1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm> // std::sort
29
30 using namespace clang;
31 using namespace CodeGen;
32
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34 llvm::Value *Array,
35 llvm::Value *Value,
36 unsigned FirstIndex,
37 unsigned LastIndex) {
38 // Alternatively, we could emit this as a loop in the source.
39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40 llvm::Value *Cell =
41 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42 Builder.CreateStore(Value, Cell);
43 }
44 }
45
isAggregateTypeForABI(QualType T)46 static bool isAggregateTypeForABI(QualType T) {
47 return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48 T->isMemberFunctionPointerType();
49 }
50
~ABIInfo()51 ABIInfo::~ABIInfo() {}
52
getRecordArgABI(const RecordType * RT,CGCXXABI & CXXABI)53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
54 CGCXXABI &CXXABI) {
55 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
56 if (!RD)
57 return CGCXXABI::RAA_Default;
58 return CXXABI.getRecordArgABI(RD);
59 }
60
getRecordArgABI(QualType T,CGCXXABI & CXXABI)61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
62 CGCXXABI &CXXABI) {
63 const RecordType *RT = T->getAs<RecordType>();
64 if (!RT)
65 return CGCXXABI::RAA_Default;
66 return getRecordArgABI(RT, CXXABI);
67 }
68
69 /// Pass transparent unions as if they were the type of the first element. Sema
70 /// should ensure that all elements of the union have the same "machine type".
useFirstFieldIfTransparentUnion(QualType Ty)71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
72 if (const RecordType *UT = Ty->getAsUnionType()) {
73 const RecordDecl *UD = UT->getDecl();
74 if (UD->hasAttr<TransparentUnionAttr>()) {
75 assert(!UD->field_empty() && "sema created an empty transparent union");
76 return UD->field_begin()->getType();
77 }
78 }
79 return Ty;
80 }
81
getCXXABI() const82 CGCXXABI &ABIInfo::getCXXABI() const {
83 return CGT.getCXXABI();
84 }
85
getContext() const86 ASTContext &ABIInfo::getContext() const {
87 return CGT.getContext();
88 }
89
getVMContext() const90 llvm::LLVMContext &ABIInfo::getVMContext() const {
91 return CGT.getLLVMContext();
92 }
93
getDataLayout() const94 const llvm::DataLayout &ABIInfo::getDataLayout() const {
95 return CGT.getDataLayout();
96 }
97
getTarget() const98 const TargetInfo &ABIInfo::getTarget() const {
99 return CGT.getTarget();
100 }
101
isHomogeneousAggregateBaseType(QualType Ty) const102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
103 return false;
104 }
105
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
107 uint64_t Members) const {
108 return false;
109 }
110
dump() const111 void ABIArgInfo::dump() const {
112 raw_ostream &OS = llvm::errs();
113 OS << "(ABIArgInfo Kind=";
114 switch (TheKind) {
115 case Direct:
116 OS << "Direct Type=";
117 if (llvm::Type *Ty = getCoerceToType())
118 Ty->print(OS);
119 else
120 OS << "null";
121 break;
122 case Extend:
123 OS << "Extend";
124 break;
125 case Ignore:
126 OS << "Ignore";
127 break;
128 case InAlloca:
129 OS << "InAlloca Offset=" << getInAllocaFieldIndex();
130 break;
131 case Indirect:
132 OS << "Indirect Align=" << getIndirectAlign()
133 << " ByVal=" << getIndirectByVal()
134 << " Realign=" << getIndirectRealign();
135 break;
136 case Expand:
137 OS << "Expand";
138 break;
139 }
140 OS << ")\n";
141 }
142
~TargetCodeGenInfo()143 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
144
145 // If someone can figure out a general rule for this, that would be great.
146 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const147 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
148 // Verified for:
149 // x86-64 FreeBSD, Linux, Darwin
150 // x86-32 FreeBSD, Linux, Darwin
151 // PowerPC Linux, Darwin
152 // ARM Darwin (*not* EABI)
153 // AArch64 Linux
154 return 32;
155 }
156
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const157 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
158 const FunctionNoProtoType *fnType) const {
159 // The following conventions are known to require this to be false:
160 // x86_stdcall
161 // MIPS
162 // For everything else, we just prefer false unless we opt out.
163 return false;
164 }
165
166 void
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const167 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
168 llvm::SmallString<24> &Opt) const {
169 // This assumes the user is passing a library name like "rt" instead of a
170 // filename like "librt.a/so", and that they don't care whether it's static or
171 // dynamic.
172 Opt = "-l";
173 Opt += Lib;
174 }
175
176 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
177
178 /// isEmptyField - Return true iff a the field is "empty", that is it
179 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)180 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
181 bool AllowArrays) {
182 if (FD->isUnnamedBitfield())
183 return true;
184
185 QualType FT = FD->getType();
186
187 // Constant arrays of empty records count as empty, strip them off.
188 // Constant arrays of zero length always count as empty.
189 if (AllowArrays)
190 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
191 if (AT->getSize() == 0)
192 return true;
193 FT = AT->getElementType();
194 }
195
196 const RecordType *RT = FT->getAs<RecordType>();
197 if (!RT)
198 return false;
199
200 // C++ record fields are never empty, at least in the Itanium ABI.
201 //
202 // FIXME: We should use a predicate for whether this behavior is true in the
203 // current ABI.
204 if (isa<CXXRecordDecl>(RT->getDecl()))
205 return false;
206
207 return isEmptyRecord(Context, FT, AllowArrays);
208 }
209
210 /// isEmptyRecord - Return true iff a structure contains only empty
211 /// fields. Note that a structure with a flexible array member is not
212 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)213 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
214 const RecordType *RT = T->getAs<RecordType>();
215 if (!RT)
216 return 0;
217 const RecordDecl *RD = RT->getDecl();
218 if (RD->hasFlexibleArrayMember())
219 return false;
220
221 // If this is a C++ record, check the bases first.
222 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
223 for (const auto &I : CXXRD->bases())
224 if (!isEmptyRecord(Context, I.getType(), true))
225 return false;
226
227 for (const auto *I : RD->fields())
228 if (!isEmptyField(Context, I, AllowArrays))
229 return false;
230 return true;
231 }
232
233 /// isSingleElementStruct - Determine if a structure is a "single
234 /// element struct", i.e. it has exactly one non-empty field or
235 /// exactly one field which is itself a single element
236 /// struct. Structures with flexible array members are never
237 /// considered single element structs.
238 ///
239 /// \return The field declaration for the single non-empty field, if
240 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)241 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
242 const RecordType *RT = T->getAs<RecordType>();
243 if (!RT)
244 return nullptr;
245
246 const RecordDecl *RD = RT->getDecl();
247 if (RD->hasFlexibleArrayMember())
248 return nullptr;
249
250 const Type *Found = nullptr;
251
252 // If this is a C++ record, check the bases first.
253 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
254 for (const auto &I : CXXRD->bases()) {
255 // Ignore empty records.
256 if (isEmptyRecord(Context, I.getType(), true))
257 continue;
258
259 // If we already found an element then this isn't a single-element struct.
260 if (Found)
261 return nullptr;
262
263 // If this is non-empty and not a single element struct, the composite
264 // cannot be a single element struct.
265 Found = isSingleElementStruct(I.getType(), Context);
266 if (!Found)
267 return nullptr;
268 }
269 }
270
271 // Check for single element.
272 for (const auto *FD : RD->fields()) {
273 QualType FT = FD->getType();
274
275 // Ignore empty fields.
276 if (isEmptyField(Context, FD, true))
277 continue;
278
279 // If we already found an element then this isn't a single-element
280 // struct.
