1 /*
2  * jdcoefct.c
3  *
4  * Copyright (C) 1994-1997, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains the coefficient buffer controller for decompression.
9  * This controller is the top level of the JPEG decompressor proper.
10  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
11  *
12  * In buffered-image mode, this controller is the interface between
13  * input-oriented processing and output-oriented processing.
14  * Also, the input side (only) is used when reading a file for transcoding.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 
21 /* Block smoothing is only applicable for progressive JPEG, so: */
22 #ifndef D_PROGRESSIVE_SUPPORTED
23 #undef BLOCK_SMOOTHING_SUPPORTED
24 #endif
25 
26 /* Private buffer controller object */
27 
28 typedef struct {
29   struct jpeg_d_coef_controller pub; /* public fields */
30 
31   /* These variables keep track of the current location of the input side. */
32   /* cinfo->input_iMCU_row is also used for this. */
33   JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
34   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
35   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
36 
37   /* The output side's location is represented by cinfo->output_iMCU_row. */
38 
39   /* In single-pass modes, it's sufficient to buffer just one MCU.
40    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
41    * and let the entropy decoder write into that workspace each time.
42    * (On 80x86, the workspace is FAR even though it's not really very big;
43    * this is to keep the module interfaces unchanged when a large coefficient
44    * buffer is necessary.)
45    * In multi-pass modes, this array points to the current MCU's blocks
46    * within the virtual arrays; it is used only by the input side.
47    */
48   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
49 
50 #ifdef D_MULTISCAN_FILES_SUPPORTED
51   /* In multi-pass modes, we need a virtual block array for each component. */
52   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
53 #endif
54 
55 #ifdef BLOCK_SMOOTHING_SUPPORTED
56   /* When doing block smoothing, we latch coefficient Al values here */
57   int * coef_bits_latch;
58 #define SAVED_COEFS  6		/* we save coef_bits[0..5] */
59 #endif
60 } my_coef_controller;
61 
62 typedef my_coef_controller * my_coef_ptr;
63 
64 /* Forward declarations */
65 METHODDEF(int) decompress_onepass
66 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
67 #ifdef D_MULTISCAN_FILES_SUPPORTED
68 METHODDEF(int) decompress_data
69 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
70 #endif
71 #ifdef BLOCK_SMOOTHING_SUPPORTED
72 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
73 METHODDEF(int) decompress_smooth_data
74 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
75 #endif
76 
77 
78 LOCAL(void)
start_iMCU_row(j_decompress_ptr cinfo)79 start_iMCU_row (j_decompress_ptr cinfo)
80 /* Reset within-iMCU-row counters for a new row (input side) */
81 {
82   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
83 
84   /* In an interleaved scan, an MCU row is the same as an iMCU row.
85    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
86    * But at the bottom of the image, process only what's left.
87    */
88   if (cinfo->comps_in_scan > 1) {
89     coef->MCU_rows_per_iMCU_row = 1;
90   } else {
91     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
92       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
93     else
94       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
95   }
96 
97   coef->MCU_ctr = 0;
98   coef->MCU_vert_offset = 0;
99 }
100 
101 
102 /*
103  * Initialize for an input processing pass.
104  */
105 
106 METHODDEF(void)
start_input_pass(j_decompress_ptr cinfo)107 start_input_pass (j_decompress_ptr cinfo)
108 {
109   cinfo->input_iMCU_row = 0;
110   start_iMCU_row(cinfo);
111 }
112 
113 
114 /*
115  * Initialize for an output processing pass.
116  */
117 
118 METHODDEF(void)
start_output_pass(j_decompress_ptr cinfo)119 start_output_pass (j_decompress_ptr cinfo)
120 {
121 #ifdef BLOCK_SMOOTHING_SUPPORTED
122   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
123 
124   /* If multipass, check to see whether to use block smoothing on this pass */
125   if (coef->pub.coef_arrays != NULL) {
126     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
127       coef->pub.decompress_data = decompress_smooth_data;
128     else
129       coef->pub.decompress_data = decompress_data;
130   }
131 #endif
132   cinfo->output_iMCU_row = 0;
133 }
134 
135 
136 /*
137  * Decompress and return some data in the single-pass case.
138  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
139  * Input and output must run in lockstep since we have only a one-MCU buffer.
140  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
141  *
142  * NB: output_buf contains a plane for each component in image,
143  * which we index according to the component's SOF position.
