1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell =
41         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42     Builder.CreateStore(Value, Cell);
43   }
44 }
45 
isAggregateTypeForABI(QualType T)46 static bool isAggregateTypeForABI(QualType T) {
47   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48          T->isMemberFunctionPointerType();
49 }
50 
~ABIInfo()51 ABIInfo::~ABIInfo() {}
52 
getRecordArgABI(const RecordType * RT,CGCXXABI & CXXABI)53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
54                                               CGCXXABI &CXXABI) {
55   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
56   if (!RD)
57     return CGCXXABI::RAA_Default;
58   return CXXABI.getRecordArgABI(RD);
59 }
60 
getRecordArgABI(QualType T,CGCXXABI & CXXABI)61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
62                                               CGCXXABI &CXXABI) {
63   const RecordType *RT = T->getAs<RecordType>();
64   if (!RT)
65     return CGCXXABI::RAA_Default;
66   return getRecordArgABI(RT, CXXABI);
67 }
68 
69 /// Pass transparent unions as if they were the type of the first element. Sema
70 /// should ensure that all elements of the union have the same "machine type".
useFirstFieldIfTransparentUnion(QualType Ty)71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
72   if (const RecordType *UT = Ty->getAsUnionType()) {
73     const RecordDecl *UD = UT->getDecl();
74     if (UD->hasAttr<TransparentUnionAttr>()) {
75       assert(!UD->field_empty() && "sema created an empty transparent union");
76       return UD->field_begin()->getType();
77     }
78   }
79   return Ty;
80 }
81 
getCXXABI() const82 CGCXXABI &ABIInfo::getCXXABI() const {
83   return CGT.getCXXABI();
84 }
85 
getContext() const86 ASTContext &ABIInfo::getContext() const {
87   return CGT.getContext();
88 }
89 
getVMContext() const90 llvm::LLVMContext &ABIInfo::getVMContext() const {
91   return CGT.getLLVMContext();
92 }
93 
getDataLayout() const94 const llvm::DataLayout &ABIInfo::getDataLayout() const {
95   return CGT.getDataLayout();
96 }
97 
getTarget() const98 const TargetInfo &ABIInfo::getTarget() const {
99   return CGT.getTarget();
100 }
101 
isHomogeneousAggregateBaseType(QualType Ty) const102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
103   return false;
104 }
105 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
107                                                 uint64_t Members) const {
108   return false;
109 }
110 
dump() const111 void ABIArgInfo::dump() const {
112   raw_ostream &OS = llvm::errs();
113   OS << "(ABIArgInfo Kind=";
114   switch (TheKind) {
115   case Direct:
116     OS << "Direct Type=";
117     if (llvm::Type *Ty = getCoerceToType())
118       Ty->print(OS);
119     else
120       OS << "null";
121     break;
122   case Extend:
123     OS << "Extend";
124     break;
125   case Ignore:
126     OS << "Ignore";
127     break;
128   case InAlloca:
129     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
130     break;
131   case Indirect:
132     OS << "Indirect Align=" << getIndirectAlign()
133        << " ByVal=" << getIndirectByVal()
134        << " Realign=" << getIndirectRealign();
135     break;
136   case Expand:
137     OS << "Expand";
138     break;
139   }
140   OS << ")\n";
141 }
142 
~TargetCodeGenInfo()143 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
144 
145 // If someone can figure out a general rule for this, that would be great.
146 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const147 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
148   // Verified for:
149   //   x86-64     FreeBSD, Linux, Darwin
150   //   x86-32     FreeBSD, Linux, Darwin
151   //   PowerPC    Linux, Darwin
152   //   ARM        Darwin (*not* EABI)
153   //   AArch64    Linux
154   return 32;
155 }
156 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const157 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
158                                      const FunctionNoProtoType *fnType) const {
159   // The following conventions are known to require this to be false:
160   //   x86_stdcall
161   //   MIPS
162   // For everything else, we just prefer false unless we opt out.
163   return false;
164 }
165 
166 void
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const167 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
168                                              llvm::SmallString<24> &Opt) const {
169   // This assumes the user is passing a library name like "rt" instead of a
170   // filename like "librt.a/so", and that they don't care whether it's static or
171   // dynamic.
172   Opt = "-l";
173   Opt += Lib;
174 }
175 
176 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
177 
178 /// isEmptyField - Return true iff a the field is "empty", that is it
179 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)180 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
181                          bool AllowArrays) {
182   if (FD->isUnnamedBitfield())
183     return true;
184 
185   QualType FT = FD->getType();
186 
187   // Constant arrays of empty records count as empty, strip them off.
188   // Constant arrays of zero length always count as empty.
189   if (AllowArrays)
190     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
191       if (AT->getSize() == 0)
192         return true;
193       FT = AT->getElementType();
194     }
195 
196   const RecordType *RT = FT->getAs<RecordType>();
197   if (!RT)
198     return false;
199 
200   // C++ record fields are never empty, at least in the Itanium ABI.
201   //
202   // FIXME: We should use a predicate for whether this behavior is true in the
203   // current ABI.
204   if (isa<CXXRecordDecl>(RT->getDecl()))
205     return false;
206 
207   return isEmptyRecord(Context, FT, AllowArrays);
208 }
209 
210 /// isEmptyRecord - Return true iff a structure contains only empty
211 /// fields. Note that a structure with a flexible array member is not
212 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)213 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
214   const RecordType *RT = T->getAs<RecordType>();
215   if (!RT)
216     return 0;
217   const RecordDecl *RD = RT->getDecl();
218   if (RD->hasFlexibleArrayMember())
219     return false;
220 
221   // If this is a C++ record, check the bases first.
222   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
223     for (const auto &I : CXXRD->bases())
224       if (!isEmptyRecord(Context, I.getType(), true))
225         return false;
226 
227   for (const auto *I : RD->fields())
228     if (!isEmptyField(Context, I, AllowArrays))
229       return false;
230   return true;
231 }
232 
233 /// isSingleElementStruct - Determine if a structure is a "single
234 /// element struct", i.e. it has exactly one non-empty field or
235 /// exactly one field which is itself a single element
236 /// struct. Structures with flexible array members are never
237 /// considered single element structs.
238 ///
239 /// \return The field declaration for the single non-empty field, if
240 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)241 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
242   const RecordType *RT = T->getAs<RecordType>();
243   if (!RT)
244     return nullptr;
245 
246   const RecordDecl *RD = RT->getDecl();
247   if (RD->hasFlexibleArrayMember())
248     return nullptr;
249 
250   const Type *Found = nullptr;
251 
252   // If this is a C++ record, check the bases first.
253   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
254     for (const auto &I : CXXRD->bases()) {
255       // Ignore empty records.
256       if (isEmptyRecord(Context, I.getType(), true))
257         continue;
258 
259       // If we already found an element then this isn't a single-element struct.
260       if (Found)
261         return nullptr;
262 
263       // If this is non-empty and not a single element struct, the composite
264       // cannot be a single element struct.
265       Found = isSingleElementStruct(I.getType(), Context);
266       if (!Found)
267         return nullptr;
268     }
269   }
270 
271   // Check for single element.
272   for (const auto *FD : RD->fields()) {
273     QualType FT = FD->getType();
274 
275     // Ignore empty fields.
276     if (isEmptyField(Context, FD, true))
277       continue;
278 
279     // If we already found an element then this isn't a single-element
280     // struct.
281     if (Found)
282       return nullptr;
283 
284     // Treat single element arrays as the element.
285     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
286       if (AT->getSize().getZExtValue() != 1)
287         break;
288       FT = AT->getElementType();
289     }
290 
291     if (!isAggregateTypeForABI(FT)) {
292       Found = FT.getTypePtr();
293     } else {
294       Found = isSingleElementStruct(FT, Context);
295       if (!Found)
296         return nullptr;
297     }
298   }
299 
300   // We don't consider a struct a single-element struct if it has
301   // padding beyond the element type.
302   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
303     return nullptr;
304 
305   return Found;
306 }
307 
is32Or64BitBasicType(QualType Ty,ASTContext & Context)308 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
309   // Treat complex types as the element type.
310   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
311     Ty = CTy->getElementType();
312 
313   // Check for a type which we know has a simple scalar argument-passing
314   // convention without any padding.  (We're specifically looking for 32
315   // and 64-bit integer and integer-equivalents, float, and double.)
316   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
317       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
318     return false;
319 
320   uint64_t Size = Context.getTypeSize(Ty);
321   return Size == 32 || Size == 64;
322 }
323 
324 /// canExpandIndirectArgument - Test whether an argument type which is to be
325 /// passed indirectly (on the stack) would have the equivalent layout if it was
326 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
327 /// inhibiting optimizations.
328 ///
329 // FIXME: This predicate is missing many cases, currently it just follows
330 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
331 // should probably make this smarter, or better yet make the LLVM backend
332 // capable of handling it.
canExpandIndirectArgument(QualType Ty,ASTContext & Context)333 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
334   // We can only expand structure types.
335   const RecordType *RT = Ty->getAs<RecordType>();
336   if (!RT)
337     return false;
338 
339   // We can only expand (C) structures.
340   //
341   // FIXME: This needs to be generalized to handle classes as well.
342   const RecordDecl *RD = RT->getDecl();
343   if (!RD->isStruct())
344     return false;
345 
346   // We try to expand CLike CXXRecordDecl.
347   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
348     if (!CXXRD->isCLike())
349       return false;
350   }
351 
352   uint64_t Size = 0;
353 
354   for (const auto *FD : RD->fields()) {
355     if (!is32Or64BitBasicType(FD->getType(), Context))
356       return false;
357 
358     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
359     // how to expand them yet, and the predicate for telling if a bitfield still
360     // counts as "basic" is more complicated than what we were doing previously.
361     if (FD->isBitField())
362       return false;
363 
364     Size += Context.getTypeSize(FD->getType());
365   }
366 
367   // Make sure there are not any holes in the struct.
368   if (Size != Context.getTypeSize(Ty))
369     return false;
370 
371   return true;
372 }
373 
374 namespace {
375 /// DefaultABIInfo - The default implementation for ABI specific
376 /// details. This implementation provides information which results in
377 /// self-consistent and sensible LLVM IR generation, but does not
378 /// conform to any particular ABI.
379 class DefaultABIInfo : public ABIInfo {
380 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)381   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
382 
383   ABIArgInfo classifyReturnType(QualType RetTy) const;
384   ABIArgInfo classifyArgumentType(QualType RetTy) const;
385 
computeInfo(CGFunctionInfo & FI) const386   void computeInfo(CGFunctionInfo &FI) const override {
387     if (!getCXXABI().classifyReturnType(FI))
388       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
389     for (auto &I : FI.arguments())
390       I.info = classifyArgumentType(I.type);
391   }
392 
393   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
394                          CodeGenFunction &CGF) const override;
395 };
396 
397 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
398 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)399   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
400     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
401 };
402 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const403 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
404                                        CodeGenFunction &CGF) const {
405   return nullptr;
406 }
407 
classifyArgumentType(QualType Ty) const408 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
409   if (isAggregateTypeForABI(Ty))
410     return ABIArgInfo::getIndirect(0);
411 
412   // Treat an enum type as its underlying type.
413   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
414     Ty = EnumTy->getDecl()->getIntegerType();
415 
416   return (Ty->isPromotableIntegerType() ?
417           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
418 }
419 
classifyReturnType(QualType RetTy) const420 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
421   if (RetTy->isVoidType())
422     return ABIArgInfo::getIgnore();
423 
424   if (isAggregateTypeForABI(RetTy))
425     return ABIArgInfo::getIndirect(0);
426 
427   // Treat an enum type as its underlying type.
428   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
429     RetTy = EnumTy->getDecl()->getIntegerType();
430 
431   return (RetTy->isPromotableIntegerType() ?
432           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
433 }
434 
435 //===----------------------------------------------------------------------===//
436 // le32/PNaCl bitcode ABI Implementation
437 //
438 // This is a simplified version of the x86_32 ABI.  Arguments and return values
439 // are always passed on the stack.
440 //===----------------------------------------------------------------------===//
441 
442 class PNaClABIInfo : public ABIInfo {
443  public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)444   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
445 
446   ABIArgInfo classifyReturnType(QualType RetTy) const;
447   ABIArgInfo classifyArgumentType(QualType RetTy) const;
448 
449   void computeInfo(CGFunctionInfo &FI) const override;
450   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
451                          CodeGenFunction &CGF) const override;
452 };
453 
454 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
455  public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)456   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
457     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
458 };
459 
computeInfo(CGFunctionInfo & FI) const460 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
461   if (!getCXXABI().classifyReturnType(FI))
462     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
463 
464   for (auto &I : FI.arguments())
465     I.info = classifyArgumentType(I.type);
466 }
467 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const468 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
469                                        CodeGenFunction &CGF) const {
470   return nullptr;
471 }
472 
473 /// \brief Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const474 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
475   if (isAggregateTypeForABI(Ty)) {
476     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
477       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
478     return ABIArgInfo::getIndirect(0);
479   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
480     // Treat an enum type as its underlying type.
481     Ty = EnumTy->getDecl()->getIntegerType();
482   } else if (Ty->isFloatingType()) {
483     // Floating-point types don't go inreg.
484     return ABIArgInfo::getDirect();
485   }
486 
487   return (Ty->isPromotableIntegerType() ?
488           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
489 }
490 
classifyReturnType(QualType RetTy) const491 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
492   if (RetTy->isVoidType())
493     return ABIArgInfo::getIgnore();
494 
495   // In the PNaCl ABI we always return records/structures on the stack.
496   if (isAggregateTypeForABI(RetTy))
497     return ABIArgInfo::getIndirect(0);
498 
499   // Treat an enum type as its underlying type.
500   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
501     RetTy = EnumTy->getDecl()->getIntegerType();
502 
503   return (RetTy->isPromotableIntegerType() ?
504           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
505 }
506 
507 /// IsX86_MMXType - Return true if this is an MMX type.
IsX86_MMXType(llvm::Type * IRType)508 bool IsX86_MMXType(llvm::Type *IRType) {
509   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
510   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
511     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
512     IRType->getScalarSizeInBits() != 64;
513 }
514 
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)515 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
516                                           StringRef Constraint,
517                                           llvm::Type* Ty) {
518   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
519     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
520       // Invalid MMX constraint
521       return nullptr;
522     }
523 
524     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
525   }
526 
527   // No operation needed
528   return Ty;
529 }
530 
531 /// Returns true if this type can be passed in SSE registers with the
532 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorTypeForVectorCall(ASTContext & Context,QualType Ty)533 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
534   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
535     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
536       return true;
537   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
538     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
539     // registers specially.
540     unsigned VecSize = Context.getTypeSize(VT);
541     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
542       return true;
543   }
544   return false;
545 }
546 
547 /// Returns true if this aggregate is small enough to be passed in SSE registers
548 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorCallAggregateSmallEnough(uint64_t NumMembers)549 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
550   return NumMembers <= 4;
551 }
552 
553 //===----------------------------------------------------------------------===//
554 // X86-32 ABI Implementation
555 //===----------------------------------------------------------------------===//
556 
557 /// \brief Similar to llvm::CCState, but for Clang.
558 struct CCState {
CCState__anona890a3f30111::CCState559   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
560 
561   unsigned CC;
562   unsigned FreeRegs;
563   unsigned FreeSSERegs;
564 };
565 
566 /// X86_32ABIInfo - The X86-32 ABI information.
567 class X86_32ABIInfo : public ABIInfo {
568   enum Class {
569     Integer,
570     Float
571   };
572 
573   static const unsigned MinABIStackAlignInBytes = 4;
574 
575   bool IsDarwinVectorABI;
576   bool IsSmallStructInRegABI;
577   bool IsWin32StructABI;
578   unsigned DefaultNumRegisterParameters;
579 
isRegisterSize(unsigned Size)580   static bool isRegisterSize(unsigned Size) {
581     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
582   }
583 
isHomogeneousAggregateBaseType(QualType Ty) const584   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
585     // FIXME: Assumes vectorcall is in use.
586     return isX86VectorTypeForVectorCall(getContext(), Ty);
587   }
588 
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const589   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
590                                          uint64_t NumMembers) const override {
591     // FIXME: Assumes vectorcall is in use.
592     return isX86VectorCallAggregateSmallEnough(NumMembers);
593   }
594 
595   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
596 
597   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
598   /// such that the argument will be passed in memory.
599   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
600 
601   ABIArgInfo getIndirectReturnResult(CCState &State) const;
602 
603   /// \brief Return the alignment to use for the given type on the stack.
604   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
605 
606   Class classify(QualType Ty) const;
607   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
608   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
609   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
610 
611   /// \brief Rewrite the function info so that all memory arguments use
612   /// inalloca.
613   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
614 
615   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
616                            unsigned &StackOffset, ABIArgInfo &Info,
617                            QualType Type) const;
618 
619 public:
620 
621   void computeInfo(CGFunctionInfo &FI) const override;
622   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
623                          CodeGenFunction &CGF) const override;
624 
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned r)625   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
626                 unsigned r)
627     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
628       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
629 };
630 
631 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
632 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned r)633   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
634       bool d, bool p, bool w, unsigned r)
635     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
636 
637   static bool isStructReturnInRegABI(
638       const llvm::Triple &Triple, const CodeGenOptions &Opts);
639 
640   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
641                            CodeGen::CodeGenModule &CGM) const override;
642 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const643   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
644     // Darwin uses different dwarf register numbers for EH.
645     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
646     return 4;
647   }
648 
649   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
650                                llvm::Value *Address) const override;
651 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const652   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
653                                   StringRef Constraint,
654                                   llvm::Type* Ty) const override {
655     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
656   }
657 
658   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
659                                 std::string &Constraints,
660                                 std::vector<llvm::Type *> &ResultRegTypes,
661                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
662                                 std::vector<LValue> &ResultRegDests,
663                                 std::string &AsmString,
664                                 unsigned NumOutputs) const override;
665 
666   llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const667   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
668     unsigned Sig = (0xeb << 0) |  // jmp rel8
669                    (0x06 << 8) |  //           .+0x08
670                    ('F' << 16) |
671                    ('T' << 24);
672     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
673   }
674 };
675 
676 }
677 
678 /// Rewrite input constraint references after adding some output constraints.
679 /// In the case where there is one output and one input and we add one output,
680 /// we need to replace all operand references greater than or equal to 1:
681 ///     mov $0, $1
682 ///     mov eax, $1
683 /// The result will be:
684 ///     mov $0, $2
685 ///     mov eax, $2
rewriteInputConstraintReferences(unsigned FirstIn,unsigned NumNewOuts,std::string & AsmString)686 static void rewriteInputConstraintReferences(unsigned FirstIn,
687                                              unsigned NumNewOuts,
688                                              std::string &AsmString) {
689   std::string Buf;
690   llvm::raw_string_ostream OS(Buf);
691   size_t Pos = 0;
692   while (Pos < AsmString.size()) {
693     size_t DollarStart = AsmString.find('$', Pos);
694     if (DollarStart == std::string::npos)
695       DollarStart = AsmString.size();
696     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
697     if (DollarEnd == std::string::npos)
698       DollarEnd = AsmString.size();
699     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
700     Pos = DollarEnd;
701     size_t NumDollars = DollarEnd - DollarStart;
702     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
703       // We have an operand reference.
704       size_t DigitStart = Pos;
705       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
706       if (DigitEnd == std::string::npos)
707         DigitEnd = AsmString.size();
708       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
709       unsigned OperandIndex;
710       if (!OperandStr.getAsInteger(10, OperandIndex)) {
711         if (OperandIndex >= FirstIn)
712           OperandIndex += NumNewOuts;
713         OS << OperandIndex;
714       } else {
715         OS << OperandStr;
716       }
717       Pos = DigitEnd;
718     }
719   }
720   AsmString = std::move(OS.str());
721 }
722 
723 /// Add output constraints for EAX:EDX because they are return registers.
addReturnRegisterOutputs(CodeGenFunction & CGF,LValue ReturnSlot,std::string & Constraints,std::vector<llvm::Type * > & ResultRegTypes,std::vector<llvm::Type * > & ResultTruncRegTypes,std::vector<LValue> & ResultRegDests,std::string & AsmString,unsigned NumOutputs) const724 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
725     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
726     std::vector<llvm::Type *> &ResultRegTypes,
727     std::vector<llvm::Type *> &ResultTruncRegTypes,
728     std::vector<LValue> &ResultRegDests, std::string &AsmString,
729     unsigned NumOutputs) const {
730   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
731 
732   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
733   // larger.
734   if (!Constraints.empty())
735     Constraints += ',';
736   if (RetWidth <= 32) {
737     Constraints += "={eax}";
738     ResultRegTypes.push_back(CGF.Int32Ty);
739   } else {
740     // Use the 'A' constraint for EAX:EDX.
741     Constraints += "=A";
742     ResultRegTypes.push_back(CGF.Int64Ty);
743   }
744 
745   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
746   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
747   ResultTruncRegTypes.push_back(CoerceTy);
748 
749   // Coerce the integer by bitcasting the return slot pointer.
750   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
751                                                   CoerceTy->getPointerTo()));
752   ResultRegDests.push_back(ReturnSlot);
753 
754   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
755 }
756 
757 /// shouldReturnTypeInRegister - Determine if the given type should be
758 /// passed in a register (for the Darwin ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context) const759 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
760                                                ASTContext &Context) const {
761   uint64_t Size = Context.getTypeSize(Ty);
762 
763   // Type must be register sized.
764   if (!isRegisterSize(Size))
765     return false;
766 
767   if (Ty->isVectorType()) {
768     // 64- and 128- bit vectors inside structures are not returned in
769     // registers.
770     if (Size == 64 || Size == 128)
771       return false;
772 
773     return true;
774   }
775 
776   // If this is a builtin, pointer, enum, complex type, member pointer, or
777   // member function pointer it is ok.
778   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
779       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
780       Ty->isBlockPointerType() || Ty->isMemberPointerType())
781     return true;
782 
783   // Arrays are treated like records.
784   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
785     return shouldReturnTypeInRegister(AT->getElementType(), Context);
786 
787   // Otherwise, it must be a record type.
788   const RecordType *RT = Ty->getAs<RecordType>();
789   if (!RT) return false;
790 
791   // FIXME: Traverse bases here too.
792 
793   // Structure types are passed in register if all fields would be
794   // passed in a register.
795   for (const auto *FD : RT->getDecl()->fields()) {
796     // Empty fields are ignored.
797     if (isEmptyField(Context, FD, true))
798       continue;
799 
800     // Check fields recursively.
801     if (!shouldReturnTypeInRegister(FD->getType(), Context))
802       return false;
803   }
804   return true;
805 }
806 
getIndirectReturnResult(CCState & State) const807 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
808   // If the return value is indirect, then the hidden argument is consuming one
809   // integer register.
810   if (State.FreeRegs) {
811     --State.FreeRegs;
812     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
813   }
814   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
815 }
816 
classifyReturnType(QualType RetTy,CCState & State) const817 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
818   if (RetTy->isVoidType())
819     return ABIArgInfo::getIgnore();
820 
821   const Type *Base = nullptr;
822   uint64_t NumElts = 0;
823   if (State.CC == llvm::CallingConv::X86_VectorCall &&
824       isHomogeneousAggregate(RetTy, Base, NumElts)) {
825     // The LLVM struct type for such an aggregate should lower properly.
826     return ABIArgInfo::getDirect();
827   }
828 
829   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
830     // On Darwin, some vectors are returned in registers.
831     if (IsDarwinVectorABI) {
832       uint64_t Size = getContext().getTypeSize(RetTy);
833 
834       // 128-bit vectors are a special case; they are returned in
835       // registers and we need to make sure to pick a type the LLVM
836       // backend will like.
837       if (Size == 128)
838         return ABIArgInfo::getDirect(llvm::VectorType::get(
839                   llvm::Type::getInt64Ty(getVMContext()), 2));
840 
841       // Always return in register if it fits in a general purpose
842       // register, or if it is 64 bits and has a single element.
843       if ((Size == 8 || Size == 16 || Size == 32) ||
844           (Size == 64 && VT->getNumElements() == 1))
845         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
846                                                             Size));
847 
848       return getIndirectReturnResult(State);
849     }
850 
851     return ABIArgInfo::getDirect();
852   }
853 
854   if (isAggregateTypeForABI(RetTy)) {
855     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
856       // Structures with flexible arrays are always indirect.
857       if (RT->getDecl()->hasFlexibleArrayMember())
858         return getIndirectReturnResult(State);
859     }
860 
861     // If specified, structs and unions are always indirect.
862     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
863       return getIndirectReturnResult(State);
864 
865     // Small structures which are register sized are generally returned
866     // in a register.
867     if (shouldReturnTypeInRegister(RetTy, getContext())) {
868       uint64_t Size = getContext().getTypeSize(RetTy);
869 
870       // As a special-case, if the struct is a "single-element" struct, and
871       // the field is of type "float" or "double", return it in a
872       // floating-point register. (MSVC does not apply this special case.)
873       // We apply a similar transformation for pointer types to improve the
874       // quality of the generated IR.
875       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
876         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
877             || SeltTy->hasPointerRepresentation())
878           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
879 
880       // FIXME: We should be able to narrow this integer in cases with dead
881       // padding.
882       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
883     }
884 
885     return getIndirectReturnResult(State);
886   }
887 
888   // Treat an enum type as its underlying type.
889   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
890     RetTy = EnumTy->getDecl()->getIntegerType();
891 
892   return (RetTy->isPromotableIntegerType() ?
893           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
894 }
895 
isSSEVectorType(ASTContext & Context,QualType Ty)896 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
897   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
898 }
899 
isRecordWithSSEVectorType(ASTContext & Context,QualType Ty)900 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
901   const RecordType *RT = Ty->getAs<RecordType>();
902   if (!RT)
903     return 0;
904   const RecordDecl *RD = RT->getDecl();
905 
906   // If this is a C++ record, check the bases first.
907   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
908     for (const auto &I : CXXRD->bases())
909       if (!isRecordWithSSEVectorType(Context, I.getType()))
910         return false;
911 
912   for (const auto *i : RD->fields()) {
913     QualType FT = i->getType();
914 
915     if (isSSEVectorType(Context, FT))
916       return true;
917 
918     if (isRecordWithSSEVectorType(Context, FT))
919       return true;
920   }
921 
922   return false;
923 }
924 
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const925 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
926                                                  unsigned Align) const {
927   // Otherwise, if the alignment is less than or equal to the minimum ABI
928   // alignment, just use the default; the backend will handle this.
929   if (Align <= MinABIStackAlignInBytes)
930     return 0; // Use default alignment.
