1 //===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various meta classes of instructions that exist in the VM
11 // representation.  Specific concrete subclasses of these may be found in the
12 // i*.h files...
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_IR_INSTRTYPES_H
17 #define LLVM_IR_INSTRTYPES_H
18 
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/OperandTraits.h"
23 
24 namespace llvm {
25 
26 class LLVMContext;
27 
28 //===----------------------------------------------------------------------===//
29 //                            TerminatorInst Class
30 //===----------------------------------------------------------------------===//
31 
32 /// Subclasses of this class are all able to terminate a basic
33 /// block. Thus, these are all the flow control type of operations.
34 ///
35 class TerminatorInst : public Instruction {
36 protected:
37   TerminatorInst(Type *Ty, Instruction::TermOps iType,
38                  Use *Ops, unsigned NumOps,
39                  Instruction *InsertBefore = nullptr)
Instruction(Ty,iType,Ops,NumOps,InsertBefore)40     : Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}
41 
TerminatorInst(Type * Ty,Instruction::TermOps iType,Use * Ops,unsigned NumOps,BasicBlock * InsertAtEnd)42   TerminatorInst(Type *Ty, Instruction::TermOps iType,
43                  Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
44     : Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}
45 
46   // Out of line virtual method, so the vtable, etc has a home.
47   ~TerminatorInst() override;
48 
49   /// Virtual methods - Terminators should overload these and provide inline
50   /// overrides of non-V methods.
51   virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
52   virtual unsigned getNumSuccessorsV() const = 0;
53   virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;
54 public:
55 
56   /// Return the number of successors that this terminator has.
getNumSuccessors()57   unsigned getNumSuccessors() const {
58     return getNumSuccessorsV();
59   }
60 
61   /// Return the specified successor.
getSuccessor(unsigned idx)62   BasicBlock *getSuccessor(unsigned idx) const {
63     return getSuccessorV(idx);
64   }
65 
66   /// Update the specified successor to point at the provided block.
setSuccessor(unsigned idx,BasicBlock * B)67   void setSuccessor(unsigned idx, BasicBlock *B) {
68     setSuccessorV(idx, B);
69   }
70 
71   // Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Instruction * I)72   static inline bool classof(const Instruction *I) {
73     return I->isTerminator();
74   }
classof(const Value * V)75   static inline bool classof(const Value *V) {
76     return isa<Instruction>(V) && classof(cast<Instruction>(V));
77   }
78 };
79 
80 
81 //===----------------------------------------------------------------------===//
82 //                          UnaryInstruction Class
83 //===----------------------------------------------------------------------===//
84 
85 class UnaryInstruction : public Instruction {
86   void *operator new(size_t, unsigned) = delete;
87 
88 protected:
89   UnaryInstruction(Type *Ty, unsigned iType, Value *V,
90                    Instruction *IB = nullptr)
91     : Instruction(Ty, iType, &Op<0>(), 1, IB) {
92     Op<0>() = V;
93   }
UnaryInstruction(Type * Ty,unsigned iType,Value * V,BasicBlock * IAE)94   UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
95     : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
96     Op<0>() = V;
97   }
98 public:
99   // allocate space for exactly one operand
new(size_t s)100   void *operator new(size_t s) {
101     return User::operator new(s, 1);
102   }
103 
104   // Out of line virtual method, so the vtable, etc has a home.
105   ~UnaryInstruction() override;
106 
107   /// Transparently provide more efficient getOperand methods.
108   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
109 
110   // Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Instruction * I)111   static inline bool classof(const Instruction *I) {
112     return I->getOpcode() == Instruction::Alloca ||
113            I->getOpcode() == Instruction::Load ||
114            I->getOpcode() == Instruction::VAArg ||
115            I->getOpcode() == Instruction::ExtractValue ||
116            (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
117   }
classof(const Value * V)118   static inline bool classof(const Value *V) {
119     return isa<Instruction>(V) && classof(cast<Instruction>(V));
120   }
121 };
122 
123 template <>
124 struct OperandTraits<UnaryInstruction> :
125   public FixedNumOperandTraits<UnaryInstruction, 1> {
126 };
127 
128 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)
129 
130 //===----------------------------------------------------------------------===//
131 //                           BinaryOperator Class
132 //===----------------------------------------------------------------------===//
133 
134 class BinaryOperator : public Instruction {
135   void *operator new(size_t, unsigned) = delete;
136 protected:
137   void init(BinaryOps iType);
138   BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
139                  const Twine &Name, Instruction *InsertBefore);
140   BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
141                  const Twine &Name, BasicBlock *InsertAtEnd);
142   BinaryOperator *clone_impl() const override;
143 public:
144   // allocate space for exactly two operands
145   void *operator new(size_t s) {
146     return User::operator new(s, 2);
147   }
148 
149   /// Transparently provide more efficient getOperand methods.