281 if (Found)
282 return nullptr;
283
284 // Treat single element arrays as the element.
285 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
286 if (AT->getSize().getZExtValue() != 1)
287 break;
288 FT = AT->getElementType();
289 }
290
291 if (!isAggregateTypeForABI(FT)) {
292 Found = FT.getTypePtr();
293 } else {
294 Found = isSingleElementStruct(FT, Context);
295 if (!Found)
296 return nullptr;
297 }
298 }
299
300 // We don't consider a struct a single-element struct if it has
301 // padding beyond the element type.
302 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
303 return nullptr;
304
305 return Found;
306 }
307
is32Or64BitBasicType(QualType Ty,ASTContext & Context)308 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
309 // Treat complex types as the element type.
310 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
311 Ty = CTy->getElementType();
312
313 // Check for a type which we know has a simple scalar argument-passing
314 // convention without any padding. (We're specifically looking for 32
315 // and 64-bit integer and integer-equivalents, float, and double.)
316 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
317 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
318 return false;
319
320 uint64_t Size = Context.getTypeSize(Ty);
321 return Size == 32 || Size == 64;
322 }
323
324 /// canExpandIndirectArgument - Test whether an argument type which is to be
325 /// passed indirectly (on the stack) would have the equivalent layout if it was
326 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
327 /// inhibiting optimizations.
328 ///
329 // FIXME: This predicate is missing many cases, currently it just follows
330 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
331 // should probably make this smarter, or better yet make the LLVM backend
332 // capable of handling it.
canExpandIndirectArgument(QualType Ty,ASTContext & Context)333 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
334 // We can only expand structure types.
335 const RecordType *RT = Ty->getAs<RecordType>();
336 if (!RT)
337 return false;
338
339 // We can only expand (C) structures.
340 //
341 // FIXME: This needs to be generalized to handle classes as well.
342 const RecordDecl *RD = RT->getDecl();
343 if (!RD->isStruct())
344 return false;
345
346 // We try to expand CLike CXXRecordDecl.
347 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
348 if (!CXXRD->isCLike())
349 return false;
350 }
351
352 uint64_t Size = 0;
353
354 for (const auto *FD : RD->fields()) {
355 if (!is32Or64BitBasicType(FD->getType(), Context))
356 return false;
357
358 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
359 // how to expand them yet, and the predicate for telling if a bitfield still
360 // counts as "basic" is more complicated than what we were doing previously.
361 if (FD->isBitField())
362 return false;
363
364 Size += Context.getTypeSize(FD->getType());
365 }
366
367 // Make sure there are not any holes in the struct.
368 if (Size != Context.getTypeSize(Ty))
369 return false;
370
371 return true;
372 }
373
374 namespace {
375 /// DefaultABIInfo - The default implementation for ABI specific
376 /// details. This implementation provides information which results in
377 /// self-consistent and sensible LLVM IR generation, but does not
378 /// conform to any particular ABI.
379 class DefaultABIInfo : public ABIInfo {
380 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)381 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
382
383 ABIArgInfo classifyReturnType(QualType RetTy) const;
384 ABIArgInfo classifyArgumentType(QualType RetTy) const;
385
computeInfo(CGFunctionInfo & FI) const386 void computeInfo(CGFunctionInfo &FI) const override {
387 if (!getCXXABI().classifyReturnType(FI))
388 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
389 for (auto &I : FI.arguments())
390 I.info = classifyArgumentType(I.type);
391 }
392
393 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
394 CodeGenFunction &CGF) const override;
395 };
396
397 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
398 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)399 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
400 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
401 };
402
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const403 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
404 CodeGenFunction &CGF) const {
405 return nullptr;
406 }
407
classifyArgumentType(QualType Ty) const408 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
409 if (isAggregateTypeForABI(Ty))
410 return ABIArgInfo::getIndirect(0);
411
412 // Treat an enum type as its underlying type.
413 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
414 Ty = EnumTy->getDecl()->getIntegerType();
415
416 return (Ty->isPromotableIntegerType() ?
417 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
418 }
419
classifyReturnType(QualType RetTy) const420 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
421 if (RetTy->isVoidType())
422 return ABIArgInfo::getIgnore();
423
424 if (isAggregateTypeForABI(RetTy))
425 return ABIArgInfo::getIndirect(0);
426
427 // Treat an enum type as its underlying type.
428 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
429 RetTy = EnumTy->getDecl()->getIntegerType();
430
431 return (RetTy->isPromotableIntegerType() ?
432 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
433 }
434
435 //===----------------------------------------------------------------------===//
436 // le32/PNaCl bitcode ABI Implementation
437 //
438 // This is a simplified version of the x86_32 ABI. Arguments and return values
439 // are always passed on the stack.
440 //===----------------------------------------------------------------------===//
441
442 class PNaClABIInfo : public ABIInfo {
443 public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)444 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
445
446 ABIArgInfo classifyReturnType(QualType RetTy) const;
447 ABIArgInfo classifyArgumentType(QualType RetTy) const;
448
449 void computeInfo(CGFunctionInfo &FI) const override;
450 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
451 CodeGenFunction &CGF) const override;
452 };
453
454 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
455 public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)456 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
457 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
458 };
459
computeInfo(CGFunctionInfo & FI) const460 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
461 if (!getCXXABI().classifyReturnType(FI))
462 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
463
464 for (auto &I : FI.arguments())
465 I.info = classifyArgumentType(I.type);
466 }
467
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const468 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
469 CodeGenFunction &CGF) const {
470 return nullptr;
471 }
472
473 /// \brief Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const474 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
475 if (isAggregateTypeForABI(Ty)) {
476 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
477 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
478 return ABIArgInfo::getIndirect(0);
479 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
480 // Treat an enum type as its underlying type.
481 Ty = EnumTy->getDecl()->getIntegerType();
482 } else if (Ty->isFloatingType()) {
483 // Floating-point types don't go inreg.
484 return ABIArgInfo::getDirect();
485 }
486
487 return (Ty->isPromotableIntegerType() ?
488 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
489 }
490
classifyReturnType(QualType RetTy) const491 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
492 if (RetTy->isVoidType())
493 return ABIArgInfo::getIgnore();
494
495 // In the PNaCl ABI we always return records/structures on the stack.
496 if (isAggregateTypeForABI(RetTy))
497 return ABIArgInfo::getIndirect(0);
498
499 // Treat an enum type as its underlying type.
500 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
501 RetTy = EnumTy->getDecl()->getIntegerType();
502
503 return (RetTy->isPromotableIntegerType() ?
504 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
505 }
506
507 /// IsX86_MMXType - Return true if this is an MMX type.
IsX86_MMXType(llvm::Type * IRType)508 bool IsX86_MMXType(llvm::Type *IRType) {
509 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
510 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
511 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
512 IRType->getScalarSizeInBits() != 64;
513 }
514
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)515 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
516 StringRef Constraint,
517 llvm::Type* Ty) {
518 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
519 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
520 // Invalid MMX constraint
521 return nullptr;
522 }
523
524 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
525 }
526
527 // No operation needed
528 return Ty;
529 }
530
531 /// Returns true if this type can be passed in SSE registers with the
532 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorTypeForVectorCall(ASTContext & Context,QualType Ty)533 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
534 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
535 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
536 return true;
537 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
538 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
539 // registers specially.
540 unsigned VecSize = Context.getTypeSize(VT);
541 if (VecSize == 128 || VecSize == 256 || VecSize == 512)
542 return true;
543 }
544 return false;
545 }
546
547 /// Returns true if this aggregate is small enough to be passed in SSE registers
548 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorCallAggregateSmallEnough(uint64_t NumMembers)549 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
550 return NumMembers <= 4;
551 }
552
553 //===----------------------------------------------------------------------===//
554 // X86-32 ABI Implementation
555 //===----------------------------------------------------------------------===//
556
557 /// \brief Similar to llvm::CCState, but for Clang.
