1 /*
2  * jdphuff.c
3  *
4  * Copyright (C) 1995-1997, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains Huffman entropy decoding routines for progressive JPEG.
9  *
10  * Much of the complexity here has to do with supporting input suspension.
11  * If the data source module demands suspension, we want to be able to back
12  * up to the start of the current MCU.  To do this, we copy state variables
13  * into local working storage, and update them back to the permanent
14  * storage only upon successful completion of an MCU.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jdhuff.h"		/* Declarations shared with jdhuff.c */
21 
22 
23 #ifdef D_PROGRESSIVE_SUPPORTED
24 
25 /*
26  * Expanded entropy decoder object for progressive Huffman decoding.
27  *
28  * The savable_state subrecord contains fields that change within an MCU,
29  * but must not be updated permanently until we complete the MCU.
30  */
31 
32 typedef struct {
33   unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
34   int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
35 } savable_state;
36 
37 /* This macro is to work around compilers with missing or broken
38  * structure assignment.  You'll need to fix this code if you have
39  * such a compiler and you change MAX_COMPS_IN_SCAN.
40  */
41 
42 #ifndef NO_STRUCT_ASSIGN
43 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
44 #else
45 #if MAX_COMPS_IN_SCAN == 4
46 #define ASSIGN_STATE(dest,src)  \
47 	((dest).EOBRUN = (src).EOBRUN, \
48 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
49 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
50 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
51 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
52 #endif
53 #endif
54 
55 
56 typedef struct {
57   struct jpeg_entropy_decoder pub; /* public fields */
58 
59   /* These fields are loaded into local variables at start of each MCU.
60    * In case of suspension, we exit WITHOUT updating them.
61    */
62   bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
63   savable_state saved;		/* Other state at start of MCU */
64 
65   /* These fields are NOT loaded into local working state. */
66   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
67 
68   /* Pointers to derived tables (these workspaces have image lifespan) */
69   d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
70 
71   d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
72 } phuff_entropy_decoder;
73 
74 typedef phuff_entropy_decoder * phuff_entropy_ptr;
75 
76 /* Forward declarations */
77 METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
78 					    JBLOCKROW *MCU_data));
79 METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
80 					    JBLOCKROW *MCU_data));
81 METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
82 					     JBLOCKROW *MCU_data));
83 METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
84 					     JBLOCKROW *MCU_data));
85 
86 /*
87  * Initialize for a Huffman-compressed scan.
88  */
89 
90 METHODDEF(void)
start_pass_phuff_decoder(j_decompress_ptr cinfo)91 start_pass_phuff_decoder (j_decompress_ptr cinfo)
92 {
93   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
94   boolean is_DC_band, bad;
95   int ci, coefi, tbl;
96   int *coef_bit_ptr;
97   jpeg_component_info * compptr;
98 
99   is_DC_band = (cinfo->Ss == 0);
100 
101   /* Validate scan parameters */
102   bad = FALSE;
103   if (is_DC_band) {
104     if (cinfo->Se != 0)
105       bad = TRUE;
106   } else {
107     /* need not check Ss/Se < 0 since they came from unsigned bytes */
108     if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
109       bad = TRUE;
110     /* AC scans may have only one component */
111     if (cinfo->comps_in_scan != 1)
112       bad = TRUE;
113   }
114   if (cinfo->Ah != 0) {
115     /* Successive approximation refinement scan: must have Al = Ah-1. */
116     if (cinfo->Al != cinfo->Ah-1)
117       bad = TRUE;
118   }
119   if (cinfo->Al > 13)		/* need not check for < 0 */
120     bad = TRUE;
121   /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
122    * but the spec doesn't say so, and we try to be liberal about what we
123    * accept.  Note: large Al values could result in out-of-range DC
124    * coefficients during early scans, leading to bizarre displays due to
125    * overflows in the IDCT math.  But we won't crash.
126    */
127   if (bad)
128     ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
129 	     cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
130   /* Update progression status, and verify that scan order is legal.
131    * Note that inter-scan inconsistencies are treated as warnings
132    * not fatal errors ... not clear if this is right way to behave.