150   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
151 
152   /// Construct a binary instruction, given the opcode and the two
153   /// operands.  Optionally (if InstBefore is specified) insert the instruction
154   /// into a BasicBlock right before the specified instruction.  The specified
155   /// Instruction is allowed to be a dereferenced end iterator.
156   ///
157   static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
158                                 const Twine &Name = Twine(),
159                                 Instruction *InsertBefore = nullptr);
160 
161   /// Construct a binary instruction, given the opcode and the two
162   /// operands.  Also automatically insert this instruction to the end of the
163   /// BasicBlock specified.
164   ///
165   static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
166                                 const Twine &Name, BasicBlock *InsertAtEnd);
167 
168   /// These methods just forward to Create, and are useful when you
169   /// statically know what type of instruction you're going to create.  These
170   /// helpers just save some typing.
171 #define HANDLE_BINARY_INST(N, OPC, CLASS) \
172   static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
173                                      const Twine &Name = "") {\
174     return Create(Instruction::OPC, V1, V2, Name);\
175   }
176 #include "llvm/IR/Instruction.def"
177 #define HANDLE_BINARY_INST(N, OPC, CLASS) \
178   static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
179                                      const Twine &Name, BasicBlock *BB) {\
180     return Create(Instruction::OPC, V1, V2, Name, BB);\
181   }
182 #include "llvm/IR/Instruction.def"
183 #define HANDLE_BINARY_INST(N, OPC, CLASS) \
184   static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
185                                      const Twine &Name, Instruction *I) {\
186     return Create(Instruction::OPC, V1, V2, Name, I);\
187   }
188 #include "llvm/IR/Instruction.def"
189 
190   static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
191                                    const Twine &Name = "") {
192     BinaryOperator *BO = Create(Opc, V1, V2, Name);
193     BO->setHasNoSignedWrap(true);
194     return BO;
195   }
196   static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
197                                    const Twine &Name, BasicBlock *BB) {
198     BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
199     BO->setHasNoSignedWrap(true);
200     return BO;
201   }
202   static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
203                                    const Twine &Name, Instruction *I) {
204     BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
205     BO->setHasNoSignedWrap(true);
206     return BO;
207   }
208 
209   static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
210                                    const Twine &Name = "") {
211     BinaryOperator *BO = Create(Opc, V1, V2, Name);
212     BO->setHasNoUnsignedWrap(true);
213     return BO;
214   }
215   static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
216                                    const Twine &Name, BasicBlock *BB) {
217     BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
218     BO->setHasNoUnsignedWrap(true);
219     return BO;
220   }
221   static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
222                                    const Twine &Name, Instruction *I) {
223     BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
224     BO->setHasNoUnsignedWrap(true);
225     return BO;
226   }
227 
228   static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
229                                      const Twine &Name = "") {
230     BinaryOperator *BO = Create(Opc, V1, V2, Name);
231     BO->setIsExact(true);
232     return BO;
233   }
234   static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
235                                      const Twine &Name, BasicBlock *BB) {
236     BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
237     BO->setIsExact(true);
238     return BO;
239   }
240   static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
241                                      const Twine &Name, Instruction *I) {
242     BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
243     BO->setIsExact(true);
244     return BO;
245   }
246 
247 #define DEFINE_HELPERS(OPC, NUWNSWEXACT)                                     \
248   static BinaryOperator *Create ## NUWNSWEXACT ## OPC                        \
249            (Value *V1, Value *V2, const Twine &Name = "") {                  \
250     return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name);            \
251   }                                                                          \
252   static BinaryOperator *Create ## NUWNSWEXACT ## OPC                        \
253            (Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) {       \
254     return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB);        \
255   }                                                                          \
256   static BinaryOperator *Create ## NUWNSWEXACT ## OPC                        \
257            (Value *V1, Value *V2, const Twine &Name, Instruction *I) {       \
258     return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I);         \
259   }
260 
261   DEFINE_HELPERS(Add, NSW)  // CreateNSWAdd
262   DEFINE_HELPERS(Add, NUW)  // CreateNUWAdd
263   DEFINE_HELPERS(Sub, NSW)  // CreateNSWSub
264   DEFINE_HELPERS(Sub, NUW)  // CreateNUWSub
265   DEFINE_HELPERS(Mul, NSW)  // CreateNSWMul
266   DEFINE_HELPERS(Mul, NUW)  // CreateNUWMul
267   DEFINE_HELPERS(Shl, NSW)  // CreateNSWShl
268   DEFINE_HELPERS(Shl, NUW)  // CreateNUWShl
269 
270   DEFINE_HELPERS(SDiv, Exact)  // CreateExactSDiv
271   DEFINE_HELPERS(UDiv, Exact)  // CreateExactUDiv
272   DEFINE_HELPERS(AShr, Exact)  // CreateExactAShr
273   DEFINE_HELPERS(LShr, Exact)  // CreateExactLShr
274 
275 #undef DEFINE_HELPERS
276 
277   /// Helper functions to construct and inspect unary operations (NEG and NOT)
278   /// via binary operators SUB and XOR:
279   ///
280   /// Create the NEG and NOT instructions out of SUB and XOR instructions.
