
1605   /// are set.  The SplatBitSize value is set to the splat element size in
1606   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1607   /// undefined.  isBigEndian describes the endianness of the target.
1608   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1609                        unsigned &SplatBitSize, bool &HasAnyUndefs,
1610                        unsigned MinSplatBits = 0,
1611                        bool isBigEndian = false) const;
1612 
1613   /// \brief Returns the splatted value or a null value if this is not a splat.
1614   ///
1615   /// If passed a non-null UndefElements bitvector, it will resize it to match
1616   /// the vector width and set the bits where elements are undef.
1617   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1618 
1619   /// \brief Returns the splatted constant or null if this is not a constant
1620   /// splat.
1621   ///
1622   /// If passed a non-null UndefElements bitvector, it will resize it to match
1623   /// the vector width and set the bits where elements are undef.
1624   ConstantSDNode *
1625   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
1626 
1627   /// \brief Returns the splatted constant FP or null if this is not a constant
1628   /// FP splat.
1629   ///
1630   /// If passed a non-null UndefElements bitvector, it will resize it to match
1631   /// the vector width and set the bits where elements are undef.
1632   ConstantFPSDNode *
1633   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
1634 
1635   bool isConstant() const;
1636 
1637   static inline bool classof(const SDNode *N) {
1638     return N->getOpcode() == ISD::BUILD_VECTOR;
1639   }
1640 };
1641 
1642 /// An SDNode that holds an arbitrary LLVM IR Value. This is
1643 /// used when the SelectionDAG needs to make a simple reference to something
1644 /// in the LLVM IR representation.
1645 ///
1646 class SrcValueSDNode : public SDNode {
1647   const Value *V;
1648   friend class SelectionDAG;
1649   /// Create a SrcValue for a general value.
1650   explicit SrcValueSDNode(const Value *v)
1651     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
1652 
1653 public:
1654   /// Return the contained Value.
1655   const Value *getValue() const { return V; }
1656 
1657   static bool classof(const SDNode *N) {
1658     return N->getOpcode() == ISD::SRCVALUE;
1659   }
1660 };
1661 
1662 class MDNodeSDNode : public SDNode {
1663   const MDNode *MD;
1664   friend class SelectionDAG;
1665   explicit MDNodeSDNode(const MDNode *md)
1666   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
1667   {}
1668 public:
1669 
1670   const MDNode *getMD() const { return MD; }
1671 
1672   static bool classof(const SDNode *N) {
1673     return N->getOpcode() == ISD::MDNODE_SDNODE;
1674   }
1675 };
1676 
1677 class RegisterSDNode : public SDNode {
1678   unsigned Reg;
1679   friend class SelectionDAG;
1680   RegisterSDNode(unsigned reg, EVT VT)
1681     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {
1682   }
1683 public:
1684 
1685   unsigned getReg() const { return Reg; }
1686 
1687   static bool classof(const SDNode *N) {
1688     return N->getOpcode() == ISD::Register;
1689   }
1690 };
1691 
1692 class RegisterMaskSDNode : public SDNode {
1693   // The memory for RegMask is not owned by the node.