144  */
145 
146 METHODDEF(int)
decompress_onepass(j_decompress_ptr cinfo,JSAMPIMAGE output_buf)147 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
148 {
149   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
150   JDIMENSION MCU_col_num;	/* index of current MCU within row */
151   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
152   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
153   int blkn, ci, xindex, yindex, yoffset, useful_width;
154   JSAMPARRAY output_ptr;
155   JDIMENSION start_col, output_col;
156   jpeg_component_info *compptr;
157   inverse_DCT_method_ptr inverse_DCT;
158 
159 #ifdef ANDROID_TILE_BASED_DECODE
160   if (cinfo->tile_decode) {
161     last_MCU_col =
162         (cinfo->coef->MCU_column_right_boundary -
163          cinfo->coef->MCU_column_left_boundary) - 1;
164   }
165 #endif
166 
167   /* Loop to process as much as one whole iMCU row */
168   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
169        yoffset++) {
170     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
171 	 MCU_col_num++) {
172       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
173       if (MCU_col_num < coef->pub.MCU_columns_to_skip) {
174         (*cinfo->entropy->decode_mcu_discard_coef) (cinfo);
175         continue;
176       } else {
177         jzero_far((void FAR *) coef->MCU_buffer[0],
178 		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
179         if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
180 	  /* Suspension forced; update state counters and exit */
181 	  coef->MCU_vert_offset = yoffset;
182 	  coef->MCU_ctr = MCU_col_num;
183 	  return JPEG_SUSPENDED;
184         }
185       }
186       /* Determine where data should go in output_buf and do the IDCT thing.
187        * We skip dummy blocks at the right and bottom edges (but blkn gets
188        * incremented past them!).  Note the inner loop relies on having
189        * allocated the MCU_buffer[] blocks sequentially.
190        */
191       blkn = 0;			/* index of current DCT block within MCU */
192       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
193 	compptr = cinfo->cur_comp_info[ci];
194 	/* Don't bother to IDCT an uninteresting component. */
195 	if (! compptr->component_needed) {
196 	  blkn += compptr->MCU_blocks;
197 	  continue;
198 	}
199 	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
200 	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
201 						    : compptr->last_col_width;
202 	output_ptr = output_buf[compptr->component_index] +
203 	  yoffset * compptr->DCT_scaled_size;
204 	start_col = MCU_col_num * compptr->MCU_sample_width;
205 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
206 	  if (cinfo->input_iMCU_row < last_iMCU_row ||
207 	      yoffset+yindex < compptr->last_row_height) {
208 	    output_col = start_col;
209 	    for (xindex = 0; xindex < useful_width; xindex++) {
210 	      (*inverse_DCT) (cinfo, compptr,
211 		        (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
212 		        output_ptr, output_col);
213 	      output_col += compptr->DCT_scaled_size;
214 	    }
215 	  }
216 	  blkn += compptr->MCU_width;
217 	  output_ptr += compptr->DCT_scaled_size;
218 	}
219       }
220     }
221     /* Completed an MCU row, but perhaps not an iMCU row */
222     coef->MCU_ctr = 0;
223   }
224   /* Completed the iMCU row, advance counters for next one */
225   cinfo->output_iMCU_row++;
226   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
227     start_iMCU_row(cinfo);
228     return JPEG_ROW_COMPLETED;
229   }
230   /* Completed the scan */
231   (*cinfo->inputctl->finish_input_pass) (cinfo);
232   return JPEG_SCAN_COMPLETED;
233 }
234 
235 
236 /*
237  * Dummy consume-input routine for single-pass operation.
238  */
239 
240 METHODDEF(int)
dummy_consume_data(j_decompress_ptr cinfo)241 dummy_consume_data (j_decompress_ptr cinfo)
242 {
243   return JPEG_SUSPENDED;	/* Always indicate nothing was done */
244 }
245 
246 #ifdef D_MULTISCAN_FILES_SUPPORTED
247 /*
248  * Consume input data and store it in the full-image coefficient buffer.
249  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
250  * ie, v_samp_factor block rows for each component in the scan.
251  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
252  */
253 
254 METHODDEF(int)
consume_data(j_decompress_ptr cinfo)255 consume_data (j_decompress_ptr cinfo)
256 {
257   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
258   JDIMENSION MCU_col_num;	/* index of current MCU within row */
259   int blkn, ci, xindex, yindex, yoffset;
260   JDIMENSION start_col;
261   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
262   JBLOCKROW buffer_ptr;
263   jpeg_component_info *compptr;
264 
265   /* Align the virtual buffers for the components used in this scan. */
266   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
267     compptr = cinfo->cur_comp_info[ci];
268     buffer[ci] = (*cinfo->mem->access_virt_barray)
269       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
270        cinfo->tile_decode ? 0 : cinfo->input_iMCU_row * compptr->v_samp_factor,
271        (JDIMENSION) compptr->v_samp_factor, TRUE);
272     /* Note: entropy decoder expects buffer to be zeroed,
273      * but this is handled automatically by the memory manager
274      * because we requested a pre-zeroed array.