558 struct CCState {
CCState__anona890a3f30111::CCState559 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
560
561 unsigned CC;
562 unsigned FreeRegs;
563 unsigned FreeSSERegs;
564 };
565
566 /// X86_32ABIInfo - The X86-32 ABI information.
567 class X86_32ABIInfo : public ABIInfo {
568 enum Class {
569 Integer,
570 Float
571 };
572
573 static const unsigned MinABIStackAlignInBytes = 4;
574
575 bool IsDarwinVectorABI;
576 bool IsSmallStructInRegABI;
577 bool IsWin32StructABI;
578 unsigned DefaultNumRegisterParameters;
579
isRegisterSize(unsigned Size)580 static bool isRegisterSize(unsigned Size) {
581 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
582 }
583
isHomogeneousAggregateBaseType(QualType Ty) const584 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
585 // FIXME: Assumes vectorcall is in use.
586 return isX86VectorTypeForVectorCall(getContext(), Ty);
587 }
588
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const589 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
590 uint64_t NumMembers) const override {
591 // FIXME: Assumes vectorcall is in use.
592 return isX86VectorCallAggregateSmallEnough(NumMembers);
593 }
594
595 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
596
597 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
598 /// such that the argument will be passed in memory.
599 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
600
601 ABIArgInfo getIndirectReturnResult(CCState &State) const;
602
603 /// \brief Return the alignment to use for the given type on the stack.
604 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
605
606 Class classify(QualType Ty) const;
607 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
608 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
609 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
610
611 /// \brief Rewrite the function info so that all memory arguments use
612 /// inalloca.
613 void rewriteWithInAlloca(CGFunctionInfo &FI) const;
614
615 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
616 unsigned &StackOffset, ABIArgInfo &Info,
617 QualType Type) const;
618
619 public:
620
621 void computeInfo(CGFunctionInfo &FI) const override;
622 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
623 CodeGenFunction &CGF) const override;
624
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned r)625 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
626 unsigned r)
627 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
628 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
629 };
630
631 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
632 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned r)633 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
634 bool d, bool p, bool w, unsigned r)
635 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
636
637 static bool isStructReturnInRegABI(
638 const llvm::Triple &Triple, const CodeGenOptions &Opts);
639
640 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
641 CodeGen::CodeGenModule &CGM) const override;
642
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const643 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
644 // Darwin uses different dwarf register numbers for EH.
645 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
646 return 4;
647 }
648
649 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
650 llvm::Value *Address) const override;
651
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const652 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
653 StringRef Constraint,
654 llvm::Type* Ty) const override {
655 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
656 }
657
658 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
659 std::string &Constraints,
660 std::vector<llvm::Type *> &ResultRegTypes,
661 std::vector<llvm::Type *> &ResultTruncRegTypes,
662 std::vector<LValue> &ResultRegDests,
663 std::string &AsmString,
664 unsigned NumOutputs) const override;
665
666 llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const667 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
668 unsigned Sig = (0xeb << 0) | // jmp rel8
669 (0x06 << 8) | // .+0x08
670 ('F' << 16) |
671 ('T' << 24);
672 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
673 }
674 };
675
676 }
677
678 /// Rewrite input constraint references after adding some output constraints.
679 /// In the case where there is one output and one input and we add one output,
680 /// we need to replace all operand references greater than or equal to 1:
681 /// mov $0, $1
682 /// mov eax, $1
683 /// The result will be:
684 /// mov $0, $2
685 /// mov eax, $2
rewriteInputConstraintReferences(unsigned FirstIn,unsigned NumNewOuts,std::string & AsmString)686 static void rewriteInputConstraintReferences(unsigned FirstIn,
687 unsigned NumNewOuts,
688 std::string &AsmString) {
689 std::string Buf;
690 llvm::raw_string_ostream OS(Buf);
691 size_t Pos = 0;
692 while (Pos < AsmString.size()) {
693 size_t DollarStart = AsmString.find('$', Pos);
694 if (DollarStart == std::string::npos)
695 DollarStart = AsmString.size();
696 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
697 if (DollarEnd == std::string::npos)
698 DollarEnd = AsmString.size();
699 OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
700 Pos = DollarEnd;
701 size_t NumDollars = DollarEnd - DollarStart;
702 if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
703 // We have an operand reference.
704 size_t DigitStart = Pos;
705 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
706 if (DigitEnd == std::string::npos)
707 DigitEnd = AsmString.size();
708 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
709 unsigned OperandIndex;
710 if (!OperandStr.getAsInteger(10, OperandIndex)) {
711 if (OperandIndex >= FirstIn)
712 OperandIndex += NumNewOuts;
713 OS << OperandIndex;
714 } else {
715 OS << OperandStr;
716 }
717 Pos = DigitEnd;
718 }
719 }
720 AsmString = std::move(OS.str());
721 }
722
723 /// Add output constraints for EAX:EDX because they are return registers.
addReturnRegisterOutputs(CodeGenFunction & CGF,LValue ReturnSlot,std::string & Constraints,std::vector<llvm::Type * > & ResultRegTypes,std::vector<llvm::Type * > & ResultTruncRegTypes,std::vector<LValue> & ResultRegDests,std::string & AsmString,unsigned NumOutputs) const724 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
725 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
726 std::vector<llvm::Type *> &ResultRegTypes,
727 std::vector<llvm::Type *> &ResultTruncRegTypes,
728 std::vector<LValue> &ResultRegDests, std::string &AsmString,
729 unsigned NumOutputs) const {
730 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
731
732 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
733 // larger.
734 if (!Constraints.empty())
735 Constraints += ',';
736 if (RetWidth <= 32) {
737 Constraints += "={eax}";
738 ResultRegTypes.push_back(CGF.Int32Ty);
739 } else {
740 // Use the 'A' constraint for EAX:EDX.
741 Constraints += "=A";
742 ResultRegTypes.push_back(CGF.Int64Ty);
743 }
744
745 // Truncate EAX or EAX:EDX to an integer of the appropriate size.
746 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
747 ResultTruncRegTypes.push_back(CoerceTy);
748
749 // Coerce the integer by bitcasting the return slot pointer.
750 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
751 CoerceTy->getPointerTo()));
752 ResultRegDests.push_back(ReturnSlot);
753
754 rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
755 }
756
757 /// shouldReturnTypeInRegister - Determine if the given type should be
758 /// passed in a register (for the Darwin ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context) const759 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
760 ASTContext &Context) const {
761 uint64_t Size = Context.getTypeSize(Ty);
762
763 // Type must be register sized.
764 if (!isRegisterSize(Size))
765 return false;
766
767 if (Ty->isVectorType()) {
768 // 64- and 128- bit vectors inside structures are not returned in
769 // registers.
770 if (Size == 64 || Size == 128)
771 return false;
772
773 return true;
774 }
775
776 // If this is a builtin, pointer, enum, complex type, member pointer, or
777 // member function pointer it is ok.
778 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
779 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
780 Ty->isBlockPointerType() || Ty->isMemberPointerType())
781 return true;
782
783 // Arrays are treated like records.
784 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
785 return shouldReturnTypeInRegister(AT->getElementType(), Context);
786
787 // Otherwise, it must be a record type.
788 const RecordType *RT = Ty->getAs<RecordType>();
789 if (!RT) return false;
790
791 // FIXME: Traverse bases here too.