1694   const uint32_t *RegMask;
1695   friend class SelectionDAG;
1696   RegisterMaskSDNode(const uint32_t *mask)
1697     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
1698       RegMask(mask) {}
1699 public:
1700 
1701   const uint32_t *getRegMask() const { return RegMask; }
1702 
1703   static bool classof(const SDNode *N) {
1704     return N->getOpcode() == ISD::RegisterMask;
1705   }
1706 };
1707 
1708 class BlockAddressSDNode : public SDNode {
1709   const BlockAddress *BA;
1710   int64_t Offset;
1711   unsigned char TargetFlags;
1712   friend class SelectionDAG;
1713   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
1714                      int64_t o, unsigned char Flags)
1715     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
1716              BA(ba), Offset(o), TargetFlags(Flags) {
1717   }
1718 public:
1719   const BlockAddress *getBlockAddress() const { return BA; }
1720   int64_t getOffset() const { return Offset; }
1721   unsigned char getTargetFlags() const { return TargetFlags; }
1722 
1723   static bool classof(const SDNode *N) {
1724     return N->getOpcode() == ISD::BlockAddress ||
1725            N->getOpcode() == ISD::TargetBlockAddress;
1726   }
1727 };
1728 
1729 class EHLabelSDNode : public SDNode {
1730   SDUse Chain;
1731   MCSymbol *Label;
1732   friend class SelectionDAG;
1733   EHLabelSDNode(unsigned Order, DebugLoc dl, SDValue ch, MCSymbol *L)
1734     : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {
1735     InitOperands(&Chain, ch);
1736   }
1737 public:
1738   MCSymbol *getLabel() const { return Label; }
1739 
1740   static bool classof(const SDNode *N) {
1741     return N->getOpcode() == ISD::EH_LABEL;
1742   }
1743 };
1744 
1745 class ExternalSymbolSDNode : public SDNode {
1746   const char *Symbol;
1747   unsigned char TargetFlags;
1748 
1749   friend class SelectionDAG;
1750   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
1751     : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1752              0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
1753   }
1754 public:
1755 
1756   const char *getSymbol() const { return Symbol; }
1757   unsigned char getTargetFlags() const { return TargetFlags; }
1758 
1759   static bool classof(const SDNode *N) {
1760     return N->getOpcode() == ISD::ExternalSymbol ||
1761            N->getOpcode() == ISD::TargetExternalSymbol;
1762   }
1763 };
1764 
1765 class CondCodeSDNode : public SDNode {
1766   ISD::CondCode Condition;
1767   friend class SelectionDAG;
1768   explicit CondCodeSDNode(ISD::CondCode Cond)
1769     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
1770       Condition(Cond) {
1771   }
1772 public:
1773 
1774   ISD::CondCode get() const { return Condition; }
1775 
1776   static bool classof(const SDNode *N) {
1777     return N->getOpcode() == ISD::CONDCODE;
1778   }
1779 };
1780 
1781 /// NOTE: avoid using this node as this may disappear in the
1782 /// future and most targets don't support it.
1783 class CvtRndSatSDNode : public SDNode {
1784   ISD::CvtCode CvtCode;
1785   friend class SelectionDAG;
1786   explicit CvtRndSatSDNode(EVT VT, unsigned Order, DebugLoc dl,
1787                            ArrayRef<SDValue> Ops, ISD::CvtCode Code)
1788     : SDNode(ISD::CONVERT_RNDSAT, Order, dl, getSDVTList(VT), Ops),
1789       CvtCode(Code) {
1790     assert(Ops.size() == 5 && "wrong number of operations");
1791   }
1792 public:
1793   ISD::CvtCode getCvtCode() const { return CvtCode; }
1794 
1795   static bool classof(const SDNode *N) {
1796     return N->getOpcode() == ISD::CONVERT_RNDSAT;
1797   }
1798 };
1799 
1800 /// This class is used to represent EVT's, which are used
1801 /// to parameterize some operations.
1802 class VTSDNode : public SDNode {
1803   EVT ValueType;
1804   friend class SelectionDAG;
1805   explicit VTSDNode(EVT VT)
1806     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
1807       ValueType(VT) {
1808   }
1809 public:
1810 
1811   EVT getVT() const { return ValueType; }
1812 
1813   static bool classof(const SDNode *N) {
1814     return N->getOpcode() == ISD::VALUETYPE;
1815   }
1816 };
1817 
1818 /// Base class for LoadSDNode and StoreSDNode
1819 class LSBaseSDNode : public MemSDNode {
1820   //! Operand array for load and store
1821   /*!