281   ///
282   static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
283                                    Instruction *InsertBefore = nullptr);
284   static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
285                                    BasicBlock *InsertAtEnd);
286   static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
287                                       Instruction *InsertBefore = nullptr);
288   static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
289                                       BasicBlock *InsertAtEnd);
290   static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
291                                       Instruction *InsertBefore = nullptr);
292   static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
293                                       BasicBlock *InsertAtEnd);
294   static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
295                                     Instruction *InsertBefore = nullptr);
296   static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
297                                     BasicBlock *InsertAtEnd);
298   static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
299                                    Instruction *InsertBefore = nullptr);
300   static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
301                                    BasicBlock *InsertAtEnd);
302 
303   /// Check if the given Value is a NEG, FNeg, or NOT instruction.
304   ///
305   static bool isNeg(const Value *V);
306   static bool isFNeg(const Value *V, bool IgnoreZeroSign=false);
307   static bool isNot(const Value *V);
308 
309   /// Helper functions to extract the unary argument of a NEG, FNEG or NOT
310   /// operation implemented via Sub, FSub, or Xor.
311   ///
312   static const Value *getNegArgument(const Value *BinOp);
313   static       Value *getNegArgument(      Value *BinOp);
314   static const Value *getFNegArgument(const Value *BinOp);
315   static       Value *getFNegArgument(      Value *BinOp);
316   static const Value *getNotArgument(const Value *BinOp);
317   static       Value *getNotArgument(      Value *BinOp);
318 
319   BinaryOps getOpcode() const {
320     return static_cast<BinaryOps>(Instruction::getOpcode());
321   }
322 
323   /// Exchange the two operands to this instruction.
324   /// This instruction is safe to use on any binary instruction and
325   /// does not modify the semantics of the instruction.  If the instruction
326   /// cannot be reversed (ie, it's a Div), then return true.
327   ///
328   bool swapOperands();
329 
330   /// Set or clear the nsw flag on this instruction, which must be an operator
331   /// which supports this flag. See LangRef.html for the meaning of this flag.
332   void setHasNoUnsignedWrap(bool b = true);
333 
334   /// Set or clear the nsw flag on this instruction, which must be an operator
335   /// which supports this flag. See LangRef.html for the meaning of this flag.
336   void setHasNoSignedWrap(bool b = true);
337 
338   /// Set or clear the exact flag on this instruction, which must be an operator
339   /// which supports this flag. See LangRef.html for the meaning of this flag.
340   void setIsExact(bool b = true);
341 
342   /// Determine whether the no unsigned wrap flag is set.
343   bool hasNoUnsignedWrap() const;
344 
345   /// Determine whether the no signed wrap flag is set.
346   bool hasNoSignedWrap() const;
347 
348   /// Determine whether the exact flag is set.
349   bool isExact() const;
350 
351   /// Convenience method to copy supported wrapping, exact, and fast-math flags
352   /// from V to this instruction.
353   void copyIRFlags(const Value *V);
354 
355   /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
356   /// V and this instruction.