275      */
276   }
277   unsigned int MCUs_per_row = cinfo->MCUs_per_row;
278 #ifdef ANDROID_TILE_BASED_DECODE
279   if (cinfo->tile_decode) {
280     int iMCU_width_To_MCU_width;
281     if (cinfo->comps_in_scan > 1) {
282       // Interleaved
283       iMCU_width_To_MCU_width = 1;
284     } else {
285       // Non-intervleaved
286       iMCU_width_To_MCU_width = cinfo->cur_comp_info[0]->h_samp_factor;
287     }
288     MCUs_per_row = jmin(MCUs_per_row,
289         (cinfo->coef->column_right_boundary - cinfo->coef->column_left_boundary)
290         * cinfo->entropy->index->MCU_sample_size * iMCU_width_To_MCU_width);
291   }
292 #endif
293 
294   /* Loop to process one whole iMCU row */
295   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
296        yoffset++) {
297    // configure huffman decoder
298 #ifdef ANDROID_TILE_BASED_DECODE
299     if (cinfo->tile_decode) {
300       huffman_scan_header scan_header =
301             cinfo->entropy->index->scan[cinfo->input_scan_number];
302       int col_offset = cinfo->coef->column_left_boundary;
303       (*cinfo->entropy->configure_huffman_decoder) (cinfo,
304               scan_header.offset[cinfo->input_iMCU_row]
305               [col_offset + yoffset * scan_header.MCUs_per_row]);
306     }
307 #endif
308 
309     // zero all blocks
310     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < MCUs_per_row;
311           MCU_col_num++) {
312       /* Construct list of pointers to DCT blocks belonging to this MCU */
313       blkn = 0;			/* index of current DCT block within MCU */
314       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
315         compptr = cinfo->cur_comp_info[ci];
316         start_col = MCU_col_num * compptr->MCU_width;
317         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
318           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
319           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
320             coef->MCU_buffer[blkn++] = buffer_ptr++;
321 #ifdef ANDROID_TILE_BASED_DECODE
322             if (cinfo->tile_decode && cinfo->input_scan_number == 0) {
323               // need to do pre-zero ourselves.
324               jzero_far((void FAR *) coef->MCU_buffer[blkn-1],
325                         (size_t) (SIZEOF(JBLOCK)));
326             }
327 #endif
328           }
329         }
330       }
331 
332 
333       /* Try to fetch the MCU. */
334       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
335         /* Suspension forced; update state counters and exit */
336         coef->MCU_vert_offset = yoffset;
337         coef->MCU_ctr = MCU_col_num;
338         return JPEG_SUSPENDED;
339       }
340     }
341     /* Completed an MCU row, but perhaps not an iMCU row */
342     coef->MCU_ctr = 0;
343   }
344   /* Completed the iMCU row, advance counters for next one */
345   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
346     start_iMCU_row(cinfo);
347     return JPEG_ROW_COMPLETED;
348   }
349   /* Completed the scan */
350   (*cinfo->inputctl->finish_input_pass) (cinfo);
351   return JPEG_SCAN_COMPLETED;
352 }
353 
354 /*
355  * Consume input data and store it in the coefficient buffer.
356  * Read one fully interleaved MCU row ("iMCU" row) per call.
357  */
358 
359 METHODDEF(int)
consume_data_multi_scan(j_decompress_ptr cinfo)360 consume_data_multi_scan (j_decompress_ptr cinfo)
361 {
362   huffman_index *index = cinfo->entropy->index;
363   int i, retcode, ci;
364   int mcu = cinfo->input_iMCU_row;
365   jinit_phuff_decoder(cinfo);
366   for (i = 0; i < index->scan_count; i++) {
367     (*cinfo->inputctl->finish_input_pass) (cinfo);
368     jset_input_stream_position(cinfo, index->scan[i].bitstream_offset);
369     cinfo->output_iMCU_row = mcu;
370     cinfo->unread_marker = 0;
371     // Consume SOS and DHT headers
372     retcode = (*cinfo->inputctl->consume_markers) (cinfo, index, i);
373     cinfo->input_iMCU_row = mcu;
374     cinfo->input_scan_number = i;
375     cinfo->entropy->index = index;
376     // Consume scan block data
377     consume_data(cinfo);
378   }
379   cinfo->input_iMCU_row = mcu + 1;
380   cinfo->input_scan_number = 0;
381   cinfo->output_scan_number = 0;
382   return JPEG_ROW_COMPLETED;
383 }
384 
385 /*
386  * Same as consume_data, expect for saving the Huffman decode information
387  * - bitstream offset and DC coefficient to index.