792
793 // Structure types are passed in register if all fields would be
794 // passed in a register.
795 for (const auto *FD : RT->getDecl()->fields()) {
796 // Empty fields are ignored.
797 if (isEmptyField(Context, FD, true))
798 continue;
799
800 // Check fields recursively.
801 if (!shouldReturnTypeInRegister(FD->getType(), Context))
802 return false;
803 }
804 return true;
805 }
806
getIndirectReturnResult(CCState & State) const807 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
808 // If the return value is indirect, then the hidden argument is consuming one
809 // integer register.
810 if (State.FreeRegs) {
811 --State.FreeRegs;
812 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
813 }
814 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
815 }
816
classifyReturnType(QualType RetTy,CCState & State) const817 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
818 if (RetTy->isVoidType())
819 return ABIArgInfo::getIgnore();
820
821 const Type *Base = nullptr;
822 uint64_t NumElts = 0;
823 if (State.CC == llvm::CallingConv::X86_VectorCall &&
824 isHomogeneousAggregate(RetTy, Base, NumElts)) {
825 // The LLVM struct type for such an aggregate should lower properly.
826 return ABIArgInfo::getDirect();
827 }
828
829 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
830 // On Darwin, some vectors are returned in registers.
831 if (IsDarwinVectorABI) {
832 uint64_t Size = getContext().getTypeSize(RetTy);
833
834 // 128-bit vectors are a special case; they are returned in
835 // registers and we need to make sure to pick a type the LLVM
836 // backend will like.
837 if (Size == 128)
838 return ABIArgInfo::getDirect(llvm::VectorType::get(
839 llvm::Type::getInt64Ty(getVMContext()), 2));
840
841 // Always return in register if it fits in a general purpose
842 // register, or if it is 64 bits and has a single element.
843 if ((Size == 8 || Size == 16 || Size == 32) ||
844 (Size == 64 && VT->getNumElements() == 1))
845 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
846 Size));
847
848 return getIndirectReturnResult(State);
849 }
850
851 return ABIArgInfo::getDirect();
852 }
853
854 if (isAggregateTypeForABI(RetTy)) {
855 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
856 // Structures with flexible arrays are always indirect.
857 if (RT->getDecl()->hasFlexibleArrayMember())
858 return getIndirectReturnResult(State);
859 }
860
861 // If specified, structs and unions are always indirect.
862 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
863 return getIndirectReturnResult(State);
864
865 // Small structures which are register sized are generally returned
866 // in a register.
867 if (shouldReturnTypeInRegister(RetTy, getContext())) {
868 uint64_t Size = getContext().getTypeSize(RetTy);
869
870 // As a special-case, if the struct is a "single-element" struct, and
871 // the field is of type "float" or "double", return it in a
872 // floating-point register. (MSVC does not apply this special case.)
873 // We apply a similar transformation for pointer types to improve the
874 // quality of the generated IR.
875 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
876 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
877 || SeltTy->hasPointerRepresentation())
878 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
879
880 // FIXME: We should be able to narrow this integer in cases with dead
881 // padding.
882 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
883 }
884
885 return getIndirectReturnResult(State);
886 }
887
888 // Treat an enum type as its underlying type.
889 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
890 RetTy = EnumTy->getDecl()->getIntegerType();
891
892 return (RetTy->isPromotableIntegerType() ?
893 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
894 }
895
isSSEVectorType(ASTContext & Context,QualType Ty)896 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
897 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
898 }
899
isRecordWithSSEVectorType(ASTContext & Context,QualType Ty)900 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
901 const RecordType *RT = Ty->getAs<RecordType>();
902 if (!RT)
903 return 0;
904 const RecordDecl *RD = RT->getDecl();
905
906 // If this is a C++ record, check the bases first.
907 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
908 for (const auto &I : CXXRD->bases())
909 if (!isRecordWithSSEVectorType(Context, I.getType()))
910 return false;
911
912 for (const auto *i : RD->fields()) {
913 QualType FT = i->getType();
914
915 if (isSSEVectorType(Context, FT))
916 return true;
917
918 if (isRecordWithSSEVectorType(Context, FT))
919 return true;
920 }
921
922 return false;
923 }
924
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const925 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
926 unsigned Align) const {
927 // Otherwise, if the alignment is less than or equal to the minimum ABI
928 // alignment, just use the default; the backend will handle this.
929 if (Align <= MinABIStackAlignInBytes)
930 return 0; // Use default alignment.
931
932 // On non-Darwin, the stack type alignment is always 4.
933 if (!IsDarwinVectorABI) {
934 // Set explicit alignment, since we may need to realign the top.
935 return MinABIStackAlignInBytes;
936 }
937
938 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
939 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
940 isRecordWithSSEVectorType(getContext(), Ty)))
941 return 16;
942
943 return MinABIStackAlignInBytes;
944 }
945
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const946 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
947 CCState &State) const {
948 if (!ByVal) {
949 if (State.FreeRegs) {
950 --State.FreeRegs; // Non-byval indirects just use one pointer.
951 return ABIArgInfo::getIndirectInReg(0, false);
952 }
953 return ABIArgInfo::getIndirect(0, false);
954 }
955
956 // Compute the byval alignment.
957 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
958 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
959 if (StackAlign == 0)
960 return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
961
962 // If the stack alignment is less than the type alignment, realign the
963 // argument.
964 bool Realign = TypeAlign > StackAlign;
965 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
966 }
967
classify(QualType Ty) const968 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
969 const Type *T = isSingleElementStruct(Ty, getContext());
970 if (!T)
971 T = Ty.getTypePtr();
972
973 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
974 BuiltinType::Kind K = BT->getKind();
975 if (K == BuiltinType::Float || K == BuiltinType::Double)
976 return Float;
977 }
978 return Integer;
979 }
980
shouldUseInReg(QualType Ty,CCState & State,bool & NeedsPadding) const981 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
982 bool &NeedsPadding) const {
983 NeedsPadding = false;
984 Class C = classify(Ty);
985 if (C == Float)
986 return false;
987
988 unsigned Size = getContext().getTypeSize(Ty);
989 unsigned SizeInRegs = (Size + 31) / 32;
990
991 if (SizeInRegs == 0)
992 return false;
993
994 if (SizeInRegs > State.FreeRegs) {
995 State.FreeRegs = 0;
996 return false;
997 }
998
999 State.FreeRegs -= SizeInRegs;
1000
1001 if (State.CC == llvm::CallingConv::X86_FastCall ||
1002 State.CC == llvm::CallingConv::X86_VectorCall) {
1003 if (Size > 32)
1004 return false;
1005
1006 if (Ty->isIntegralOrEnumerationType())
1007 return true;
1008
1009 if (Ty->isPointerType())
1010 return true;
1011
1012 if (Ty->isReferenceType())
1013 return true;
1014
1015 if (State.FreeRegs)
1016 NeedsPadding = true;
1017
1018 return false;
1019 }
1020
1021 return true;
1022 }
1023
classifyArgumentType(QualType Ty,CCState & State) const1024 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1025 CCState &State) const {
1026 // FIXME: Set alignment on indirect arguments.
1027
1028 Ty = useFirstFieldIfTransparentUnion(Ty);
1029
1030 // Check with the C++ ABI first.
1031 const RecordType *RT = Ty->getAs<RecordType>();
1032 if (RT) {
1033 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1034 if (RAA == CGCXXABI::RAA_Indirect) {
1035 return getIndirectResult(Ty, false, State);
1036 } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1037 // The field index doesn't matter, we'll fix it up later.
1038 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1039 }
1040 }
1041
1042 // vectorcall adds the concept of a homogenous vector aggregate, similar
1043 // to other targets.