357   void andIRFlags(const Value *V);
358 
359   // Methods for support type inquiry through isa, cast, and dyn_cast:
360   static inline bool classof(const Instruction *I) {
361     return I->isBinaryOp();
362   }
363   static inline bool classof(const Value *V) {
364     return isa<Instruction>(V) && classof(cast<Instruction>(V));
365   }
366 };
367 
368 template <>
369 struct OperandTraits<BinaryOperator> :
370   public FixedNumOperandTraits<BinaryOperator, 2> {
371 };
372 
373 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)
374 
375 //===----------------------------------------------------------------------===//
376 //                               CastInst Class
377 //===----------------------------------------------------------------------===//
378 
379 /// This is the base class for all instructions that perform data
380 /// casts. It is simply provided so that instruction category testing
381 /// can be performed with code like:
382 ///
383 /// if (isa<CastInst>(Instr)) { ... }
384 /// @brief Base class of casting instructions.
385 class CastInst : public UnaryInstruction {
386   void anchor() override;
387 protected:
388   /// @brief Constructor with insert-before-instruction semantics for subclasses
389   CastInst(Type *Ty, unsigned iType, Value *S,
390            const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
391     : UnaryInstruction(Ty, iType, S, InsertBefore) {
392     setName(NameStr);
393   }
394   /// @brief Constructor with insert-at-end-of-block semantics for subclasses
395   CastInst(Type *Ty, unsigned iType, Value *S,
396            const Twine &NameStr, BasicBlock *InsertAtEnd)
397     : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
398     setName(NameStr);
399   }
400 public:
401   /// Provides a way to construct any of the CastInst subclasses using an
402   /// opcode instead of the subclass's constructor. The opcode must be in the
403   /// CastOps category (Instruction::isCast(opcode) returns true). This
404   /// constructor has insert-before-instruction semantics to automatically
405   /// insert the new CastInst before InsertBefore (if it is non-null).
406   /// @brief Construct any of the CastInst subclasses
407   static CastInst *Create(
408     Instruction::CastOps,    ///< The opcode of the cast instruction
409     Value *S,                ///< The value to be casted (operand 0)
410     Type *Ty,          ///< The type to which cast should be made
411     const Twine &Name = "", ///< Name for the instruction
412     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
413   );
414   /// Provides a way to construct any of the CastInst subclasses using an
415   /// opcode instead of the subclass's constructor. The opcode must be in the
416   /// CastOps category. This constructor has insert-at-end-of-block semantics
417   /// to automatically insert the new CastInst at the end of InsertAtEnd (if
418   /// its non-null).
419   /// @brief Construct any of the CastInst subclasses
420   static CastInst *Create(
421     Instruction::CastOps,    ///< The opcode for the cast instruction
422     Value *S,                ///< The value to be casted (operand 0)
423     Type *Ty,          ///< The type to which operand is casted
424     const Twine &Name, ///< The name for the instruction
425     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
426   );
427 
428   /// @brief Create a ZExt or BitCast cast instruction
429   static CastInst *CreateZExtOrBitCast(
430     Value *S,                ///< The value to be casted (operand 0)
431     Type *Ty,          ///< The type to which cast should be made
432     const Twine &Name = "", ///< Name for the instruction
433     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
434   );
435 
436   /// @brief Create a ZExt or BitCast cast instruction
437   static CastInst *CreateZExtOrBitCast(
438     Value *S,                ///< The value to be casted (operand 0)
439     Type *Ty,          ///< The type to which operand is casted
440     const Twine &Name, ///< The name for the instruction
441     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
442   );
443 
444   /// @brief Create a SExt or BitCast cast instruction
445   static CastInst *CreateSExtOrBitCast(
446     Value *S,                ///< The value to be casted (operand 0)
447     Type *Ty,          ///< The type to which cast should be made
448     const Twine &Name = "", ///< Name for the instruction
449     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
450   );
451 
452   /// @brief Create a SExt or BitCast cast instruction
453   static CastInst *CreateSExtOrBitCast(
454     Value *S,                ///< The value to be casted (operand 0)
455     Type *Ty,          ///< The type to which operand is casted
456     const Twine &Name, ///< The name for the instruction
457     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
458   );
459 
460   /// @brief Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
461   static CastInst *CreatePointerCast(
462     Value *S,                ///< The pointer value to be casted (operand 0)
463     Type *Ty,          ///< The type to which operand is casted
464     const Twine &Name, ///< The name for the instruction
465     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
466   );
467 
468   /// @brief Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
469   static CastInst *CreatePointerCast(
470     Value *S,                ///< The pointer value to be casted (operand 0)
471     Type *Ty,          ///< The type to which cast should be made
472     const Twine &Name = "", ///< Name for the instruction
473     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
474   );
475 
476   /// @brief Create a BitCast or an AddrSpaceCast cast instruction.