1822     \note Moving this array to the base class captures more
1823     common functionality shared between LoadSDNode and
1824     StoreSDNode
1825    */
1826   SDUse Ops[4];
1827 public:
1828   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
1829                SDValue *Operands, unsigned numOperands,
1830                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
1831                MachineMemOperand *MMO)
1832     : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
1833     SubclassData |= AM << 2;
1834     assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
1835     InitOperands(Ops, Operands, numOperands);
1836     assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
1837            "Only indexed loads and stores have a non-undef offset operand");
1838   }
1839 
1840   const SDValue &getOffset() const {
1841     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
1842   }
1843 
1844   /// Return the addressing mode for this load or store:
1845   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
1846   ISD::MemIndexedMode getAddressingMode() const {
1847     return ISD::MemIndexedMode((SubclassData >> 2) & 7);
1848   }
1849 
1850   /// Return true if this is a pre/post inc/dec load/store.
1851   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
1852 
1853   /// Return true if this is NOT a pre/post inc/dec load/store.
1854   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
1855 
1856   static bool classof(const SDNode *N) {
1857     return N->getOpcode() == ISD::LOAD ||
1858            N->getOpcode() == ISD::STORE;
1859   }
1860 };
1861 
1862 /// This class is used to represent ISD::LOAD nodes.
1863 class LoadSDNode : public LSBaseSDNode {
1864   friend class SelectionDAG;
1865   LoadSDNode(SDValue *ChainPtrOff, unsigned Order, DebugLoc dl, SDVTList VTs,
1866              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
1867              MachineMemOperand *MMO)
1868     : LSBaseSDNode(ISD::LOAD, Order, dl, ChainPtrOff, 3, VTs, AM, MemVT, MMO) {
1869     SubclassData |= (unsigned short)ETy;
1870     assert(getExtensionType() == ETy && "LoadExtType encoding error!");
1871     assert(readMem() && "Load MachineMemOperand is not a load!");
1872     assert(!writeMem() && "Load MachineMemOperand is a store!");
1873   }
1874 public:
1875 
1876   /// Return whether this is a plain node,
1877   /// or one of the varieties of value-extending loads.
1878   ISD::LoadExtType getExtensionType() const {
1879     return ISD::LoadExtType(SubclassData & 3);
1880   }
1881 
1882   const SDValue &getBasePtr() const { return getOperand(1); }
1883   const SDValue &getOffset() const { return getOperand(2); }
1884 
1885   static bool classof(const SDNode *N) {
1886     return N->getOpcode() == ISD::LOAD;
1887   }
1888 };
1889 
1890 /// This class is used to represent ISD::STORE nodes.
1891 class StoreSDNode : public LSBaseSDNode {
1892   friend class SelectionDAG;
1893   StoreSDNode(SDValue *ChainValuePtrOff, unsigned Order, DebugLoc dl,
1894               SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
1895               MachineMemOperand *MMO)
1896     : LSBaseSDNode(ISD::STORE, Order, dl, ChainValuePtrOff, 4,
1897                    VTs, AM, MemVT, MMO) {
1898     SubclassData |= (unsigned short)isTrunc;
1899     assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
1900     assert(!readMem() && "Store MachineMemOperand is a load!");
1901     assert(writeMem() && "Store MachineMemOperand is not a store!");
1902   }
1903 public:
1904 
1905   /// Return true if the op does a truncation before store.
1906   /// For integers this is the same as doing a TRUNCATE and storing the result.
1907   /// For floats, it is the same as doing an FP_ROUND and storing the result.