931 
932   // On non-Darwin, the stack type alignment is always 4.
933   if (!IsDarwinVectorABI) {
934     // Set explicit alignment, since we may need to realign the top.
935     return MinABIStackAlignInBytes;
936   }
937 
938   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
939   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
940                       isRecordWithSSEVectorType(getContext(), Ty)))
941     return 16;
942 
943   return MinABIStackAlignInBytes;
944 }
945 
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const946 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
947                                             CCState &State) const {
948   if (!ByVal) {
949     if (State.FreeRegs) {
950       --State.FreeRegs; // Non-byval indirects just use one pointer.
951       return ABIArgInfo::getIndirectInReg(0, false);
952     }
953     return ABIArgInfo::getIndirect(0, false);
954   }
955 
956   // Compute the byval alignment.
957   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
958   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
959   if (StackAlign == 0)
960     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
961 
962   // If the stack alignment is less than the type alignment, realign the
963   // argument.
964   bool Realign = TypeAlign > StackAlign;
965   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
966 }
967 
classify(QualType Ty) const968 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
969   const Type *T = isSingleElementStruct(Ty, getContext());
970   if (!T)
971     T = Ty.getTypePtr();
972 
973   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
974     BuiltinType::Kind K = BT->getKind();
975     if (K == BuiltinType::Float || K == BuiltinType::Double)
976       return Float;
977   }
978   return Integer;
979 }
980 
shouldUseInReg(QualType Ty,CCState & State,bool & NeedsPadding) const981 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
982                                    bool &NeedsPadding) const {
983   NeedsPadding = false;
984   Class C = classify(Ty);
985   if (C == Float)
986     return false;
987 
988   unsigned Size = getContext().getTypeSize(Ty);
989   unsigned SizeInRegs = (Size + 31) / 32;
990 
991   if (SizeInRegs == 0)
992     return false;
993 
994   if (SizeInRegs > State.FreeRegs) {
995     State.FreeRegs = 0;
996     return false;
997   }
998 
999   State.FreeRegs -= SizeInRegs;
1000 
1001   if (State.CC == llvm::CallingConv::X86_FastCall ||
1002       State.CC == llvm::CallingConv::X86_VectorCall) {
1003     if (Size > 32)
1004       return false;
1005 
1006     if (Ty->isIntegralOrEnumerationType())
1007       return true;
1008 
1009     if (Ty->isPointerType())
1010       return true;
1011 
1012     if (Ty->isReferenceType())
1013       return true;
1014 
1015     if (State.FreeRegs)
1016       NeedsPadding = true;
1017 
1018     return false;
1019   }
1020 
1021   return true;
1022 }
1023 
classifyArgumentType(QualType Ty,CCState & State) const1024 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1025                                                CCState &State) const {
1026   // FIXME: Set alignment on indirect arguments.
1027 
1028   Ty = useFirstFieldIfTransparentUnion(Ty);
1029 
1030   // Check with the C++ ABI first.
1031   const RecordType *RT = Ty->getAs<RecordType>();
1032   if (RT) {
1033     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1034     if (RAA == CGCXXABI::RAA_Indirect) {
1035       return getIndirectResult(Ty, false, State);
1036     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1037       // The field index doesn't matter, we'll fix it up later.
1038       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1039     }
1040   }
1041 
1042   // vectorcall adds the concept of a homogenous vector aggregate, similar
1043   // to other targets.
1044   const Type *Base = nullptr;
1045   uint64_t NumElts = 0;
1046   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1047       isHomogeneousAggregate(Ty, Base, NumElts)) {
1048     if (State.FreeSSERegs >= NumElts) {
1049       State.FreeSSERegs -= NumElts;
1050       if (Ty->isBuiltinType() || Ty->isVectorType())
1051         return ABIArgInfo::getDirect();
1052       return ABIArgInfo::getExpand();
1053     }
1054     return getIndirectResult(Ty, /*ByVal=*/false, State);
1055   }
1056 
1057   if (isAggregateTypeForABI(Ty)) {
1058     if (RT) {
1059       // Structs are always byval on win32, regardless of what they contain.
1060       if (IsWin32StructABI)
1061         return getIndirectResult(Ty, true, State);
1062 
1063       // Structures with flexible arrays are always indirect.
1064       if (RT->getDecl()->hasFlexibleArrayMember())
1065         return getIndirectResult(Ty, true, State);
1066     }
1067 
1068     // Ignore empty structs/unions.
1069     if (isEmptyRecord(getContext(), Ty, true))
1070       return ABIArgInfo::getIgnore();
1071 
1072     llvm::LLVMContext &LLVMContext = getVMContext();
1073     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1074     bool NeedsPadding;
1075     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1076       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1077       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1078       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1079       return ABIArgInfo::getDirectInReg(Result);
1080     }
1081     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1082 
1083     // Expand small (<= 128-bit) record types when we know that the stack layout
1084     // of those arguments will match the struct. This is important because the
1085     // LLVM backend isn't smart enough to remove byval, which inhibits many
1086     // optimizations.
1087     if (getContext().getTypeSize(Ty) <= 4*32 &&
1088         canExpandIndirectArgument(Ty, getContext()))
1089       return ABIArgInfo::getExpandWithPadding(
1090           State.CC == llvm::CallingConv::X86_FastCall ||
1091               State.CC == llvm::CallingConv::X86_VectorCall,
1092           PaddingType);
1093 
1094     return getIndirectResult(Ty, true, State);
1095   }
1096 
1097   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1098     // On Darwin, some vectors are passed in memory, we handle this by passing
1099     // it as an i8/i16/i32/i64.
1100     if (IsDarwinVectorABI) {
1101       uint64_t Size = getContext().getTypeSize(Ty);
1102       if ((Size == 8 || Size == 16 || Size == 32) ||
1103           (Size == 64 && VT->getNumElements() == 1))
1104         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1105                                                             Size));
1106     }
1107 
1108     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1109       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1110 
1111     return ABIArgInfo::getDirect();
1112   }
1113 
1114 
1115   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1116     Ty = EnumTy->getDecl()->getIntegerType();
1117 
1118   bool NeedsPadding;
1119   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1120 
1121   if (Ty->isPromotableIntegerType()) {
1122     if (InReg)
1123       return ABIArgInfo::getExtendInReg();
1124     return ABIArgInfo::getExtend();
1125   }
1126   if (InReg)
1127     return ABIArgInfo::getDirectInReg();
1128   return ABIArgInfo::getDirect();
1129 }
1130 
computeInfo(CGFunctionInfo & FI) const1131 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1132   CCState State(FI.getCallingConvention());
1133   if (State.CC == llvm::CallingConv::X86_FastCall)
1134     State.FreeRegs = 2;
1135   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1136     State.FreeRegs = 2;
1137     State.FreeSSERegs = 6;
1138   } else if (FI.getHasRegParm())
1139     State.FreeRegs = FI.getRegParm();
1140   else
1141     State.FreeRegs = DefaultNumRegisterParameters;
1142 
1143   if (!getCXXABI().classifyReturnType(FI)) {
1144     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1145   } else if (FI.getReturnInfo().isIndirect()) {
1146     // The C++ ABI is not aware of register usage, so we have to check if the
1147     // return value was sret and put it in a register ourselves if appropriate.
1148     if (State.FreeRegs) {
1149       --State.FreeRegs;  // The sret parameter consumes a register.
1150       FI.getReturnInfo().setInReg(true);
1151     }
1152   }
1153 
1154   // The chain argument effectively gives us another free register.
1155   if (FI.isChainCall())
1156     ++State.FreeRegs;
1157 
1158   bool UsedInAlloca = false;
1159   for (auto &I : FI.arguments()) {
1160     I.info = classifyArgumentType(I.type, State);
1161     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1162   }
1163 
1164   // If we needed to use inalloca for any argument, do a second pass and rewrite
1165   // all the memory arguments to use inalloca.
1166   if (UsedInAlloca)
1167     rewriteWithInAlloca(FI);
1168 }
1169 
1170 void
addFieldToArgStruct(SmallVector<llvm::Type *,6> & FrameFields,unsigned & StackOffset,ABIArgInfo & Info,QualType Type) const1171 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1172                                    unsigned &StackOffset,
1173                                    ABIArgInfo &Info, QualType Type) const {
1174   assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1175   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1176   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1177   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1178 
1179   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
1180   // byte aligned.
1181   if (StackOffset % 4U) {
1182     unsigned OldOffset = StackOffset;
1183     StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1184     unsigned NumBytes = StackOffset - OldOffset;
1185     assert(NumBytes);
1186     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1187     Ty = llvm::ArrayType::get(Ty, NumBytes);
1188     FrameFields.push_back(Ty);
1189   }
1190 }
1191 
isArgInAlloca(const ABIArgInfo & Info)1192 static bool isArgInAlloca(const ABIArgInfo &Info) {
1193   // Leave ignored and inreg arguments alone.
1194   switch (Info.getKind()) {
1195   case ABIArgInfo::InAlloca:
1196     return true;
1197   case ABIArgInfo::Indirect:
1198     assert(Info.getIndirectByVal());
1199     return true;
1200   case ABIArgInfo::Ignore:
1201     return false;
1202   case ABIArgInfo::Direct:
1203   case ABIArgInfo::Extend:
1204   case ABIArgInfo::Expand:
1205     if (Info.getInReg())
1206       return false;
1207     return true;
1208   }
1209   llvm_unreachable("invalid enum");
1210 }
1211 
rewriteWithInAlloca(CGFunctionInfo & FI) const1212 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1213   assert(IsWin32StructABI && "inalloca only supported on win32");
1214 
1215   // Build a packed struct type for all of the arguments in memory.
1216   SmallVector<llvm::Type *, 6> FrameFields;
1217 
1218   unsigned StackOffset = 0;
1219   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1220 
1221   // Put 'this' into the struct before 'sret', if necessary.
1222   bool IsThisCall =
1223       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1224   ABIArgInfo &Ret = FI.getReturnInfo();
1225   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1226       isArgInAlloca(I->info)) {
1227     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1228     ++I;
1229   }
1230 
1231   // Put the sret parameter into the inalloca struct if it's in memory.
1232   if (Ret.isIndirect() && !Ret.getInReg()) {
1233     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1234     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1235     // On Windows, the hidden sret parameter is always returned in eax.
1236     Ret.setInAllocaSRet(IsWin32StructABI);
1237   }
1238 
1239   // Skip the 'this' parameter in ecx.
1240   if (IsThisCall)
1241     ++I;
1242 
1243   // Put arguments passed in memory into the struct.
1244   for (; I != E; ++I) {
1245     if (isArgInAlloca(I->info))
1246       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1247   }
1248 
1249   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1250                                         /*isPacked=*/true));
1251 }
1252 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const1253 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1254                                       CodeGenFunction &CGF) const {
1255   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1256 
1257   CGBuilderTy &Builder = CGF.Builder;
1258   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1259                                                        "ap");
1260   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1261 
1262   // Compute if the address needs to be aligned
1263   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1264   Align = getTypeStackAlignInBytes(Ty, Align);
1265   Align = std::max(Align, 4U);
1266   if (Align > 4) {
1267     // addr = (addr + align - 1) & -align;
1268     llvm::Value *Offset =
1269       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1270     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1271     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1272                                                     CGF.Int32Ty);
1273     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1274     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1275                                       Addr->getType(),
1276                                       "ap.cur.aligned");
1277   }
1278 
1279   llvm::Type *PTy =
1280     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1281   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1282 
1283   uint64_t Offset =
1284     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1285   llvm::Value *NextAddr =
1286     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1287                       "ap.next");
1288   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1289 
1290   return AddrTyped;
1291 }
1292 
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)1293 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1294     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1295   assert(Triple.getArch() == llvm::Triple::x86);
1296 
1297   switch (Opts.getStructReturnConvention()) {
1298   case CodeGenOptions::SRCK_Default:
1299     break;
1300   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1301     return false;
1302   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1303     return true;
1304   }
1305 
1306   if (Triple.isOSDarwin())
1307     return true;
1308 
1309   switch (Triple.getOS()) {
1310   case llvm::Triple::DragonFly:
1311   case llvm::Triple::FreeBSD:
1312   case llvm::Triple::OpenBSD:
1313   case llvm::Triple::Bitrig:
1314   case llvm::Triple::Win32:
1315     return true;
1316   default:
1317     return false;
1318   }
1319 }
1320 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1321 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1322                                                   llvm::GlobalValue *GV,
1323                                             CodeGen::CodeGenModule &CGM) const {
1324   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1325     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1326       // Get the LLVM function.
1327       llvm::Function *Fn = cast<llvm::Function>(GV);
1328 
1329       // Now add the 'alignstack' attribute with a value of 16.
1330       llvm::AttrBuilder B;
1331       B.addStackAlignmentAttr(16);
1332       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1333                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1334                                               llvm::AttributeSet::FunctionIndex,
1335                                               B));
1336     }
1337   }
1338 }
1339 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1340 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1341                                                CodeGen::CodeGenFunction &CGF,
1342                                                llvm::Value *Address) const {
1343   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1344 
1345   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1346 
1347   // 0-7 are the eight integer registers;  the order is different
1348   //   on Darwin (for EH), but the range is the same.
1349   // 8 is %eip.
1350   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1351 
1352   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1353     // 12-16 are st(0..4).  Not sure why we stop at 4.
1354     // These have size 16, which is sizeof(long double) on
1355     // platforms with 8-byte alignment for that type.
1356     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1357     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1358 
1359   } else {
1360     // 9 is %eflags, which doesn't get a size on Darwin for some
1361     // reason.
1362     Builder.CreateStore(
1363         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9));
1364 
1365     // 11-16 are st(0..5).  Not sure why we stop at 5.
1366     // These have size 12, which is sizeof(long double) on
1367     // platforms with 4-byte alignment for that type.
1368     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1369     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1370   }
1371 
1372   return false;
1373 }
1374 
1375 //===----------------------------------------------------------------------===//
1376 // X86-64 ABI Implementation
1377 //===----------------------------------------------------------------------===//
1378 
1379 
1380 namespace {
1381 /// X86_64ABIInfo - The X86_64 ABI information.
1382 class X86_64ABIInfo : public ABIInfo {
1383   enum Class {
1384     Integer = 0,
1385     SSE,
1386     SSEUp,
1387     X87,
1388     X87Up,
1389     ComplexX87,
1390     NoClass,
1391     Memory
1392   };
1393 
1394   /// merge - Implement the X86_64 ABI merging algorithm.
1395   ///
1396   /// Merge an accumulating classification \arg Accum with a field
1397   /// classification \arg Field.
1398   ///
1399   /// \param Accum - The accumulating classification. This should
1400   /// always be either NoClass or the result of a previous merge
1401   /// call. In addition, this should never be Memory (the caller
1402   /// should just return Memory for the aggregate).
1403   static Class merge(Class Accum, Class Field);
1404 
1405   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1406   ///
1407   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1408   /// final MEMORY or SSE classes when necessary.
1409   ///
1410   /// \param AggregateSize - The size of the current aggregate in
1411   /// the classification process.
1412   ///
1413   /// \param Lo - The classification for the parts of the type
1414   /// residing in the low word of the containing object.
1415   ///
1416   /// \param Hi - The classification for the parts of the type
1417   /// residing in the higher words of the containing object.
1418   ///
1419   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1420 
1421   /// classify - Determine the x86_64 register classes in which the
1422   /// given type T should be passed.
1423   ///
1424   /// \param Lo - The classification for the parts of the type
1425   /// residing in the low word of the containing object.
1426   ///
1427   /// \param Hi - The classification for the parts of the type
1428   /// residing in the high word of the containing object.
1429   ///
1430   /// \param OffsetBase - The bit offset of this type in the
1431   /// containing object.  Some parameters are classified different
1432   /// depending on whether they straddle an eightbyte boundary.
1433   ///
1434   /// \param isNamedArg - Whether the argument in question is a "named"
1435   /// argument, as used in AMD64-ABI 3.5.7.
1436   ///
1437   /// If a word is unused its result will be NoClass; if a type should
1438   /// be passed in Memory then at least the classification of \arg Lo
1439   /// will be Memory.
1440   ///
1441   /// The \arg Lo class will be NoClass iff the argument is ignored.
1442   ///
1443   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1444   /// also be ComplexX87.
1445   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1446                 bool isNamedArg) const;
1447 
1448   llvm::Type *GetByteVectorType(QualType Ty) const;
1449   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1450                                  unsigned IROffset, QualType SourceTy,
1451                                  unsigned SourceOffset) const;
1452   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1453                                      unsigned IROffset, QualType SourceTy,
1454                                      unsigned SourceOffset) const;
1455 
1456   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1457   /// such that the argument will be returned in memory.
1458   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1459 
1460   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1461   /// such that the argument will be passed in memory.
1462   ///
1463   /// \param freeIntRegs - The number of free integer registers remaining
1464   /// available.
1465   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1466 
1467   ABIArgInfo classifyReturnType(QualType RetTy) const;
1468 
1469   ABIArgInfo classifyArgumentType(QualType Ty,
1470                                   unsigned freeIntRegs,
1471                                   unsigned &neededInt,
1472                                   unsigned &neededSSE,
1473                                   bool isNamedArg) const;
1474 
1475   bool IsIllegalVectorType(QualType Ty) const;
1476 
1477   /// The 0.98 ABI revision clarified a lot of ambiguities,
1478   /// unfortunately in ways that were not always consistent with
1479   /// certain previous compilers.  In particular, platforms which
1480   /// required strict binary compatibility with older versions of GCC
1481   /// may need to exempt themselves.
honorsRevision0_98() const1482   bool honorsRevision0_98() const {
1483     return !getTarget().getTriple().isOSDarwin();
1484   }
1485 
1486   bool HasAVX;
1487   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1488   // 64-bit hardware.
1489   bool Has64BitPointers;
1490 
1491 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,bool hasavx)1492   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1493       ABIInfo(CGT), HasAVX(hasavx),
1494       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1495   }
1496 
isPassedUsingAVXType(QualType type) const1497   bool isPassedUsingAVXType(QualType type) const {
1498     unsigned neededInt, neededSSE;
1499     // The freeIntRegs argument doesn't matter here.
1500     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1501                                            /*isNamedArg*/true);
1502     if (info.isDirect()) {
1503       llvm::Type *ty = info.getCoerceToType();
1504       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1505         return (vectorTy->getBitWidth() > 128);
1506     }
1507     return false;
1508   }
1509 
1510   void computeInfo(CGFunctionInfo &FI) const override;
1511 
1512   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1513                          CodeGenFunction &CGF) const override;
1514 
has64BitPointers() const1515   bool has64BitPointers() const {
1516     return Has64BitPointers;
1517   }
1518 };
1519 
1520 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1521 class WinX86_64ABIInfo : public ABIInfo {
1522 
1523   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1524                       bool IsReturnType) const;
1525 
1526 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT)1527   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1528 
1529   void computeInfo(CGFunctionInfo &FI) const override;
1530 
1531   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1532                          CodeGenFunction &CGF) const override;
1533 
isHomogeneousAggregateBaseType(QualType Ty) const1534   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1535     // FIXME: Assumes vectorcall is in use.
1536     return isX86VectorTypeForVectorCall(getContext(), Ty);
1537   }
1538 
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const1539   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1540                                          uint64_t NumMembers) const override {
1541     // FIXME: Assumes vectorcall is in use.
1542     return isX86VectorCallAggregateSmallEnough(NumMembers);
1543   }
1544 };
1545 
1546 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1547   bool HasAVX;
1548 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)1549   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1550       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {}
1551 
getABIInfo() const1552   const X86_64ABIInfo &getABIInfo() const {
1553     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1554   }
1555 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1556   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1557     return 7;
1558   }
1559 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1560   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1561                                llvm::Value *Address) const override {
1562     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1563 
1564     // 0-15 are the 16 integer registers.
1565     // 16 is %rip.
1566     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1567     return false;
1568   }
1569 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1570   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1571                                   StringRef Constraint,
1572                                   llvm::Type* Ty) const override {
1573     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1574   }
1575 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const1576   bool isNoProtoCallVariadic(const CallArgList &args,
1577                              const FunctionNoProtoType *fnType) const override {
1578     // The default CC on x86-64 sets %al to the number of SSA
1579     // registers used, and GCC sets this when calling an unprototyped
1580     // function, so we override the default behavior.  However, don't do
1581     // that when AVX types are involved: the ABI explicitly states it is
1582     // undefined, and it doesn't work in practice because of how the ABI
1583     // defines varargs anyway.
1584     if (fnType->getCallConv() == CC_C) {
1585       bool HasAVXType = false;
1586       for (CallArgList::const_iterator
1587              it = args.begin(), ie = args.end(); it != ie; ++it) {
1588         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1589           HasAVXType = true;
1590           break;
1591         }
1592       }
1593 
1594       if (!HasAVXType)
1595         return true;
1596     }
1597 
1598     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1599   }
1600 
1601   llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const1602   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1603     unsigned Sig;
1604     if (getABIInfo().has64BitPointers())
1605       Sig = (0xeb << 0) |  // jmp rel8
1606             (0x0a << 8) |  //           .+0x0c
1607             ('F' << 16) |
1608             ('T' << 24);
1609     else
1610       Sig = (0xeb << 0) |  // jmp rel8
1611             (0x06 << 8) |  //           .+0x08
1612             ('F' << 16) |
1613             ('T' << 24);
1614     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1615   }
1616 
getOpenMPSimdDefaultAlignment(QualType) const1617   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1618     return HasAVX ? 32 : 16;
1619   }
1620 };
1621 
1622 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1623 public:
PS4TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)1624   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1625     : X86_64TargetCodeGenInfo(CGT, HasAVX) {}
1626 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1627   void getDependentLibraryOption(llvm::StringRef Lib,
1628                                  llvm::SmallString<24> &Opt) const override {
1629     Opt = "\01";
1630     Opt += Lib;
1631   }
1632 };
1633 
qualifyWindowsLibrary(llvm::StringRef Lib)1634 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1635   // If the argument does not end in .lib, automatically add the suffix.
1636   // If the argument contains a space, enclose it in quotes.
1637   // This matches the behavior of MSVC.
1638   bool Quote = (Lib.find(" ") != StringRef::npos);
1639   std::string ArgStr = Quote ? "\"" : "";
1640   ArgStr += Lib;
1641   if (!Lib.endswith_lower(".lib"))
1642     ArgStr += ".lib";
1643   ArgStr += Quote ? "\"" : "";
1644   return ArgStr;
1645 }
1646 
1647 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1648 public:
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned RegParms)1649   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1650         bool d, bool p, bool w, unsigned RegParms)
1651     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1652 
1653   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1654                            CodeGen::CodeGenModule &CGM) const override;
1655 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1656   void getDependentLibraryOption(llvm::StringRef Lib,
1657                                  llvm::SmallString<24> &Opt) const override {
1658     Opt = "/DEFAULTLIB:";
1659     Opt += qualifyWindowsLibrary(Lib);
1660   }
1661 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const1662   void getDetectMismatchOption(llvm::StringRef Name,
1663                                llvm::StringRef Value,
1664                                llvm::SmallString<32> &Opt) const override {
1665     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1666   }
1667 };
1668 
addStackProbeSizeTargetAttribute(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM)1669 static void addStackProbeSizeTargetAttribute(const Decl *D,
1670                                              llvm::GlobalValue *GV,
1671                                              CodeGen::CodeGenModule &CGM) {
1672   if (isa<FunctionDecl>(D)) {
1673     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1674       llvm::Function *Fn = cast<llvm::Function>(GV);
1675 
1676       Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1677     }
1678   }
1679 }
1680 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1681 void WinX86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1682                                                      llvm::GlobalValue *GV,
1683                                             CodeGen::CodeGenModule &CGM) const {
1684   X86_32TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1685 
1686   addStackProbeSizeTargetAttribute(D, GV, CGM);
1687 }
1688 
1689 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1690   bool HasAVX;
1691 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)1692   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1693     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {}
1694 
1695   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1696                            CodeGen::CodeGenModule &CGM) const override;
1697 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1698   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1699     return 7;
1700   }
1701 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1702   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1703                                llvm::Value *Address) const override {
1704     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1705 
1706     // 0-15 are the 16 integer registers.
1707     // 16 is %rip.
1708     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1709     return false;
1710   }
1711 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1712   void getDependentLibraryOption(llvm::StringRef Lib,
1713                                  llvm::SmallString<24> &Opt) const override {
1714     Opt = "/DEFAULTLIB:";
1715     Opt += qualifyWindowsLibrary(Lib);
1716   }
1717 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const1718   void getDetectMismatchOption(llvm::StringRef Name,
1719                                llvm::StringRef Value,
1720                                llvm::SmallString<32> &Opt) const override {
1721     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1722   }
1723 
getOpenMPSimdDefaultAlignment(QualType) const1724   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1725     return HasAVX ? 32 : 16;
1726   }
1727 };
1728 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1729 void WinX86_64TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1730                                                      llvm::GlobalValue *GV,
1731                                             CodeGen::CodeGenModule &CGM) const {
1732   TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1733 
1734   addStackProbeSizeTargetAttribute(D, GV, CGM);
1735 }
1736 }
1737 
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const1738 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1739                               Class &Hi) const {
1740   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1741   //
1742   // (a) If one of the classes is Memory, the whole argument is passed in
1743   //     memory.
1744   //
1745   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1746   //     memory.
1747   //
1748   // (c) If the size of the aggregate exceeds two eightbytes and the first
1749   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1750   //     argument is passed in memory. NOTE: This is necessary to keep the
1751   //     ABI working for processors that don't support the __m256 type.
1752   //
1753   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1754   //
1755   // Some of these are enforced by the merging logic.  Others can arise
1756   // only with unions; for example:
1757   //   union { _Complex double; unsigned; }
1758   //
1759   // Note that clauses (b) and (c) were added in 0.98.
1760   //
1761   if (Hi == Memory)
1762     Lo = Memory;
1763   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1764     Lo = Memory;
1765   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1766     Lo = Memory;
1767   if (Hi == SSEUp && Lo != SSE)
1768     Hi = SSE;
1769 }
1770 
merge(Class Accum,Class Field)1771 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1772   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1773   // classified recursively so that always two fields are
1774   // considered. The resulting class is calculated according to
1775   // the classes of the fields in the eightbyte:
1776   //
1777   // (a) If both classes are equal, this is the resulting class.
1778   //
1779   // (b) If one of the classes is NO_CLASS, the resulting class is
1780   // the other class.
1781   //
1782   // (c) If one of the classes is MEMORY, the result is the MEMORY
1783   // class.