477   static CastInst *CreatePointerBitCastOrAddrSpaceCast(
478     Value *S,                ///< The pointer value to be casted (operand 0)
479     Type *Ty,          ///< The type to which operand is casted
480     const Twine &Name, ///< The name for the instruction
481     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
482   );
483 
484   /// @brief Create a BitCast or an AddrSpaceCast cast instruction.
485   static CastInst *CreatePointerBitCastOrAddrSpaceCast(
486     Value *S,                ///< The pointer value to be casted (operand 0)
487     Type *Ty,          ///< The type to which cast should be made
488     const Twine &Name = "", ///< Name for the instruction
489     Instruction *InsertBefore = 0 ///< Place to insert the instruction
490   );
491 
492   /// @brief Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
493   ///
494   /// If the value is a pointer type and the destination an integer type,
495   /// creates a PtrToInt cast. If the value is an integer type and the
496   /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
497   /// a bitcast.
498   static CastInst *CreateBitOrPointerCast(
499     Value *S,                ///< The pointer value to be casted (operand 0)
500     Type *Ty,          ///< The type to which cast should be made
501     const Twine &Name = "", ///< Name for the instruction
502     Instruction *InsertBefore = 0 ///< Place to insert the instruction
503   );
504 
505   /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
506   static CastInst *CreateIntegerCast(
507     Value *S,                ///< The pointer value to be casted (operand 0)
508     Type *Ty,          ///< The type to which cast should be made
509     bool isSigned,           ///< Whether to regard S as signed or not
510     const Twine &Name = "", ///< Name for the instruction
511     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
512   );
513 
514   /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
515   static CastInst *CreateIntegerCast(
516     Value *S,                ///< The integer value to be casted (operand 0)
517     Type *Ty,          ///< The integer type to which operand is casted
518     bool isSigned,           ///< Whether to regard S as signed or not
519     const Twine &Name, ///< The name for the instruction
520     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
521   );
522 
523   /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
524   static CastInst *CreateFPCast(
525     Value *S,                ///< The floating point value to be casted
526     Type *Ty,          ///< The floating point type to cast to
527     const Twine &Name = "", ///< Name for the instruction
528     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
529   );
530 
531   /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
532   static CastInst *CreateFPCast(
533     Value *S,                ///< The floating point value to be casted
534     Type *Ty,          ///< The floating point type to cast to
535     const Twine &Name, ///< The name for the instruction
536     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
537   );
538 
539   /// @brief Create a Trunc or BitCast cast instruction
540   static CastInst *CreateTruncOrBitCast(
541     Value *S,                ///< The value to be casted (operand 0)
542     Type *Ty,          ///< The type to which cast should be made
543     const Twine &Name = "", ///< Name for the instruction
544     Instruction *InsertBefore = nullptr ///< Place to insert the instruction
545   );
546 
547   /// @brief Create a Trunc or BitCast cast instruction
548   static CastInst *CreateTruncOrBitCast(
549     Value *S,                ///< The value to be casted (operand 0)
550     Type *Ty,          ///< The type to which operand is casted
551     const Twine &Name, ///< The name for the instruction
552     BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
553   );
554 
555   /// @brief Check whether it is valid to call getCastOpcode for these types.
556   static bool isCastable(
557     Type *SrcTy, ///< The Type from which the value should be cast.
558     Type *DestTy ///< The Type to which the value should be cast.
559   );
560 
561   /// @brief Check whether a bitcast between these types is valid
562   static bool isBitCastable(
563     Type *SrcTy, ///< The Type from which the value should be cast.
564     Type *DestTy ///< The Type to which the value should be cast.
565   );
566 
567   /// @brief Check whether a bitcast, inttoptr, or ptrtoint cast between these
568   /// types is valid and a no-op.
569   ///
570   /// This ensures that any pointer<->integer cast has enough bits in the
571   /// integer and any other cast is a bitcast.
572   static bool isBitOrNoopPointerCastable(
573       Type *SrcTy,  ///< The Type from which the value should be cast.
574       Type *DestTy, ///< The Type to which the value should be cast.
575       const DataLayout &DL);
576 
577   /// Returns the opcode necessary to cast Val into Ty using usual casting
578   /// rules.