1044 const Type *Base = nullptr;
1045 uint64_t NumElts = 0;
1046 if (State.CC == llvm::CallingConv::X86_VectorCall &&
1047 isHomogeneousAggregate(Ty, Base, NumElts)) {
1048 if (State.FreeSSERegs >= NumElts) {
1049 State.FreeSSERegs -= NumElts;
1050 if (Ty->isBuiltinType() || Ty->isVectorType())
1051 return ABIArgInfo::getDirect();
1052 return ABIArgInfo::getExpand();
1053 }
1054 return getIndirectResult(Ty, /*ByVal=*/false, State);
1055 }
1056
1057 if (isAggregateTypeForABI(Ty)) {
1058 if (RT) {
1059 // Structs are always byval on win32, regardless of what they contain.
1060 if (IsWin32StructABI)
1061 return getIndirectResult(Ty, true, State);
1062
1063 // Structures with flexible arrays are always indirect.
1064 if (RT->getDecl()->hasFlexibleArrayMember())
1065 return getIndirectResult(Ty, true, State);
1066 }
1067
1068 // Ignore empty structs/unions.
1069 if (isEmptyRecord(getContext(), Ty, true))
1070 return ABIArgInfo::getIgnore();
1071
1072 llvm::LLVMContext &LLVMContext = getVMContext();
1073 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1074 bool NeedsPadding;
1075 if (shouldUseInReg(Ty, State, NeedsPadding)) {
1076 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1077 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1078 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1079 return ABIArgInfo::getDirectInReg(Result);
1080 }
1081 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1082
1083 // Expand small (<= 128-bit) record types when we know that the stack layout
1084 // of those arguments will match the struct. This is important because the
1085 // LLVM backend isn't smart enough to remove byval, which inhibits many
1086 // optimizations.
1087 if (getContext().getTypeSize(Ty) <= 4*32 &&
1088 canExpandIndirectArgument(Ty, getContext()))
1089 return ABIArgInfo::getExpandWithPadding(
1090 State.CC == llvm::CallingConv::X86_FastCall ||
1091 State.CC == llvm::CallingConv::X86_VectorCall,
1092 PaddingType);
1093
1094 return getIndirectResult(Ty, true, State);
1095 }
1096
1097 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1098 // On Darwin, some vectors are passed in memory, we handle this by passing
1099 // it as an i8/i16/i32/i64.
1100 if (IsDarwinVectorABI) {
1101 uint64_t Size = getContext().getTypeSize(Ty);
1102 if ((Size == 8 || Size == 16 || Size == 32) ||
1103 (Size == 64 && VT->getNumElements() == 1))
1104 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1105 Size));
1106 }
1107
1108 if (IsX86_MMXType(CGT.ConvertType(Ty)))
1109 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1110
1111 return ABIArgInfo::getDirect();
1112 }
1113
1114
1115 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1116 Ty = EnumTy->getDecl()->getIntegerType();
1117
1118 bool NeedsPadding;
1119 bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1120
1121 if (Ty->isPromotableIntegerType()) {
1122 if (InReg)
1123 return ABIArgInfo::getExtendInReg();
1124 return ABIArgInfo::getExtend();
1125 }
1126 if (InReg)
1127 return ABIArgInfo::getDirectInReg();
1128 return ABIArgInfo::getDirect();
1129 }
1130
computeInfo(CGFunctionInfo & FI) const1131 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1132 CCState State(FI.getCallingConvention());
1133 if (State.CC == llvm::CallingConv::X86_FastCall)
1134 State.FreeRegs = 2;
1135 else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1136 State.FreeRegs = 2;
1137 State.FreeSSERegs = 6;
1138 } else if (FI.getHasRegParm())
1139 State.FreeRegs = FI.getRegParm();
1140 else
1141 State.FreeRegs = DefaultNumRegisterParameters;
1142
1143 if (!getCXXABI().classifyReturnType(FI)) {
1144 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1145 } else if (FI.getReturnInfo().isIndirect()) {
1146 // The C++ ABI is not aware of register usage, so we have to check if the
1147 // return value was sret and put it in a register ourselves if appropriate.
1148 if (State.FreeRegs) {
1149 --State.FreeRegs; // The sret parameter consumes a register.
1150 FI.getReturnInfo().setInReg(true);
1151 }
1152 }
1153
1154 // The chain argument effectively gives us another free register.
1155 if (FI.isChainCall())
1156 ++State.FreeRegs;
1157
1158 bool UsedInAlloca = false;
1159 for (auto &I : FI.arguments()) {
1160 I.info = classifyArgumentType(I.type, State);
1161 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1162 }
1163
1164 // If we needed to use inalloca for any argument, do a second pass and rewrite
1165 // all the memory arguments to use inalloca.
1166 if (UsedInAlloca)
1167 rewriteWithInAlloca(FI);
1168 }
1169
1170 void
addFieldToArgStruct(SmallVector<llvm::Type *,6> & FrameFields,unsigned & StackOffset,ABIArgInfo & Info,QualType Type) const1171 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1172 unsigned &StackOffset,
1173 ABIArgInfo &Info, QualType Type) const {
1174 assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1175 Info = ABIArgInfo::getInAlloca(FrameFields.size());
1176 FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1177 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1178
1179 // Insert padding bytes to respect alignment. For x86_32, each argument is 4
1180 // byte aligned.
1181 if (StackOffset % 4U) {
1182 unsigned OldOffset = StackOffset;
1183 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1184 unsigned NumBytes = StackOffset - OldOffset;
1185 assert(NumBytes);
1186 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1187 Ty = llvm::ArrayType::get(Ty, NumBytes);
1188 FrameFields.push_back(Ty);
1189 }
1190 }
1191
isArgInAlloca(const ABIArgInfo & Info)1192 static bool isArgInAlloca(const ABIArgInfo &Info) {
1193 // Leave ignored and inreg arguments alone.
1194 switch (Info.getKind()) {
1195 case ABIArgInfo::InAlloca:
1196 return true;
1197 case ABIArgInfo::Indirect:
1198 assert(Info.getIndirectByVal());
1199 return true;
1200 case ABIArgInfo::Ignore:
1201 return false;
1202 case ABIArgInfo::Direct:
1203 case ABIArgInfo::Extend:
1204 case ABIArgInfo::Expand:
1205 if (Info.getInReg())
1206 return false;
1207 return true;
1208 }
1209 llvm_unreachable("invalid enum");
1210 }
1211
rewriteWithInAlloca(CGFunctionInfo & FI) const1212 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1213 assert(IsWin32StructABI && "inalloca only supported on win32");
1214
1215 // Build a packed struct type for all of the arguments in memory.
1216 SmallVector<llvm::Type *, 6> FrameFields;
1217
1218 unsigned StackOffset = 0;
1219 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1220
1221 // Put 'this' into the struct before 'sret', if necessary.
1222 bool IsThisCall =
1223 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1224 ABIArgInfo &Ret = FI.getReturnInfo();
1225 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1226 isArgInAlloca(I->info)) {
1227 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1228 ++I;
1229 }
1230
1231 // Put the sret parameter into the inalloca struct if it's in memory.
1232 if (Ret.isIndirect() && !Ret.getInReg()) {
1233 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1234 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1235 // On Windows, the hidden sret parameter is always returned in eax.
1236 Ret.setInAllocaSRet(IsWin32StructABI);
1237 }
1238
1239 // Skip the 'this' parameter in ecx.
1240 if (IsThisCall)
1241 ++I;
1242
1243 // Put arguments passed in memory into the struct.