133    */
134   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
135     int cindex = cinfo->cur_comp_info[ci]->component_index;
136     coef_bit_ptr = & cinfo->coef_bits[cindex][0];
137     if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
138       WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
139     for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
140       int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
141       if (cinfo->Ah != expected)
142 	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
143       coef_bit_ptr[coefi] = cinfo->Al;
144     }
145   }
146 
147   /* Select MCU decoding routine */
148   if (cinfo->Ah == 0) {
149     if (is_DC_band)
150       entropy->pub.decode_mcu = decode_mcu_DC_first;
151     else
152       entropy->pub.decode_mcu = decode_mcu_AC_first;
153   } else {
154     if (is_DC_band)
155       entropy->pub.decode_mcu = decode_mcu_DC_refine;
156     else
157       entropy->pub.decode_mcu = decode_mcu_AC_refine;
158   }
159 
160   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
161     compptr = cinfo->cur_comp_info[ci];
162     /* Make sure requested tables are present, and compute derived tables.
163      * We may build same derived table more than once, but it's not expensive.
164      */
165     if (is_DC_band) {
166       if (cinfo->Ah == 0) {	/* DC refinement needs no table */
167 	tbl = compptr->dc_tbl_no;
168 	jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
169 				& entropy->derived_tbls[tbl]);
170       }
171     } else {
172       tbl = compptr->ac_tbl_no;
173       jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
174 			      & entropy->derived_tbls[tbl]);
175       /* remember the single active table */
176       entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
177     }
178     /* Initialize DC predictions to 0 */
179     entropy->saved.last_dc_val[ci] = 0;
180   }
181 
182   /* Initialize bitread state variables */
183   entropy->bitstate.bits_left = 0;
184   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
185   entropy->pub.insufficient_data = FALSE;
186 
187   /* Initialize private state variables */
188   entropy->saved.EOBRUN = 0;
189 
190   /* Initialize restart counter */
191   entropy->restarts_to_go = cinfo->restart_interval;
192 }
193 
194 
195 /*
196  * Figure F.12: extend sign bit.
197  * On some machines, a shift and add will be faster than a table lookup.
198  */
199 
200 #ifdef AVOID_TABLES
201 
202 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
203 
204 #else
205 
206 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
207 
208 static const int extend_test[16] =   /* entry n is 2**(n-1) */
209   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
210     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
211 
212 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
213   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
214     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
215     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
216     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
217 
218 #endif /* AVOID_TABLES */
219 
220 
221 /*
222  * Check for a restart marker & resynchronize decoder.
223  * Returns FALSE if must suspend.
224  */
225 
226 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)227 process_restart (j_decompress_ptr cinfo)
228 {
229   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
230   int ci;
231 
232   /* Throw away any unused bits remaining in bit buffer; */
233   /* include any full bytes in next_marker's count of discarded bytes */
234   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
235   entropy->bitstate.bits_left = 0;
236 
237   /* Advance past the RSTn marker */
238   if (! (*cinfo->marker->read_restart_marker) (cinfo))
239     return FALSE;
240 
241   /* Re-initialize DC predictions to 0 */
242   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
243     entropy->saved.last_dc_val[ci] = 0;
244   /* Re-init EOB run count, too */
245   entropy->saved.EOBRUN = 0;
246 
247   /* Reset restart counter */
248   entropy->restarts_to_go = cinfo->restart_interval;
249 
250   /* Reset out-of-data flag, unless read_restart_marker left us smack up
251    * against a marker.  In that case we will end up treating the next data
252    * segment as empty, and we can avoid producing bogus output pixels by
253    * leaving the flag set.
254    */
255   if (cinfo->unread_marker == 0)
256     entropy->pub.insufficient_data = FALSE;
257 
258   return TRUE;
259 }
260 
261 
262 /*
263  * Huffman MCU decoding.
264  * Each of these routines decodes and returns one MCU's worth of
265  * Huffman-compressed coefficients.
266  * The coefficients are reordered from zigzag order into natural array order,
267  * but are not dequantized.
268  *
269  * The i'th block of the MCU is stored into the block pointed to by
270  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
271  *
272  * We return FALSE if data source requested suspension.  In that case no
273  * changes have been made to permanent state.  (Exception: some output
274  * coefficients may already have been assigned.  This is harmless for
275  * spectral selection, since we'll just re-assign them on the next call.
276  * Successive approximation AC refinement has to be more careful, however.)
277  */
278 
279 /*
280  * MCU decoding for DC initial scan (either spectral selection,
281  * or first pass of successive approximation).