579   /// @brief Infer the opcode for cast operand and type
580   static Instruction::CastOps getCastOpcode(
581     const Value *Val, ///< The value to cast
582     bool SrcIsSigned, ///< Whether to treat the source as signed
583     Type *Ty,   ///< The Type to which the value should be casted
584     bool DstIsSigned  ///< Whether to treate the dest. as signed
585   );
586 
587   /// There are several places where we need to know if a cast instruction
588   /// only deals with integer source and destination types. To simplify that
589   /// logic, this method is provided.
590   /// @returns true iff the cast has only integral typed operand and dest type.
591   /// @brief Determine if this is an integer-only cast.
592   bool isIntegerCast() const;
593 
594   /// A lossless cast is one that does not alter the basic value. It implies
595   /// a no-op cast but is more stringent, preventing things like int->float,
596   /// long->double, or int->ptr.
597   /// @returns true iff the cast is lossless.
598   /// @brief Determine if this is a lossless cast.
599   bool isLosslessCast() const;
600 
601   /// A no-op cast is one that can be effected without changing any bits.
602   /// It implies that the source and destination types are the same size. The
603   /// IntPtrTy argument is used to make accurate determinations for casts
604   /// involving Integer and Pointer types. They are no-op casts if the integer
605   /// is the same size as the pointer. However, pointer size varies with
606   /// platform. Generally, the result of DataLayout::getIntPtrType() should be
607   /// passed in. If that's not available, use Type::Int64Ty, which will make
608   /// the isNoopCast call conservative.
609   /// @brief Determine if the described cast is a no-op cast.
610   static bool isNoopCast(
611     Instruction::CastOps Opcode,  ///< Opcode of cast
612     Type *SrcTy,   ///< SrcTy of cast
613     Type *DstTy,   ///< DstTy of cast
614     Type *IntPtrTy ///< Integer type corresponding to Ptr types
615   );
616 
617   /// @brief Determine if this cast is a no-op cast.
618   bool isNoopCast(
619     Type *IntPtrTy ///< Integer type corresponding to pointer
620   ) const;
621 
622   /// @brief Determine if this cast is a no-op cast.
623   ///
624   /// \param DL is the DataLayout to get the Int Ptr type from.
625   bool isNoopCast(const DataLayout &DL) const;
626 
627   /// Determine how a pair of casts can be eliminated, if they can be at all.
628   /// This is a helper function for both CastInst and ConstantExpr.
629   /// @returns 0 if the CastInst pair can't be eliminated, otherwise
630   /// returns Instruction::CastOps value for a cast that can replace
631   /// the pair, casting SrcTy to DstTy.
632   /// @brief Determine if a cast pair is eliminable
633   static unsigned isEliminableCastPair(
634     Instruction::CastOps firstOpcode,  ///< Opcode of first cast
635     Instruction::CastOps secondOpcode, ///< Opcode of second cast
636     Type *SrcTy, ///< SrcTy of 1st cast
637     Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
638     Type *DstTy, ///< DstTy of 2nd cast
639     Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
640     Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
641     Type *DstIntPtrTy  ///< Integer type corresponding to Ptr DstTy, or null
642   );
643 
644   /// @brief Return the opcode of this CastInst
645   Instruction::CastOps getOpcode() const {
646     return Instruction::CastOps(Instruction::getOpcode());
647   }
648 
649   /// @brief Return the source type, as a convenience
650   Type* getSrcTy() const { return getOperand(0)->getType(); }
651   /// @brief Return the destination type, as a convenience
652   Type* getDestTy() const { return getType(); }
653 
654   /// This method can be used to determine if a cast from S to DstTy using
655   /// Opcode op is valid or not.
656   /// @returns true iff the proposed cast is valid.
657   /// @brief Determine if a cast is valid without creating one.
658   static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);
659 
660   /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
661   static inline bool classof(const Instruction *I) {
662     return I->isCast();
663   }
664   static inline bool classof(const Value *V) {
665     return isa<Instruction>(V) && classof(cast<Instruction>(V));
666   }
667 };
668 
669 //===----------------------------------------------------------------------===//
670 //                               CmpInst Class
671 //===----------------------------------------------------------------------===//
672 
673 /// This class is the base class for the comparison instructions.
674 /// @brief Abstract base class of comparison instructions.
675 class CmpInst : public Instruction {
676   void *operator new(size_t, unsigned) = delete;
677   CmpInst() = delete;
678 protected:
679   CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred,
680           Value *LHS, Value *RHS, const Twine &Name = "",
681           Instruction *InsertBefore = nullptr);
682 
683   CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred,
684           Value *LHS, Value *RHS, const Twine &Name,
685           BasicBlock *InsertAtEnd);
686 
687   void anchor() override; // Out of line virtual method.