1784   //
1785   // (d) If one of the classes is INTEGER, the result is the
1786   // INTEGER.
1787   //
1788   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1789   // MEMORY is used as class.
1790   //
1791   // (f) Otherwise class SSE is used.
1792 
1793   // Accum should never be memory (we should have returned) or
1794   // ComplexX87 (because this cannot be passed in a structure).
1795   assert((Accum != Memory && Accum != ComplexX87) &&
1796          "Invalid accumulated classification during merge.");
1797   if (Accum == Field || Field == NoClass)
1798     return Accum;
1799   if (Field == Memory)
1800     return Memory;
1801   if (Accum == NoClass)
1802     return Field;
1803   if (Accum == Integer || Field == Integer)
1804     return Integer;
1805   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1806       Accum == X87 || Accum == X87Up)
1807     return Memory;
1808   return SSE;
1809 }
1810 
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi,bool isNamedArg) const1811 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1812                              Class &Lo, Class &Hi, bool isNamedArg) const {
1813   // FIXME: This code can be simplified by introducing a simple value class for
1814   // Class pairs with appropriate constructor methods for the various
1815   // situations.
1816 
1817   // FIXME: Some of the split computations are wrong; unaligned vectors
1818   // shouldn't be passed in registers for example, so there is no chance they
1819   // can straddle an eightbyte. Verify & simplify.
1820 
1821   Lo = Hi = NoClass;
1822 
1823   Class &Current = OffsetBase < 64 ? Lo : Hi;
1824   Current = Memory;
1825 
1826   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1827     BuiltinType::Kind k = BT->getKind();
1828 
1829     if (k == BuiltinType::Void) {
1830       Current = NoClass;
1831     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1832       Lo = Integer;
1833       Hi = Integer;
1834     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1835       Current = Integer;
1836     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1837                (k == BuiltinType::LongDouble &&
1838                 getTarget().getTriple().isOSNaCl())) {
1839       Current = SSE;
1840     } else if (k == BuiltinType::LongDouble) {
1841       Lo = X87;
1842       Hi = X87Up;
1843     }
1844     // FIXME: _Decimal32 and _Decimal64 are SSE.
1845     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1846     return;
1847   }
1848 
1849   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1850     // Classify the underlying integer type.
1851     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1852     return;
1853   }
1854 
1855   if (Ty->hasPointerRepresentation()) {
1856     Current = Integer;
1857     return;
1858   }
1859 
1860   if (Ty->isMemberPointerType()) {
1861     if (Ty->isMemberFunctionPointerType()) {
1862       if (Has64BitPointers) {
1863         // If Has64BitPointers, this is an {i64, i64}, so classify both
1864         // Lo and Hi now.
1865         Lo = Hi = Integer;
1866       } else {
1867         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1868         // straddles an eightbyte boundary, Hi should be classified as well.
1869         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1870         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1871         if (EB_FuncPtr != EB_ThisAdj) {
1872           Lo = Hi = Integer;
1873         } else {
1874           Current = Integer;
1875         }
1876       }
1877     } else {
1878       Current = Integer;
1879     }
1880     return;
1881   }
1882 
1883   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1884     uint64_t Size = getContext().getTypeSize(VT);
1885     if (Size == 32) {
1886       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1887       // float> as integer.
1888       Current = Integer;
1889 
1890       // If this type crosses an eightbyte boundary, it should be
1891       // split.
1892       uint64_t EB_Real = (OffsetBase) / 64;
1893       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1894       if (EB_Real != EB_Imag)
1895         Hi = Lo;
1896     } else if (Size == 64) {
1897       // gcc passes <1 x double> in memory. :(
1898       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1899         return;
1900 
1901       // gcc passes <1 x long long> as INTEGER.
1902       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1903           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1904           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1905           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1906         Current = Integer;
1907       else
1908         Current = SSE;
1909 
1910       // If this type crosses an eightbyte boundary, it should be
1911       // split.
1912       if (OffsetBase && OffsetBase != 64)
1913         Hi = Lo;
1914     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1915       // Arguments of 256-bits are split into four eightbyte chunks. The
1916       // least significant one belongs to class SSE and all the others to class
1917       // SSEUP. The original Lo and Hi design considers that types can't be
1918       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1919       // This design isn't correct for 256-bits, but since there're no cases
1920       // where the upper parts would need to be inspected, avoid adding
1921       // complexity and just consider Hi to match the 64-256 part.
1922       //
1923       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1924       // registers if they are "named", i.e. not part of the "..." of a
1925       // variadic function.
1926       Lo = SSE;
1927       Hi = SSEUp;
1928     }
1929     return;
1930   }
1931 
1932   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1933     QualType ET = getContext().getCanonicalType(CT->getElementType());
1934 
1935     uint64_t Size = getContext().getTypeSize(Ty);
1936     if (ET->isIntegralOrEnumerationType()) {
1937       if (Size <= 64)
1938         Current = Integer;
1939       else if (Size <= 128)
1940         Lo = Hi = Integer;
1941     } else if (ET == getContext().FloatTy)
1942       Current = SSE;
1943     else if (ET == getContext().DoubleTy ||
1944              (ET == getContext().LongDoubleTy &&
1945               getTarget().getTriple().isOSNaCl()))
1946       Lo = Hi = SSE;
1947     else if (ET == getContext().LongDoubleTy)
1948       Current = ComplexX87;
1949 
1950     // If this complex type crosses an eightbyte boundary then it
1951     // should be split.
1952     uint64_t EB_Real = (OffsetBase) / 64;
1953     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1954     if (Hi == NoClass && EB_Real != EB_Imag)
1955       Hi = Lo;
1956 
1957     return;
1958   }
1959 
1960   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1961     // Arrays are treated like structures.
1962 
1963     uint64_t Size = getContext().getTypeSize(Ty);
1964 
1965     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1966     // than four eightbytes, ..., it has class MEMORY.
1967     if (Size > 256)
1968       return;
1969 
1970     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1971     // fields, it has class MEMORY.
1972     //
1973     // Only need to check alignment of array base.
1974     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1975       return;
1976 
1977     // Otherwise implement simplified merge. We could be smarter about
1978     // this, but it isn't worth it and would be harder to verify.
1979     Current = NoClass;
1980     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1981     uint64_t ArraySize = AT->getSize().getZExtValue();
1982 
1983     // The only case a 256-bit wide vector could be used is when the array
1984     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1985     // to work for sizes wider than 128, early check and fallback to memory.
1986     if (Size > 128 && EltSize != 256)
1987       return;
1988 
1989     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1990       Class FieldLo, FieldHi;
1991       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1992       Lo = merge(Lo, FieldLo);
1993       Hi = merge(Hi, FieldHi);
1994       if (Lo == Memory || Hi == Memory)
1995         break;
1996     }
1997 
1998     postMerge(Size, Lo, Hi);
1999     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2000     return;
2001   }
2002 
2003   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2004     uint64_t Size = getContext().getTypeSize(Ty);
2005 
2006     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2007     // than four eightbytes, ..., it has class MEMORY.
2008     if (Size > 256)
2009       return;
2010 
2011     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2012     // copy constructor or a non-trivial destructor, it is passed by invisible
2013     // reference.
2014     if (getRecordArgABI(RT, getCXXABI()))
2015       return;
2016 
2017     const RecordDecl *RD = RT->getDecl();
2018 
2019     // Assume variable sized types are passed in memory.
2020     if (RD->hasFlexibleArrayMember())
2021       return;
2022 
2023     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2024 
2025     // Reset Lo class, this will be recomputed.
2026     Current = NoClass;
2027 
2028     // If this is a C++ record, classify the bases first.
2029     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2030       for (const auto &I : CXXRD->bases()) {
2031         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2032                "Unexpected base class!");
2033         const CXXRecordDecl *Base =
2034           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2035 
2036         // Classify this field.
2037         //
2038         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2039         // single eightbyte, each is classified separately. Each eightbyte gets
2040         // initialized to class NO_CLASS.
2041         Class FieldLo, FieldHi;
2042         uint64_t Offset =
2043           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2044         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2045         Lo = merge(Lo, FieldLo);
2046         Hi = merge(Hi, FieldHi);
2047         if (Lo == Memory || Hi == Memory)
2048           break;
2049       }
2050     }
2051 
2052     // Classify the fields one at a time, merging the results.
2053     unsigned idx = 0;
2054     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2055            i != e; ++i, ++idx) {
2056       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2057       bool BitField = i->isBitField();
2058 
2059       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2060       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2061       //
2062       // The only case a 256-bit wide vector could be used is when the struct
2063       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2064       // to work for sizes wider than 128, early check and fallback to memory.
2065       //
2066       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2067         Lo = Memory;
2068         return;
2069       }
2070       // Note, skip this test for bit-fields, see below.
2071       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2072         Lo = Memory;
2073         return;
2074       }
2075 
2076       // Classify this field.
2077       //
2078       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2079       // exceeds a single eightbyte, each is classified
2080       // separately. Each eightbyte gets initialized to class
2081       // NO_CLASS.
2082       Class FieldLo, FieldHi;
2083 
2084       // Bit-fields require special handling, they do not force the
2085       // structure to be passed in memory even if unaligned, and
2086       // therefore they can straddle an eightbyte.
2087       if (BitField) {
2088         // Ignore padding bit-fields.
2089         if (i->isUnnamedBitfield())
2090           continue;
2091 
2092         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2093         uint64_t Size = i->getBitWidthValue(getContext());
2094 
2095         uint64_t EB_Lo = Offset / 64;
2096         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2097 
2098         if (EB_Lo) {
2099           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2100           FieldLo = NoClass;
2101           FieldHi = Integer;
2102         } else {
2103           FieldLo = Integer;
2104           FieldHi = EB_Hi ? Integer : NoClass;
2105         }
2106       } else
2107         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2108       Lo = merge(Lo, FieldLo);
2109       Hi = merge(Hi, FieldHi);
2110       if (Lo == Memory || Hi == Memory)
2111         break;
2112     }
2113 
2114     postMerge(Size, Lo, Hi);
2115   }
2116 }
2117 
getIndirectReturnResult(QualType Ty) const2118 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2119   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2120   // place naturally.
2121   if (!isAggregateTypeForABI(Ty)) {
2122     // Treat an enum type as its underlying type.
2123     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2124       Ty = EnumTy->getDecl()->getIntegerType();
2125 
2126     return (Ty->isPromotableIntegerType() ?
2127             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2128   }
2129 
2130   return ABIArgInfo::getIndirect(0);
2131 }
2132 
IsIllegalVectorType(QualType Ty) const2133 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2134   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2135     uint64_t Size = getContext().getTypeSize(VecTy);
2136     unsigned LargestVector = HasAVX ? 256 : 128;
2137     if (Size <= 64 || Size > LargestVector)
2138       return true;
2139   }
2140 
2141   return false;
2142 }
2143 
getIndirectResult(QualType Ty,unsigned freeIntRegs) const2144 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2145                                             unsigned freeIntRegs) const {
2146   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2147   // place naturally.
2148   //
2149   // This assumption is optimistic, as there could be free registers available
2150   // when we need to pass this argument in memory, and LLVM could try to pass
2151   // the argument in the free register. This does not seem to happen currently,
2152   // but this code would be much safer if we could mark the argument with
2153   // 'onstack'. See PR12193.
2154   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2155     // Treat an enum type as its underlying type.
2156     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2157       Ty = EnumTy->getDecl()->getIntegerType();
2158 
2159     return (Ty->isPromotableIntegerType() ?
2160             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2161   }
2162 
2163   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2164     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2165 
2166   // Compute the byval alignment. We specify the alignment of the byval in all
2167   // cases so that the mid-level optimizer knows the alignment of the byval.
2168   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2169 
2170   // Attempt to avoid passing indirect results using byval when possible. This
2171   // is important for good codegen.
2172   //
2173   // We do this by coercing the value into a scalar type which the backend can
2174   // handle naturally (i.e., without using byval).
2175   //
2176   // For simplicity, we currently only do this when we have exhausted all of the
2177   // free integer registers. Doing this when there are free integer registers
2178   // would require more care, as we would have to ensure that the coerced value
2179   // did not claim the unused register. That would require either reording the
2180   // arguments to the function (so that any subsequent inreg values came first),
2181   // or only doing this optimization when there were no following arguments that
2182   // might be inreg.
2183   //
2184   // We currently expect it to be rare (particularly in well written code) for
2185   // arguments to be passed on the stack when there are still free integer
2186   // registers available (this would typically imply large structs being passed
2187   // by value), so this seems like a fair tradeoff for now.
2188   //
2189   // We can revisit this if the backend grows support for 'onstack' parameter
2190   // attributes. See PR12193.
2191   if (freeIntRegs == 0) {
2192     uint64_t Size = getContext().getTypeSize(Ty);
2193 
2194     // If this type fits in an eightbyte, coerce it into the matching integral
2195     // type, which will end up on the stack (with alignment 8).
2196     if (Align == 8 && Size <= 64)
2197       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2198                                                           Size));
2199   }
2200 
2201   return ABIArgInfo::getIndirect(Align);
2202 }
2203 
2204 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2205 /// register. Pick an LLVM IR type that will be passed as a vector register.
GetByteVectorType(QualType Ty) const2206 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2207   // Wrapper structs/arrays that only contain vectors are passed just like
2208   // vectors; strip them off if present.
2209   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2210     Ty = QualType(InnerTy, 0);
2211 
2212   llvm::Type *IRType = CGT.ConvertType(Ty);
2213   assert(isa<llvm::VectorType>(IRType) &&
2214          "Trying to return a non-vector type in a vector register!");
2215   return IRType;
2216 }
2217 
2218 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2219 /// is known to either be off the end of the specified type or being in
2220 /// alignment padding.  The user type specified is known to be at most 128 bits
2221 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2222 /// classification that put one of the two halves in the INTEGER class.
2223 ///
2224 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)2225 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2226                                   unsigned EndBit, ASTContext &Context) {
2227   // If the bytes being queried are off the end of the type, there is no user
2228   // data hiding here.  This handles analysis of builtins, vectors and other
2229   // types that don't contain interesting padding.
2230   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2231   if (TySize <= StartBit)
2232     return true;
2233 
2234   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2235     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2236     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2237 
2238     // Check each element to see if the element overlaps with the queried range.
2239     for (unsigned i = 0; i != NumElts; ++i) {
2240       // If the element is after the span we care about, then we're done..
2241       unsigned EltOffset = i*EltSize;
2242       if (EltOffset >= EndBit) break;
2243 
2244       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2245       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2246                                  EndBit-EltOffset, Context))
2247         return false;
2248     }
2249     // If it overlaps no elements, then it is safe to process as padding.
2250     return true;
2251   }
2252 
2253   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2254     const RecordDecl *RD = RT->getDecl();
2255     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2256 
2257     // If this is a C++ record, check the bases first.
2258     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2259       for (const auto &I : CXXRD->bases()) {
2260         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2261                "Unexpected base class!");
2262         const CXXRecordDecl *Base =
2263           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2264 
2265         // If the base is after the span we care about, ignore it.
2266         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2267         if (BaseOffset >= EndBit) continue;
2268 
2269         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2270         if (!BitsContainNoUserData(I.getType(), BaseStart,
2271                                    EndBit-BaseOffset, Context))
2272           return false;
2273       }
2274     }
2275 
2276     // Verify that no field has data that overlaps the region of interest.  Yes
2277     // this could be sped up a lot by being smarter about queried fields,
2278     // however we're only looking at structs up to 16 bytes, so we don't care
2279     // much.
2280     unsigned idx = 0;
2281     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2282          i != e; ++i, ++idx) {
2283       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2284 
2285       // If we found a field after the region we care about, then we're done.
2286       if (FieldOffset >= EndBit) break;
2287 
2288       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2289       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2290                                  Context))
2291         return false;
2292     }
2293 
2294     // If nothing in this record overlapped the area of interest, then we're
2295     // clean.
2296     return true;
2297   }
2298 
2299   return false;
2300 }
2301 
2302 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2303 /// float member at the specified offset.  For example, {int,{float}} has a
2304 /// float at offset 4.  It is conservatively correct for this routine to return
2305 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::DataLayout & TD)2306 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2307                                   const llvm::DataLayout &TD) {
2308   // Base case if we find a float.
2309   if (IROffset == 0 && IRType->isFloatTy())
2310     return true;
2311 
2312   // If this is a struct, recurse into the field at the specified offset.
2313   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2314     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2315     unsigned Elt = SL->getElementContainingOffset(IROffset);
2316     IROffset -= SL->getElementOffset(Elt);
2317     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2318   }
2319 
2320   // If this is an array, recurse into the field at the specified offset.
2321   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2322     llvm::Type *EltTy = ATy->getElementType();
2323     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2324     IROffset -= IROffset/EltSize*EltSize;
2325     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2326   }
2327 
2328   return false;
2329 }
2330 
2331 
2332 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2333 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2334 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2335 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2336                    QualType SourceTy, unsigned SourceOffset) const {
2337   // The only three choices we have are either double, <2 x float>, or float. We
2338   // pass as float if the last 4 bytes is just padding.  This happens for
2339   // structs that contain 3 floats.
2340   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2341                             SourceOffset*8+64, getContext()))
2342     return llvm::Type::getFloatTy(getVMContext());
2343 
2344   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2345   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2346   // case.
2347   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2348       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2349     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2350 
2351   return llvm::Type::getDoubleTy(getVMContext());
2352 }
2353 
2354 
2355 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2356 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2357 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2358 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2359 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2360 /// etc).
2361 ///
2362 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2363 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2364 /// the 8-byte value references.  PrefType may be null.
2365 ///
2366 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2367 /// an offset into this that we're processing (which is always either 0 or 8).
2368 ///
2369 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2370 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2371                        QualType SourceTy, unsigned SourceOffset) const {
2372   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2373   // returning an 8-byte unit starting with it.  See if we can safely use it.
2374   if (IROffset == 0) {
2375     // Pointers and int64's always fill the 8-byte unit.
2376     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2377         IRType->isIntegerTy(64))
2378       return IRType;
2379 
2380     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2381     // goodness in the source type is just tail padding.  This is allowed to
2382     // kick in for struct {double,int} on the int, but not on
2383     // struct{double,int,int} because we wouldn't return the second int.  We
2384     // have to do this analysis on the source type because we can't depend on
2385     // unions being lowered a specific way etc.
2386     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2387         IRType->isIntegerTy(32) ||
2388         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2389       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2390           cast<llvm::IntegerType>(IRType)->getBitWidth();
2391 
2392       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2393                                 SourceOffset*8+64, getContext()))
2394         return IRType;
2395     }
2396   }
2397 
2398   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2399     // If this is a struct, recurse into the field at the specified offset.
2400     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2401     if (IROffset < SL->getSizeInBytes()) {
2402       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2403       IROffset -= SL->getElementOffset(FieldIdx);
2404 
2405       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2406                                     SourceTy, SourceOffset);
2407     }
2408   }
2409 
2410   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2411     llvm::Type *EltTy = ATy->getElementType();
2412     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2413     unsigned EltOffset = IROffset/EltSize*EltSize;
2414     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2415                                   SourceOffset);
2416   }
2417 
2418   // Okay, we don't have any better idea of what to pass, so we pass this in an
2419   // integer register that isn't too big to fit the rest of the struct.
2420   unsigned TySizeInBytes =
2421     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2422 
2423   assert(TySizeInBytes != SourceOffset && "Empty field?");
2424 
2425   // It is always safe to classify this as an integer type up to i64 that
2426   // isn't larger than the structure.
2427   return llvm::IntegerType::get(getVMContext(),
2428                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2429 }
2430 
2431 
2432 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2433 /// be used as elements of a two register pair to pass or return, return a
2434 /// first class aggregate to represent them.  For example, if the low part of
2435 /// a by-value argument should be passed as i32* and the high part as float,
2436 /// return {i32*, float}.
2437 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::DataLayout & TD)2438 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2439                            const llvm::DataLayout &TD) {
2440   // In order to correctly satisfy the ABI, we need to the high part to start
2441   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2442   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2443   // the second element at offset 8.  Check for this:
2444   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2445   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2446   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2447   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2448 
2449   // To handle this, we have to increase the size of the low part so that the
2450   // second element will start at an 8 byte offset.  We can't increase the size
2451   // of the second element because it might make us access off the end of the
2452   // struct.
2453   if (HiStart != 8) {
2454     // There are only two sorts of types the ABI generation code can produce for
2455     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2456     // Promote these to a larger type.
2457     if (Lo->isFloatTy())
2458       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2459     else {
2460       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2461       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2462     }
2463   }
2464 
2465   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2466 
2467 
2468   // Verify that the second element is at an 8-byte offset.
2469   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2470          "Invalid x86-64 argument pair!");
2471   return Result;
2472 }
2473 
2474 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const2475 classifyReturnType(QualType RetTy) const {
2476   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2477   // classification algorithm.
2478   X86_64ABIInfo::Class Lo, Hi;
2479   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2480 
2481   // Check some invariants.
2482   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2483   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2484 
2485   llvm::Type *ResType = nullptr;
2486   switch (Lo) {
2487   case NoClass:
2488     if (Hi == NoClass)
2489       return ABIArgInfo::getIgnore();
2490     // If the low part is just padding, it takes no register, leave ResType
2491     // null.
2492     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2493            "Unknown missing lo part");
2494     break;
2495 
2496   case SSEUp:
2497   case X87Up:
2498     llvm_unreachable("Invalid classification for lo word.");
2499 
2500     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2501     // hidden argument.
2502   case Memory:
2503     return getIndirectReturnResult(RetTy);
2504 
2505     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2506     // available register of the sequence %rax, %rdx is used.
2507   case Integer:
2508     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2509 
2510     // If we have a sign or zero extended integer, make sure to return Extend
2511     // so that the parameter gets the right LLVM IR attributes.
2512     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2513       // Treat an enum type as its underlying type.
2514       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2515         RetTy = EnumTy->getDecl()->getIntegerType();
2516 
2517       if (RetTy->isIntegralOrEnumerationType() &&
2518           RetTy->isPromotableIntegerType())
2519         return ABIArgInfo::getExtend();
2520     }
2521     break;
2522 
2523     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2524     // available SSE register of the sequence %xmm0, %xmm1 is used.
2525   case SSE:
2526     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2527     break;
2528 
2529     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2530     // returned on the X87 stack in %st0 as 80-bit x87 number.
2531   case X87:
2532     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2533     break;
2534 
2535     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2536     // part of the value is returned in %st0 and the imaginary part in
2537     // %st1.
2538   case ComplexX87:
2539     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2540     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2541                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2542                                     nullptr);
2543     break;
2544   }
2545 
2546   llvm::Type *HighPart = nullptr;
2547   switch (Hi) {
2548     // Memory was handled previously and X87 should
2549     // never occur as a hi class.
2550   case Memory:
2551   case X87:
2552     llvm_unreachable("Invalid classification for hi word.");
2553 
2554   case ComplexX87: // Previously handled.
2555   case NoClass:
2556     break;
2557 
2558   case Integer:
2559     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2560     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2561       return ABIArgInfo::getDirect(HighPart, 8);
2562     break;
2563   case SSE:
2564     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2565     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2566       return ABIArgInfo::getDirect(HighPart, 8);
2567     break;
2568 
2569     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2570     // is passed in the next available eightbyte chunk if the last used
2571     // vector register.
2572     //
2573     // SSEUP should always be preceded by SSE, just widen.
2574   case SSEUp:
2575     assert(Lo == SSE && "Unexpected SSEUp classification.");
2576     ResType = GetByteVectorType(RetTy);
2577     break;
2578 
2579     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2580     // returned together with the previous X87 value in %st0.
2581   case X87Up:
2582     // If X87Up is preceded by X87, we don't need to do
2583     // anything. However, in some cases with unions it may not be
2584     // preceded by X87. In such situations we follow gcc and pass the
2585     // extra bits in an SSE reg.
2586     if (Lo != X87) {
2587       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2588       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2589         return ABIArgInfo::getDirect(HighPart, 8);
2590     }
2591     break;
2592   }
2593 
2594   // If a high part was specified, merge it together with the low part.  It is
2595   // known to pass in the high eightbyte of the result.  We do this by forming a
2596   // first class struct aggregate with the high and low part: {low, high}
2597   if (HighPart)
2598     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2599 
2600   return ABIArgInfo::getDirect(ResType);
2601 }
2602 
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE,bool isNamedArg) const2603 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2604   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2605   bool isNamedArg)
2606   const
2607 {
2608   Ty = useFirstFieldIfTransparentUnion(Ty);
2609 
2610   X86_64ABIInfo::Class Lo, Hi;
2611   classify(Ty, 0, Lo, Hi, isNamedArg);
2612 
2613   // Check some invariants.
2614   // FIXME: Enforce these by construction.
2615   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2616   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2617 
2618   neededInt = 0;
2619   neededSSE = 0;
2620   llvm::Type *ResType = nullptr;
2621   switch (Lo) {
2622   case NoClass:
2623     if (Hi == NoClass)
2624       return ABIArgInfo::getIgnore();
2625     // If the low part is just padding, it takes no register, leave ResType
2626     // null.
2627     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2628            "Unknown missing lo part");
2629     break;
2630 
2631     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2632     // on the stack.
2633   case Memory:
2634 
2635     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2636     // COMPLEX_X87, it is passed in memory.
2637   case X87:
2638   case ComplexX87:
2639     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2640       ++neededInt;
2641     return getIndirectResult(Ty, freeIntRegs);
2642 
2643   case SSEUp:
2644   case X87Up:
2645     llvm_unreachable("Invalid classification for lo word.");
2646 
2647     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2648     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2649     // and %r9 is used.
2650   case Integer:
2651     ++neededInt;
2652 
2653     // Pick an 8-byte type based on the preferred type.
2654     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2655 
2656     // If we have a sign or zero extended integer, make sure to return Extend
2657     // so that the parameter gets the right LLVM IR attributes.
2658     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2659       // Treat an enum type as its underlying type.
2660       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2661         Ty = EnumTy->getDecl()->getIntegerType();
2662 
2663       if (Ty->isIntegralOrEnumerationType() &&
2664           Ty->isPromotableIntegerType())
2665         return ABIArgInfo::getExtend();
2666     }
2667 
2668     break;
2669 
2670     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2671     // available SSE register is used, the registers are taken in the
2672     // order from %xmm0 to %xmm7.
2673   case SSE: {
2674     llvm::Type *IRType = CGT.ConvertType(Ty);
2675     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2676     ++neededSSE;
2677     break;
2678   }
2679   }
2680 
2681   llvm::Type *HighPart = nullptr;
2682   switch (Hi) {
2683     // Memory was handled previously, ComplexX87 and X87 should
2684     // never occur as hi classes, and X87Up must be preceded by X87,
2685     // which is passed in memory.