282  */
283 
284 METHODDEF(boolean)
decode_mcu_DC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)285 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
286 {
287   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
288   int Al = cinfo->Al;
289   register int s, r;
290   int blkn, ci;
291   JBLOCKROW block;
292   BITREAD_STATE_VARS;
293   savable_state state;
294   d_derived_tbl * tbl;
295   jpeg_component_info * compptr;
296 
297   /* Process restart marker if needed; may have to suspend */
298   if (cinfo->restart_interval) {
299     if (entropy->restarts_to_go == 0)
300       if (! process_restart(cinfo))
301 	return FALSE;
302   }
303 
304   /* If we've run out of data, just leave the MCU set to zeroes.
305    * This way, we return uniform gray for the remainder of the segment.
306    */
307   if (! entropy->pub.insufficient_data) {
308 
309     /* Load up working state */
310     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
311     ASSIGN_STATE(state, entropy->saved);
312 
313     /* Outer loop handles each block in the MCU */
314 
315     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
316       block = MCU_data[blkn];
317       ci = cinfo->MCU_membership[blkn];
318       compptr = cinfo->cur_comp_info[ci];
319       tbl = entropy->derived_tbls[compptr->dc_tbl_no];
320 
321       /* Decode a single block's worth of coefficients */
322 
323       /* Section F.2.2.1: decode the DC coefficient difference */
324       HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
325       if (s) {
326 	CHECK_BIT_BUFFER(br_state, s, return FALSE);
327 	r = GET_BITS(s);
328 	s = HUFF_EXTEND(r, s);
329       }
330 
331       /* Convert DC difference to actual value, update last_dc_val */
332       s += state.last_dc_val[ci];
333       state.last_dc_val[ci] = s;
334       /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
335       (*block)[0] = (JCOEF) (s << Al);
336     }
337 
338     /* Completed MCU, so update state */
339     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
340     ASSIGN_STATE(entropy->saved, state);
341   }
342 
343   /* Account for restart interval (no-op if not using restarts) */
344   entropy->restarts_to_go--;
345 
346   return TRUE;
347 }
348 
349 
350 /*
351  * MCU decoding for AC initial scan (either spectral selection,
352  * or first pass of successive approximation).
353  */
354 
355 METHODDEF(boolean)
decode_mcu_AC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)356 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
357 {
358   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
359   int Se = cinfo->Se;
360   int Al = cinfo->Al;
361   register int s, k, r;
362   unsigned int EOBRUN;
363   JBLOCKROW block;
364   BITREAD_STATE_VARS;
365   d_derived_tbl * tbl;
366 
367   /* Process restart marker if needed; may have to suspend */
368   if (cinfo->restart_interval) {
369     if (entropy->restarts_to_go == 0)
370       if (! process_restart(cinfo))
371 	return FALSE;
372   }
373 
374   /* If we've run out of data, just leave the MCU set to zeroes.
375    * This way, we return uniform gray for the remainder of the segment.
376    */
377   if (! entropy->pub.insufficient_data) {
378 
379     /* Load up working state.
380      * We can avoid loading/saving bitread state if in an EOB run.
381      */
382     EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */
383 
384     /* There is always only one block per MCU */
385 
386     if (EOBRUN > 0)		/* if it's a band of zeroes... */
387       EOBRUN--;			/* ...process it now (we do nothing) */
388     else {
389       BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
390       block = MCU_data[0];
391       tbl = entropy->ac_derived_tbl;
392 
393       for (k = cinfo->Ss; k <= Se; k++) {
394 	HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
395 	r = s >> 4;
396 	s &= 15;
397 	if (s) {
398 	  k += r;
399 	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
400 	  r = GET_BITS(s);
401 	  s = HUFF_EXTEND(r, s);
402 	  /* Scale and output coefficient in natural (dezigzagged) order */
403 	  (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
404 	} else {
405 	  if (r == 15) {	/* ZRL */
406 	    k += 15;		/* skip 15 zeroes in band */
407 	  } else {		/* EOBr, run length is 2^r + appended bits */
408 	    EOBRUN = 1 << r;
409 	    if (r) {		/* EOBr, r > 0 */
410 	      CHECK_BIT_BUFFER(br_state, r, return FALSE);
411 	      r = GET_BITS(r);
412 	      EOBRUN += r;
413 	    }
414 	    EOBRUN--;		/* this band is processed at this moment */
415 	    break;		/* force end-of-band */
416 	  }
417 	}
418       }
419 
420       BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
421     }
422 
423     /* Completed MCU, so update state */
424     entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
425   }
426 
427   /* Account for restart interval (no-op if not using restarts) */
428   entropy->restarts_to_go--;
429 
430   return TRUE;
431 }
432 
433 
434 /*
435  * MCU decoding for DC successive approximation refinement scan.