1908   bool isTruncatingStore() const { return SubclassData & 1; }
1909 
1910   const SDValue &getValue() const { return getOperand(1); }
1911   const SDValue &getBasePtr() const { return getOperand(2); }
1912   const SDValue &getOffset() const { return getOperand(3); }
1913 
1914   static bool classof(const SDNode *N) {
1915     return N->getOpcode() == ISD::STORE;
1916   }
1917 };
1918 
1919 /// This base class is used to represent MLOAD and MSTORE nodes
1920 class MaskedLoadStoreSDNode : public MemSDNode {
1921   // Operands
1922   SDUse Ops[4];
1923 public:
1924   friend class SelectionDAG;
1925   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
1926                    SDValue *Operands, unsigned numOperands,
1927                    SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
1928     : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
1929     InitOperands(Ops, Operands, numOperands);
1930   }
1931 
1932   // In the both nodes address is Op1, mask is Op2:
1933   // MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
1934   // MaskedStoreSDNode (Chain, ptr, mask, data)
1935   // Mask is a vector of i1 elements
1936   const SDValue &getBasePtr() const { return getOperand(1); }
1937   const SDValue &getMask() const    { return getOperand(2); }
1938 
1939   static bool classof(const SDNode *N) {
1940     return N->getOpcode() == ISD::MLOAD ||
1941            N->getOpcode() == ISD::MSTORE;
1942   }
1943 };
1944 
1945 /// This class is used to represent an MLOAD node
1946 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
1947 public:
1948   friend class SelectionDAG;
1949   MaskedLoadSDNode(unsigned Order, DebugLoc dl, SDValue *Operands,
1950                    unsigned numOperands, SDVTList VTs, ISD::LoadExtType ETy,
1951                    EVT MemVT, MachineMemOperand *MMO)
1952     : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, Operands, numOperands,
1953                             VTs, MemVT, MMO) {
1954     SubclassData |= (unsigned short)ETy;
1955   }
1956 
1957   ISD::LoadExtType getExtensionType() const {
1958     return ISD::LoadExtType(SubclassData & 3);
1959   }
1960   const SDValue &getSrc0() const { return getOperand(3); }
1961   static bool classof(const SDNode *N) {
1962     return N->getOpcode() == ISD::MLOAD;
1963   }
1964 };
1965 
1966 /// This class is used to represent an MSTORE node
1967 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
1968 
1969 public:
1970   friend class SelectionDAG;
1971   MaskedStoreSDNode(unsigned Order, DebugLoc dl, SDValue *Operands,
1972                     unsigned numOperands, SDVTList VTs, bool isTrunc, EVT MemVT,
1973                     MachineMemOperand *MMO)
1974     : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, Operands, numOperands,
1975                             VTs, MemVT, MMO) {
1976       SubclassData |= (unsigned short)isTrunc;
1977   }
1978   /// Return true if the op does a truncation before store.
1979   /// For integers this is the same as doing a TRUNCATE and storing the result.
1980   /// For floats, it is the same as doing an FP_ROUND and storing the result.
1981   bool isTruncatingStore() const { return SubclassData & 1; }
1982 
1983   const SDValue &getValue() const { return getOperand(3); }
1984 
1985   static bool classof(const SDNode *N) {
1986     return N->getOpcode() == ISD::MSTORE;
1987   }
1988 };
1989 
1990 /// An SDNode that represents everything that will be needed
1991 /// to construct a MachineInstr. These nodes are created during the
1992 /// instruction selection proper phase.
1993 class MachineSDNode : public SDNode {
1994 public:
1995   typedef MachineMemOperand **mmo_iterator;
1996 
1997 private:
1998   friend class SelectionDAG;
1999   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc DL, SDVTList VTs)
2000     : SDNode(Opc, Order, DL, VTs), MemRefs(nullptr), MemRefsEnd(nullptr) {}
2001 
2002   /// Operands for this instruction, if they fit here. If
2003   /// they don't, this field is unused.
2004   SDUse LocalOperands[4];
2005 
2006   /// Memory reference descriptions for this instruction.
2007   mmo_iterator MemRefs;
2008   mmo_iterator MemRefsEnd;
2009 
2010 public:
2011   mmo_iterator memoperands_begin() const { return MemRefs; }
2012   mmo_iterator memoperands_end() const { return MemRefsEnd; }
2013   bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
2014 
2015   /// Assign this MachineSDNodes's memory reference descriptor
2016   /// list. This does not transfer ownership.