2686   case Memory:
2687   case X87:
2688   case ComplexX87:
2689     llvm_unreachable("Invalid classification for hi word.");
2690 
2691   case NoClass: break;
2692 
2693   case Integer:
2694     ++neededInt;
2695     // Pick an 8-byte type based on the preferred type.
2696     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2697 
2698     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2699       return ABIArgInfo::getDirect(HighPart, 8);
2700     break;
2701 
2702     // X87Up generally doesn't occur here (long double is passed in
2703     // memory), except in situations involving unions.
2704   case X87Up:
2705   case SSE:
2706     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2707 
2708     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2709       return ABIArgInfo::getDirect(HighPart, 8);
2710 
2711     ++neededSSE;
2712     break;
2713 
2714     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2715     // eightbyte is passed in the upper half of the last used SSE
2716     // register.  This only happens when 128-bit vectors are passed.
2717   case SSEUp:
2718     assert(Lo == SSE && "Unexpected SSEUp classification");
2719     ResType = GetByteVectorType(Ty);
2720     break;
2721   }
2722 
2723   // If a high part was specified, merge it together with the low part.  It is
2724   // known to pass in the high eightbyte of the result.  We do this by forming a
2725   // first class struct aggregate with the high and low part: {low, high}
2726   if (HighPart)
2727     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2728 
2729   return ABIArgInfo::getDirect(ResType);
2730 }
2731 
computeInfo(CGFunctionInfo & FI) const2732 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2733 
2734   if (!getCXXABI().classifyReturnType(FI))
2735     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2736 
2737   // Keep track of the number of assigned registers.
2738   unsigned freeIntRegs = 6, freeSSERegs = 8;
2739 
2740   // If the return value is indirect, then the hidden argument is consuming one
2741   // integer register.
2742   if (FI.getReturnInfo().isIndirect())
2743     --freeIntRegs;
2744 
2745   // The chain argument effectively gives us another free register.
2746   if (FI.isChainCall())
2747     ++freeIntRegs;
2748 
2749   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2750   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2751   // get assigned (in left-to-right order) for passing as follows...
2752   unsigned ArgNo = 0;
2753   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2754        it != ie; ++it, ++ArgNo) {
2755     bool IsNamedArg = ArgNo < NumRequiredArgs;
2756 
2757     unsigned neededInt, neededSSE;
2758     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2759                                     neededSSE, IsNamedArg);
2760 
2761     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2762     // eightbyte of an argument, the whole argument is passed on the
2763     // stack. If registers have already been assigned for some
2764     // eightbytes of such an argument, the assignments get reverted.
2765     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2766       freeIntRegs -= neededInt;
2767       freeSSERegs -= neededSSE;
2768     } else {
2769       it->info = getIndirectResult(it->type, freeIntRegs);
2770     }
2771   }
2772 }
2773 
EmitVAArgFromMemory(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF)2774 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2775                                         QualType Ty,
2776                                         CodeGenFunction &CGF) {
2777   llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP(
2778       nullptr, VAListAddr, 2, "overflow_arg_area_p");
2779   llvm::Value *overflow_arg_area =
2780     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2781 
2782   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2783   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2784   // It isn't stated explicitly in the standard, but in practice we use
2785   // alignment greater than 16 where necessary.
2786   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2787   if (Align > 8) {
2788     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2789     llvm::Value *Offset =
2790       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2791     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2792     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2793                                                     CGF.Int64Ty);
2794     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2795     overflow_arg_area =
2796       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2797                                  overflow_arg_area->getType(),
2798                                  "overflow_arg_area.align");
2799   }
2800 
2801   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2802   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2803   llvm::Value *Res =
2804     CGF.Builder.CreateBitCast(overflow_arg_area,
2805                               llvm::PointerType::getUnqual(LTy));
2806 
2807   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2808   // l->overflow_arg_area + sizeof(type).
2809   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2810   // an 8 byte boundary.
2811 
2812   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2813   llvm::Value *Offset =
2814       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2815   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2816                                             "overflow_arg_area.next");
2817   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2818 
2819   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2820   return Res;
2821 }
2822 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2823 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2824                                       CodeGenFunction &CGF) const {
2825   // Assume that va_list type is correct; should be pointer to LLVM type:
2826   // struct {
2827   //   i32 gp_offset;
2828   //   i32 fp_offset;
2829   //   i8* overflow_arg_area;
2830   //   i8* reg_save_area;
2831   // };
2832   unsigned neededInt, neededSSE;
2833 
2834   Ty = CGF.getContext().getCanonicalType(Ty);
2835   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2836                                        /*isNamedArg*/false);
2837 
2838   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2839   // in the registers. If not go to step 7.
2840   if (!neededInt && !neededSSE)
2841     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2842 
2843   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2844   // general purpose registers needed to pass type and num_fp to hold
2845   // the number of floating point registers needed.
2846 
2847   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2848   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2849   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2850   //
2851   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2852   // register save space).
2853 
2854   llvm::Value *InRegs = nullptr;
2855   llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2856   llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2857   if (neededInt) {
2858     gp_offset_p =
2859         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p");
2860     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2861     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2862     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2863   }
2864 
2865   if (neededSSE) {
2866     fp_offset_p =
2867         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p");
2868     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2869     llvm::Value *FitsInFP =
2870       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2871     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2872     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2873   }
2874 
2875   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2876   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2877   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2878   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2879 
2880   // Emit code to load the value if it was passed in registers.
2881 
2882   CGF.EmitBlock(InRegBlock);
2883 
2884   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2885   // an offset of l->gp_offset and/or l->fp_offset. This may require
2886   // copying to a temporary location in case the parameter is passed
2887   // in different register classes or requires an alignment greater
2888   // than 8 for general purpose registers and 16 for XMM registers.
2889   //
2890   // FIXME: This really results in shameful code when we end up needing to
2891   // collect arguments from different places; often what should result in a
2892   // simple assembling of a structure from scattered addresses has many more
2893   // loads than necessary. Can we clean this up?
2894   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2895   llvm::Value *RegAddr = CGF.Builder.CreateLoad(
2896       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area");
2897   if (neededInt && neededSSE) {
2898     // FIXME: Cleanup.
2899     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2900     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2901     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2902     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2903     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2904     llvm::Type *TyLo = ST->getElementType(0);
2905     llvm::Type *TyHi = ST->getElementType(1);
2906     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2907            "Unexpected ABI info for mixed regs");
2908     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2909     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2910     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2911     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2912     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2913     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2914     llvm::Value *V =
2915       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2916     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
2917     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2918     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
2919 
2920     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2921                                         llvm::PointerType::getUnqual(LTy));
2922   } else if (neededInt) {
2923     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2924     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2925                                         llvm::PointerType::getUnqual(LTy));
2926 
2927     // Copy to a temporary if necessary to ensure the appropriate alignment.
2928     std::pair<CharUnits, CharUnits> SizeAlign =
2929         CGF.getContext().getTypeInfoInChars(Ty);
2930     uint64_t TySize = SizeAlign.first.getQuantity();
2931     unsigned TyAlign = SizeAlign.second.getQuantity();
2932     if (TyAlign > 8) {
2933       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2934       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2935       RegAddr = Tmp;
2936     }
2937   } else if (neededSSE == 1) {
2938     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2939     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2940                                         llvm::PointerType::getUnqual(LTy));
2941   } else {
2942     assert(neededSSE == 2 && "Invalid number of needed registers!");
2943     // SSE registers are spaced 16 bytes apart in the register save
2944     // area, we need to collect the two eightbytes together.
2945     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2946     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2947     llvm::Type *DoubleTy = CGF.DoubleTy;
2948     llvm::Type *DblPtrTy =
2949       llvm::PointerType::getUnqual(DoubleTy);
2950     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
2951     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2952     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2953     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2954                                                          DblPtrTy));
2955     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
2956     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2957                                                          DblPtrTy));
2958     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
2959     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2960                                         llvm::PointerType::getUnqual(LTy));
2961   }
2962 
2963   // AMD64-ABI 3.5.7p5: Step 5. Set:
2964   // l->gp_offset = l->gp_offset + num_gp * 8
2965   // l->fp_offset = l->fp_offset + num_fp * 16.
2966   if (neededInt) {
2967     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2968     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2969                             gp_offset_p);
2970   }
2971   if (neededSSE) {
2972     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2973     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2974                             fp_offset_p);
2975   }
2976   CGF.EmitBranch(ContBlock);
2977 
2978   // Emit code to load the value if it was passed in memory.
2979 
2980   CGF.EmitBlock(InMemBlock);
2981   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2982 
2983   // Return the appropriate result.
2984 
2985   CGF.EmitBlock(ContBlock);
2986   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2987                                                  "vaarg.addr");
2988   ResAddr->addIncoming(RegAddr, InRegBlock);
2989   ResAddr->addIncoming(MemAddr, InMemBlock);
2990   return ResAddr;
2991 }
2992 
classify(QualType Ty,unsigned & FreeSSERegs,bool IsReturnType) const2993 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
2994                                       bool IsReturnType) const {
2995 
2996   if (Ty->isVoidType())
2997     return ABIArgInfo::getIgnore();
2998 
2999   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3000     Ty = EnumTy->getDecl()->getIntegerType();
3001 
3002   TypeInfo Info = getContext().getTypeInfo(Ty);
3003   uint64_t Width = Info.Width;
3004   unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
3005 
3006   const RecordType *RT = Ty->getAs<RecordType>();
3007   if (RT) {
3008     if (!IsReturnType) {
3009       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3010         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3011     }
3012 
3013     if (RT->getDecl()->hasFlexibleArrayMember())
3014       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3015 
3016     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3017     if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3018       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3019                                                           Width));
3020   }
3021 
3022   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3023   // other targets.
3024   const Type *Base = nullptr;
3025   uint64_t NumElts = 0;
3026   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3027     if (FreeSSERegs >= NumElts) {
3028       FreeSSERegs -= NumElts;
3029       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3030         return ABIArgInfo::getDirect();
3031       return ABIArgInfo::getExpand();
3032     }
3033     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3034   }
3035 
3036 
3037   if (Ty->isMemberPointerType()) {
3038     // If the member pointer is represented by an LLVM int or ptr, pass it
3039     // directly.
3040     llvm::Type *LLTy = CGT.ConvertType(Ty);
3041     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3042       return ABIArgInfo::getDirect();
3043   }
3044 
3045   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3046     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3047     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3048     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3049       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3050 
3051     // Otherwise, coerce it to a small integer.
3052     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3053   }
3054 
3055   // Bool type is always extended to the ABI, other builtin types are not
3056   // extended.
3057   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3058   if (BT && BT->getKind() == BuiltinType::Bool)
3059     return ABIArgInfo::getExtend();
3060 
3061   return ABIArgInfo::getDirect();
3062 }
3063 
computeInfo(CGFunctionInfo & FI) const3064 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3065   bool IsVectorCall =
3066       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3067 
3068   // We can use up to 4 SSE return registers with vectorcall.
3069   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3070   if (!getCXXABI().classifyReturnType(FI))
3071     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3072 
3073   // We can use up to 6 SSE register parameters with vectorcall.
3074   FreeSSERegs = IsVectorCall ? 6 : 0;
3075   for (auto &I : FI.arguments())
3076     I.info = classify(I.type, FreeSSERegs, false);
3077 }
3078 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3079 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3080                                       CodeGenFunction &CGF) const {
3081   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3082 
3083   CGBuilderTy &Builder = CGF.Builder;
3084   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3085                                                        "ap");
3086   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3087   llvm::Type *PTy =
3088     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3089   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3090 
3091   uint64_t Offset =
3092     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
3093   llvm::Value *NextAddr =
3094     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3095                       "ap.next");
3096   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3097 
3098   return AddrTyped;
3099 }
3100 
3101 // PowerPC-32
3102 namespace {
3103 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3104 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3105 public:
PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT)3106   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3107 
3108   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3109                          CodeGenFunction &CGF) const override;
3110 };
3111 
3112 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3113 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT)3114   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3115 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3116   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3117     // This is recovered from gcc output.
3118     return 1; // r1 is the dedicated stack pointer
3119   }
3120 
3121   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3122                                llvm::Value *Address) const override;
3123 
getOpenMPSimdDefaultAlignment(QualType) const3124   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3125     return 16; // Natural alignment for Altivec vectors.
3126   }
3127 };
3128 
3129 }
3130 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3131 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3132                                            QualType Ty,
3133                                            CodeGenFunction &CGF) const {
3134   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3135     // TODO: Implement this. For now ignore.
3136     (void)CTy;
3137     return nullptr;
3138   }
3139 
3140   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3141   bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3142   llvm::Type *CharPtr = CGF.Int8PtrTy;
3143   llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
3144 
3145   CGBuilderTy &Builder = CGF.Builder;
3146   llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
3147   llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
3148   llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
3149   llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
3150   llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
3151   llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
3152   llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
3153   llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
3154   llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
3155   // Align GPR when TY is i64.
3156   if (isI64) {
3157     llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
3158     llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
3159     llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
3160     GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
3161   }
3162   llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
3163   llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
3164   llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
3165   llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
3166   llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
3167 
3168   llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
3169                                           Builder.getInt8(8), "cond");
3170 
3171   llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
3172                                                Builder.getInt8(isInt ? 4 : 8));
3173 
3174   llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
3175 
3176   if (Ty->isFloatingType())
3177     OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
3178 
3179   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3180   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3181   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3182 
3183   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3184 
3185   CGF.EmitBlock(UsingRegs);
3186 
3187   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3188   llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
3189   // Increase the GPR/FPR indexes.
3190   if (isInt) {
3191     GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
3192     Builder.CreateStore(GPR, GPRPtr);
3193   } else {
3194     FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
3195     Builder.CreateStore(FPR, FPRPtr);
3196   }
3197   CGF.EmitBranch(Cont);
3198 
3199   CGF.EmitBlock(UsingOverflow);
3200 
3201   // Increase the overflow area.
3202   llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
3203   OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
3204   Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
3205   CGF.EmitBranch(Cont);
3206 
3207   CGF.EmitBlock(Cont);
3208 
3209   llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
3210   Result->addIncoming(Result1, UsingRegs);
3211   Result->addIncoming(Result2, UsingOverflow);
3212 
3213   if (Ty->isAggregateType()) {
3214     llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr")  ;
3215     return Builder.CreateLoad(AGGPtr, false, "aggr");
3216   }
3217 
3218   return Result;
3219 }
3220 
3221 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3222 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3223                                                 llvm::Value *Address) const {
3224   // This is calculated from the LLVM and GCC tables and verified
3225   // against gcc output.  AFAIK all ABIs use the same encoding.
3226 
3227   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3228 
3229   llvm::IntegerType *i8 = CGF.Int8Ty;
3230   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3231   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3232   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3233 
3234   // 0-31: r0-31, the 4-byte general-purpose registers
3235   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3236 
3237   // 32-63: fp0-31, the 8-byte floating-point registers
3238   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3239 
3240   // 64-76 are various 4-byte special-purpose registers:
3241   // 64: mq
3242   // 65: lr
3243   // 66: ctr
3244   // 67: ap
3245   // 68-75 cr0-7
3246   // 76: xer
3247   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3248 
3249   // 77-108: v0-31, the 16-byte vector registers
3250   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3251 
3252   // 109: vrsave
3253   // 110: vscr
3254   // 111: spe_acc
3255   // 112: spefscr
3256   // 113: sfp
3257   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3258 
3259   return false;
3260 }
3261 
3262 // PowerPC-64
3263 
3264 namespace {
3265 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3266 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3267 public:
3268   enum ABIKind {
3269     ELFv1 = 0,
3270     ELFv2
3271   };
3272 
3273 private:
3274   static const unsigned GPRBits = 64;
3275   ABIKind Kind;
3276   bool HasQPX;
3277 
3278   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3279   // will be passed in a QPX register.
IsQPXVectorTy(const Type * Ty) const3280   bool IsQPXVectorTy(const Type *Ty) const {
3281     if (!HasQPX)
3282       return false;
3283 
3284     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3285       unsigned NumElements = VT->getNumElements();
3286       if (NumElements == 1)
3287         return false;
3288 
3289       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3290         if (getContext().getTypeSize(Ty) <= 256)
3291           return true;
3292       } else if (VT->getElementType()->
3293                    isSpecificBuiltinType(BuiltinType::Float)) {
3294         if (getContext().getTypeSize(Ty) <= 128)
3295           return true;
3296       }
3297     }
3298 
3299     return false;
3300   }
3301 
IsQPXVectorTy(QualType Ty) const3302   bool IsQPXVectorTy(QualType Ty) const {
3303     return IsQPXVectorTy(Ty.getTypePtr());
3304   }
3305 
3306 public:
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,ABIKind Kind,bool HasQPX)3307   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3308     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3309 
3310   bool isPromotableTypeForABI(QualType Ty) const;
3311   bool isAlignedParamType(QualType Ty, bool &Align32) const;
3312 
3313   ABIArgInfo classifyReturnType(QualType RetTy) const;
3314   ABIArgInfo classifyArgumentType(QualType Ty) const;
3315 
3316   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3317   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3318                                          uint64_t Members) const override;
3319 
3320   // TODO: We can add more logic to computeInfo to improve performance.
3321   // Example: For aggregate arguments that fit in a register, we could
3322   // use getDirectInReg (as is done below for structs containing a single
3323   // floating-point value) to avoid pushing them to memory on function
3324   // entry.  This would require changing the logic in PPCISelLowering
3325   // when lowering the parameters in the caller and args in the callee.
computeInfo(CGFunctionInfo & FI) const3326   void computeInfo(CGFunctionInfo &FI) const override {
3327     if (!getCXXABI().classifyReturnType(FI))
3328       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3329     for (auto &I : FI.arguments()) {
3330       // We rely on the default argument classification for the most part.
3331       // One exception:  An aggregate containing a single floating-point
3332       // or vector item must be passed in a register if one is available.
3333       const Type *T = isSingleElementStruct(I.type, getContext());
3334       if (T) {
3335         const BuiltinType *BT = T->getAs<BuiltinType>();
3336         if (IsQPXVectorTy(T) ||
3337             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3338             (BT && BT->isFloatingPoint())) {
3339           QualType QT(T, 0);
3340           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3341           continue;
3342         }
3343       }
3344       I.info = classifyArgumentType(I.type);
3345     }
3346   }
3347 
3348   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3349                          CodeGenFunction &CGF) const override;
3350 };
3351 
3352 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3353   bool HasQPX;
3354 
3355 public:
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes & CGT,PPC64_SVR4_ABIInfo::ABIKind Kind,bool HasQPX)3356   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3357                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3358     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)),
3359       HasQPX(HasQPX) {}
3360 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3361   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3362     // This is recovered from gcc output.
3363     return 1; // r1 is the dedicated stack pointer
3364   }
3365 
3366   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3367                                llvm::Value *Address) const override;
3368 
getOpenMPSimdDefaultAlignment(QualType QT) const3369   unsigned getOpenMPSimdDefaultAlignment(QualType QT) const override {
3370     if (HasQPX)
3371       if (const PointerType *PT = QT->getAs<PointerType>())
3372         if (PT->getPointeeType()->isSpecificBuiltinType(BuiltinType::Double))
3373           return 32; // Natural alignment for QPX doubles.
3374 
3375     return 16; // Natural alignment for Altivec and VSX vectors.
3376   }
3377 };
3378 
3379 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3380 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)3381   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3382 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3383   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3384     // This is recovered from gcc output.
3385     return 1; // r1 is the dedicated stack pointer
3386   }
3387 
3388   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3389                                llvm::Value *Address) const override;
3390 
getOpenMPSimdDefaultAlignment(QualType) const3391   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3392     return 16; // Natural alignment for Altivec vectors.
3393   }
3394 };
3395 
3396 }
3397 
3398 // Return true if the ABI requires Ty to be passed sign- or zero-
3399 // extended to 64 bits.
3400 bool
isPromotableTypeForABI(QualType Ty) const3401 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3402   // Treat an enum type as its underlying type.
3403   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3404     Ty = EnumTy->getDecl()->getIntegerType();
3405 
3406   // Promotable integer types are required to be promoted by the ABI.
3407   if (Ty->isPromotableIntegerType())
3408     return true;
3409 
3410   // In addition to the usual promotable integer types, we also need to
3411   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3412   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3413     switch (BT->getKind()) {
3414     case BuiltinType::Int:
3415     case BuiltinType::UInt:
3416       return true;
3417     default:
3418       break;
3419     }
3420 
3421   return false;
3422 }
3423 
3424 /// isAlignedParamType - Determine whether a type requires 16-byte
3425 /// alignment in the parameter area.
3426 bool
isAlignedParamType(QualType Ty,bool & Align32) const3427 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const {
3428   Align32 = false;
3429 
3430   // Complex types are passed just like their elements.
3431   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3432     Ty = CTy->getElementType();
3433 
3434   // Only vector types of size 16 bytes need alignment (larger types are
3435   // passed via reference, smaller types are not aligned).
3436   if (IsQPXVectorTy(Ty)) {
3437     if (getContext().getTypeSize(Ty) > 128)
3438       Align32 = true;
3439 
3440     return true;
3441   } else if (Ty->isVectorType()) {
3442     return getContext().getTypeSize(Ty) == 128;
3443   }
3444 
3445   // For single-element float/vector structs, we consider the whole type
3446   // to have the same alignment requirements as its single element.
3447   const Type *AlignAsType = nullptr;
3448   const Type *EltType = isSingleElementStruct(Ty, getContext());
3449   if (EltType) {
3450     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3451     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3452          getContext().getTypeSize(EltType) == 128) ||
3453         (BT && BT->isFloatingPoint()))
3454       AlignAsType = EltType;
3455   }
3456 
3457   // Likewise for ELFv2 homogeneous aggregates.
3458   const Type *Base = nullptr;
3459   uint64_t Members = 0;
3460   if (!AlignAsType && Kind == ELFv2 &&
3461       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3462     AlignAsType = Base;
3463 
3464   // With special case aggregates, only vector base types need alignment.
3465   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3466     if (getContext().getTypeSize(AlignAsType) > 128)
3467       Align32 = true;
3468 
3469     return true;
3470   } else if (AlignAsType) {
3471     return AlignAsType->isVectorType();
3472   }
3473 
3474   // Otherwise, we only need alignment for any aggregate type that
3475   // has an alignment requirement of >= 16 bytes.
3476   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3477     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3478       Align32 = true;
3479     return true;
3480   }
3481 
3482   return false;
3483 }
3484 
3485 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3486 /// aggregate.  Base is set to the base element type, and Members is set
3487 /// to the number of base elements.
isHomogeneousAggregate(QualType Ty,const Type * & Base,uint64_t & Members) const3488 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3489                                      uint64_t &Members) const {
3490   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3491     uint64_t NElements = AT->getSize().getZExtValue();
3492     if (NElements == 0)
3493       return false;
3494     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3495       return false;
3496     Members *= NElements;
3497   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3498     const RecordDecl *RD = RT->getDecl();
3499     if (RD->hasFlexibleArrayMember())
3500       return false;
3501 
3502     Members = 0;
3503 
3504     // If this is a C++ record, check the bases first.
3505     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3506       for (const auto &I : CXXRD->bases()) {
3507         // Ignore empty records.
3508         if (isEmptyRecord(getContext(), I.getType(), true))
3509           continue;
3510 
3511         uint64_t FldMembers;
3512         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3513           return false;
3514 
3515         Members += FldMembers;
3516       }
3517     }
3518 
3519     for (const auto *FD : RD->fields()) {
3520       // Ignore (non-zero arrays of) empty records.
3521       QualType FT = FD->getType();
3522       while (const ConstantArrayType *AT =
3523              getContext().getAsConstantArrayType(FT)) {
3524         if (AT->getSize().getZExtValue() == 0)
3525           return false;
3526         FT = AT->getElementType();
3527       }
3528       if (isEmptyRecord(getContext(), FT, true))
3529         continue;
3530 
3531       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3532       if (getContext().getLangOpts().CPlusPlus &&
3533           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3534         continue;
3535 
3536       uint64_t FldMembers;
3537       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3538         return false;
3539 
3540       Members = (RD->isUnion() ?
3541                  std::max(Members, FldMembers) : Members + FldMembers);
3542     }
3543 
3544     if (!Base)
3545       return false;
3546 
3547     // Ensure there is no padding.
3548     if (getContext().getTypeSize(Base) * Members !=
3549         getContext().getTypeSize(Ty))
3550       return false;
3551   } else {
3552     Members = 1;
3553     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3554       Members = 2;
3555       Ty = CT->getElementType();
3556     }
3557 
3558     // Most ABIs only support float, double, and some vector type widths.
3559     if (!isHomogeneousAggregateBaseType(Ty))
3560       return false;
3561 
3562     // The base type must be the same for all members.  Types that
3563     // agree in both total size and mode (float vs. vector) are
3564     // treated as being equivalent here.
3565     const Type *TyPtr = Ty.getTypePtr();
3566     if (!Base)
3567       Base = TyPtr;
3568 
3569     if (Base->isVectorType() != TyPtr->isVectorType() ||
3570         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3571       return false;
3572   }
3573   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3574 }
3575 
isHomogeneousAggregateBaseType(QualType Ty) const3576 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3577   // Homogeneous aggregates for ELFv2 must have base types of float,
3578   // double, long double, or 128-bit vectors.
3579   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3580     if (BT->getKind() == BuiltinType::Float ||
3581         BT->getKind() == BuiltinType::Double ||
3582         BT->getKind() == BuiltinType::LongDouble)
3583       return true;
3584   }
3585   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3586     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3587       return true;
3588   }
3589   return false;
3590 }
3591 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const3592 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3593     const Type *Base, uint64_t Members) const {
3594   // Vector types require one register, floating point types require one
3595   // or two registers depending on their size.
3596   uint32_t NumRegs =
3597       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3598 
3599   // Homogeneous Aggregates may occupy at most 8 registers.
3600   return Members * NumRegs <= 8;
3601 }
3602 
3603 ABIArgInfo
classifyArgumentType(QualType Ty) const3604 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3605   Ty = useFirstFieldIfTransparentUnion(Ty);
3606 
3607   if (Ty->isAnyComplexType())
3608     return ABIArgInfo::getDirect();
3609 
3610   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3611   // or via reference (larger than 16 bytes).