436  * Note: we assume such scans can be multi-component, although the spec
437  * is not very clear on the point.
438  */
439 
440 METHODDEF(boolean)
decode_mcu_DC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)441 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
442 {
443   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
444   int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
445   int blkn;
446   JBLOCKROW block;
447   BITREAD_STATE_VARS;
448 
449   /* Process restart marker if needed; may have to suspend */
450   if (cinfo->restart_interval) {
451     if (entropy->restarts_to_go == 0)
452       if (! process_restart(cinfo))
453 	return FALSE;
454   }
455 
456   /* Not worth the cycles to check insufficient_data here,
457    * since we will not change the data anyway if we read zeroes.
458    */
459 
460   /* Load up working state */
461   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
462 
463   /* Outer loop handles each block in the MCU */
464 
465   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
466     block = MCU_data[blkn];
467 
468     /* Encoded data is simply the next bit of the two's-complement DC value */
469     CHECK_BIT_BUFFER(br_state, 1, return FALSE);
470     if (GET_BITS(1))
471       (*block)[0] |= p1;
472     /* Note: since we use |=, repeating the assignment later is safe */
473   }
474 
475   /* Completed MCU, so update state */
476   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
477 
478   /* Account for restart interval (no-op if not using restarts) */
479   entropy->restarts_to_go--;
480 
481   return TRUE;
482 }
483 
484 
485 /*
486  * MCU decoding for AC successive approximation refinement scan.
487  */
488 
489 METHODDEF(boolean)
decode_mcu_AC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)490 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
491 {
492   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
493   int Se = cinfo->Se;
494   int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
495   int m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
496   register int s, k, r;
497   unsigned int EOBRUN;
498   JBLOCKROW block;
499   JCOEFPTR thiscoef;
500   BITREAD_STATE_VARS;
501   d_derived_tbl * tbl;
502   int num_newnz;
503   int newnz_pos[DCTSIZE2];
504 
505   /* Process restart marker if needed; may have to suspend */
506   if (cinfo->restart_interval) {
507     if (entropy->restarts_to_go == 0)
508       if (! process_restart(cinfo))
509 	return FALSE;
510   }
511 
512   /* If we've run out of data, don't modify the MCU.
513    */
514   if (! entropy->pub.insufficient_data) {
515 
516     /* Load up working state */
517     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
518     EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
519 
520     /* There is always only one block per MCU */
521     block = MCU_data[0];
522     tbl = entropy->ac_derived_tbl;
523 
524     /* If we are forced to suspend, we must undo the assignments to any newly
525      * nonzero coefficients in the block, because otherwise we'd get confused
526      * next time about which coefficients were already nonzero.
527      * But we need not undo addition of bits to already-nonzero coefficients;
528      * instead, we can test the current bit to see if we already did it.
529      */
530     num_newnz = 0;
531 
532     /* initialize coefficient loop counter to start of band */
533     k = cinfo->Ss;
534 
535     if (EOBRUN == 0) {
536       for (; k <= Se; k++) {
537 	HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
538 	r = s >> 4;
539 	s &= 15;
540 	if (s) {
541 	  if (s != 1)		/* size of new coef should always be 1 */
542 	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
543 	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
544 	  if (GET_BITS(1))
545 	    s = p1;		/* newly nonzero coef is positive */
546 	  else
547 	    s = m1;		/* newly nonzero coef is negative */
548 	} else {
549 	  if (r != 15) {
550 	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
551 	    if (r) {
552 	      CHECK_BIT_BUFFER(br_state, r, goto undoit);
553 	      r = GET_BITS(r);
554 	      EOBRUN += r;
555 	    }
556 	    break;		/* rest of block is handled by EOB logic */
557 	  }
558 	  /* note s = 0 for processing ZRL */
559 	}
560 	/* Advance over already-nonzero coefs and r still-zero coefs,
561 	 * appending correction bits to the nonzeroes.  A correction bit is 1
562 	 * if the absolute value of the coefficient must be increased.