1244 for (; I != E; ++I) {
1245 if (isArgInAlloca(I->info))
1246 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1247 }
1248
1249 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1250 /*isPacked=*/true));
1251 }
1252
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const1253 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1254 CodeGenFunction &CGF) const {
1255 llvm::Type *BPP = CGF.Int8PtrPtrTy;
1256
1257 CGBuilderTy &Builder = CGF.Builder;
1258 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1259 "ap");
1260 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1261
1262 // Compute if the address needs to be aligned
1263 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1264 Align = getTypeStackAlignInBytes(Ty, Align);
1265 Align = std::max(Align, 4U);
1266 if (Align > 4) {
1267 // addr = (addr + align - 1) & -align;
1268 llvm::Value *Offset =
1269 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1270 Addr = CGF.Builder.CreateGEP(Addr, Offset);
1271 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1272 CGF.Int32Ty);
1273 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1274 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1275 Addr->getType(),
1276 "ap.cur.aligned");
1277 }
1278
1279 llvm::Type *PTy =
1280 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1281 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1282
1283 uint64_t Offset =
1284 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1285 llvm::Value *NextAddr =
1286 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1287 "ap.next");
1288 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1289
1290 return AddrTyped;
1291 }
1292
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)1293 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1294 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1295 assert(Triple.getArch() == llvm::Triple::x86);
1296
1297 switch (Opts.getStructReturnConvention()) {
1298 case CodeGenOptions::SRCK_Default:
1299 break;
1300 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
1301 return false;
1302 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
1303 return true;
1304 }
1305
1306 if (Triple.isOSDarwin())
1307 return true;
1308
1309 switch (Triple.getOS()) {
1310 case llvm::Triple::DragonFly:
1311 case llvm::Triple::FreeBSD:
1312 case llvm::Triple::OpenBSD:
1313 case llvm::Triple::Bitrig:
1314 case llvm::Triple::Win32:
1315 return true;
1316 default:
1317 return false;
1318 }
1319 }
1320
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1321 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1322 llvm::GlobalValue *GV,
1323 CodeGen::CodeGenModule &CGM) const {
1324 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1325 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1326 // Get the LLVM function.
1327 llvm::Function *Fn = cast<llvm::Function>(GV);
1328
1329 // Now add the 'alignstack' attribute with a value of 16.
1330 llvm::AttrBuilder B;
1331 B.addStackAlignmentAttr(16);
1332 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1333 llvm::AttributeSet::get(CGM.getLLVMContext(),
1334 llvm::AttributeSet::FunctionIndex,
1335 B));
1336 }
1337 }
1338 }
1339
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1340 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1341 CodeGen::CodeGenFunction &CGF,
1342 llvm::Value *Address) const {
1343 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1344
1345 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1346
1347 // 0-7 are the eight integer registers; the order is different
1348 // on Darwin (for EH), but the range is the same.
1349 // 8 is %eip.
1350 AssignToArrayRange(Builder, Address, Four8, 0, 8);
1351
1352 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1353 // 12-16 are st(0..4). Not sure why we stop at 4.
1354 // These have size 16, which is sizeof(long double) on
1355 // platforms with 8-byte alignment for that type.
1356 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1357 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1358
1359 } else {
1360 // 9 is %eflags, which doesn't get a size on Darwin for some
1361 // reason.
1362 Builder.CreateStore(
1363 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9));
1364
1365 // 11-16 are st(0..5). Not sure why we stop at 5.
1366 // These have size 12, which is sizeof(long double) on
1367 // platforms with 4-byte alignment for that type.
1368 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1369 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1370 }
1371
1372 return false;
1373 }
1374
1375 //===----------------------------------------------------------------------===//
1376 // X86-64 ABI Implementation
1377 //===----------------------------------------------------------------------===//
1378
1379
1380 namespace {
1381 /// X86_64ABIInfo - The X86_64 ABI information.
1382 class X86_64ABIInfo : public ABIInfo {
1383 enum Class {
1384 Integer = 0,
1385 SSE,
1386 SSEUp,
1387 X87,
1388 X87Up,
1389 ComplexX87,
1390 NoClass,
1391 Memory
1392 };
1393
1394 /// merge - Implement the X86_64 ABI merging algorithm.
1395 ///
1396 /// Merge an accumulating classification \arg Accum with a field
1397 /// classification \arg Field.
1398 ///
1399 /// \param Accum - The accumulating classification. This should
1400 /// always be either NoClass or the result of a previous merge
1401 /// call. In addition, this should never be Memory (the caller
1402 /// should just return Memory for the aggregate).
1403 static Class merge(Class Accum, Class Field);
1404
1405 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1406 ///
1407 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1408 /// final MEMORY or SSE classes when necessary.
1409 ///
1410 /// \param AggregateSize - The size of the current aggregate in
1411 /// the classification process.
1412 ///
1413 /// \param Lo - The classification for the parts of the type
1414 /// residing in the low word of the containing object.
1415 ///
1416 /// \param Hi - The classification for the parts of the type
1417 /// residing in the higher words of the containing object.
1418 ///
1419 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1420
1421 /// classify - Determine the x86_64 register classes in which the
1422 /// given type T should be passed.
1423 ///
1424 /// \param Lo - The classification for the parts of the type
1425 /// residing in the low word of the containing object.
1426 ///
1427 /// \param Hi - The classification for the parts of the type
1428 /// residing in the high word of the containing object.
1429 ///
1430 /// \param OffsetBase - The bit offset of this type in the
1431 /// containing object. Some parameters are classified different
1432 /// depending on whether they straddle an eightbyte boundary.
1433 ///
1434 /// \param isNamedArg - Whether the argument in question is a "named"
1435 /// argument, as used in AMD64-ABI 3.5.7.
1436 ///
1437 /// If a word is unused its result will be NoClass; if a type should
1438 /// be passed in Memory then at least the classification of \arg Lo
1439 /// will be Memory.
1440 ///
1441 /// The \arg Lo class will be NoClass iff the argument is ignored.
1442 ///
1443 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1444 /// also be ComplexX87.
1445 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1446 bool isNamedArg) const;
1447
1448 llvm::Type *GetByteVectorType(QualType Ty) const;
1449 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1450 unsigned IROffset, QualType SourceTy,
1451 unsigned SourceOffset) const;
1452 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1453 unsigned IROffset, QualType SourceTy,
1454 unsigned SourceOffset) const;
1455
1456 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1457 /// such that the argument will be returned in memory.
1458 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1459
1460 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1461 /// such that the argument will be passed in memory.
1462 ///
1463 /// \param freeIntRegs - The number of free integer registers remaining
1464 /// available.
1465 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1466
1467 ABIArgInfo classifyReturnType(QualType RetTy) const;
1468
1469 ABIArgInfo classifyArgumentType(QualType Ty,
1470 unsigned freeIntRegs,
1471 unsigned &neededInt,
1472 unsigned &neededSSE,
1473 bool isNamedArg) const;
1474
1475 bool IsIllegalVectorType(QualType Ty) const;
1476
1477 /// The 0.98 ABI revision clarified a lot of ambiguities,
1478 /// unfortunately in ways that were not always consistent with
1479 /// certain previous compilers. In particular, platforms which
1480 /// required strict binary compatibility with older versions of GCC
1481 /// may need to exempt themselves.
honorsRevision0_98() const1482 bool honorsRevision0_98() const {
1483 return !getTarget().getTriple().isOSDarwin();
1484 }
1485
1486 bool HasAVX;
1487 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1488 // 64-bit hardware.