3612   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3613     uint64_t Size = getContext().getTypeSize(Ty);
3614     if (Size > 128)
3615       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3616     else if (Size < 128) {
3617       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3618       return ABIArgInfo::getDirect(CoerceTy);
3619     }
3620   }
3621 
3622   if (isAggregateTypeForABI(Ty)) {
3623     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3624       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3625 
3626     bool Align32;
3627     uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ?
3628                           (Align32 ? 32 : 16) : 8;
3629     uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3630 
3631     // ELFv2 homogeneous aggregates are passed as array types.
3632     const Type *Base = nullptr;
3633     uint64_t Members = 0;
3634     if (Kind == ELFv2 &&
3635         isHomogeneousAggregate(Ty, Base, Members)) {
3636       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3637       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3638       return ABIArgInfo::getDirect(CoerceTy);
3639     }
3640 
3641     // If an aggregate may end up fully in registers, we do not
3642     // use the ByVal method, but pass the aggregate as array.
3643     // This is usually beneficial since we avoid forcing the
3644     // back-end to store the argument to memory.
3645     uint64_t Bits = getContext().getTypeSize(Ty);
3646     if (Bits > 0 && Bits <= 8 * GPRBits) {
3647       llvm::Type *CoerceTy;
3648 
3649       // Types up to 8 bytes are passed as integer type (which will be
3650       // properly aligned in the argument save area doubleword).
3651       if (Bits <= GPRBits)
3652         CoerceTy = llvm::IntegerType::get(getVMContext(),
3653                                           llvm::RoundUpToAlignment(Bits, 8));
3654       // Larger types are passed as arrays, with the base type selected
3655       // according to the required alignment in the save area.
3656       else {
3657         uint64_t RegBits = ABIAlign * 8;
3658         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3659         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3660         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3661       }
3662 
3663       return ABIArgInfo::getDirect(CoerceTy);
3664     }
3665 
3666     // All other aggregates are passed ByVal.
3667     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3668                                    /*Realign=*/TyAlign > ABIAlign);
3669   }
3670 
3671   return (isPromotableTypeForABI(Ty) ?
3672           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3673 }
3674 
3675 ABIArgInfo
classifyReturnType(QualType RetTy) const3676 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3677   if (RetTy->isVoidType())
3678     return ABIArgInfo::getIgnore();
3679 
3680   if (RetTy->isAnyComplexType())
3681     return ABIArgInfo::getDirect();
3682 
3683   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3684   // or via reference (larger than 16 bytes).
3685   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
3686     uint64_t Size = getContext().getTypeSize(RetTy);
3687     if (Size > 128)
3688       return ABIArgInfo::getIndirect(0);
3689     else if (Size < 128) {
3690       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3691       return ABIArgInfo::getDirect(CoerceTy);
3692     }
3693   }
3694 
3695   if (isAggregateTypeForABI(RetTy)) {
3696     // ELFv2 homogeneous aggregates are returned as array types.
3697     const Type *Base = nullptr;
3698     uint64_t Members = 0;
3699     if (Kind == ELFv2 &&
3700         isHomogeneousAggregate(RetTy, Base, Members)) {
3701       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3702       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3703       return ABIArgInfo::getDirect(CoerceTy);
3704     }
3705 
3706     // ELFv2 small aggregates are returned in up to two registers.
3707     uint64_t Bits = getContext().getTypeSize(RetTy);
3708     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3709       if (Bits == 0)
3710         return ABIArgInfo::getIgnore();
3711 
3712       llvm::Type *CoerceTy;
3713       if (Bits > GPRBits) {
3714         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3715         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
3716       } else
3717         CoerceTy = llvm::IntegerType::get(getVMContext(),
3718                                           llvm::RoundUpToAlignment(Bits, 8));
3719       return ABIArgInfo::getDirect(CoerceTy);
3720     }
3721 
3722     // All other aggregates are returned indirectly.
3723     return ABIArgInfo::getIndirect(0);
3724   }
3725 
3726   return (isPromotableTypeForABI(RetTy) ?
3727           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3728 }
3729 
3730 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3731 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3732                                            QualType Ty,
3733                                            CodeGenFunction &CGF) const {
3734   llvm::Type *BP = CGF.Int8PtrTy;
3735   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3736 
3737   CGBuilderTy &Builder = CGF.Builder;
3738   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3739   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3740 
3741   // Handle types that require 16-byte alignment in the parameter save area.
3742   bool Align32;
3743   if (isAlignedParamType(Ty, Align32)) {
3744     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3745     AddrAsInt = Builder.CreateAdd(AddrAsInt,
3746                                   Builder.getInt64(Align32 ? 31 : 15));
3747     AddrAsInt = Builder.CreateAnd(AddrAsInt,
3748                                   Builder.getInt64(Align32 ? -32 : -16));
3749     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3750   }
3751 
3752   // Update the va_list pointer.  The pointer should be bumped by the
3753   // size of the object.  We can trust getTypeSize() except for a complex
3754   // type whose base type is smaller than a doubleword.  For these, the
3755   // size of the object is 16 bytes; see below for further explanation.
3756   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3757   QualType BaseTy;
3758   unsigned CplxBaseSize = 0;
3759 
3760   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3761     BaseTy = CTy->getElementType();
3762     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3763     if (CplxBaseSize < 8)
3764       SizeInBytes = 16;
3765   }
3766 
3767   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3768   llvm::Value *NextAddr =
3769     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3770                       "ap.next");
3771   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3772 
3773   // If we have a complex type and the base type is smaller than 8 bytes,
3774   // the ABI calls for the real and imaginary parts to be right-adjusted
3775   // in separate doublewords.  However, Clang expects us to produce a
3776   // pointer to a structure with the two parts packed tightly.  So generate
3777   // loads of the real and imaginary parts relative to the va_list pointer,
3778   // and store them to a temporary structure.
3779   if (CplxBaseSize && CplxBaseSize < 8) {
3780     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3781     llvm::Value *ImagAddr = RealAddr;
3782     if (CGF.CGM.getDataLayout().isBigEndian()) {
3783       RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3784       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3785     } else {
3786       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3787     }
3788     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3789     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3790     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3791     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3792     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3793     llvm::AllocaInst *Ptr =
3794         CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx");
3795     llvm::Value *RealPtr =
3796         Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real");
3797     llvm::Value *ImagPtr =
3798         Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag");
3799     Builder.CreateStore(Real, RealPtr, false);
3800     Builder.CreateStore(Imag, ImagPtr, false);
3801     return Ptr;
3802   }
3803 
3804   // If the argument is smaller than 8 bytes, it is right-adjusted in
3805   // its doubleword slot.  Adjust the pointer to pick it up from the
3806   // correct offset.
3807   if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3808     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3809     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3810     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3811   }
3812 
3813   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3814   return Builder.CreateBitCast(Addr, PTy);
3815 }
3816 
3817 static bool
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address)3818 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3819                               llvm::Value *Address) {
3820   // This is calculated from the LLVM and GCC tables and verified
3821   // against gcc output.  AFAIK all ABIs use the same encoding.
3822 
3823   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3824 
3825   llvm::IntegerType *i8 = CGF.Int8Ty;
3826   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3827   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3828   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3829 
3830   // 0-31: r0-31, the 8-byte general-purpose registers
3831   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3832 
3833   // 32-63: fp0-31, the 8-byte floating-point registers
3834   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3835 
3836   // 64-76 are various 4-byte special-purpose registers:
3837   // 64: mq
3838   // 65: lr
3839   // 66: ctr
3840   // 67: ap
3841   // 68-75 cr0-7
3842   // 76: xer
3843   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3844 
3845   // 77-108: v0-31, the 16-byte vector registers
3846   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3847 
3848   // 109: vrsave
3849   // 110: vscr
3850   // 111: spe_acc
3851   // 112: spefscr
3852   // 113: sfp
3853   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3854 
3855   return false;
3856 }
3857 
3858 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3859 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3860   CodeGen::CodeGenFunction &CGF,
3861   llvm::Value *Address) const {
3862 
3863   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3864 }
3865 
3866 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3867 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3868                                                 llvm::Value *Address) const {
3869 
3870   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3871 }
3872 
3873 //===----------------------------------------------------------------------===//
3874 // AArch64 ABI Implementation
3875 //===----------------------------------------------------------------------===//
3876 
3877 namespace {
3878 
3879 class AArch64ABIInfo : public ABIInfo {
3880 public:
3881   enum ABIKind {
3882     AAPCS = 0,
3883     DarwinPCS
3884   };
3885 
3886 private:
3887   ABIKind Kind;
3888 
3889 public:
AArch64ABIInfo(CodeGenTypes & CGT,ABIKind Kind)3890   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3891 
3892 private:
getABIKind() const3893   ABIKind getABIKind() const { return Kind; }
isDarwinPCS() const3894   bool isDarwinPCS() const { return Kind == DarwinPCS; }
3895 
3896   ABIArgInfo classifyReturnType(QualType RetTy) const;
3897   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3898   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3899   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3900                                          uint64_t Members) const override;
3901 
3902   bool isIllegalVectorType(QualType Ty) const;
3903 
computeInfo(CGFunctionInfo & FI) const3904   void computeInfo(CGFunctionInfo &FI) const override {
3905     if (!getCXXABI().classifyReturnType(FI))
3906       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3907 
3908     for (auto &it : FI.arguments())
3909       it.info = classifyArgumentType(it.type);
3910   }
3911 
3912   llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3913                                CodeGenFunction &CGF) const;
3914 
3915   llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3916                               CodeGenFunction &CGF) const;
3917 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3918   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3919                          CodeGenFunction &CGF) const override {
3920     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3921                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3922   }
3923 };
3924 
3925 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3926 public:
AArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind Kind)3927   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3928       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3929 
getARCRetainAutoreleasedReturnValueMarker() const3930   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
3931     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3932   }
3933 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3934   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3935     return 31;
3936   }
3937 
doesReturnSlotInterfereWithArgs() const3938   bool doesReturnSlotInterfereWithArgs() const override { return false; }
3939 };
3940 }
3941 
classifyArgumentType(QualType Ty) const3942 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
3943   Ty = useFirstFieldIfTransparentUnion(Ty);
3944 
3945   // Handle illegal vector types here.
3946   if (isIllegalVectorType(Ty)) {
3947     uint64_t Size = getContext().getTypeSize(Ty);
3948     // Android promotes <2 x i8> to i16, not i32
3949     if (Size <= 16) {
3950       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
3951       return ABIArgInfo::getDirect(ResType);
3952     }
3953     if (Size == 32) {
3954       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3955       return ABIArgInfo::getDirect(ResType);
3956     }
3957     if (Size == 64) {
3958       llvm::Type *ResType =
3959           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3960       return ABIArgInfo::getDirect(ResType);
3961     }
3962     if (Size == 128) {
3963       llvm::Type *ResType =
3964           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3965       return ABIArgInfo::getDirect(ResType);
3966     }
3967     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3968   }
3969 
3970   if (!isAggregateTypeForABI(Ty)) {
3971     // Treat an enum type as its underlying type.
3972     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3973       Ty = EnumTy->getDecl()->getIntegerType();
3974 
3975     return (Ty->isPromotableIntegerType() && isDarwinPCS()
3976                 ? ABIArgInfo::getExtend()
3977                 : ABIArgInfo::getDirect());
3978   }
3979 
3980   // Structures with either a non-trivial destructor or a non-trivial
3981   // copy constructor are always indirect.
3982   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3983     return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3984                                    CGCXXABI::RAA_DirectInMemory);
3985   }
3986 
3987   // Empty records are always ignored on Darwin, but actually passed in C++ mode
3988   // elsewhere for GNU compatibility.
3989   if (isEmptyRecord(getContext(), Ty, true)) {
3990     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3991       return ABIArgInfo::getIgnore();
3992 
3993     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3994   }
3995 
3996   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3997   const Type *Base = nullptr;
3998   uint64_t Members = 0;
3999   if (isHomogeneousAggregate(Ty, Base, Members)) {
4000     return ABIArgInfo::getDirect(
4001         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4002   }
4003 
4004   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4005   uint64_t Size = getContext().getTypeSize(Ty);
4006   if (Size <= 128) {
4007     unsigned Alignment = getContext().getTypeAlign(Ty);
4008     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4009 
4010     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4011     // For aggregates with 16-byte alignment, we use i128.
4012     if (Alignment < 128 && Size == 128) {
4013       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4014       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4015     }
4016     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4017   }
4018 
4019   return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4020 }
4021 
classifyReturnType(QualType RetTy) const4022 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4023   if (RetTy->isVoidType())
4024     return ABIArgInfo::getIgnore();
4025 
4026   // Large vector types should be returned via memory.
4027   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4028     return ABIArgInfo::getIndirect(0);
4029 
4030   if (!isAggregateTypeForABI(RetTy)) {
4031     // Treat an enum type as its underlying type.
4032     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4033       RetTy = EnumTy->getDecl()->getIntegerType();
4034 
4035     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4036                 ? ABIArgInfo::getExtend()
4037                 : ABIArgInfo::getDirect());
4038   }
4039 
4040   if (isEmptyRecord(getContext(), RetTy, true))
4041     return ABIArgInfo::getIgnore();
4042 
4043   const Type *Base = nullptr;
4044   uint64_t Members = 0;
4045   if (isHomogeneousAggregate(RetTy, Base, Members))
4046     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4047     return ABIArgInfo::getDirect();
4048 
4049   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4050   uint64_t Size = getContext().getTypeSize(RetTy);
4051   if (Size <= 128) {
4052     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4053     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4054   }
4055 
4056   return ABIArgInfo::getIndirect(0);
4057 }
4058 
4059 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
isIllegalVectorType(QualType Ty) const4060 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4061   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4062     // Check whether VT is legal.
4063     unsigned NumElements = VT->getNumElements();
4064     uint64_t Size = getContext().getTypeSize(VT);
4065     // NumElements should be power of 2 between 1 and 16.
4066     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4067       return true;
4068     return Size != 64 && (Size != 128 || NumElements == 1);
4069   }
4070   return false;
4071 }
4072 
isHomogeneousAggregateBaseType(QualType Ty) const4073 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4074   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4075   // point type or a short-vector type. This is the same as the 32-bit ABI,
4076   // but with the difference that any floating-point type is allowed,
4077   // including __fp16.
4078   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4079     if (BT->isFloatingPoint())
4080       return true;
4081   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4082     unsigned VecSize = getContext().getTypeSize(VT);
4083     if (VecSize == 64 || VecSize == 128)
4084       return true;
4085   }
4086   return false;
4087 }
4088 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const4089 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4090                                                        uint64_t Members) const {
4091   return Members <= 4;
4092 }
4093 
EmitAAPCSVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4094 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
4095                                             QualType Ty,
4096                                             CodeGenFunction &CGF) const {
4097   ABIArgInfo AI = classifyArgumentType(Ty);
4098   bool IsIndirect = AI.isIndirect();
4099 
4100   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4101   if (IsIndirect)
4102     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4103   else if (AI.getCoerceToType())
4104     BaseTy = AI.getCoerceToType();
4105 
4106   unsigned NumRegs = 1;
4107   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4108     BaseTy = ArrTy->getElementType();
4109     NumRegs = ArrTy->getNumElements();
4110   }
4111   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4112 
4113   // The AArch64 va_list type and handling is specified in the Procedure Call
4114   // Standard, section B.4:
4115   //
4116   // struct {
4117   //   void *__stack;
4118   //   void *__gr_top;
4119   //   void *__vr_top;
4120   //   int __gr_offs;
4121   //   int __vr_offs;
4122   // };
4123 
4124   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4125   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4126   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4127   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4128   auto &Ctx = CGF.getContext();
4129 
4130   llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
4131   int reg_top_index;
4132   int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
4133   if (!IsFPR) {
4134     // 3 is the field number of __gr_offs
4135     reg_offs_p =
4136         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p");
4137     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4138     reg_top_index = 1; // field number for __gr_top
4139     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4140   } else {
4141     // 4 is the field number of __vr_offs.
4142     reg_offs_p =
4143         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p");
4144     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4145     reg_top_index = 2; // field number for __vr_top
4146     RegSize = 16 * NumRegs;
4147   }
4148 
4149   //=======================================
4150   // Find out where argument was passed
4151   //=======================================
4152 
4153   // If reg_offs >= 0 we're already using the stack for this type of
4154   // argument. We don't want to keep updating reg_offs (in case it overflows,
4155   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4156   // whatever they get).
4157   llvm::Value *UsingStack = nullptr;
4158   UsingStack = CGF.Builder.CreateICmpSGE(
4159       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4160 
4161   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4162 
4163   // Otherwise, at least some kind of argument could go in these registers, the
4164   // question is whether this particular type is too big.
4165   CGF.EmitBlock(MaybeRegBlock);
4166 
4167   // Integer arguments may need to correct register alignment (for example a
4168   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4169   // align __gr_offs to calculate the potential address.
4170   if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4171     int Align = Ctx.getTypeAlign(Ty) / 8;
4172 
4173     reg_offs = CGF.Builder.CreateAdd(
4174         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4175         "align_regoffs");
4176     reg_offs = CGF.Builder.CreateAnd(
4177         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4178         "aligned_regoffs");
4179   }
4180 
4181   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4182   llvm::Value *NewOffset = nullptr;
4183   NewOffset = CGF.Builder.CreateAdd(
4184       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4185   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4186 
4187   // Now we're in a position to decide whether this argument really was in
4188   // registers or not.
4189   llvm::Value *InRegs = nullptr;
4190   InRegs = CGF.Builder.CreateICmpSLE(
4191       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4192 
4193   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4194 
4195   //=======================================
4196   // Argument was in registers
4197   //=======================================
4198 
4199   // Now we emit the code for if the argument was originally passed in
4200   // registers. First start the appropriate block:
4201   CGF.EmitBlock(InRegBlock);
4202 
4203   llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
4204   reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index,
4205                                           "reg_top_p");
4206   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4207   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4208   llvm::Value *RegAddr = nullptr;
4209   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4210 
4211   if (IsIndirect) {
4212     // If it's been passed indirectly (actually a struct), whatever we find from
4213     // stored registers or on the stack will actually be a struct **.
4214     MemTy = llvm::PointerType::getUnqual(MemTy);
4215   }
4216 
4217   const Type *Base = nullptr;
4218   uint64_t NumMembers = 0;
4219   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4220   if (IsHFA && NumMembers > 1) {
4221     // Homogeneous aggregates passed in registers will have their elements split
4222     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4223     // qN+1, ...). We reload and store into a temporary local variable
4224     // contiguously.
4225     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4226     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4227     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4228     llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy);
4229     int Offset = 0;
4230 
4231     if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
4232       Offset = 16 - Ctx.getTypeSize(Base) / 8;
4233     for (unsigned i = 0; i < NumMembers; ++i) {
4234       llvm::Value *BaseOffset =
4235           llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
4236       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4237       LoadAddr = CGF.Builder.CreateBitCast(
4238           LoadAddr, llvm::PointerType::getUnqual(BaseTy));
4239       llvm::Value *StoreAddr =
4240           CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i);
4241 
4242       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4243       CGF.Builder.CreateStore(Elem, StoreAddr);
4244     }
4245 
4246     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4247   } else {
4248     // Otherwise the object is contiguous in memory
4249     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4250     if (CGF.CGM.getDataLayout().isBigEndian() &&
4251         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4252         Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
4253       int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
4254       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4255 
4256       BaseAddr = CGF.Builder.CreateAdd(
4257           BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4258 
4259       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4260     }
4261 
4262     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4263   }
4264 
4265   CGF.EmitBranch(ContBlock);
4266 
4267   //=======================================
4268   // Argument was on the stack
4269   //=======================================
4270   CGF.EmitBlock(OnStackBlock);
4271 
4272   llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4273   stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p");
4274   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4275 
4276   // Again, stack arguments may need realigmnent. In this case both integer and
4277   // floating-point ones might be affected.
4278   if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4279     int Align = Ctx.getTypeAlign(Ty) / 8;
4280 
4281     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4282 
4283     OnStackAddr = CGF.Builder.CreateAdd(
4284         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4285         "align_stack");
4286     OnStackAddr = CGF.Builder.CreateAnd(
4287         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4288         "align_stack");
4289 
4290     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4291   }
4292 
4293   uint64_t StackSize;
4294   if (IsIndirect)
4295     StackSize = 8;
4296   else
4297     StackSize = Ctx.getTypeSize(Ty) / 8;
4298 
4299   // All stack slots are 8 bytes
4300   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4301 
4302   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4303   llvm::Value *NewStack =
4304       CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4305 
4306   // Write the new value of __stack for the next call to va_arg
4307   CGF.Builder.CreateStore(NewStack, stack_p);
4308 
4309   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4310       Ctx.getTypeSize(Ty) < 64) {
4311     int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4312     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4313 
4314     OnStackAddr = CGF.Builder.CreateAdd(
4315         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4316 
4317     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4318   }
4319 
4320   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4321 
4322   CGF.EmitBranch(ContBlock);
4323 
4324   //=======================================
4325   // Tidy up
4326   //=======================================
4327   CGF.EmitBlock(ContBlock);
4328 
4329   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4330   ResAddr->addIncoming(RegAddr, InRegBlock);
4331   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4332 
4333   if (IsIndirect)
4334     return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4335 
4336   return ResAddr;
4337 }
4338 
EmitDarwinVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4339 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
4340                                            CodeGenFunction &CGF) const {
4341   // We do not support va_arg for aggregates or illegal vector types.
4342   // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4343   // other cases.
4344   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4345     return nullptr;
4346 
4347   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4348   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4349 
4350   const Type *Base = nullptr;
4351   uint64_t Members = 0;
4352   bool isHA = isHomogeneousAggregate(Ty, Base, Members);
4353 
4354   bool isIndirect = false;
4355   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4356   // be passed indirectly.
4357   if (Size > 16 && !isHA) {
4358     isIndirect = true;
4359     Size = 8;
4360     Align = 8;
4361   }
4362 
4363   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4364   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4365 
4366   CGBuilderTy &Builder = CGF.Builder;
4367   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4368   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4369 
4370   if (isEmptyRecord(getContext(), Ty, true)) {
4371     // These are ignored for parameter passing purposes.
4372     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4373     return Builder.CreateBitCast(Addr, PTy);
4374   }
4375 
4376   const uint64_t MinABIAlign = 8;
4377   if (Align > MinABIAlign) {
4378     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4379     Addr = Builder.CreateGEP(Addr, Offset);
4380     llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4381     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4382     llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4383     Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4384   }
4385 
4386   uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4387   llvm::Value *NextAddr = Builder.CreateGEP(
4388       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4389   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4390 
4391   if (isIndirect)
4392     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4393   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4394   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4395 
4396   return AddrTyped;
4397 }
4398 
4399 //===----------------------------------------------------------------------===//
4400 // ARM ABI Implementation
4401 //===----------------------------------------------------------------------===//
4402 
4403 namespace {
4404 
4405 class ARMABIInfo : public ABIInfo {
4406 public:
4407   enum ABIKind {
4408     APCS = 0,
4409     AAPCS = 1,
4410     AAPCS_VFP
4411   };
4412 
4413 private:
4414   ABIKind Kind;
4415 
4416 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)4417   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4418     setCCs();
4419   }
4420 
isEABI() const4421   bool isEABI() const {
4422     switch (getTarget().getTriple().getEnvironment()) {
4423     case llvm::Triple::Android:
4424     case llvm::Triple::EABI:
4425     case llvm::Triple::EABIHF:
4426     case llvm::Triple::GNUEABI:
4427     case llvm::Triple::GNUEABIHF:
4428       return true;
4429     default:
4430       return false;
4431     }
4432   }
4433 
isEABIHF() const4434   bool isEABIHF() const {
4435     switch (getTarget().getTriple().getEnvironment()) {
4436     case llvm::Triple::EABIHF:
4437     case llvm::Triple::GNUEABIHF:
4438       return true;
4439     default:
4440       return false;
4441     }
4442   }
4443 
getABIKind() const4444   ABIKind getABIKind() const { return Kind; }
4445 
4446 private:
4447   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4448   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4449   bool isIllegalVectorType(QualType Ty) const;
4450 
4451   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4452   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4453                                          uint64_t Members) const override;
4454 
4455   void computeInfo(CGFunctionInfo &FI) const override;
4456 
4457   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4458                          CodeGenFunction &CGF) const override;
4459 
4460   llvm::CallingConv::ID getLLVMDefaultCC() const;
4461   llvm::CallingConv::ID getABIDefaultCC() const;
4462   void setCCs();
4463 };
4464 
4465 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4466 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)4467   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4468     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4469 
getABIInfo() const4470   const ARMABIInfo &getABIInfo() const {
4471     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4472   }
4473 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4474   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4475     return 13;
4476   }
4477 
getARCRetainAutoreleasedReturnValueMarker() const4478   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4479     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4480   }
4481 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4482   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4483                                llvm::Value *Address) const override {
4484     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4485 
4486     // 0-15 are the 16 integer registers.
4487     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4488     return false;
4489   }
4490 
getSizeOfUnwindException() const4491   unsigned getSizeOfUnwindException() const override {
4492     if (getABIInfo().isEABI()) return 88;
4493     return TargetCodeGenInfo::getSizeOfUnwindException();
4494   }
4495 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4496   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4497                            CodeGen::CodeGenModule &CGM) const override {
4498     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4499     if (!FD)
4500       return;
4501 
4502     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4503     if (!Attr)
4504       return;
4505 
4506     const char *Kind;
4507     switch (Attr->getInterrupt()) {
4508     case ARMInterruptAttr::Generic: Kind = ""; break;
4509     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4510     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4511     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4512     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4513     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4514     }
4515 
4516     llvm::Function *Fn = cast<llvm::Function>(GV);
4517 
4518     Fn->addFnAttr("interrupt", Kind);
4519 
4520     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4521       return;
4522 
4523     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4524     // however this is not necessarily true on taking any interrupt. Instruct
4525     // the backend to perform a realignment as part of the function prologue.
4526     llvm::AttrBuilder B;
4527     B.addStackAlignmentAttr(8);
4528     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4529                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4530                                               llvm::AttributeSet::FunctionIndex,
4531                                               B));
4532   }
4533 };
4534 
4535 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4536   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4537                                         CodeGen::CodeGenModule &CGM) const;
4538 
4539 public:
WindowsARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)4540   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4541       : ARMTargetCodeGenInfo(CGT, K) {}
4542 
4543   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4544                            CodeGen::CodeGenModule &CGM) const override;
4545 };
4546 
addStackProbeSizeTargetAttribute(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4547 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4548     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4549   if (!isa<FunctionDecl>(D))
4550     return;
4551   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4552     return;
4553 
4554   llvm::Function *F = cast<llvm::Function>(GV);
4555   F->addFnAttr("stack-probe-size",
4556                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4557 }
4558 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4559 void WindowsARMTargetCodeGenInfo::SetTargetAttributes(
4560     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4561   ARMTargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
4562   addStackProbeSizeTargetAttribute(D, GV, CGM);
4563 }
4564 }
4565 
computeInfo(CGFunctionInfo & FI) const4566 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4567   if (!getCXXABI().classifyReturnType(FI))
4568     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
4569 
4570   for (auto &I : FI.arguments())
4571     I.info = classifyArgumentType(I.type, FI.isVariadic());
4572 
4573   // Always honor user-specified calling convention.