388  */
389 
390 METHODDEF(int)
consume_data_build_huffman_index_baseline(j_decompress_ptr cinfo,huffman_index * index,int current_scan)391 consume_data_build_huffman_index_baseline (j_decompress_ptr cinfo,
392         huffman_index *index, int current_scan)
393 {
394   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
395   JDIMENSION MCU_col_num;	/* index of current MCU within row */
396   int ci, xindex, yindex, yoffset;
397   JDIMENSION start_col;
398   JBLOCKROW buffer_ptr;
399 
400   huffman_scan_header *scan_header = index->scan + current_scan;
401   scan_header->MCU_rows_per_iMCU_row = coef->MCU_rows_per_iMCU_row;
402 
403   size_t allocate_size = coef->MCU_rows_per_iMCU_row
404       * jdiv_round_up(cinfo->MCUs_per_row, index->MCU_sample_size)
405       * sizeof(huffman_offset_data);
406   scan_header->offset[cinfo->input_iMCU_row] =
407         (huffman_offset_data*)malloc(allocate_size);
408   index->mem_used += allocate_size;
409 
410   huffman_offset_data *offset_data = scan_header->offset[cinfo->input_iMCU_row];
411 
412   /* Loop to process one whole iMCU row */
413   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
414        yoffset++) {
415     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
416 	 MCU_col_num++) {
417       // Record huffman bit offset
418       if (MCU_col_num % index->MCU_sample_size == 0) {
419         (*cinfo->entropy->get_huffman_decoder_configuration)
420                 (cinfo, offset_data);
421         ++offset_data;
422       }
423 
424       /* Try to fetch the MCU. */
425       if (! (*cinfo->entropy->decode_mcu_discard_coef) (cinfo)) {
426         /* Suspension forced; update state counters and exit */
427         coef->MCU_vert_offset = yoffset;
428         coef->MCU_ctr = MCU_col_num;
429         return JPEG_SUSPENDED;
430       }
431     }
432     /* Completed an MCU row, but perhaps not an iMCU row */
433     coef->MCU_ctr = 0;
434   }
435   /* Completed the iMCU row, advance counters for next one */
436   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
437     start_iMCU_row(cinfo);
438     return JPEG_ROW_COMPLETED;
439   }
440   /* Completed the scan */
441   (*cinfo->inputctl->finish_input_pass) (cinfo);
442   return JPEG_SCAN_COMPLETED;
443 }
444 
445 /*
446  * Same as consume_data, expect for saving the Huffman decode information
447  * - bitstream offset and DC coefficient to index.
448  */
449 
450 METHODDEF(int)
consume_data_build_huffman_index_progressive(j_decompress_ptr cinfo,huffman_index * index,int current_scan)451 consume_data_build_huffman_index_progressive (j_decompress_ptr cinfo,
452         huffman_index *index, int current_scan)
453 {
454   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
455   JDIMENSION MCU_col_num;	/* index of current MCU within row */
456   int blkn, ci, xindex, yindex, yoffset;
457   JDIMENSION start_col;
458   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
459   JBLOCKROW buffer_ptr;
460   jpeg_component_info *compptr;
461 
462   int factor = 4; // maximum factor is 4.
463   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
464     factor = jmin(factor, cinfo->cur_comp_info[ci]->h_samp_factor);
465 
466   int sample_size = index->MCU_sample_size * factor;
467   huffman_scan_header *scan_header = index->scan + current_scan;
468   scan_header->MCU_rows_per_iMCU_row = coef->MCU_rows_per_iMCU_row;
469   scan_header->MCUs_per_row = jdiv_round_up(cinfo->MCUs_per_row, sample_size);
470   scan_header->comps_in_scan = cinfo->comps_in_scan;
471 
472   size_t allocate_size = coef->MCU_rows_per_iMCU_row
473       * scan_header->MCUs_per_row * sizeof(huffman_offset_data);
474   scan_header->offset[cinfo->input_iMCU_row] =
475         (huffman_offset_data*)malloc(allocate_size);
476   index->mem_used += allocate_size;
477 
478   huffman_offset_data *offset_data = scan_header->offset[cinfo->input_iMCU_row];
479 
480   /* Align the virtual buffers for the components used in this scan. */
481   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
482     compptr = cinfo->cur_comp_info[ci];
483     buffer[ci] = (*cinfo->mem->access_virt_barray)
484       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
485        0, // Only need one row buffer
486        (JDIMENSION) compptr->v_samp_factor, TRUE);
487   }
488   /* Loop to process one whole iMCU row */
489   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
490        yoffset++) {
491     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
492 	 MCU_col_num++) {
493       /* For each MCU, we loop through different color components.
494        * Then, for each color component we will get a list of pointers to DCT
495        * blocks in the virtual buffer.
496        */
497       blkn = 0; /* index of current DCT block within MCU */
498       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
499         compptr = cinfo->cur_comp_info[ci];
500         start_col = MCU_col_num * compptr->MCU_width;
501         /* Get the list of pointers to DCT blocks in
502          * the virtual buffer in a color component of the MCU.
503          */
504         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
505           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
506           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
507             coef->MCU_buffer[blkn++] = buffer_ptr++;
508             if (cinfo->input_scan_number == 0) {
509               // need to do pre-zero by ourself.