1489 bool Has64BitPointers;
1490
1491 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,bool hasavx)1492 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1493 ABIInfo(CGT), HasAVX(hasavx),
1494 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1495 }
1496
isPassedUsingAVXType(QualType type) const1497 bool isPassedUsingAVXType(QualType type) const {
1498 unsigned neededInt, neededSSE;
1499 // The freeIntRegs argument doesn't matter here.
1500 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1501 /*isNamedArg*/true);
1502 if (info.isDirect()) {
1503 llvm::Type *ty = info.getCoerceToType();
1504 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1505 return (vectorTy->getBitWidth() > 128);
1506 }
1507 return false;
1508 }
1509
1510 void computeInfo(CGFunctionInfo &FI) const override;
1511
1512 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1513 CodeGenFunction &CGF) const override;
1514
has64BitPointers() const1515 bool has64BitPointers() const {
1516 return Has64BitPointers;
1517 }
1518 };
1519
1520 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1521 class WinX86_64ABIInfo : public ABIInfo {
1522
1523 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1524 bool IsReturnType) const;
1525
1526 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT)1527 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1528
1529 void computeInfo(CGFunctionInfo &FI) const override;
1530
1531 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1532 CodeGenFunction &CGF) const override;
1533
isHomogeneousAggregateBaseType(QualType Ty) const1534 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1535 // FIXME: Assumes vectorcall is in use.
1536 return isX86VectorTypeForVectorCall(getContext(), Ty);
1537 }
1538
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const1539 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1540 uint64_t NumMembers) const override {
1541 // FIXME: Assumes vectorcall is in use.
1542 return isX86VectorCallAggregateSmallEnough(NumMembers);
1543 }
1544 };
1545
1546 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1547 bool HasAVX;
1548 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)1549 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1550 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {}
1551
getABIInfo() const1552 const X86_64ABIInfo &getABIInfo() const {
1553 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1554 }
1555
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1556 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1557 return 7;
1558 }
1559
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1560 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1561 llvm::Value *Address) const override {
1562 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1563
1564 // 0-15 are the 16 integer registers.
1565 // 16 is %rip.
1566 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1567 return false;
1568 }
1569
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1570 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1571 StringRef Constraint,
1572 llvm::Type* Ty) const override {
1573 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1574 }
1575
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const1576 bool isNoProtoCallVariadic(const CallArgList &args,
1577 const FunctionNoProtoType *fnType) const override {
1578 // The default CC on x86-64 sets %al to the number of SSA
1579 // registers used, and GCC sets this when calling an unprototyped
1580 // function, so we override the default behavior. However, don't do
1581 // that when AVX types are involved: the ABI explicitly states it is
1582 // undefined, and it doesn't work in practice because of how the ABI
1583 // defines varargs anyway.
1584 if (fnType->getCallConv() == CC_C) {
1585 bool HasAVXType = false;
1586 for (CallArgList::const_iterator
1587 it = args.begin(), ie = args.end(); it != ie; ++it) {
1588 if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1589 HasAVXType = true;
1590 break;
1591 }
1592 }
1593
1594 if (!HasAVXType)
1595 return true;
1596 }
1597
1598 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1599 }
1600
1601 llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const1602 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1603 unsigned Sig;
1604 if (getABIInfo().has64BitPointers())
1605 Sig = (0xeb << 0) | // jmp rel8
1606 (0x0a << 8) | // .+0x0c
1607 ('F' << 16) |
1608 ('T' << 24);
1609 else
1610 Sig = (0xeb << 0) | // jmp rel8
1611 (0x06 << 8) | // .+0x08
1612 ('F' << 16) |
1613 ('T' << 24);
1614 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1615 }
1616
getOpenMPSimdDefaultAlignment(QualType) const1617 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1618 return HasAVX ? 32 : 16;
1619 }
1620 };
1621
1622 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1623 public:
PS4TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)1624 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1625 : X86_64TargetCodeGenInfo(CGT, HasAVX) {}
1626
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1627 void getDependentLibraryOption(llvm::StringRef Lib,
1628 llvm::SmallString<24> &Opt) const override {
1629 Opt = "\01";
1630 Opt += Lib;
1631 }
1632 };
1633
qualifyWindowsLibrary(llvm::StringRef Lib)1634 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1635 // If the argument does not end in .lib, automatically add the suffix.
1636 // If the argument contains a space, enclose it in quotes.
1637 // This matches the behavior of MSVC.
1638 bool Quote = (Lib.find(" ") != StringRef::npos);
1639 std::string ArgStr = Quote ? "\"" : "";
1640 ArgStr += Lib;
1641 if (!Lib.endswith_lower(".lib"))
1642 ArgStr += ".lib";
1643 ArgStr += Quote ? "\"" : "";
1644 return ArgStr;
1645 }
1646
1647 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1648 public:
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned RegParms)1649 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1650 bool d, bool p, bool w, unsigned RegParms)
1651 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1652
1653 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1654 CodeGen::CodeGenModule &CGM) const override;
1655
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1656 void getDependentLibraryOption(llvm::StringRef Lib,
1657 llvm::SmallString<24> &Opt) const override {
1658 Opt = "/DEFAULTLIB:";
1659 Opt += qualifyWindowsLibrary(Lib);
1660 }
1661
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const1662 void getDetectMismatchOption(llvm::StringRef Name,
1663 llvm::StringRef Value,
1664 llvm::SmallString<32> &Opt) const override {
1665 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1666 }
1667 };
1668
addStackProbeSizeTargetAttribute(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM)1669 static void addStackProbeSizeTargetAttribute(const Decl *D,
1670 llvm::GlobalValue *GV,
1671 CodeGen::CodeGenModule &CGM) {
1672 if (isa<FunctionDecl>(D)) {
1673 if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1674 llvm::Function *Fn = cast<llvm::Function>(GV);
1675
1676 Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1677 }
1678 }
1679 }
1680
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1681 void WinX86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1682 llvm::GlobalValue *GV,
1683 CodeGen::CodeGenModule &CGM) const {
1684 X86_32TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1685
1686 addStackProbeSizeTargetAttribute(D, GV, CGM);
1687 }
1688
1689 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1690 bool HasAVX;
1691 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)1692 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1693 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {}
1694
1695 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1696 CodeGen::CodeGenModule &CGM) const override;
1697
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1698 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1699 return 7;
1700 }
1701
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1702 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1703 llvm::Value *Address) const override {
1704 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1705
1706 // 0-15 are the 16 integer registers.
1707 // 16 is %rip.
1708 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1709 return false;
1710 }
1711
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1712 void getDependentLibraryOption(llvm::StringRef Lib,
1713 llvm::SmallString<24> &Opt) const override {
1714 Opt = "/DEFAULTLIB:";
1715 Opt += qualifyWindowsLibrary(Lib);
1716 }
1717
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const1718 void getDetectMismatchOption(llvm::StringRef Name,
1719 llvm::StringRef Value,
1720 llvm::SmallString<32> &Opt) const override {
1721 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1722 }
1723
getOpenMPSimdDefaultAlignment(QualType) const1724 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1725 return HasAVX ? 32 : 16;
1726 }
1727 };
1728
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1729 void WinX86_64TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1730 llvm::GlobalValue *GV,
1731 CodeGen::CodeGenModule &CGM) const {
1732 TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1733
1734 addStackProbeSizeTargetAttribute(D, GV, CGM);
1735 }
1736 }
1737
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const1738 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1739 Class &Hi) const {
1740 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1741 //
1742 // (a) If one of the classes is Memory, the whole argument is passed in
1743 // memory.
1744 //
1745 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1746 // memory.
1747 //
1748 // (c) If the size of the aggregate exceeds two eightbytes and the first
1749 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1750 // argument is passed in memory. NOTE: This is necessary to keep the
1751 // ABI working for processors that don't support the __m256 type.