563 	 */
564 	do {
565 	  thiscoef = *block + jpeg_natural_order[k];
566 	  if (*thiscoef != 0) {
567 	    CHECK_BIT_BUFFER(br_state, 1, goto undoit);
568 	    if (GET_BITS(1)) {
569 	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
570 		if (*thiscoef >= 0)
571 		  *thiscoef += p1;
572 		else
573 		  *thiscoef += m1;
574 	      }
575 	    }
576 	  } else {
577 	    if (--r < 0)
578 	      break;		/* reached target zero coefficient */
579 	  }
580 	  k++;
581 	} while (k <= Se);
582 	if (s) {
583 	  int pos = jpeg_natural_order[k];
584 	  /* Output newly nonzero coefficient */
585 	  (*block)[pos] = (JCOEF) s;
586 	  /* Remember its position in case we have to suspend */
587 	  newnz_pos[num_newnz++] = pos;
588 	}
589       }
590     }
591 
592     if (EOBRUN > 0) {
593       /* Scan any remaining coefficient positions after the end-of-band
594        * (the last newly nonzero coefficient, if any).  Append a correction
595        * bit to each already-nonzero coefficient.  A correction bit is 1
596        * if the absolute value of the coefficient must be increased.
597        */
598       for (; k <= Se; k++) {
599 	thiscoef = *block + jpeg_natural_order[k];
600 	if (*thiscoef != 0) {
601 	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
602 	  if (GET_BITS(1)) {
603 	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
604 	      if (*thiscoef >= 0)
605 		*thiscoef += p1;
606 	      else
607 		*thiscoef += m1;
608 	    }
609 	  }
610 	}
611       }
612       /* Count one block completed in EOB run */
613       EOBRUN--;
614     }
615 
616     /* Completed MCU, so update state */
617     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
618     entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
619   }
620 
621   /* Account for restart interval (no-op if not using restarts) */
622   entropy->restarts_to_go--;
623 
624   return TRUE;
625 
626 undoit:
627   /* Re-zero any output coefficients that we made newly nonzero */
628   while (num_newnz > 0)
629     (*block)[newnz_pos[--num_newnz]] = 0;
630 
631   return FALSE;
632 }
633 
634 /*
635  * Save the current Huffman decoder position and the bit buffer
636  * into bitstream_offset and get_buffer, respectively.
637  */
638 GLOBAL(void)
jpeg_get_huffman_decoder_configuration_progressive(j_decompress_ptr cinfo,huffman_offset_data * offset)639 jpeg_get_huffman_decoder_configuration_progressive(j_decompress_ptr cinfo,
640         huffman_offset_data *offset)
641 {
642   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
643 
644   if (cinfo->restart_interval) {
645     // We are at the end of a data segment
646     if (entropy->restarts_to_go == 0)
647       if (! process_restart(cinfo))
648 	return;
649   }
650 
651   // Save restarts_to_go and next_restart_num.
652   offset->restarts_to_go = (unsigned short) entropy->restarts_to_go;
653   offset->next_restart_num = cinfo->marker->next_restart_num;
654 
655   offset->bitstream_offset =
656       (jget_input_stream_position(cinfo) << LOG_TWO_BIT_BUF_SIZE)
657       + entropy->bitstate.bits_left;
658 
659   offset->get_buffer = entropy->bitstate.get_buffer;
660 }
661 
662 /*
663  * Save the current Huffman deocde position and the DC coefficients
664  * for each component into bitstream_offset and dc_info[], respectively.
665  */
666 METHODDEF(void)
get_huffman_decoder_configuration(j_decompress_ptr cinfo,huffman_offset_data * offset)667 get_huffman_decoder_configuration(j_decompress_ptr cinfo,
668         huffman_offset_data *offset)
669 {
670   int i;
671   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
672   jpeg_get_huffman_decoder_configuration_progressive(cinfo, offset);
673   offset->EOBRUN = entropy->saved.EOBRUN;
674   for (i = 0; i < cinfo->comps_in_scan; i++)
675     offset->prev_dc[i] = entropy->saved.last_dc_val[i];
676 }
677 
678 /*
679  * Configure the Huffman decoder reader position and bit buffer.