4574   if (FI.getCallingConvention() != llvm::CallingConv::C)
4575     return;
4576 
4577   llvm::CallingConv::ID cc = getRuntimeCC();
4578   if (cc != llvm::CallingConv::C)
4579     FI.setEffectiveCallingConvention(cc);
4580 }
4581 
4582 /// Return the default calling convention that LLVM will use.
getLLVMDefaultCC() const4583 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4584   // The default calling convention that LLVM will infer.
4585   if (isEABIHF())
4586     return llvm::CallingConv::ARM_AAPCS_VFP;
4587   else if (isEABI())
4588     return llvm::CallingConv::ARM_AAPCS;
4589   else
4590     return llvm::CallingConv::ARM_APCS;
4591 }
4592 
4593 /// Return the calling convention that our ABI would like us to use
4594 /// as the C calling convention.
getABIDefaultCC() const4595 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4596   switch (getABIKind()) {
4597   case APCS: return llvm::CallingConv::ARM_APCS;
4598   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4599   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4600   }
4601   llvm_unreachable("bad ABI kind");
4602 }
4603 
setCCs()4604 void ARMABIInfo::setCCs() {
4605   assert(getRuntimeCC() == llvm::CallingConv::C);
4606 
4607   // Don't muddy up the IR with a ton of explicit annotations if
4608   // they'd just match what LLVM will infer from the triple.
4609   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4610   if (abiCC != getLLVMDefaultCC())
4611     RuntimeCC = abiCC;
4612 
4613   BuiltinCC = (getABIKind() == APCS ?
4614                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4615 }
4616 
classifyArgumentType(QualType Ty,bool isVariadic) const4617 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4618                                             bool isVariadic) const {
4619   // 6.1.2.1 The following argument types are VFP CPRCs:
4620   //   A single-precision floating-point type (including promoted
4621   //   half-precision types); A double-precision floating-point type;
4622   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4623   //   with a Base Type of a single- or double-precision floating-point type,
4624   //   64-bit containerized vectors or 128-bit containerized vectors with one
4625   //   to four Elements.
4626   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4627 
4628   Ty = useFirstFieldIfTransparentUnion(Ty);
4629 
4630   // Handle illegal vector types here.
4631   if (isIllegalVectorType(Ty)) {
4632     uint64_t Size = getContext().getTypeSize(Ty);
4633     if (Size <= 32) {
4634       llvm::Type *ResType =
4635           llvm::Type::getInt32Ty(getVMContext());
4636       return ABIArgInfo::getDirect(ResType);
4637     }
4638     if (Size == 64) {
4639       llvm::Type *ResType = llvm::VectorType::get(
4640           llvm::Type::getInt32Ty(getVMContext()), 2);
4641       return ABIArgInfo::getDirect(ResType);
4642     }
4643     if (Size == 128) {
4644       llvm::Type *ResType = llvm::VectorType::get(
4645           llvm::Type::getInt32Ty(getVMContext()), 4);
4646       return ABIArgInfo::getDirect(ResType);
4647     }
4648     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4649   }
4650 
4651   if (!isAggregateTypeForABI(Ty)) {
4652     // Treat an enum type as its underlying type.
4653     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4654       Ty = EnumTy->getDecl()->getIntegerType();
4655     }
4656 
4657     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4658                                           : ABIArgInfo::getDirect());
4659   }
4660 
4661   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4662     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4663   }
4664 
4665   // Ignore empty records.
4666   if (isEmptyRecord(getContext(), Ty, true))
4667     return ABIArgInfo::getIgnore();
4668 
4669   if (IsEffectivelyAAPCS_VFP) {
4670     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4671     // into VFP registers.
4672     const Type *Base = nullptr;
4673     uint64_t Members = 0;
4674     if (isHomogeneousAggregate(Ty, Base, Members)) {
4675       assert(Base && "Base class should be set for homogeneous aggregate");
4676       // Base can be a floating-point or a vector.
4677       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4678     }
4679   }
4680 
4681   // Support byval for ARM.
4682   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4683   // most 8-byte. We realign the indirect argument if type alignment is bigger
4684   // than ABI alignment.
4685   uint64_t ABIAlign = 4;
4686   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4687   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4688        getABIKind() == ARMABIInfo::AAPCS)
4689     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4690 
4691   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4692     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
4693            /*Realign=*/TyAlign > ABIAlign);
4694   }
4695 
4696   // Otherwise, pass by coercing to a structure of the appropriate size.
4697   llvm::Type* ElemTy;
4698   unsigned SizeRegs;
4699   // FIXME: Try to match the types of the arguments more accurately where
4700   // we can.
4701   if (getContext().getTypeAlign(Ty) <= 32) {
4702     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4703     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4704   } else {
4705     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4706     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4707   }
4708 
4709   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4710 }
4711 
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)4712 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4713                               llvm::LLVMContext &VMContext) {
4714   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4715   // is called integer-like if its size is less than or equal to one word, and
4716   // the offset of each of its addressable sub-fields is zero.
4717 
4718   uint64_t Size = Context.getTypeSize(Ty);
4719 
4720   // Check that the type fits in a word.
4721   if (Size > 32)
4722     return false;
4723 
4724   // FIXME: Handle vector types!
4725   if (Ty->isVectorType())
4726     return false;
4727 
4728   // Float types are never treated as "integer like".
4729   if (Ty->isRealFloatingType())
4730     return false;
4731 
4732   // If this is a builtin or pointer type then it is ok.
4733   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4734     return true;
4735 
4736   // Small complex integer types are "integer like".
4737   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4738     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4739 
4740   // Single element and zero sized arrays should be allowed, by the definition
4741   // above, but they are not.
4742 
4743   // Otherwise, it must be a record type.
4744   const RecordType *RT = Ty->getAs<RecordType>();
4745   if (!RT) return false;
4746 
4747   // Ignore records with flexible arrays.
4748   const RecordDecl *RD = RT->getDecl();
4749   if (RD->hasFlexibleArrayMember())
4750     return false;
4751 
4752   // Check that all sub-fields are at offset 0, and are themselves "integer
4753   // like".
4754   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4755 
4756   bool HadField = false;
4757   unsigned idx = 0;
4758   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4759        i != e; ++i, ++idx) {
4760     const FieldDecl *FD = *i;
4761 
4762     // Bit-fields are not addressable, we only need to verify they are "integer
4763     // like". We still have to disallow a subsequent non-bitfield, for example:
4764     //   struct { int : 0; int x }
4765     // is non-integer like according to gcc.
4766     if (FD->isBitField()) {
4767       if (!RD->isUnion())
4768         HadField = true;
4769 
4770       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4771         return false;
4772 
4773       continue;
4774     }
4775 
4776     // Check if this field is at offset 0.
4777     if (Layout.getFieldOffset(idx) != 0)
4778       return false;
4779 
4780     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4781       return false;
4782 
4783     // Only allow at most one field in a structure. This doesn't match the
4784     // wording above, but follows gcc in situations with a field following an
4785     // empty structure.
4786     if (!RD->isUnion()) {
4787       if (HadField)
4788         return false;
4789 
4790       HadField = true;
4791     }
4792   }
4793 
4794   return true;
4795 }
4796 
classifyReturnType(QualType RetTy,bool isVariadic) const4797 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4798                                           bool isVariadic) const {
4799   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4800 
4801   if (RetTy->isVoidType())
4802     return ABIArgInfo::getIgnore();
4803 
4804   // Large vector types should be returned via memory.
4805   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4806     return ABIArgInfo::getIndirect(0);
4807   }
4808 
4809   if (!isAggregateTypeForABI(RetTy)) {
4810     // Treat an enum type as its underlying type.
4811     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4812       RetTy = EnumTy->getDecl()->getIntegerType();
4813 
4814     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4815                                             : ABIArgInfo::getDirect();
4816   }
4817 
4818   // Are we following APCS?
4819   if (getABIKind() == APCS) {
4820     if (isEmptyRecord(getContext(), RetTy, false))
4821       return ABIArgInfo::getIgnore();
4822 
4823     // Complex types are all returned as packed integers.
4824     //
4825     // FIXME: Consider using 2 x vector types if the back end handles them
4826     // correctly.
4827     if (RetTy->isAnyComplexType())
4828       return ABIArgInfo::getDirect(llvm::IntegerType::get(
4829           getVMContext(), getContext().getTypeSize(RetTy)));
4830 
4831     // Integer like structures are returned in r0.
4832     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4833       // Return in the smallest viable integer type.
4834       uint64_t Size = getContext().getTypeSize(RetTy);
4835       if (Size <= 8)
4836         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4837       if (Size <= 16)
4838         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4839       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4840     }
4841 
4842     // Otherwise return in memory.
4843     return ABIArgInfo::getIndirect(0);
4844   }
4845 
4846   // Otherwise this is an AAPCS variant.
4847 
4848   if (isEmptyRecord(getContext(), RetTy, true))
4849     return ABIArgInfo::getIgnore();
4850 
4851   // Check for homogeneous aggregates with AAPCS-VFP.
4852   if (IsEffectivelyAAPCS_VFP) {
4853     const Type *Base = nullptr;
4854     uint64_t Members;
4855     if (isHomogeneousAggregate(RetTy, Base, Members)) {
4856       assert(Base && "Base class should be set for homogeneous aggregate");
4857       // Homogeneous Aggregates are returned directly.
4858       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4859     }
4860   }
4861 
4862   // Aggregates <= 4 bytes are returned in r0; other aggregates
4863   // are returned indirectly.
4864   uint64_t Size = getContext().getTypeSize(RetTy);
4865   if (Size <= 32) {
4866     if (getDataLayout().isBigEndian())
4867       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4868       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4869 
4870     // Return in the smallest viable integer type.
4871     if (Size <= 8)
4872       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4873     if (Size <= 16)
4874       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4875     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4876   }
4877 
4878   return ABIArgInfo::getIndirect(0);
4879 }
4880 
4881 /// isIllegalVector - check whether Ty is an illegal vector type.
isIllegalVectorType(QualType Ty) const4882 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4883   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4884     // Check whether VT is legal.
4885     unsigned NumElements = VT->getNumElements();
4886     // NumElements should be power of 2.
4887     if (((NumElements & (NumElements - 1)) != 0) && NumElements != 3)
4888       return true;
4889   }
4890   return false;
4891 }
4892 
isHomogeneousAggregateBaseType(QualType Ty) const4893 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4894   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4895   // double, or 64-bit or 128-bit vectors.
4896   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4897     if (BT->getKind() == BuiltinType::Float ||
4898         BT->getKind() == BuiltinType::Double ||
4899         BT->getKind() == BuiltinType::LongDouble)
4900       return true;
4901   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4902     unsigned VecSize = getContext().getTypeSize(VT);
4903     if (VecSize == 64 || VecSize == 128)
4904       return true;
4905   }
4906   return false;
4907 }
4908 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const4909 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4910                                                    uint64_t Members) const {
4911   return Members <= 4;
4912 }
4913 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4914 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4915                                    CodeGenFunction &CGF) const {
4916   llvm::Type *BP = CGF.Int8PtrTy;
4917   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4918 
4919   CGBuilderTy &Builder = CGF.Builder;
4920   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4921   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4922 
4923   if (isEmptyRecord(getContext(), Ty, true)) {
4924     // These are ignored for parameter passing purposes.
4925     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4926     return Builder.CreateBitCast(Addr, PTy);
4927   }
4928 
4929   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4930   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4931   bool IsIndirect = false;
4932 
4933   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4934   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4935   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4936       getABIKind() == ARMABIInfo::AAPCS)
4937     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4938   else
4939     TyAlign = 4;
4940   // Use indirect if size of the illegal vector is bigger than 32 bytes.
4941   if (isIllegalVectorType(Ty) && Size > 32) {
4942     IsIndirect = true;
4943     Size = 4;
4944     TyAlign = 4;
4945   }
4946 
4947   // Handle address alignment for ABI alignment > 4 bytes.
4948   if (TyAlign > 4) {
4949     assert((TyAlign & (TyAlign - 1)) == 0 &&
4950            "Alignment is not power of 2!");
4951     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
4952     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
4953     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
4954     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
4955   }
4956 
4957   uint64_t Offset =
4958     llvm::RoundUpToAlignment(Size, 4);
4959   llvm::Value *NextAddr =
4960     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4961                       "ap.next");
4962   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4963 
4964   if (IsIndirect)
4965     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4966   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
4967     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
4968     // may not be correctly aligned for the vector type. We create an aligned
4969     // temporary space and copy the content over from ap.cur to the temporary
4970     // space. This is necessary if the natural alignment of the type is greater
4971     // than the ABI alignment.
4972     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
4973     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
4974     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
4975                                                     "var.align");
4976     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
4977     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
4978     Builder.CreateMemCpy(Dst, Src,
4979         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
4980         TyAlign, false);
4981     Addr = AlignedTemp; //The content is in aligned location.
4982   }
4983   llvm::Type *PTy =
4984     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4985   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4986 
4987   return AddrTyped;
4988 }
4989 
4990 //===----------------------------------------------------------------------===//
4991 // NVPTX ABI Implementation
4992 //===----------------------------------------------------------------------===//
4993 
4994 namespace {
4995 
4996 class NVPTXABIInfo : public ABIInfo {
4997 public:
NVPTXABIInfo(CodeGenTypes & CGT)4998   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4999 
5000   ABIArgInfo classifyReturnType(QualType RetTy) const;
5001   ABIArgInfo classifyArgumentType(QualType Ty) const;
5002 
5003   void computeInfo(CGFunctionInfo &FI) const override;
5004   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5005                          CodeGenFunction &CFG) const override;
5006 };
5007 
5008 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5009 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)5010   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5011     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5012 
5013   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5014                            CodeGen::CodeGenModule &M) const override;
5015 private:
5016   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5017   // resulting MDNode to the nvvm.annotations MDNode.
5018   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5019 };
5020 
classifyReturnType(QualType RetTy) const5021 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5022   if (RetTy->isVoidType())
5023     return ABIArgInfo::getIgnore();
5024 
5025   // note: this is different from default ABI
5026   if (!RetTy->isScalarType())
5027     return ABIArgInfo::getDirect();
5028 
5029   // Treat an enum type as its underlying type.
5030   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5031     RetTy = EnumTy->getDecl()->getIntegerType();
5032 
5033   return (RetTy->isPromotableIntegerType() ?
5034           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5035 }
5036 
classifyArgumentType(QualType Ty) const5037 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5038   // Treat an enum type as its underlying type.
5039   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5040     Ty = EnumTy->getDecl()->getIntegerType();
5041 
5042   // Return aggregates type as indirect by value
5043   if (isAggregateTypeForABI(Ty))
5044     return ABIArgInfo::getIndirect(0, /* byval */ true);
5045 
5046   return (Ty->isPromotableIntegerType() ?
5047           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5048 }
5049 
computeInfo(CGFunctionInfo & FI) const5050 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5051   if (!getCXXABI().classifyReturnType(FI))
5052     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5053   for (auto &I : FI.arguments())
5054     I.info = classifyArgumentType(I.type);
5055 
5056   // Always honor user-specified calling convention.
5057   if (FI.getCallingConvention() != llvm::CallingConv::C)
5058     return;
5059 
5060   FI.setEffectiveCallingConvention(getRuntimeCC());
5061 }
5062 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CFG) const5063 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5064                                      CodeGenFunction &CFG) const {
5065   llvm_unreachable("NVPTX does not support varargs");
5066 }
5067 
5068 void NVPTXTargetCodeGenInfo::
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5069 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5070                     CodeGen::CodeGenModule &M) const{
5071   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5072   if (!FD) return;
5073 
5074   llvm::Function *F = cast<llvm::Function>(GV);
5075 
5076   // Perform special handling in OpenCL mode
5077   if (M.getLangOpts().OpenCL) {
5078     // Use OpenCL function attributes to check for kernel functions
5079     // By default, all functions are device functions
5080     if (FD->hasAttr<OpenCLKernelAttr>()) {
5081       // OpenCL __kernel functions get kernel metadata
5082       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5083       addNVVMMetadata(F, "kernel", 1);
5084       // And kernel functions are not subject to inlining
5085       F->addFnAttr(llvm::Attribute::NoInline);
5086     }
5087   }
5088 
5089   // Perform special handling in CUDA mode.
5090   if (M.getLangOpts().CUDA) {
5091     // CUDA __global__ functions get a kernel metadata entry.  Since
5092     // __global__ functions cannot be called from the device, we do not
5093     // need to set the noinline attribute.
5094     if (FD->hasAttr<CUDAGlobalAttr>()) {
5095       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5096       addNVVMMetadata(F, "kernel", 1);
5097     }
5098     if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
5099       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5100       addNVVMMetadata(F, "maxntidx",
5101                       FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
5102       // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
5103       // zero value from getMinBlocks either means it was not specified in
5104       // __launch_bounds__ or the user specified a 0 value. In both cases, we
5105       // don't have to add a PTX directive.
5106       int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
5107       if (MinCTASM > 0) {
5108         // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5109         addNVVMMetadata(F, "minctasm", MinCTASM);
5110       }
5111     }
5112   }
5113 }
5114 
addNVVMMetadata(llvm::Function * F,StringRef Name,int Operand)5115 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5116                                              int Operand) {
5117   llvm::Module *M = F->getParent();
5118   llvm::LLVMContext &Ctx = M->getContext();
5119 
5120   // Get "nvvm.annotations" metadata node
5121   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5122 
5123   llvm::Metadata *MDVals[] = {
5124       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5125       llvm::ConstantAsMetadata::get(
5126           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5127   // Append metadata to nvvm.annotations
5128   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5129 }
5130 }
5131 
5132 //===----------------------------------------------------------------------===//
5133 // SystemZ ABI Implementation
5134 //===----------------------------------------------------------------------===//
5135 
5136 namespace {
5137 
5138 class SystemZABIInfo : public ABIInfo {
5139 public:
SystemZABIInfo(CodeGenTypes & CGT)5140   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5141 
5142   bool isPromotableIntegerType(QualType Ty) const;
5143   bool isCompoundType(QualType Ty) const;
5144   bool isFPArgumentType(QualType Ty) const;
5145 
5146   ABIArgInfo classifyReturnType(QualType RetTy) const;
5147   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5148 
computeInfo(CGFunctionInfo & FI) const5149   void computeInfo(CGFunctionInfo &FI) const override {
5150     if (!getCXXABI().classifyReturnType(FI))
5151       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5152     for (auto &I : FI.arguments())
5153       I.info = classifyArgumentType(I.type);
5154   }
5155 
5156   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5157                          CodeGenFunction &CGF) const override;
5158 };
5159 
5160 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5161 public:
SystemZTargetCodeGenInfo(CodeGenTypes & CGT)5162   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
5163     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
5164 };
5165 
5166 }
5167 
isPromotableIntegerType(QualType Ty) const5168 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5169   // Treat an enum type as its underlying type.
5170   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5171     Ty = EnumTy->getDecl()->getIntegerType();
5172 
5173   // Promotable integer types are required to be promoted by the ABI.
5174   if (Ty->isPromotableIntegerType())
5175     return true;
5176 
5177   // 32-bit values must also be promoted.
5178   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5179     switch (BT->getKind()) {
5180     case BuiltinType::Int:
5181     case BuiltinType::UInt:
5182       return true;
5183     default:
5184       return false;
5185     }
5186   return false;
5187 }
5188 
isCompoundType(QualType Ty) const5189 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5190   return (Ty->isAnyComplexType() ||
5191           Ty->isVectorType() ||
5192           isAggregateTypeForABI(Ty));
5193 }
5194 
isFPArgumentType(QualType Ty) const5195 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5196   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5197     switch (BT->getKind()) {
5198     case BuiltinType::Float:
5199     case BuiltinType::Double:
5200       return true;
5201     default:
5202       return false;
5203     }
5204 
5205   if (const RecordType *RT = Ty->getAsStructureType()) {
5206     const RecordDecl *RD = RT->getDecl();
5207     bool Found = false;
5208 
5209     // If this is a C++ record, check the bases first.
5210     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5211       for (const auto &I : CXXRD->bases()) {
5212         QualType Base = I.getType();
5213 
5214         // Empty bases don't affect things either way.
5215         if (isEmptyRecord(getContext(), Base, true))
5216           continue;
5217 
5218         if (Found)
5219           return false;
5220         Found = isFPArgumentType(Base);
5221         if (!Found)
5222           return false;
5223       }
5224 
5225     // Check the fields.
5226     for (const auto *FD : RD->fields()) {
5227       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5228       // Unlike isSingleElementStruct(), empty structure and array fields
5229       // do count.  So do anonymous bitfields that aren't zero-sized.
5230       if (getContext().getLangOpts().CPlusPlus &&
5231           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5232         continue;
5233 
5234       // Unlike isSingleElementStruct(), arrays do not count.
5235       // Nested isFPArgumentType structures still do though.
5236       if (Found)
5237         return false;
5238       Found = isFPArgumentType(FD->getType());
5239       if (!Found)
5240         return false;
5241     }
5242 
5243     // Unlike isSingleElementStruct(), trailing padding is allowed.
5244     // An 8-byte aligned struct s { float f; } is passed as a double.
5245     return Found;
5246   }
5247 
5248   return false;
5249 }
5250 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5251 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5252                                        CodeGenFunction &CGF) const {
5253   // Assume that va_list type is correct; should be pointer to LLVM type:
5254   // struct {
5255   //   i64 __gpr;
5256   //   i64 __fpr;
5257   //   i8 *__overflow_arg_area;
5258   //   i8 *__reg_save_area;
5259   // };
5260 
5261   // Every argument occupies 8 bytes and is passed by preference in either
5262   // GPRs or FPRs.
5263   Ty = CGF.getContext().getCanonicalType(Ty);
5264   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5265   llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy);
5266   ABIArgInfo AI = classifyArgumentType(Ty);
5267   bool IsIndirect = AI.isIndirect();
5268   bool InFPRs = false;
5269   unsigned UnpaddedBitSize;
5270   if (IsIndirect) {
5271     APTy = llvm::PointerType::getUnqual(APTy);
5272     UnpaddedBitSize = 64;
5273   } else {
5274     if (AI.getCoerceToType())
5275       ArgTy = AI.getCoerceToType();
5276     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5277     UnpaddedBitSize = getContext().getTypeSize(Ty);
5278   }
5279   unsigned PaddedBitSize = 64;
5280   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5281 
5282   unsigned PaddedSize = PaddedBitSize / 8;
5283   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5284 
5285   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5286   if (InFPRs) {
5287     MaxRegs = 4; // Maximum of 4 FPR arguments
5288     RegCountField = 1; // __fpr
5289     RegSaveIndex = 16; // save offset for f0
5290     RegPadding = 0; // floats are passed in the high bits of an FPR
5291   } else {
5292     MaxRegs = 5; // Maximum of 5 GPR arguments
5293     RegCountField = 0; // __gpr
5294     RegSaveIndex = 2; // save offset for r2
5295     RegPadding = Padding; // values are passed in the low bits of a GPR
5296   }
5297 
5298   llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP(
5299       nullptr, VAListAddr, RegCountField, "reg_count_ptr");
5300   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5301   llvm::Type *IndexTy = RegCount->getType();
5302   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5303   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5304                                                  "fits_in_regs");
5305 
5306   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5307   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5308   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5309   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5310 
5311   // Emit code to load the value if it was passed in registers.
5312   CGF.EmitBlock(InRegBlock);
5313 
5314   // Work out the address of an argument register.
5315   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5316   llvm::Value *ScaledRegCount =
5317     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5318   llvm::Value *RegBase =
5319     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5320   llvm::Value *RegOffset =
5321     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5322   llvm::Value *RegSaveAreaPtr =
5323       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr");
5324   llvm::Value *RegSaveArea =
5325     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5326   llvm::Value *RawRegAddr =
5327     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5328   llvm::Value *RegAddr =
5329     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5330 
5331   // Update the register count
5332   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5333   llvm::Value *NewRegCount =
5334     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5335   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5336   CGF.EmitBranch(ContBlock);
5337 
5338   // Emit code to load the value if it was passed in memory.
5339   CGF.EmitBlock(InMemBlock);
5340 
5341   // Work out the address of a stack argument.
5342   llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5343       nullptr, VAListAddr, 2, "overflow_arg_area_ptr");
5344   llvm::Value *OverflowArgArea =
5345     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5346   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5347   llvm::Value *RawMemAddr =
5348     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5349   llvm::Value *MemAddr =
5350     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5351 
5352   // Update overflow_arg_area_ptr pointer
5353   llvm::Value *NewOverflowArgArea =
5354     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5355   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5356   CGF.EmitBranch(ContBlock);
5357 
5358   // Return the appropriate result.
5359   CGF.EmitBlock(ContBlock);
5360   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5361   ResAddr->addIncoming(RegAddr, InRegBlock);
5362   ResAddr->addIncoming(MemAddr, InMemBlock);
5363 
5364   if (IsIndirect)
5365     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5366 
5367   return ResAddr;
5368 }
5369 
classifyReturnType(QualType RetTy) const5370 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5371   if (RetTy->isVoidType())
5372     return ABIArgInfo::getIgnore();
5373   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5374     return ABIArgInfo::getIndirect(0);
5375   return (isPromotableIntegerType(RetTy) ?
5376           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5377 }
5378 
classifyArgumentType(QualType Ty) const5379 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5380   // Handle the generic C++ ABI.
5381   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5382     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5383 
5384   // Integers and enums are extended to full register width.
5385   if (isPromotableIntegerType(Ty))
5386     return ABIArgInfo::getExtend();
5387 
5388   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5389   uint64_t Size = getContext().getTypeSize(Ty);
5390   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5391     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5392 
5393   // Handle small structures.
5394   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5395     // Structures with flexible arrays have variable length, so really
5396     // fail the size test above.
5397     const RecordDecl *RD = RT->getDecl();
5398     if (RD->hasFlexibleArrayMember())
5399       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5400 
5401     // The structure is passed as an unextended integer, a float, or a double.