688 public:
689   /// This enumeration lists the possible predicates for CmpInst subclasses.
690   /// Values in the range 0-31 are reserved for FCmpInst, while values in the
691   /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
692   /// predicate values are not overlapping between the classes.
693   enum Predicate {
694     // Opcode              U L G E    Intuitive operation
695     FCMP_FALSE =  0,  ///< 0 0 0 0    Always false (always folded)
696     FCMP_OEQ   =  1,  ///< 0 0 0 1    True if ordered and equal
697     FCMP_OGT   =  2,  ///< 0 0 1 0    True if ordered and greater than
698     FCMP_OGE   =  3,  ///< 0 0 1 1    True if ordered and greater than or equal
699     FCMP_OLT   =  4,  ///< 0 1 0 0    True if ordered and less than
700     FCMP_OLE   =  5,  ///< 0 1 0 1    True if ordered and less than or equal
701     FCMP_ONE   =  6,  ///< 0 1 1 0    True if ordered and operands are unequal
702     FCMP_ORD   =  7,  ///< 0 1 1 1    True if ordered (no nans)
703     FCMP_UNO   =  8,  ///< 1 0 0 0    True if unordered: isnan(X) | isnan(Y)
704     FCMP_UEQ   =  9,  ///< 1 0 0 1    True if unordered or equal
705     FCMP_UGT   = 10,  ///< 1 0 1 0    True if unordered or greater than
706     FCMP_UGE   = 11,  ///< 1 0 1 1    True if unordered, greater than, or equal
707     FCMP_ULT   = 12,  ///< 1 1 0 0    True if unordered or less than
708     FCMP_ULE   = 13,  ///< 1 1 0 1    True if unordered, less than, or equal
709     FCMP_UNE   = 14,  ///< 1 1 1 0    True if unordered or not equal
710     FCMP_TRUE  = 15,  ///< 1 1 1 1    Always true (always folded)
711     FIRST_FCMP_PREDICATE = FCMP_FALSE,
712     LAST_FCMP_PREDICATE = FCMP_TRUE,
713     BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
714     ICMP_EQ    = 32,  ///< equal
715     ICMP_NE    = 33,  ///< not equal
716     ICMP_UGT   = 34,  ///< unsigned greater than
717     ICMP_UGE   = 35,  ///< unsigned greater or equal
718     ICMP_ULT   = 36,  ///< unsigned less than
719     ICMP_ULE   = 37,  ///< unsigned less or equal
720     ICMP_SGT   = 38,  ///< signed greater than
721     ICMP_SGE   = 39,  ///< signed greater or equal
722     ICMP_SLT   = 40,  ///< signed less than
723     ICMP_SLE   = 41,  ///< signed less or equal
724     FIRST_ICMP_PREDICATE = ICMP_EQ,
725     LAST_ICMP_PREDICATE = ICMP_SLE,
726     BAD_ICMP_PREDICATE = ICMP_SLE + 1
727   };
728 
729   // allocate space for exactly two operands
730   void *operator new(size_t s) {
731     return User::operator new(s, 2);
732   }
733   /// Construct a compare instruction, given the opcode, the predicate and
734   /// the two operands.  Optionally (if InstBefore is specified) insert the
735   /// instruction into a BasicBlock right before the specified instruction.
736   /// The specified Instruction is allowed to be a dereferenced end iterator.
737   /// @brief Create a CmpInst
738   static CmpInst *Create(OtherOps Op,
739                          unsigned short predicate, Value *S1,
740                          Value *S2, const Twine &Name = "",
741                          Instruction *InsertBefore = nullptr);
742 
743   /// Construct a compare instruction, given the opcode, the predicate and the
744   /// two operands.  Also automatically insert this instruction to the end of
745   /// the BasicBlock specified.
746   /// @brief Create a CmpInst
747   static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1,
748                          Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
749 
750   /// @brief Get the opcode casted to the right type
751   OtherOps getOpcode() const {
752     return static_cast<OtherOps>(Instruction::getOpcode());
753   }
754 
755   /// @brief Return the predicate for this instruction.
756   Predicate getPredicate() const {
757     return Predicate(getSubclassDataFromInstruction());
758   }
759 
760   /// @brief Set the predicate for this instruction to the specified value.