510               jzero_far((void FAR *) coef->MCU_buffer[blkn-1],
511                         (size_t) (SIZEOF(JBLOCK)));
512             }
513           }
514         }
515       }
516       // Record huffman bit offset
517       if (MCU_col_num % sample_size == 0) {
518         (*cinfo->entropy->get_huffman_decoder_configuration)
519                 (cinfo, offset_data);
520         ++offset_data;
521       }
522       /* Try to fetch the MCU. */
523       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
524 	/* Suspension forced; update state counters and exit */
525 	coef->MCU_vert_offset = yoffset;
526 	coef->MCU_ctr = MCU_col_num;
527 	return JPEG_SUSPENDED;
528       }
529     }
530     /* Completed an MCU row, but perhaps not an iMCU row */
531     coef->MCU_ctr = 0;
532   }
533   (*cinfo->entropy->get_huffman_decoder_configuration)
534         (cinfo, &scan_header->prev_MCU_offset);
535   /* Completed the iMCU row, advance counters for next one */
536   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
537     start_iMCU_row(cinfo);
538     return JPEG_ROW_COMPLETED;
539   }
540   /* Completed the scan */
541   (*cinfo->inputctl->finish_input_pass) (cinfo);
542   return JPEG_SCAN_COMPLETED;
543 }
544 
545 /*
546  * Decompress and return some data in the multi-pass case.
547  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
548  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
549  *
550  * NB: output_buf contains a plane for each component in image.
551  */
552 
553 METHODDEF(int)
decompress_data(j_decompress_ptr cinfo,JSAMPIMAGE output_buf)554 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
555 {
556   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
557   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
558   JDIMENSION block_num;
559   int ci, block_row, block_rows;
560   JBLOCKARRAY buffer;
561   JBLOCKROW buffer_ptr;
562   JSAMPARRAY output_ptr;
563   JDIMENSION output_col;
564   jpeg_component_info *compptr;
565   inverse_DCT_method_ptr inverse_DCT;
566 
567   /* Force some input to be done if we are getting ahead of the input. */
568   while (cinfo->input_scan_number < cinfo->output_scan_number ||
569 	 (cinfo->input_scan_number == cinfo->output_scan_number &&
570 	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
571     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
572       return JPEG_SUSPENDED;
573   }
574 
575   /* OK, output from the virtual arrays. */
576   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
577        ci++, compptr++) {
578     /* Don't bother to IDCT an uninteresting component. */
579     if (! compptr->component_needed)
580       continue;
581     /* Align the virtual buffer for this component. */
582     buffer = (*cinfo->mem->access_virt_barray)
583       ((j_common_ptr) cinfo, coef->whole_image[ci],
584        cinfo->tile_decode ? 0 : cinfo->output_iMCU_row * compptr->v_samp_factor,
585        (JDIMENSION) compptr->v_samp_factor, FALSE);
586     /* Count non-dummy DCT block rows in this iMCU row. */
587     if (cinfo->output_iMCU_row < last_iMCU_row)
588       block_rows = compptr->v_samp_factor;
589     else {
590       /* NB: can't use last_row_height here; it is input-side-dependent! */
591       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
592       if (block_rows == 0) block_rows = compptr->v_samp_factor;
593     }
594     inverse_DCT = cinfo->idct->inverse_DCT[ci];
595     output_ptr = output_buf[ci];
596     int width_in_blocks = compptr->width_in_blocks;
597     int start_block = 0;
598 #if ANDROID_TILE_BASED_DECODE
599     if (cinfo->tile_decode) {
600       // width_in_blocks for a component depends on its h_samp_factor.
601       width_in_blocks = jmin(width_in_blocks,
602         (cinfo->coef->MCU_column_right_boundary -
603          cinfo->coef->MCU_column_left_boundary) *
604          compptr->h_samp_factor);
605       start_block = coef->pub.MCU_columns_to_skip *
606          compptr->h_samp_factor;
607    }
608 #endif
609     /* Loop over all DCT blocks to be processed. */
610     for (block_row = 0; block_row < block_rows; block_row++) {
611       buffer_ptr = buffer[block_row];
612       output_col = start_block * compptr->DCT_scaled_size;
613       buffer_ptr += start_block;
614       for (block_num = start_block; block_num < width_in_blocks; block_num++) {
615 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
616 			output_ptr, output_col);
617 	buffer_ptr++;
618 	output_col += compptr->DCT_scaled_size;
619       }
620       output_ptr += compptr->DCT_scaled_size;
621     }
622   }
623 
624   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
625     return JPEG_ROW_COMPLETED;
626   return JPEG_SCAN_COMPLETED;
627 }
628 
629 #endif /* D_MULTISCAN_FILES_SUPPORTED */
630 
631 
632 #ifdef BLOCK_SMOOTHING_SUPPORTED
633 
634 /*
635  * This code applies interblock smoothing as described by section K.8
636  * of the JPEG standard: the first 5 AC coefficients are estimated from
637  * the DC values of a DCT block and its 8 neighboring blocks.