5402     llvm::Type *PassTy;
5403     if (isFPArgumentType(Ty)) {
5404       assert(Size == 32 || Size == 64);
5405       if (Size == 32)
5406         PassTy = llvm::Type::getFloatTy(getVMContext());
5407       else
5408         PassTy = llvm::Type::getDoubleTy(getVMContext());
5409     } else
5410       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5411     return ABIArgInfo::getDirect(PassTy);
5412   }
5413 
5414   // Non-structure compounds are passed indirectly.
5415   if (isCompoundType(Ty))
5416     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5417 
5418   return ABIArgInfo::getDirect(nullptr);
5419 }
5420 
5421 //===----------------------------------------------------------------------===//
5422 // MSP430 ABI Implementation
5423 //===----------------------------------------------------------------------===//
5424 
5425 namespace {
5426 
5427 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5428 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)5429   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5430     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5431   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5432                            CodeGen::CodeGenModule &M) const override;
5433 };
5434 
5435 }
5436 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5437 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5438                                                   llvm::GlobalValue *GV,
5439                                              CodeGen::CodeGenModule &M) const {
5440   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5441     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5442       // Handle 'interrupt' attribute:
5443       llvm::Function *F = cast<llvm::Function>(GV);
5444 
5445       // Step 1: Set ISR calling convention.
5446       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5447 
5448       // Step 2: Add attributes goodness.
5449       F->addFnAttr(llvm::Attribute::NoInline);
5450 
5451       // Step 3: Emit ISR vector alias.
5452       unsigned Num = attr->getNumber() / 2;
5453       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5454                                 "__isr_" + Twine(Num), F);
5455     }
5456   }
5457 }
5458 
5459 //===----------------------------------------------------------------------===//
5460 // MIPS ABI Implementation.  This works for both little-endian and
5461 // big-endian variants.
5462 //===----------------------------------------------------------------------===//
5463 
5464 namespace {
5465 class MipsABIInfo : public ABIInfo {
5466   bool IsO32;
5467   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5468   void CoerceToIntArgs(uint64_t TySize,
5469                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5470   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5471   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5472   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5473 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)5474   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5475     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5476     StackAlignInBytes(IsO32 ? 8 : 16) {}
5477 
5478   ABIArgInfo classifyReturnType(QualType RetTy) const;
5479   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5480   void computeInfo(CGFunctionInfo &FI) const override;
5481   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5482                          CodeGenFunction &CGF) const override;
5483 };
5484 
5485 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5486   unsigned SizeOfUnwindException;
5487 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)5488   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5489     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5490       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5491 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const5492   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5493     return 29;
5494   }
5495 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5496   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5497                            CodeGen::CodeGenModule &CGM) const override {
5498     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5499     if (!FD) return;
5500     llvm::Function *Fn = cast<llvm::Function>(GV);
5501     if (FD->hasAttr<Mips16Attr>()) {
5502       Fn->addFnAttr("mips16");
5503     }
5504     else if (FD->hasAttr<NoMips16Attr>()) {
5505       Fn->addFnAttr("nomips16");
5506     }
5507   }
5508 
5509   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5510                                llvm::Value *Address) const override;
5511 
getSizeOfUnwindException() const5512   unsigned getSizeOfUnwindException() const override {
5513     return SizeOfUnwindException;
5514   }
5515 };
5516 }
5517 
CoerceToIntArgs(uint64_t TySize,SmallVectorImpl<llvm::Type * > & ArgList) const5518 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5519                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
5520   llvm::IntegerType *IntTy =
5521     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5522 
5523   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5524   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5525     ArgList.push_back(IntTy);
5526 
5527   // If necessary, add one more integer type to ArgList.
5528   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5529 
5530   if (R)
5531     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5532 }
5533 
5534 // In N32/64, an aligned double precision floating point field is passed in
5535 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const5536 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5537   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5538 
5539   if (IsO32) {
5540     CoerceToIntArgs(TySize, ArgList);
5541     return llvm::StructType::get(getVMContext(), ArgList);
5542   }
5543 
5544   if (Ty->isComplexType())
5545     return CGT.ConvertType(Ty);
5546 
5547   const RecordType *RT = Ty->getAs<RecordType>();
5548 
5549   // Unions/vectors are passed in integer registers.
5550   if (!RT || !RT->isStructureOrClassType()) {
5551     CoerceToIntArgs(TySize, ArgList);
5552     return llvm::StructType::get(getVMContext(), ArgList);
5553   }
5554 
5555   const RecordDecl *RD = RT->getDecl();
5556   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5557   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5558 
5559   uint64_t LastOffset = 0;
5560   unsigned idx = 0;
5561   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5562 
5563   // Iterate over fields in the struct/class and check if there are any aligned
5564   // double fields.
5565   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5566        i != e; ++i, ++idx) {
5567     const QualType Ty = i->getType();
5568     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5569 
5570     if (!BT || BT->getKind() != BuiltinType::Double)
5571       continue;
5572 
5573     uint64_t Offset = Layout.getFieldOffset(idx);
5574     if (Offset % 64) // Ignore doubles that are not aligned.
5575       continue;
5576 
5577     // Add ((Offset - LastOffset) / 64) args of type i64.
5578     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5579       ArgList.push_back(I64);
5580 
5581     // Add double type.
5582     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5583     LastOffset = Offset + 64;
5584   }
5585 
5586   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5587   ArgList.append(IntArgList.begin(), IntArgList.end());
5588 
5589   return llvm::StructType::get(getVMContext(), ArgList);
5590 }
5591 
getPaddingType(uint64_t OrigOffset,uint64_t Offset) const5592 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5593                                         uint64_t Offset) const {
5594   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5595     return nullptr;
5596 
5597   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5598 }
5599 
5600 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const5601 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5602   Ty = useFirstFieldIfTransparentUnion(Ty);
5603 
5604   uint64_t OrigOffset = Offset;
5605   uint64_t TySize = getContext().getTypeSize(Ty);
5606   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5607 
5608   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5609                    (uint64_t)StackAlignInBytes);
5610   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5611   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5612 
5613   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5614     // Ignore empty aggregates.
5615     if (TySize == 0)
5616       return ABIArgInfo::getIgnore();
5617 
5618     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5619       Offset = OrigOffset + MinABIStackAlignInBytes;
5620       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5621     }
5622 
5623     // If we have reached here, aggregates are passed directly by coercing to
5624     // another structure type. Padding is inserted if the offset of the
5625     // aggregate is unaligned.
5626     ABIArgInfo ArgInfo =
5627         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5628                               getPaddingType(OrigOffset, CurrOffset));
5629     ArgInfo.setInReg(true);
5630     return ArgInfo;
5631   }
5632 
5633   // Treat an enum type as its underlying type.
5634   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5635     Ty = EnumTy->getDecl()->getIntegerType();
5636 
5637   // All integral types are promoted to the GPR width.
5638   if (Ty->isIntegralOrEnumerationType())
5639     return ABIArgInfo::getExtend();
5640 
5641   return ABIArgInfo::getDirect(
5642       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5643 }
5644 
5645 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const5646 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5647   const RecordType *RT = RetTy->getAs<RecordType>();
5648   SmallVector<llvm::Type*, 8> RTList;
5649 
5650   if (RT && RT->isStructureOrClassType()) {
5651     const RecordDecl *RD = RT->getDecl();
5652     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5653     unsigned FieldCnt = Layout.getFieldCount();
5654 
5655     // N32/64 returns struct/classes in floating point registers if the
5656     // following conditions are met:
5657     // 1. The size of the struct/class is no larger than 128-bit.
5658     // 2. The struct/class has one or two fields all of which are floating
5659     //    point types.
5660     // 3. The offset of the first field is zero (this follows what gcc does).
5661     //
5662     // Any other composite results are returned in integer registers.
5663     //
5664     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5665       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5666       for (; b != e; ++b) {
5667         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5668 
5669         if (!BT || !BT->isFloatingPoint())
5670           break;
5671 
5672         RTList.push_back(CGT.ConvertType(b->getType()));
5673       }
5674 
5675       if (b == e)
5676         return llvm::StructType::get(getVMContext(), RTList,
5677                                      RD->hasAttr<PackedAttr>());
5678 
5679       RTList.clear();
5680     }
5681   }
5682 
5683   CoerceToIntArgs(Size, RTList);
5684   return llvm::StructType::get(getVMContext(), RTList);
5685 }
5686 
classifyReturnType(QualType RetTy) const5687 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5688   uint64_t Size = getContext().getTypeSize(RetTy);
5689 
5690   if (RetTy->isVoidType())
5691     return ABIArgInfo::getIgnore();
5692 
5693   // O32 doesn't treat zero-sized structs differently from other structs.
5694   // However, N32/N64 ignores zero sized return values.
5695   if (!IsO32 && Size == 0)
5696     return ABIArgInfo::getIgnore();
5697 
5698   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5699     if (Size <= 128) {
5700       if (RetTy->isAnyComplexType())
5701         return ABIArgInfo::getDirect();
5702 
5703       // O32 returns integer vectors in registers and N32/N64 returns all small
5704       // aggregates in registers.
5705       if (!IsO32 ||
5706           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5707         ABIArgInfo ArgInfo =
5708             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5709         ArgInfo.setInReg(true);
5710         return ArgInfo;
5711       }
5712     }
5713 
5714     return ABIArgInfo::getIndirect(0);
5715   }
5716 
5717   // Treat an enum type as its underlying type.
5718   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5719     RetTy = EnumTy->getDecl()->getIntegerType();
5720 
5721   return (RetTy->isPromotableIntegerType() ?
5722           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5723 }
5724 
computeInfo(CGFunctionInfo & FI) const5725 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5726   ABIArgInfo &RetInfo = FI.getReturnInfo();
5727   if (!getCXXABI().classifyReturnType(FI))
5728     RetInfo = classifyReturnType(FI.getReturnType());
5729 
5730   // Check if a pointer to an aggregate is passed as a hidden argument.
5731   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5732 
5733   for (auto &I : FI.arguments())
5734     I.info = classifyArgumentType(I.type, Offset);
5735 }
5736 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5737 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5738                                     CodeGenFunction &CGF) const {
5739   llvm::Type *BP = CGF.Int8PtrTy;
5740   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5741 
5742   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
5743   // Pointers are also promoted in the same way but this only matters for N32.
5744   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
5745   unsigned PtrWidth = getTarget().getPointerWidth(0);
5746   if ((Ty->isIntegerType() &&
5747           CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
5748       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
5749     Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
5750                                                 Ty->isSignedIntegerType());
5751   }
5752 
5753   CGBuilderTy &Builder = CGF.Builder;
5754   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5755   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5756   int64_t TypeAlign =
5757       std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5758   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5759   llvm::Value *AddrTyped;
5760   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5761 
5762   if (TypeAlign > MinABIStackAlignInBytes) {
5763     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5764     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5765     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5766     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5767     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5768     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5769   }
5770   else
5771     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5772 
5773   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5774   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5775   unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
5776   uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
5777   llvm::Value *NextAddr =
5778     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5779                       "ap.next");
5780   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5781 
5782   return AddrTyped;
5783 }
5784 
5785 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5786 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5787                                                llvm::Value *Address) const {
5788   // This information comes from gcc's implementation, which seems to
5789   // as canonical as it gets.
5790 
5791   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5792   // are aliased to pairs of single-precision FP registers.
5793   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5794 
5795   // 0-31 are the general purpose registers, $0 - $31.
5796   // 32-63 are the floating-point registers, $f0 - $f31.
5797   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5798   // 66 is the (notional, I think) register for signal-handler return.
5799   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5800 
5801   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5802   // They are one bit wide and ignored here.
5803 
5804   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5805   // (coprocessor 1 is the FP unit)
5806   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5807   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5808   // 176-181 are the DSP accumulator registers.
5809   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5810   return false;
5811 }
5812 
5813 //===----------------------------------------------------------------------===//
5814 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5815 // Currently subclassed only to implement custom OpenCL C function attribute
5816 // handling.
5817 //===----------------------------------------------------------------------===//
5818 
5819 namespace {
5820 
5821 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5822 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)5823   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5824     : DefaultTargetCodeGenInfo(CGT) {}
5825 
5826   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5827                            CodeGen::CodeGenModule &M) const override;
5828 };
5829 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5830 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5831                                                llvm::GlobalValue *GV,
5832                                                CodeGen::CodeGenModule &M) const {
5833   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5834   if (!FD) return;
5835 
5836   llvm::Function *F = cast<llvm::Function>(GV);
5837 
5838   if (M.getLangOpts().OpenCL) {
5839     if (FD->hasAttr<OpenCLKernelAttr>()) {
5840       // OpenCL C Kernel functions are not subject to inlining
5841       F->addFnAttr(llvm::Attribute::NoInline);
5842       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5843       if (Attr) {
5844         // Convert the reqd_work_group_size() attributes to metadata.
5845         llvm::LLVMContext &Context = F->getContext();
5846         llvm::NamedMDNode *OpenCLMetadata =
5847             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5848 
5849         SmallVector<llvm::Metadata *, 5> Operands;
5850         Operands.push_back(llvm::ConstantAsMetadata::get(F));
5851 
5852         Operands.push_back(
5853             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5854                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
5855         Operands.push_back(
5856             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5857                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
5858         Operands.push_back(
5859             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5860                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
5861 
5862         // Add a boolean constant operand for "required" (true) or "hint" (false)
5863         // for implementing the work_group_size_hint attr later. Currently
5864         // always true as the hint is not yet implemented.
5865         Operands.push_back(
5866             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
5867         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5868       }
5869     }
5870   }
5871 }
5872 
5873 }
5874 
5875 //===----------------------------------------------------------------------===//
5876 // Hexagon ABI Implementation
5877 //===----------------------------------------------------------------------===//
5878 
5879 namespace {
5880 
5881 class HexagonABIInfo : public ABIInfo {
5882 
5883 
5884 public:
HexagonABIInfo(CodeGenTypes & CGT)5885   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5886 
5887 private:
5888 
5889   ABIArgInfo classifyReturnType(QualType RetTy) const;
5890   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5891 
5892   void computeInfo(CGFunctionInfo &FI) const override;
5893 
5894   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5895                          CodeGenFunction &CGF) const override;
5896 };
5897 
5898 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5899 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)5900   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5901     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5902 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5903   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5904     return 29;
5905   }
5906 };
5907 
5908 }
5909 
computeInfo(CGFunctionInfo & FI) const5910 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5911   if (!getCXXABI().classifyReturnType(FI))
5912     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5913   for (auto &I : FI.arguments())
5914     I.info = classifyArgumentType(I.type);
5915 }
5916 
classifyArgumentType(QualType Ty) const5917 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5918   if (!isAggregateTypeForABI(Ty)) {
5919     // Treat an enum type as its underlying type.
5920     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5921       Ty = EnumTy->getDecl()->getIntegerType();
5922 
5923     return (Ty->isPromotableIntegerType() ?
5924             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5925   }
5926 
5927   // Ignore empty records.
5928   if (isEmptyRecord(getContext(), Ty, true))
5929     return ABIArgInfo::getIgnore();
5930 
5931   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5932     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5933 
5934   uint64_t Size = getContext().getTypeSize(Ty);
5935   if (Size > 64)
5936     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5937     // Pass in the smallest viable integer type.
5938   else if (Size > 32)
5939       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5940   else if (Size > 16)
5941       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5942   else if (Size > 8)
5943       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5944   else
5945       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5946 }
5947 
classifyReturnType(QualType RetTy) const5948 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5949   if (RetTy->isVoidType())
5950     return ABIArgInfo::getIgnore();
5951 
5952   // Large vector types should be returned via memory.
5953   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5954     return ABIArgInfo::getIndirect(0);
5955 
5956   if (!isAggregateTypeForABI(RetTy)) {
5957     // Treat an enum type as its underlying type.
5958     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5959       RetTy = EnumTy->getDecl()->getIntegerType();
5960 
5961     return (RetTy->isPromotableIntegerType() ?
5962             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5963   }
5964 
5965   if (isEmptyRecord(getContext(), RetTy, true))
5966     return ABIArgInfo::getIgnore();
5967 
5968   // Aggregates <= 8 bytes are returned in r0; other aggregates
5969   // are returned indirectly.
5970   uint64_t Size = getContext().getTypeSize(RetTy);
5971   if (Size <= 64) {
5972     // Return in the smallest viable integer type.
5973     if (Size <= 8)
5974       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5975     if (Size <= 16)
5976       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5977     if (Size <= 32)
5978       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5979     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5980   }
5981 
5982   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5983 }
5984 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5985 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5986                                        CodeGenFunction &CGF) const {
5987   // FIXME: Need to handle alignment
5988   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5989 
5990   CGBuilderTy &Builder = CGF.Builder;
5991   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5992                                                        "ap");
5993   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5994   llvm::Type *PTy =
5995     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5996   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5997 
5998   uint64_t Offset =
5999     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
6000   llvm::Value *NextAddr =
6001     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
6002                       "ap.next");
6003   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
6004 
6005   return AddrTyped;
6006 }
6007 
6008 //===----------------------------------------------------------------------===//
6009 // AMDGPU ABI Implementation
6010 //===----------------------------------------------------------------------===//
6011 
6012 namespace {
6013 
6014 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6015 public:
AMDGPUTargetCodeGenInfo(CodeGenTypes & CGT)6016   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6017     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6018   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6019                            CodeGen::CodeGenModule &M) const override;
6020 };
6021 
6022 }
6023 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const6024 void AMDGPUTargetCodeGenInfo::SetTargetAttributes(
6025   const Decl *D,
6026   llvm::GlobalValue *GV,
6027   CodeGen::CodeGenModule &M) const {
6028   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6029   if (!FD)
6030     return;
6031 
6032   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6033     llvm::Function *F = cast<llvm::Function>(GV);
6034     uint32_t NumVGPR = Attr->getNumVGPR();
6035     if (NumVGPR != 0)
6036       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6037   }
6038 
6039   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6040     llvm::Function *F = cast<llvm::Function>(GV);
6041     unsigned NumSGPR = Attr->getNumSGPR();
6042     if (NumSGPR != 0)
6043       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6044   }
6045 }
6046 
6047 
6048 //===----------------------------------------------------------------------===//
6049 // SPARC v9 ABI Implementation.
6050 // Based on the SPARC Compliance Definition version 2.4.1.
6051 //
6052 // Function arguments a mapped to a nominal "parameter array" and promoted to
6053 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6054 // the array, structs larger than 16 bytes are passed indirectly.
6055 //
6056 // One case requires special care:
6057 //
6058 //   struct mixed {
6059 //     int i;
6060 //     float f;
6061 //   };
6062 //
6063 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6064 // parameter array, but the int is passed in an integer register, and the float
6065 // is passed in a floating point register. This is represented as two arguments
6066 // with the LLVM IR inreg attribute:
6067 //
6068 //   declare void f(i32 inreg %i, float inreg %f)
6069 //
6070 // The code generator will only allocate 4 bytes from the parameter array for
6071 // the inreg arguments. All other arguments are allocated a multiple of 8
6072 // bytes.
6073 //
6074 namespace {
6075 class SparcV9ABIInfo : public ABIInfo {
6076 public:
SparcV9ABIInfo(CodeGenTypes & CGT)6077   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6078 
6079 private:
6080   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6081   void computeInfo(CGFunctionInfo &FI) const override;
6082   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6083                          CodeGenFunction &CGF) const override;
6084 
6085   // Coercion type builder for structs passed in registers. The coercion type
6086   // serves two purposes:
6087   //
6088   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6089   //    in registers.
6090   // 2. Expose aligned floating point elements as first-level elements, so the
6091   //    code generator knows to pass them in floating point registers.
6092   //
6093   // We also compute the InReg flag which indicates that the struct contains
6094   // aligned 32-bit floats.
6095   //
6096   struct CoerceBuilder {
6097     llvm::LLVMContext &Context;
6098     const llvm::DataLayout &DL;
6099     SmallVector<llvm::Type*, 8> Elems;
6100     uint64_t Size;
6101     bool InReg;
6102 
CoerceBuilder__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6103     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6104       : Context(c), DL(dl), Size(0), InReg(false) {}
6105 
6106     // Pad Elems with integers until Size is ToSize.
pad__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6107     void pad(uint64_t ToSize) {
6108       assert(ToSize >= Size && "Cannot remove elements");
6109       if (ToSize == Size)
6110         return;
6111 
6112       // Finish the current 64-bit word.
6113       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6114       if (Aligned > Size && Aligned <= ToSize) {
6115         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6116         Size = Aligned;
6117       }
6118 
6119       // Add whole 64-bit words.
6120       while (Size + 64 <= ToSize) {
6121         Elems.push_back(llvm::Type::getInt64Ty(Context));
6122         Size += 64;
6123       }
6124 
6125       // Final in-word padding.
6126       if (Size < ToSize) {
6127         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6128         Size = ToSize;
6129       }
6130     }
6131 
6132     // Add a floating point element at Offset.
addFloat__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6133     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6134       // Unaligned floats are treated as integers.
6135       if (Offset % Bits)
6136         return;
6137       // The InReg flag is only required if there are any floats < 64 bits.
6138       if (Bits < 64)
6139         InReg = true;
6140       pad(Offset);
6141       Elems.push_back(Ty);
6142       Size = Offset + Bits;
6143     }
6144 
6145     // Add a struct type to the coercion type, starting at Offset (in bits).
addStruct__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6146     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6147       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6148       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6149         llvm::Type *ElemTy = StrTy->getElementType(i);
6150         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6151         switch (ElemTy->getTypeID()) {
6152         case llvm::Type::StructTyID:
6153           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6154           break;
6155         case llvm::Type::FloatTyID:
6156           addFloat(ElemOffset, ElemTy, 32);
6157           break;
6158         case llvm::Type::DoubleTyID:
6159           addFloat(ElemOffset, ElemTy, 64);
6160           break;
6161         case llvm::Type::FP128TyID:
6162           addFloat(ElemOffset, ElemTy, 128);
6163           break;
6164         case llvm::Type::PointerTyID:
6165           if (ElemOffset % 64 == 0) {
6166             pad(ElemOffset);
6167             Elems.push_back(ElemTy);
6168             Size += 64;
6169           }
6170           break;
6171         default:
6172           break;
6173         }
6174       }
6175     }
6176 
6177     // Check if Ty is a usable substitute for the coercion type.
isUsableType__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6178     bool isUsableType(llvm::StructType *Ty) const {
6179       return llvm::makeArrayRef(Elems) == Ty->elements();
6180     }
6181 
6182     // Get the coercion type as a literal struct type.
getType__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6183     llvm::Type *getType() const {
6184       if (Elems.size() == 1)
6185         return Elems.front();
6186       else
6187         return llvm::StructType::get(Context, Elems);
6188     }
6189   };
6190 };
6191 } // end anonymous namespace
6192 
6193 ABIArgInfo
classifyType(QualType Ty,unsigned SizeLimit) const6194 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6195   if (Ty->isVoidType())
6196     return ABIArgInfo::getIgnore();
6197 
6198   uint64_t Size = getContext().getTypeSize(Ty);
6199 
6200   // Anything too big to fit in registers is passed with an explicit indirect
6201   // pointer / sret pointer.
6202   if (Size > SizeLimit)
6203     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6204 
6205   // Treat an enum type as its underlying type.
6206   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6207     Ty = EnumTy->getDecl()->getIntegerType();
6208 
6209   // Integer types smaller than a register are extended.
6210   if (Size < 64 && Ty->isIntegerType())
6211     return ABIArgInfo::getExtend();
6212 
6213   // Other non-aggregates go in registers.
6214   if (!isAggregateTypeForABI(Ty))
6215     return ABIArgInfo::getDirect();
6216 
6217   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6218   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6219   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6220     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6221 
6222   // This is a small aggregate type that should be passed in registers.
6223   // Build a coercion type from the LLVM struct type.
6224   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6225   if (!StrTy)
6226     return ABIArgInfo::getDirect();
6227 
6228   CoerceBuilder CB(getVMContext(), getDataLayout());
6229   CB.addStruct(0, StrTy);
6230   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6231 
6232   // Try to use the original type for coercion.
6233   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6234 
6235   if (CB.InReg)
6236     return ABIArgInfo::getDirectInReg(CoerceTy);
6237   else
6238     return ABIArgInfo::getDirect(CoerceTy);
6239 }
6240 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const6241 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6242                                        CodeGenFunction &CGF) const {
6243   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6244   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6245   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6246     AI.setCoerceToType(ArgTy);
6247 
6248   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6249   CGBuilderTy &Builder = CGF.Builder;
6250   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6251   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6252   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6253   llvm::Value *ArgAddr;
6254   unsigned Stride;
6255 
6256   switch (AI.getKind()) {
6257   case ABIArgInfo::Expand:
6258   case ABIArgInfo::InAlloca:
6259     llvm_unreachable("Unsupported ABI kind for va_arg");
6260 
6261   case ABIArgInfo::Extend:
6262     Stride = 8;
6263     ArgAddr = Builder
6264       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6265                           "extend");
6266     break;
6267 
6268   case ABIArgInfo::Direct:
6269     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6270     ArgAddr = Addr;
6271     break;
6272 
6273   case ABIArgInfo::Indirect:
6274     Stride = 8;
6275     ArgAddr = Builder.CreateBitCast(Addr,
6276                                     llvm::PointerType::getUnqual(ArgPtrTy),
6277                                     "indirect");
6278     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6279     break;
6280 
6281   case ABIArgInfo::Ignore:
6282     return llvm::UndefValue::get(ArgPtrTy);
6283   }
6284 
6285   // Update VAList.
6286   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6287   Builder.CreateStore(Addr, VAListAddrAsBPP);
6288 
6289   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6290 }
6291 
computeInfo(CGFunctionInfo & FI) const6292 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6293   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6294   for (auto &I : FI.arguments())
6295     I.info = classifyType(I.type, 16 * 8);
6296 }
6297 
6298 namespace {
6299 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6300 public:
SparcV9TargetCodeGenInfo(CodeGenTypes & CGT)6301   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6302     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6303 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const6304   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6305     return 14;
6306   }
6307 
6308   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6309                                llvm::Value *Address) const override;
6310 };
6311 } // end anonymous namespace
6312 
6313 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const6314 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6315                                                 llvm::Value *Address) const {
6316   // This is calculated from the LLVM and GCC tables and verified
6317   // against gcc output.  AFAIK all ABIs use the same encoding.