761   void setPredicate(Predicate P) { setInstructionSubclassData(P); }
762 
763   static bool isFPPredicate(Predicate P) {
764     return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
765   }
766 
767   static bool isIntPredicate(Predicate P) {
768     return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
769   }
770 
771   bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
772   bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
773 
774 
775   /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
776   ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
777   /// @returns the inverse predicate for the instruction's current predicate.
778   /// @brief Return the inverse of the instruction's predicate.
779   Predicate getInversePredicate() const {
780     return getInversePredicate(getPredicate());
781   }
782 
783   /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
784   ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
785   /// @returns the inverse predicate for predicate provided in \p pred.
786   /// @brief Return the inverse of a given predicate
787   static Predicate getInversePredicate(Predicate pred);
788 
789   /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
790   ///              OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
791   /// @returns the predicate that would be the result of exchanging the two
792   /// operands of the CmpInst instruction without changing the result
793   /// produced.
794   /// @brief Return the predicate as if the operands were swapped
795   Predicate getSwappedPredicate() const {
796     return getSwappedPredicate(getPredicate());
797   }
798 
799   /// This is a static version that you can use without an instruction
800   /// available.
801   /// @brief Return the predicate as if the operands were swapped.
802   static Predicate getSwappedPredicate(Predicate pred);
803 
804   /// @brief Provide more efficient getOperand methods.
805   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
806 
807   /// This is just a convenience that dispatches to the subclasses.
808   /// @brief Swap the operands and adjust predicate accordingly to retain
809   /// the same comparison.
810   void swapOperands();
811 
812   /// This is just a convenience that dispatches to the subclasses.
813   /// @brief Determine if this CmpInst is commutative.
814   bool isCommutative() const;
815 
816   /// This is just a convenience that dispatches to the subclasses.
817   /// @brief Determine if this is an equals/not equals predicate.
818   bool isEquality() const;
819 
820   /// @returns true if the comparison is signed, false otherwise.
821   /// @brief Determine if this instruction is using a signed comparison.
822   bool isSigned() const {
823     return isSigned(getPredicate());
824   }
825 
826   /// @returns true if the comparison is unsigned, false otherwise.
827   /// @brief Determine if this instruction is using an unsigned comparison.
828   bool isUnsigned() const {
829     return isUnsigned(getPredicate());
830   }
831 
832   /// This is just a convenience.
833   /// @brief Determine if this is true when both operands are the same.
834   bool isTrueWhenEqual() const {
835     return isTrueWhenEqual(getPredicate());
836   }
837 
838   /// This is just a convenience.
839   /// @brief Determine if this is false when both operands are the same.
840   bool isFalseWhenEqual() const {
841     return isFalseWhenEqual(getPredicate());
842   }
843 
844   /// @returns true if the predicate is unsigned, false otherwise.
845   /// @brief Determine if the predicate is an unsigned operation.
846   static bool isUnsigned(unsigned short predicate);
847 
848   /// @returns true if the predicate is signed, false otherwise.
849   /// @brief Determine if the predicate is an signed operation.
850   static bool isSigned(unsigned short predicate);
851 
852   /// @brief Determine if the predicate is an ordered operation.
853   static bool isOrdered(unsigned short predicate);
854 
855   /// @brief Determine if the predicate is an unordered operation.
856   static bool isUnordered(unsigned short predicate);
857 
858   /// Determine if the predicate is true when comparing a value with itself.
859   static bool isTrueWhenEqual(unsigned short predicate);
860 
861   /// Determine if the predicate is false when comparing a value with itself.
862   static bool isFalseWhenEqual(unsigned short predicate);
863 
864   /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
865   static inline bool classof(const Instruction *I) {
866     return I->getOpcode() == Instruction::ICmp ||
867            I->getOpcode() == Instruction::FCmp;
868   }
869   static inline bool classof(const Value *V) {
870     return isa<Instruction>(V) && classof(cast<Instruction>(V));
871   }
872 
873   /// @brief Create a result type for fcmp/icmp
874   static Type* makeCmpResultType(Type* opnd_type) {
875     if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
876       return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
877                              vt->getNumElements());
878     }
879     return Type::getInt1Ty(opnd_type->getContext());
880   }
881 private:
882   // Shadow Value::setValueSubclassData with a private forwarding method so that
883   // subclasses cannot accidentally use it.
884   void setValueSubclassData(unsigned short D) {
885     Value::setValueSubclassData(D);
886   }
887 };
888 
889 
890 // FIXME: these are redundant if CmpInst < BinaryOperator
891 template <>
892 struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
893 };
894 
895 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)
896 
897 } // End llvm namespace
898 
899 #endif
900