638  * We apply smoothing only for progressive JPEG decoding, and only if
639  * the coefficients it can estimate are not yet known to full precision.
640  */
641 
642 /* Natural-order array positions of the first 5 zigzag-order coefficients */
643 #define Q01_POS  1
644 #define Q10_POS  8
645 #define Q20_POS  16
646 #define Q11_POS  9
647 #define Q02_POS  2
648 
649 /*
650  * Determine whether block smoothing is applicable and safe.
651  * We also latch the current states of the coef_bits[] entries for the
652  * AC coefficients; otherwise, if the input side of the decompressor
653  * advances into a new scan, we might think the coefficients are known
654  * more accurately than they really are.
655  */
656 
657 LOCAL(boolean)
smoothing_ok(j_decompress_ptr cinfo)658 smoothing_ok (j_decompress_ptr cinfo)
659 {
660   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
661   boolean smoothing_useful = FALSE;
662   int ci, coefi;
663   jpeg_component_info *compptr;
664   JQUANT_TBL * qtable;
665   int * coef_bits;
666   int * coef_bits_latch;
667 
668   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
669     return FALSE;
670 
671   /* Allocate latch area if not already done */
672   if (coef->coef_bits_latch == NULL)
673     coef->coef_bits_latch = (int *)
674       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
675 				  cinfo->num_components *
676 				  (SAVED_COEFS * SIZEOF(int)));
677   coef_bits_latch = coef->coef_bits_latch;
678 
679   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
680        ci++, compptr++) {
681     /* All components' quantization values must already be latched. */
682     if ((qtable = compptr->quant_table) == NULL)
683       return FALSE;
684     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
685     if (qtable->quantval[0] == 0 ||
686 	qtable->quantval[Q01_POS] == 0 ||
687 	qtable->quantval[Q10_POS] == 0 ||
688 	qtable->quantval[Q20_POS] == 0 ||
689 	qtable->quantval[Q11_POS] == 0 ||
690 	qtable->quantval[Q02_POS] == 0)
691       return FALSE;
692     /* DC values must be at least partly known for all components. */
693     coef_bits = cinfo->coef_bits[ci];
694     if (coef_bits[0] < 0)
695       return FALSE;
696     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
697     for (coefi = 1; coefi <= 5; coefi++) {
698       coef_bits_latch[coefi] = coef_bits[coefi];
699       if (coef_bits[coefi] != 0)
700 	smoothing_useful = TRUE;
701     }
702     coef_bits_latch += SAVED_COEFS;
703   }
704 
705   return smoothing_useful;
706 }
707 
708 
709 /*
710  * Variant of decompress_data for use when doing block smoothing.
711  */
712 
713 METHODDEF(int)
decompress_smooth_data(j_decompress_ptr cinfo,JSAMPIMAGE output_buf)714 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
715 {
716   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
717   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
718   JDIMENSION block_num, last_block_column;
719   int ci, block_row, block_rows, access_rows;
720   JBLOCKARRAY buffer;
721   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
722   JSAMPARRAY output_ptr;
723   JDIMENSION output_col;
724   jpeg_component_info *compptr;
725   inverse_DCT_method_ptr inverse_DCT;
726   boolean first_row, last_row;
727   JBLOCK workspace;
728   int *coef_bits;
729   JQUANT_TBL *quanttbl;
730   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
731   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
732   int Al, pred;
733 
734   /* Force some input to be done if we are getting ahead of the input. */
735   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
736 	 ! cinfo->inputctl->eoi_reached) {
737     if (cinfo->input_scan_number == cinfo->output_scan_number) {
738       /* If input is working on current scan, we ordinarily want it to
739        * have completed the current row.  But if input scan is DC,
740        * we want it to keep one row ahead so that next block row's DC
741        * values are up to date.