680  */
681 GLOBAL(void)
jpeg_configure_huffman_decoder_progressive(j_decompress_ptr cinfo,huffman_offset_data offset)682 jpeg_configure_huffman_decoder_progressive(j_decompress_ptr cinfo,
683         huffman_offset_data offset)
684 {
685 	phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
686 
687   // Restore restarts_to_go and next_restart_num
688   cinfo->unread_marker = 0;
689   entropy->restarts_to_go = offset.restarts_to_go;
690   cinfo->marker->next_restart_num = offset.next_restart_num;
691 
692   unsigned int bitstream_offset = offset.bitstream_offset;
693   int blkn, i;
694 
695   unsigned int byte_offset = bitstream_offset >> LOG_TWO_BIT_BUF_SIZE;
696   unsigned int bit_in_bit_buffer =
697       bitstream_offset & ((1 << LOG_TWO_BIT_BUF_SIZE) - 1);
698 
699   jset_input_stream_position_bit(cinfo, byte_offset,
700           bit_in_bit_buffer, offset.get_buffer);
701 }
702 
703 /*
704  * Configure the Huffman decoder to decode the image
705  * starting from (iMCU_row_offset, iMCU_col_offset).
706  */
707 METHODDEF(void)
configure_huffman_decoder(j_decompress_ptr cinfo,huffman_offset_data offset)708 configure_huffman_decoder(j_decompress_ptr cinfo, huffman_offset_data offset)
709 {
710   int i;
711   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
712   jpeg_configure_huffman_decoder_progressive(cinfo, offset);
713   entropy->saved.EOBRUN = offset.EOBRUN;
714   for (i = 0; i < cinfo->comps_in_scan; i++)
715     entropy->saved.last_dc_val[i] = offset.prev_dc[i];
716 }
717 
718 GLOBAL(void)
jpeg_configure_huffman_index_scan(j_decompress_ptr cinfo,huffman_index * index,int scan_no,int offset)719 jpeg_configure_huffman_index_scan(j_decompress_ptr cinfo,
720         huffman_index *index, int scan_no, int offset)
721 {
722   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
723   if (scan_no >= index->scan_count) {
724     index->scan = realloc(index->scan,
725                     (scan_no + 1) * sizeof(huffman_scan_header));
726     index->mem_used += (scan_no - index->scan_count + 1)
727       * (sizeof(huffman_scan_header) + cinfo->total_iMCU_rows
728       * sizeof(huffman_offset_data*));
729     index->scan_count = scan_no + 1;
730   }
731   index->scan[scan_no].offset = (huffman_offset_data**)malloc(
732           cinfo->total_iMCU_rows * sizeof(huffman_offset_data*));
733   index->scan[scan_no].bitstream_offset = offset;
734 }
735 
736 /*
737  * Module initialization routine for progressive Huffman entropy decoding.
738  */
739 GLOBAL(void)
jinit_phuff_decoder(j_decompress_ptr cinfo)740 jinit_phuff_decoder (j_decompress_ptr cinfo)
741 {
742   phuff_entropy_ptr entropy;
743   int *coef_bit_ptr;
744   int ci, i;
745 
746   entropy = (phuff_entropy_ptr)
747     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
748 				SIZEOF(phuff_entropy_decoder));
749   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
750   entropy->pub.start_pass = start_pass_phuff_decoder;
751   entropy->pub.configure_huffman_decoder = configure_huffman_decoder;
752   entropy->pub.get_huffman_decoder_configuration =
753         get_huffman_decoder_configuration;
754 
755   /* Mark derived tables unallocated */
756   for (i = 0; i < NUM_HUFF_TBLS; i++) {
757     entropy->derived_tbls[i] = NULL;
758   }
759 
760   /* Create progression status table */
761   cinfo->coef_bits = (int (*)[DCTSIZE2])
762     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
763 				cinfo->num_components*DCTSIZE2*SIZEOF(int));
764   coef_bit_ptr = & cinfo->coef_bits[0][0];
765   for (ci = 0; ci < cinfo->num_components; ci++)
766     for (i = 0; i < DCTSIZE2; i++)
767       *coef_bit_ptr++ = -1;
768 }
769 
770 #endif /* D_PROGRESSIVE_SUPPORTED */
771