6318 
6319   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6320 
6321   llvm::IntegerType *i8 = CGF.Int8Ty;
6322   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6323   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6324 
6325   // 0-31: the 8-byte general-purpose registers
6326   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6327 
6328   // 32-63: f0-31, the 4-byte floating-point registers
6329   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6330 
6331   //   Y   = 64
6332   //   PSR = 65
6333   //   WIM = 66
6334   //   TBR = 67
6335   //   PC  = 68
6336   //   NPC = 69
6337   //   FSR = 70
6338   //   CSR = 71
6339   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6340 
6341   // 72-87: d0-15, the 8-byte floating-point registers
6342   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6343 
6344   return false;
6345 }
6346 
6347 
6348 //===----------------------------------------------------------------------===//
6349 // XCore ABI Implementation
6350 //===----------------------------------------------------------------------===//
6351 
6352 namespace {
6353 
6354 /// A SmallStringEnc instance is used to build up the TypeString by passing
6355 /// it by reference between functions that append to it.
6356 typedef llvm::SmallString<128> SmallStringEnc;
6357 
6358 /// TypeStringCache caches the meta encodings of Types.
6359 ///
6360 /// The reason for caching TypeStrings is two fold:
6361 ///   1. To cache a type's encoding for later uses;
6362 ///   2. As a means to break recursive member type inclusion.
6363 ///
6364 /// A cache Entry can have a Status of:
6365 ///   NonRecursive:   The type encoding is not recursive;
6366 ///   Recursive:      The type encoding is recursive;
6367 ///   Incomplete:     An incomplete TypeString;
6368 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6369 ///                   Recursive type encoding.
6370 ///
6371 /// A NonRecursive entry will have all of its sub-members expanded as fully
6372 /// as possible. Whilst it may contain types which are recursive, the type
6373 /// itself is not recursive and thus its encoding may be safely used whenever
6374 /// the type is encountered.
6375 ///
6376 /// A Recursive entry will have all of its sub-members expanded as fully as
6377 /// possible. The type itself is recursive and it may contain other types which
6378 /// are recursive. The Recursive encoding must not be used during the expansion
6379 /// of a recursive type's recursive branch. For simplicity the code uses
6380 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6381 ///
6382 /// An Incomplete entry is always a RecordType and only encodes its
6383 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6384 /// are placed into the cache during type expansion as a means to identify and
6385 /// handle recursive inclusion of types as sub-members. If there is recursion
6386 /// the entry becomes IncompleteUsed.
6387 ///
6388 /// During the expansion of a RecordType's members:
6389 ///
6390 ///   If the cache contains a NonRecursive encoding for the member type, the
6391 ///   cached encoding is used;
6392 ///
6393 ///   If the cache contains a Recursive encoding for the member type, the
6394 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6395 ///
6396 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6397 ///   cache to break potential recursive inclusion of itself as a sub-member;
6398 ///
6399 ///   Once a member RecordType has been expanded, its temporary incomplete
6400 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6401 ///   it is swapped back in;
6402 ///
6403 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6404 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6405 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6406 ///
6407 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6408 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6409 ///   Else the member is part of a recursive type and thus the recursion has
6410 ///   been exited too soon for the encoding to be correct for the member.
6411 ///
6412 class TypeStringCache {
6413   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6414   struct Entry {
6415     std::string Str;     // The encoded TypeString for the type.
6416     enum Status State;   // Information about the encoding in 'Str'.
6417     std::string Swapped; // A temporary place holder for a Recursive encoding
6418                          // during the expansion of RecordType's members.
6419   };
6420   std::map<const IdentifierInfo *, struct Entry> Map;
6421   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6422   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6423 public:
TypeStringCache()6424   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6425   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6426   bool removeIncomplete(const IdentifierInfo *ID);
6427   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6428                      bool IsRecursive);
6429   StringRef lookupStr(const IdentifierInfo *ID);
6430 };
6431 
6432 /// TypeString encodings for enum & union fields must be order.
6433 /// FieldEncoding is a helper for this ordering process.
6434 class FieldEncoding {
6435   bool HasName;
6436   std::string Enc;
6437 public:
FieldEncoding(bool b,SmallStringEnc & e)6438   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
str()6439   StringRef str() {return Enc.c_str();};
operator <(const FieldEncoding & rhs) const6440   bool operator<(const FieldEncoding &rhs) const {
6441     if (HasName != rhs.HasName) return HasName;
6442     return Enc < rhs.Enc;
6443   }
6444 };
6445 
6446 class XCoreABIInfo : public DefaultABIInfo {
6447 public:
XCoreABIInfo(CodeGen::CodeGenTypes & CGT)6448   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6449   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6450                          CodeGenFunction &CGF) const override;
6451 };
6452 
6453 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6454   mutable TypeStringCache TSC;
6455 public:
XCoreTargetCodeGenInfo(CodeGenTypes & CGT)6456   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6457     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6458   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6459                     CodeGen::CodeGenModule &M) const override;
6460 };
6461 
6462 } // End anonymous namespace.
6463 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const6464 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6465                                      CodeGenFunction &CGF) const {
6466   CGBuilderTy &Builder = CGF.Builder;
6467 
6468   // Get the VAList.
6469   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6470                                                        CGF.Int8PtrPtrTy);
6471   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6472 
6473   // Handle the argument.
6474   ABIArgInfo AI = classifyArgumentType(Ty);
6475   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6476   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6477     AI.setCoerceToType(ArgTy);
6478   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6479   llvm::Value *Val;
6480   uint64_t ArgSize = 0;
6481   switch (AI.getKind()) {
6482   case ABIArgInfo::Expand:
6483   case ABIArgInfo::InAlloca:
6484     llvm_unreachable("Unsupported ABI kind for va_arg");
6485   case ABIArgInfo::Ignore:
6486     Val = llvm::UndefValue::get(ArgPtrTy);
6487     ArgSize = 0;
6488     break;
6489   case ABIArgInfo::Extend:
6490   case ABIArgInfo::Direct:
6491     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6492     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6493     if (ArgSize < 4)
6494       ArgSize = 4;
6495     break;
6496   case ABIArgInfo::Indirect:
6497     llvm::Value *ArgAddr;
6498     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6499     ArgAddr = Builder.CreateLoad(ArgAddr);
6500     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6501     ArgSize = 4;
6502     break;
6503   }
6504 
6505   // Increment the VAList.
6506   if (ArgSize) {
6507     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6508     Builder.CreateStore(APN, VAListAddrAsBPP);
6509   }
6510   return Val;
6511 }
6512 
6513 /// During the expansion of a RecordType, an incomplete TypeString is placed
6514 /// into the cache as a means to identify and break recursion.
6515 /// If there is a Recursive encoding in the cache, it is swapped out and will
6516 /// be reinserted by removeIncomplete().
6517 /// All other types of encoding should have been used rather than arriving here.
addIncomplete(const IdentifierInfo * ID,std::string StubEnc)6518 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6519                                     std::string StubEnc) {
6520   if (!ID)
6521     return;
6522   Entry &E = Map[ID];
6523   assert( (E.Str.empty() || E.State == Recursive) &&
6524          "Incorrectly use of addIncomplete");
6525   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6526   E.Swapped.swap(E.Str); // swap out the Recursive
6527   E.Str.swap(StubEnc);
6528   E.State = Incomplete;
6529   ++IncompleteCount;
6530 }
6531 
6532 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6533 /// must be removed from the cache.
6534 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6535 /// Returns true if the RecordType was defined recursively.
removeIncomplete(const IdentifierInfo * ID)6536 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6537   if (!ID)
6538     return false;
6539   auto I = Map.find(ID);
6540   assert(I != Map.end() && "Entry not present");
6541   Entry &E = I->second;
6542   assert( (E.State == Incomplete ||
6543            E.State == IncompleteUsed) &&
6544          "Entry must be an incomplete type");
6545   bool IsRecursive = false;
6546   if (E.State == IncompleteUsed) {
6547     // We made use of our Incomplete encoding, thus we are recursive.
6548     IsRecursive = true;
6549     --IncompleteUsedCount;
6550   }
6551   if (E.Swapped.empty())
6552     Map.erase(I);
6553   else {
6554     // Swap the Recursive back.
6555     E.Swapped.swap(E.Str);
6556     E.Swapped.clear();
6557     E.State = Recursive;
6558   }
6559   --IncompleteCount;
6560   return IsRecursive;
6561 }
6562 
6563 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6564 /// Recursive (viz: all sub-members were expanded as fully as possible).
addIfComplete(const IdentifierInfo * ID,StringRef Str,bool IsRecursive)6565 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6566                                     bool IsRecursive) {
6567   if (!ID || IncompleteUsedCount)
6568     return; // No key or it is is an incomplete sub-type so don't add.
6569   Entry &E = Map[ID];
6570   if (IsRecursive && !E.Str.empty()) {
6571     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6572            "This is not the same Recursive entry");
6573     // The parent container was not recursive after all, so we could have used
6574     // this Recursive sub-member entry after all, but we assumed the worse when
6575     // we started viz: IncompleteCount!=0.
6576     return;
6577   }
6578   assert(E.Str.empty() && "Entry already present");
6579   E.Str = Str.str();
6580   E.State = IsRecursive? Recursive : NonRecursive;
6581 }
6582 
6583 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6584 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6585 /// encoding is Recursive, return an empty StringRef.
lookupStr(const IdentifierInfo * ID)6586 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6587   if (!ID)
6588     return StringRef();   // We have no key.
6589   auto I = Map.find(ID);
6590   if (I == Map.end())
6591     return StringRef();   // We have no encoding.
6592   Entry &E = I->second;
6593   if (E.State == Recursive && IncompleteCount)
6594     return StringRef();   // We don't use Recursive encodings for member types.
6595 
6596   if (E.State == Incomplete) {
6597     // The incomplete type is being used to break out of recursion.
6598     E.State = IncompleteUsed;
6599     ++IncompleteUsedCount;
6600   }
6601   return E.Str.c_str();
6602 }
6603 
6604 /// The XCore ABI includes a type information section that communicates symbol
6605 /// type information to the linker. The linker uses this information to verify
6606 /// safety/correctness of things such as array bound and pointers et al.
6607 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6608 /// This type information (TypeString) is emitted into meta data for all global
6609 /// symbols: definitions, declarations, functions & variables.
6610 ///
6611 /// The TypeString carries type, qualifier, name, size & value details.
6612 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6613 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6614 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6615 ///
6616 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6617                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6618 
6619 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
emitTargetMD(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const6620 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6621                                           CodeGen::CodeGenModule &CGM) const {
6622   SmallStringEnc Enc;
6623   if (getTypeString(Enc, D, CGM, TSC)) {
6624     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6625     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6626     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6627     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6628     llvm::NamedMDNode *MD =
6629       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6630     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6631   }
6632 }
6633 
6634 static bool appendType(SmallStringEnc &Enc, QualType QType,
6635                        const CodeGen::CodeGenModule &CGM,
6636                        TypeStringCache &TSC);
6637 
6638 /// Helper function for appendRecordType().
6639 /// Builds a SmallVector containing the encoded field types in declaration order.
extractFieldType(SmallVectorImpl<FieldEncoding> & FE,const RecordDecl * RD,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6640 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6641                              const RecordDecl *RD,
6642                              const CodeGen::CodeGenModule &CGM,
6643                              TypeStringCache &TSC) {
6644   for (const auto *Field : RD->fields()) {
6645     SmallStringEnc Enc;
6646     Enc += "m(";
6647     Enc += Field->getName();
6648     Enc += "){";
6649     if (Field->isBitField()) {
6650       Enc += "b(";
6651       llvm::raw_svector_ostream OS(Enc);
6652       OS.resync();
6653       OS << Field->getBitWidthValue(CGM.getContext());
6654       OS.flush();
6655       Enc += ':';
6656     }
6657     if (!appendType(Enc, Field->getType(), CGM, TSC))
6658       return false;
6659     if (Field->isBitField())
6660       Enc += ')';
6661     Enc += '}';
6662     FE.push_back(FieldEncoding(!Field->getName().empty(), Enc));
6663   }
6664   return true;
6665 }
6666 
6667 /// Appends structure and union types to Enc and adds encoding to cache.
6668 /// Recursively calls appendType (via extractFieldType) for each field.
6669 /// Union types have their fields ordered according to the ABI.
appendRecordType(SmallStringEnc & Enc,const RecordType * RT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,const IdentifierInfo * ID)6670 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6671                              const CodeGen::CodeGenModule &CGM,
6672                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6673   // Append the cached TypeString if we have one.
6674   StringRef TypeString = TSC.lookupStr(ID);
6675   if (!TypeString.empty()) {
6676     Enc += TypeString;
6677     return true;
6678   }
6679 
6680   // Start to emit an incomplete TypeString.
6681   size_t Start = Enc.size();
6682   Enc += (RT->isUnionType()? 'u' : 's');
6683   Enc += '(';
6684   if (ID)
6685     Enc += ID->getName();
6686   Enc += "){";
6687 
6688   // We collect all encoded fields and order as necessary.
6689   bool IsRecursive = false;
6690   const RecordDecl *RD = RT->getDecl()->getDefinition();
6691   if (RD && !RD->field_empty()) {
6692     // An incomplete TypeString stub is placed in the cache for this RecordType
6693     // so that recursive calls to this RecordType will use it whilst building a
6694     // complete TypeString for this RecordType.
6695     SmallVector<FieldEncoding, 16> FE;
6696     std::string StubEnc(Enc.substr(Start).str());
6697     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6698     TSC.addIncomplete(ID, std::move(StubEnc));
6699     if (!extractFieldType(FE, RD, CGM, TSC)) {
6700       (void) TSC.removeIncomplete(ID);
6701       return false;
6702     }
6703     IsRecursive = TSC.removeIncomplete(ID);
6704     // The ABI requires unions to be sorted but not structures.
6705     // See FieldEncoding::operator< for sort algorithm.
6706     if (RT->isUnionType())
6707       std::sort(FE.begin(), FE.end());
6708     // We can now complete the TypeString.
6709     unsigned E = FE.size();
6710     for (unsigned I = 0; I != E; ++I) {
6711       if (I)
6712         Enc += ',';
6713       Enc += FE[I].str();
6714     }
6715   }
6716   Enc += '}';
6717   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6718   return true;
6719 }
6720 
6721 /// Appends enum types to Enc and adds the encoding to the cache.
appendEnumType(SmallStringEnc & Enc,const EnumType * ET,TypeStringCache & TSC,const IdentifierInfo * ID)6722 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6723                            TypeStringCache &TSC,
6724                            const IdentifierInfo *ID) {
6725   // Append the cached TypeString if we have one.
6726   StringRef TypeString = TSC.lookupStr(ID);
6727   if (!TypeString.empty()) {
6728     Enc += TypeString;
6729     return true;
6730   }
6731 
6732   size_t Start = Enc.size();
6733   Enc += "e(";
6734   if (ID)
6735     Enc += ID->getName();
6736   Enc += "){";
6737 
6738   // We collect all encoded enumerations and order them alphanumerically.
6739   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6740     SmallVector<FieldEncoding, 16> FE;
6741     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6742          ++I) {
6743       SmallStringEnc EnumEnc;
6744       EnumEnc += "m(";
6745       EnumEnc += I->getName();
6746       EnumEnc += "){";
6747       I->getInitVal().toString(EnumEnc);
6748       EnumEnc += '}';
6749       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6750     }
6751     std::sort(FE.begin(), FE.end());
6752     unsigned E = FE.size();
6753     for (unsigned I = 0; I != E; ++I) {
6754       if (I)
6755         Enc += ',';
6756       Enc += FE[I].str();
6757     }
6758   }
6759   Enc += '}';
6760   TSC.addIfComplete(ID, Enc.substr(Start), false);
6761   return true;
6762 }
6763 
6764 /// Appends type's qualifier to Enc.
6765 /// This is done prior to appending the type's encoding.
appendQualifier(SmallStringEnc & Enc,QualType QT)6766 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6767   // Qualifiers are emitted in alphabetical order.
6768   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6769   int Lookup = 0;
6770   if (QT.isConstQualified())
6771     Lookup += 1<<0;
6772   if (QT.isRestrictQualified())
6773     Lookup += 1<<1;
6774   if (QT.isVolatileQualified())
6775     Lookup += 1<<2;
6776   Enc += Table[Lookup];
6777 }
6778 
6779 /// Appends built-in types to Enc.
appendBuiltinType(SmallStringEnc & Enc,const BuiltinType * BT)6780 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6781   const char *EncType;
6782   switch (BT->getKind()) {
6783     case BuiltinType::Void:
6784       EncType = "0";
6785       break;
6786     case BuiltinType::Bool:
6787       EncType = "b";
6788       break;
6789     case BuiltinType::Char_U:
6790       EncType = "uc";
6791       break;
6792     case BuiltinType::UChar:
6793       EncType = "uc";
6794       break;
6795     case BuiltinType::SChar:
6796       EncType = "sc";
6797       break;
6798     case BuiltinType::UShort:
6799       EncType = "us";
6800       break;
6801     case BuiltinType::Short:
6802       EncType = "ss";
6803       break;
6804     case BuiltinType::UInt:
6805       EncType = "ui";
6806       break;
6807     case BuiltinType::Int:
6808       EncType = "si";
6809       break;
6810     case BuiltinType::ULong:
6811       EncType = "ul";
6812       break;
6813     case BuiltinType::Long:
6814       EncType = "sl";
6815       break;
6816     case BuiltinType::ULongLong:
6817       EncType = "ull";
6818       break;
6819     case BuiltinType::LongLong:
6820       EncType = "sll";
6821       break;
6822     case BuiltinType::Float:
6823       EncType = "ft";
6824       break;
6825     case BuiltinType::Double:
6826       EncType = "d";
6827       break;
6828     case BuiltinType::LongDouble:
6829       EncType = "ld";
6830       break;
6831     default:
6832       return false;
6833   }
6834   Enc += EncType;
6835   return true;
6836 }
6837 
6838 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
appendPointerType(SmallStringEnc & Enc,const PointerType * PT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6839 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6840                               const CodeGen::CodeGenModule &CGM,
6841                               TypeStringCache &TSC) {
6842   Enc += "p(";
6843   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6844     return false;
6845   Enc += ')';
6846   return true;
6847 }
6848 
6849 /// Appends array encoding to Enc before calling appendType for the element.
appendArrayType(SmallStringEnc & Enc,QualType QT,const ArrayType * AT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,StringRef NoSizeEnc)6850 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6851                             const ArrayType *AT,
6852                             const CodeGen::CodeGenModule &CGM,
6853                             TypeStringCache &TSC, StringRef NoSizeEnc) {
6854   if (AT->getSizeModifier() != ArrayType::Normal)
6855     return false;
6856   Enc += "a(";
6857   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6858     CAT->getSize().toStringUnsigned(Enc);
6859   else
6860     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6861   Enc += ':';
6862   // The Qualifiers should be attached to the type rather than the array.
6863   appendQualifier(Enc, QT);
6864   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6865     return false;
6866   Enc += ')';
6867   return true;
6868 }
6869 
6870 /// Appends a function encoding to Enc, calling appendType for the return type
6871 /// and the arguments.
appendFunctionType(SmallStringEnc & Enc,const FunctionType * FT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6872 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6873                              const CodeGen::CodeGenModule &CGM,
6874                              TypeStringCache &TSC) {
6875   Enc += "f{";
6876   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6877     return false;
6878   Enc += "}(";
6879   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6880     // N.B. we are only interested in the adjusted param types.
6881     auto I = FPT->param_type_begin();
6882     auto E = FPT->param_type_end();
6883     if (I != E) {
6884       do {
6885         if (!appendType(Enc, *I, CGM, TSC))
6886           return false;
6887         ++I;
6888         if (I != E)
6889           Enc += ',';
6890       } while (I != E);
6891       if (FPT->isVariadic())
6892         Enc += ",va";
6893     } else {
6894       if (FPT->isVariadic())
6895         Enc += "va";
6896       else
6897         Enc += '0';
6898     }
6899   }
6900   Enc += ')';
6901   return true;
6902 }
6903 
6904 /// Handles the type's qualifier before dispatching a call to handle specific
6905 /// type encodings.
appendType(SmallStringEnc & Enc,QualType QType,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6906 static bool appendType(SmallStringEnc &Enc, QualType QType,
6907                        const CodeGen::CodeGenModule &CGM,
6908                        TypeStringCache &TSC) {
6909 
6910   QualType QT = QType.getCanonicalType();
6911 
6912   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
6913     // The Qualifiers should be attached to the type rather than the array.
6914     // Thus we don't call appendQualifier() here.
6915     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
6916 
6917   appendQualifier(Enc, QT);
6918 
6919   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
6920     return appendBuiltinType(Enc, BT);
6921 
6922   if (const PointerType *PT = QT->getAs<PointerType>())
6923     return appendPointerType(Enc, PT, CGM, TSC);
6924 
6925   if (const EnumType *ET = QT->getAs<EnumType>())
6926     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
6927 
6928   if (const RecordType *RT = QT->getAsStructureType())
6929     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6930 
6931   if (const RecordType *RT = QT->getAsUnionType())
6932     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6933 
6934   if (const FunctionType *FT = QT->getAs<FunctionType>())
6935     return appendFunctionType(Enc, FT, CGM, TSC);
6936 
6937   return false;
6938 }
6939 
getTypeString(SmallStringEnc & Enc,const Decl * D,CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6940 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6941                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
6942   if (!D)
6943     return false;
6944 
6945   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6946     if (FD->getLanguageLinkage() != CLanguageLinkage)
6947       return false;
6948     return appendType(Enc, FD->getType(), CGM, TSC);
6949   }
6950 
6951   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6952     if (VD->getLanguageLinkage() != CLanguageLinkage)
6953       return false;
6954     QualType QT = VD->getType().getCanonicalType();
6955     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
6956       // Global ArrayTypes are given a size of '*' if the size is unknown.
6957       // The Qualifiers should be attached to the type rather than the array.
6958       // Thus we don't call appendQualifier() here.
6959       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
6960     }
6961     return appendType(Enc, QT, CGM, TSC);
6962   }
6963   return false;
6964 }
6965 
6966 
6967 //===----------------------------------------------------------------------===//
6968 // Driver code
6969 //===----------------------------------------------------------------------===//
6970 
getTriple() const6971 const llvm::Triple &CodeGenModule::getTriple() const {
6972   return getTarget().getTriple();
6973 }
6974 
supportsCOMDAT() const6975 bool CodeGenModule::supportsCOMDAT() const {
6976   return !getTriple().isOSBinFormatMachO();
6977 }
6978 
getTargetCodeGenInfo()6979 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
6980   if (TheTargetCodeGenInfo)
6981     return *TheTargetCodeGenInfo;
6982 
6983   const llvm::Triple &Triple = getTarget().getTriple();
6984   switch (Triple.getArch()) {
6985   default:
6986     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
6987 
6988   case llvm::Triple::le32:
6989     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
6990   case llvm::Triple::mips:
6991   case llvm::Triple::mipsel:
6992     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
6993 
6994   case llvm::Triple::mips64:
6995   case llvm::Triple::mips64el:
6996     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
6997 
6998   case llvm::Triple::aarch64:
6999   case llvm::Triple::aarch64_be: {
7000     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7001     if (getTarget().getABI() == "darwinpcs")
7002       Kind = AArch64ABIInfo::DarwinPCS;
7003 
7004     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7005   }
7006 
7007   case llvm::Triple::arm:
7008   case llvm::Triple::armeb:
7009   case llvm::Triple::thumb:
7010   case llvm::Triple::thumbeb:
7011     {
7012       if (Triple.getOS() == llvm::Triple::Win32) {
7013         TheTargetCodeGenInfo =
7014             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7015         return *TheTargetCodeGenInfo;
7016       }
7017 
7018       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7019       if (getTarget().getABI() == "apcs-gnu")
7020         Kind = ARMABIInfo::APCS;
7021       else if (CodeGenOpts.FloatABI == "hard" ||
7022                (CodeGenOpts.FloatABI != "soft" &&
7023                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7024         Kind = ARMABIInfo::AAPCS_VFP;
7025 
7026       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7027     }
7028 
7029   case llvm::Triple::ppc:
7030     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7031   case llvm::Triple::ppc64:
7032     if (Triple.isOSBinFormatELF()) {
7033       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7034       if (getTarget().getABI() == "elfv2")
7035         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7036       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7037 
7038       return *(TheTargetCodeGenInfo =
7039                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7040     } else
7041       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7042   case llvm::Triple::ppc64le: {
7043     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7044     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7045     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7046       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7047     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7048 
7049     return *(TheTargetCodeGenInfo =
7050              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7051   }
7052 
7053   case llvm::Triple::nvptx:
7054   case llvm::Triple::nvptx64:
7055     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7056 
7057   case llvm::Triple::msp430:
7058     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7059 
7060   case llvm::Triple::systemz:
7061     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
7062 
7063   case llvm::Triple::tce:
7064     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7065 
7066   case llvm::Triple::x86: {
7067     bool IsDarwinVectorABI = Triple.isOSDarwin();
7068     bool IsSmallStructInRegABI =
7069         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7070     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7071 
7072     if (Triple.getOS() == llvm::Triple::Win32) {
7073       return *(TheTargetCodeGenInfo =
7074                new WinX86_32TargetCodeGenInfo(Types,
7075                                               IsDarwinVectorABI, IsSmallStructInRegABI,
7076                                               IsWin32FloatStructABI,
7077                                               CodeGenOpts.NumRegisterParameters));
7078     } else {
7079       return *(TheTargetCodeGenInfo =
7080                new X86_32TargetCodeGenInfo(Types,
7081                                            IsDarwinVectorABI, IsSmallStructInRegABI,
7082                                            IsWin32FloatStructABI,
7083                                            CodeGenOpts.NumRegisterParameters));
7084     }
7085   }
7086 
7087   case llvm::Triple::x86_64: {
7088     bool HasAVX = getTarget().getABI() == "avx";
7089 
7090     switch (Triple.getOS()) {
7091     case llvm::Triple::Win32:
7092       return *(TheTargetCodeGenInfo =
7093                    new WinX86_64TargetCodeGenInfo(Types, HasAVX));
7094     case llvm::Triple::PS4:
7095       return *(TheTargetCodeGenInfo = new PS4TargetCodeGenInfo(Types, HasAVX));
7096     default:
7097       return *(TheTargetCodeGenInfo =
7098                    new X86_64TargetCodeGenInfo(Types, HasAVX));
7099     }
7100   }
7101   case llvm::Triple::hexagon:
7102     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7103   case llvm::Triple::r600:
7104     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7105   case llvm::Triple::amdgcn:
7106     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7107   case llvm::Triple::sparcv9:
7108     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7109   case llvm::Triple::xcore:
7110     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7111   }
7112 }
7113