742        */
743       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
744       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
745 	break;
746     }
747     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
748       return JPEG_SUSPENDED;
749   }
750 
751   /* OK, output from the virtual arrays. */
752   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
753        ci++, compptr++) {
754     /* Don't bother to IDCT an uninteresting component. */
755     if (! compptr->component_needed)
756       continue;
757     /* Count non-dummy DCT block rows in this iMCU row. */
758     if (cinfo->output_iMCU_row < last_iMCU_row) {
759       block_rows = compptr->v_samp_factor;
760       access_rows = block_rows * 2; /* this and next iMCU row */
761       last_row = FALSE;
762     } else {
763       /* NB: can't use last_row_height here; it is input-side-dependent! */
764       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
765       if (block_rows == 0) block_rows = compptr->v_samp_factor;
766       access_rows = block_rows; /* this iMCU row only */
767       last_row = TRUE;
768     }
769     /* Align the virtual buffer for this component. */
770     if (cinfo->output_iMCU_row > 0) {
771       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
772       buffer = (*cinfo->mem->access_virt_barray)
773 	((j_common_ptr) cinfo, coef->whole_image[ci],
774 	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
775 	 (JDIMENSION) access_rows, FALSE);
776       buffer += compptr->v_samp_factor;	/* point to current iMCU row */
777       first_row = FALSE;
778     } else {
779       buffer = (*cinfo->mem->access_virt_barray)
780 	((j_common_ptr) cinfo, coef->whole_image[ci],
781 	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
782       first_row = TRUE;
783     }
784     /* Fetch component-dependent info */
785     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
786     quanttbl = compptr->quant_table;
787     Q00 = quanttbl->quantval[0];
788     Q01 = quanttbl->quantval[Q01_POS];
789     Q10 = quanttbl->quantval[Q10_POS];
790     Q20 = quanttbl->quantval[Q20_POS];
791     Q11 = quanttbl->quantval[Q11_POS];
792     Q02 = quanttbl->quantval[Q02_POS];
793     inverse_DCT = cinfo->idct->inverse_DCT[ci];
794     output_ptr = output_buf[ci];
795     /* Loop over all DCT blocks to be processed. */
796     for (block_row = 0; block_row < block_rows; block_row++) {
797       buffer_ptr = buffer[block_row];
798       if (first_row && block_row == 0)
799 	prev_block_row = buffer_ptr;
800       else
801 	prev_block_row = buffer[block_row-1];
802       if (last_row && block_row == block_rows-1)
803 	next_block_row = buffer_ptr;
804       else
805 	next_block_row = buffer[block_row+1];
806       /* We fetch the surrounding DC values using a sliding-register approach.
807        * Initialize all nine here so as to do the right thing on narrow pics.
808        */
809       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
810       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
811       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
812       output_col = 0;
813       last_block_column = compptr->width_in_blocks - 1;
814       for (block_num = 0; block_num <= last_block_column; block_num++) {
815 	/* Fetch current DCT block into workspace so we can modify it. */
816 	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
817 	/* Update DC values */
818 	if (block_num < last_block_column) {
819 	  DC3 = (int) prev_block_row[1][0];
820 	  DC6 = (int) buffer_ptr[1][0];
821 	  DC9 = (int) next_block_row[1][0];
822 	}
823 	/* Compute coefficient estimates per K.8.
824 	 * An estimate is applied only if coefficient is still zero,
825 	 * and is not known to be fully accurate.
826 	 */
827 	/* AC01 */
828 	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
829 	  num = 36 * Q00 * (DC4 - DC6);
830 	  if (num >= 0) {
831 	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
832 	    if (Al > 0 && pred >= (1<<Al))
833 	      pred = (1<<Al)-1;
834 	  } else {
835 	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
836 	    if (Al > 0 && pred >= (1<<Al))
837 	      pred = (1<<Al)-1;
838 	    pred = -pred;
839 	  }
840 	  workspace[1] = (JCOEF) pred;
841 	}
842 	/* AC10 */
843 	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
844 	  num = 36 * Q00 * (DC2 - DC8);
845 	  if (num >= 0) {
846 	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
847 	    if (Al > 0 && pred >= (1<<Al))
848 	      pred = (1<<Al)-1;
849 	  } else {
850 	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
851 	    if (Al > 0 && pred >= (1<<Al))
852 	      pred = (1<<Al)-1;
853 	    pred = -pred;
854 	  }
855 	  workspace[8] = (JCOEF) pred;
856 	}
857 	/* AC20 */
858 	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
859 	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
860 	  if (num >= 0) {
861 	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
862 	    if (Al > 0 && pred >= (1<<Al))
863 	      pred = (1<<Al)-1;
864 	  } else {
865 	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
866 	    if (Al > 0 && pred >= (1<<Al))
867 	      pred = (1<<Al)-1;
868 	    pred = -pred;
869 	  }
870 	  workspace[16] = (JCOEF) pred;
871 	}
872 	/* AC11 */
873 	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
874 	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
875 	  if (num >= 0) {
876 	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
877 	    if (Al > 0 && pred >= (1<<Al))
878 	      pred = (1<<Al)-1;
879 	  } else {
880 	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
881 	    if (Al > 0 && pred >= (1<<Al))
882 	      pred = (1<<Al)-1;
883 	    pred = -pred;
884 	  }
885 	  workspace[9] = (JCOEF) pred;
886 	}
887 	/* AC02 */
888 	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
889 	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
890 	  if (num >= 0) {
891 	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
892 	    if (Al > 0 && pred >= (1<<Al))
893 	      pred = (1<<Al)-1;
894 	  } else {
895 	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
896 	    if (Al > 0 && pred >= (1<<Al))
897 	      pred = (1<<Al)-1;
898 	    pred = -pred;
899 	  }
900 	  workspace[2] = (JCOEF) pred;
901 	}
902 	/* OK, do the IDCT */
903 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
904 			output_ptr, output_col);
905 	/* Advance for next column */
906 	DC1 = DC2; DC2 = DC3;
907 	DC4 = DC5; DC5 = DC6;
908 	DC7 = DC8; DC8 = DC9;
909 	buffer_ptr++, prev_block_row++, next_block_row++;
910 	output_col += compptr->DCT_scaled_size;
911       }
912       output_ptr += compptr->DCT_scaled_size;
913     }
914   }
915 
916   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
917     return JPEG_ROW_COMPLETED;
918   return JPEG_SCAN_COMPLETED;
919 }
920 
921 #endif /* BLOCK_SMOOTHING_SUPPORTED */
922 
923 
924 /*
925  * Initialize coefficient buffer controller.