2017   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
2018     for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
2019       assert(*MMI && "Null mem ref detected!");
2020     MemRefs = NewMemRefs;
2021     MemRefsEnd = NewMemRefsEnd;
2022   }
2023 
2024   static bool classof(const SDNode *N) {
2025     return N->isMachineOpcode();
2026   }
2027 };
2028 
2029 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2030                                             SDNode, ptrdiff_t> {
2031   const SDNode *Node;
2032   unsigned Operand;
2033 
2034   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2035 public:
2036   bool operator==(const SDNodeIterator& x) const {
2037     return Operand == x.Operand;
2038   }
2039   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2040 
2041   pointer operator*() const {
2042     return Node->getOperand(Operand).getNode();
2043   }
2044   pointer operator->() const { return operator*(); }
2045 
2046   SDNodeIterator& operator++() {                // Preincrement
2047     ++Operand;
2048     return *this;
2049   }
2050   SDNodeIterator operator++(int) { // Postincrement
2051     SDNodeIterator tmp = *this; ++*this; return tmp;
2052   }
2053   size_t operator-(SDNodeIterator Other) const {
2054     assert(Node == Other.Node &&
2055            "Cannot compare iterators of two different nodes!");
2056     return Operand - Other.Operand;
2057   }
2058 
2059   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2060   static SDNodeIterator end  (const SDNode *N) {
2061     return SDNodeIterator(N, N->getNumOperands());
2062   }
2063 
2064   unsigned getOperand() const { return Operand; }
2065   const SDNode *getNode() const { return Node; }
2066 };
2067 
2068 template <> struct GraphTraits<SDNode*> {
2069   typedef SDNode NodeType;
2070   typedef SDNodeIterator ChildIteratorType;
2071   static inline NodeType *getEntryNode(SDNode *N) { return N; }
2072   static inline ChildIteratorType child_begin(NodeType *N) {
2073     return SDNodeIterator::begin(N);
2074   }
2075   static inline ChildIteratorType child_end(NodeType *N) {
2076     return SDNodeIterator::end(N);
2077   }
2078 };
2079 
2080 /// The largest SDNode class.
2081 typedef AtomicSDNode LargestSDNode;
2082 
2083 /// The SDNode class with the greatest alignment requirement.
2084 typedef GlobalAddressSDNode MostAlignedSDNode;
2085 
2086 namespace ISD {
2087   /// Returns true if the specified node is a non-extending and unindexed load.
2088   inline bool isNormalLoad(const SDNode *N) {
2089     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2090     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2091       Ld->getAddressingMode() == ISD::UNINDEXED;
2092   }
2093 
2094   /// Returns true if the specified node is a non-extending load.
2095   inline bool isNON_EXTLoad(const SDNode *N) {
2096     return isa<LoadSDNode>(N) &&
2097       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2098   }
2099 
2100   /// Returns true if the specified node is a EXTLOAD.
2101   inline bool isEXTLoad(const SDNode *N) {
2102     return isa<LoadSDNode>(N) &&
2103       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2104   }
2105 
2106   /// Returns true if the specified node is a SEXTLOAD.
2107   inline bool isSEXTLoad(const SDNode *N) {
2108     return isa<LoadSDNode>(N) &&
2109       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2110   }
2111 
2112   /// Returns true if the specified node is a ZEXTLOAD.
2113   inline bool isZEXTLoad(const SDNode *N) {
2114     return isa<LoadSDNode>(N) &&
2115       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2116   }
2117 
2118   /// Returns true if the specified node is an unindexed load.
2119   inline bool isUNINDEXEDLoad(const SDNode *N) {
2120     return isa<LoadSDNode>(N) &&
2121       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2122   }
2123 
2124   /// Returns true if the specified node is a non-truncating
2125   /// and unindexed store.
2126   inline bool isNormalStore(const SDNode *N) {
2127     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2128     return St && !St->isTruncatingStore() &&
2129       St->getAddressingMode() == ISD::UNINDEXED;
2130   }
2131 
2132   /// Returns true if the specified node is a non-truncating store.
2133   inline bool isNON_TRUNCStore(const SDNode *N) {
2134     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2135   }
2136 
2137   /// Returns true if the specified node is a truncating store.
2138   inline bool isTRUNCStore(const SDNode *N) {
2139     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2140   }
2141 
2142   /// Returns true if the specified node is an unindexed store.
2143   inline bool isUNINDEXEDStore(const SDNode *N) {
2144     return isa<StoreSDNode>(N) &&
2145       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2146   }
2147 }
2148 
2149 } // end llvm namespace
2150 
2151 #endif
2152