926  */
927 
928 GLOBAL(void)
jinit_d_coef_controller(j_decompress_ptr cinfo,boolean need_full_buffer)929 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
930 {
931   my_coef_ptr coef;
932 
933   coef = (my_coef_ptr)
934     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
935 				SIZEOF(my_coef_controller));
936   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
937   coef->pub.start_input_pass = start_input_pass;
938   coef->pub.start_output_pass = start_output_pass;
939   coef->pub.column_left_boundary = 0;
940   coef->pub.column_right_boundary = 0;
941   coef->pub.MCU_columns_to_skip = 0;
942 #ifdef BLOCK_SMOOTHING_SUPPORTED
943   coef->coef_bits_latch = NULL;
944 #endif
945 
946 #ifdef ANDROID_TILE_BASED_DECODE
947   if (cinfo->tile_decode) {
948     if (cinfo->progressive_mode) {
949       /* Allocate one iMCU row virtual array, coef->whole_image[ci],
950        * for each color component, padded to a multiple of h_samp_factor
951        * DCT blocks in the horizontal direction.
952        */
953       int ci, access_rows;
954       jpeg_component_info *compptr;
955 
956       for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
957 	   ci++, compptr++) {
958         access_rows = compptr->v_samp_factor;
959         coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
960 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
961 	   (JDIMENSION) jround_up((long) compptr->width_in_blocks,
962 				(long) compptr->h_samp_factor),
963 	   (JDIMENSION) compptr->v_samp_factor, // one iMCU row
964 	   (JDIMENSION) access_rows);
965       }
966       coef->pub.consume_data_build_huffman_index =
967             consume_data_build_huffman_index_progressive;
968       coef->pub.consume_data = consume_data_multi_scan;
969       coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
970       coef->pub.decompress_data = decompress_onepass;
971     } else {
972       /* We only need a single-MCU buffer. */
973       JBLOCKROW buffer;
974       int i;
975 
976       buffer = (JBLOCKROW)
977       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
978 				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
979       for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
980         coef->MCU_buffer[i] = buffer + i;
981       }
982       coef->pub.consume_data_build_huffman_index =
983             consume_data_build_huffman_index_baseline;
984       coef->pub.consume_data = dummy_consume_data;
985       coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
986       coef->pub.decompress_data = decompress_onepass;
987     }
988     return;
989   }
990 #endif
991 
992   /* Create the coefficient buffer. */
993   if (need_full_buffer) {
994 #ifdef D_MULTISCAN_FILES_SUPPORTED
995     /* Allocate a full-image virtual array for each component, */
996     /* padded to a multiple of samp_factor DCT blocks in each direction. */
997     /* Note we ask for a pre-zeroed array. */
998     int ci, access_rows;
999     jpeg_component_info *compptr;
1000 
1001     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
1002 	 ci++, compptr++) {
1003       access_rows = compptr->v_samp_factor;
1004 #ifdef BLOCK_SMOOTHING_SUPPORTED
1005       /* If block smoothing could be used, need a bigger window */
1006       if (cinfo->progressive_mode)
1007 	access_rows *= 3;
1008 #endif
1009       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
1010 	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
1011 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
1012 				(long) compptr->h_samp_factor),
1013 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
1014 				(long) compptr->v_samp_factor),
1015 	 (JDIMENSION) access_rows);
1016     }
1017     coef->pub.consume_data = consume_data;
1018     coef->pub.decompress_data = decompress_data;
1019     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
1020 #else
1021     ERREXIT(cinfo, JERR_NOT_COMPILED);
1022 #endif
1023   } else {
1024     /* We only need a single-MCU buffer. */
1025     JBLOCKROW buffer;
1026     int i;
1027 
1028     buffer = (JBLOCKROW)
1029       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1030 		  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
1031     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
1032       coef->MCU_buffer[i] = buffer + i;
1033     }
1034     coef->pub.consume_data = dummy_consume_data;
1035     coef->pub.decompress_data = decompress_onepass;
1036     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
1037   }
1038 }
1039