1752 //
1753 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1754 //
1755 // Some of these are enforced by the merging logic. Others can arise
1756 // only with unions; for example:
1757 // union { _Complex double; unsigned; }
1758 //
1759 // Note that clauses (b) and (c) were added in 0.98.
1760 //
1761 if (Hi == Memory)
1762 Lo = Memory;
1763 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1764 Lo = Memory;
1765 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1766 Lo = Memory;
1767 if (Hi == SSEUp && Lo != SSE)
1768 Hi = SSE;
1769 }
1770
merge(Class Accum,Class Field)1771 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1772 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1773 // classified recursively so that always two fields are
1774 // considered. The resulting class is calculated according to
1775 // the classes of the fields in the eightbyte:
1776 //
1777 // (a) If both classes are equal, this is the resulting class.
1778 //
1779 // (b) If one of the classes is NO_CLASS, the resulting class is
1780 // the other class.
1781 //
1782 // (c) If one of the classes is MEMORY, the result is the MEMORY
1783 // class.
1784 //
1785 // (d) If one of the classes is INTEGER, the result is the
1786 // INTEGER.
1787 //
1788 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1789 // MEMORY is used as class.
1790 //
1791 // (f) Otherwise class SSE is used.
1792
1793 // Accum should never be memory (we should have returned) or
1794 // ComplexX87 (because this cannot be passed in a structure).
1795 assert((Accum != Memory && Accum != ComplexX87) &&
1796 "Invalid accumulated classification during merge.");
1797 if (Accum == Field || Field == NoClass)
1798 return Accum;
1799 if (Field == Memory)
1800 return Memory;
1801 if (Accum == NoClass)
1802 return Field;
1803 if (Accum == Integer || Field == Integer)
1804 return Integer;
1805 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1806 Accum == X87 || Accum == X87Up)
1807 return Memory;
1808 return SSE;
1809 }
1810
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi,bool isNamedArg) const1811 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1812 Class &Lo, Class &Hi, bool isNamedArg) const {
1813 // FIXME: This code can be simplified by introducing a simple value class for
1814 // Class pairs with appropriate constructor methods for the various
1815 // situations.
1816
1817 // FIXME: Some of the split computations are wrong; unaligned vectors
1818 // shouldn't be passed in registers for example, so there is no chance they
1819 // can straddle an eightbyte. Verify & simplify.
1820
1821 Lo = Hi = NoClass;
1822
1823 Class &Current = OffsetBase < 64 ? Lo : Hi;
1824 Current = Memory;
1825
1826 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1827 BuiltinType::Kind k = BT->getKind();
1828
1829 if (k == BuiltinType::Void) {
1830 Current = NoClass;
1831 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1832 Lo = Integer;
1833 Hi = Integer;
1834 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1835 Current = Integer;
1836 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1837 (k == BuiltinType::LongDouble &&
1838 getTarget().getTriple().isOSNaCl())) {
1839 Current = SSE;
1840 } else if (k == BuiltinType::LongDouble) {
1841 Lo = X87;
1842 Hi = X87Up;
1843 }
1844 // FIXME: _Decimal32 and _Decimal64 are SSE.
1845 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1846 return;
1847 }
1848
1849 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1850 // Classify the underlying integer type.
1851 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1852 return;
1853 }
1854
1855 if (Ty->hasPointerRepresentation()) {
1856 Current = Integer;
1857 return;
1858 }
1859
1860 if (Ty->isMemberPointerType()) {
1861 if (Ty->isMemberFunctionPointerType()) {
1862 if (Has64BitPointers) {
1863 // If Has64BitPointers, this is an {i64, i64}, so classify both
1864 // Lo and Hi now.
1865 Lo = Hi = Integer;
1866 } else {
1867 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1868 // straddles an eightbyte boundary, Hi should be classified as well.
1869 uint64_t EB_FuncPtr = (OffsetBase) / 64;
1870 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1871 if (EB_FuncPtr != EB_ThisAdj) {
1872 Lo = Hi = Integer;
1873 } else {
1874 Current = Integer;
1875 }
1876 }
1877 } else {
1878 Current = Integer;
1879 }
1880 return;
1881 }
1882
1883 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1884 uint64_t Size = getContext().getTypeSize(VT);
1885 if (Size == 32) {
1886 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1887 // float> as integer.
1888 Current = Integer;
1889
1890 // If this type crosses an eightbyte boundary, it should be
1891 // split.
1892 uint64_t EB_Real = (OffsetBase) / 64;
1893 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1894 if (EB_Real != EB_Imag)
1895 Hi = Lo;
1896 } else if (Size == 64) {
1897 // gcc passes <1 x double> in memory. :(
1898 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1899 return;
1900
1901 // gcc passes <1 x long long> as INTEGER.
1902 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1903 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1904 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1905 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1906 Current = Integer;
1907 else
1908 Current = SSE;
1909
1910 // If this type crosses an eightbyte boundary, it should be
1911 // split.
1912 if (OffsetBase && OffsetBase != 64)
1913 Hi = Lo;
1914 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1915 // Arguments of 256-bits are split into four eightbyte chunks. The
1916 // least significant one belongs to class SSE and all the others to class
1917 // SSEUP. The original Lo and Hi design considers that types can't be
1918 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1919 // This design isn't correct for 256-bits, but since there're no cases
1920 // where the upper parts would need to be inspected, avoid adding
1921 // complexity and just consider Hi to match the 64-256 part.
1922 //
1923 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1924 // registers if they are "named", i.e. not part of the "..." of a
1925 // variadic function.
1926 Lo = SSE;
1927 Hi = SSEUp;
1928 }
1929 return;
1930 }
1931
1932 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1933 QualType ET = getContext().getCanonicalType(CT->getElementType());
1934
1935 uint64_t Size = getContext().getTypeSize(Ty);
1936 if (ET->isIntegralOrEnumerationType()) {
1937 if (Size <= 64)
1938 Current = Integer;
1939 else if (Size <= 128)
1940 Lo = Hi = Integer;
1941 } else if (ET == getContext().FloatTy)
1942 Current = SSE;
1943 else if (ET == getContext().DoubleTy ||
1944 (ET == getContext().LongDoubleTy &&
1945 getTarget().getTriple().isOSNaCl()))
1946 Lo = Hi = SSE;
1947 else if (ET == getContext().LongDoubleTy)
1948 Current = ComplexX87;
1949
1950 // If this complex type crosses an eightbyte boundary then it
1951 // should be split.
1952 uint64_t EB_Real = (OffsetBase) / 64;
1953 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1954 if (Hi == NoClass && EB_Real != EB_Imag)
1955 Hi = Lo;
1956
1957 return;
1958 }
1959
1960 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1961 // Arrays are treated like structures.
1962
1963 uint64_t Size = getContext().getTypeSize(Ty);
1964
1965 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1966 // than four eightbytes, ..., it has class MEMORY.
1967 if (Size > 256)
1968 return;
1969
1970 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1971 // fields, it has class MEMORY.
1972 //
1973 // Only need to check alignment of array base.
1974 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1975 return;
1976
1977 // Otherwise implement simplified merge. We could be smarter about
1978 // this, but it isn't worth it and would be harder to verify.
1979 Current = NoClass;
1980 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1981 uint64_t ArraySize = AT->getSize().getZExtValue();
1982
1983 // The only case a 256-bit wide vector could be used is when the array
1984 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1985 // to work for sizes wider than 128, early check and fallback to memory.
1986 if (Size > 128 && EltSize != 256)
1987 return;
1988
1989 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1990 Class FieldLo, FieldHi;
1991 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1992 Lo = merge(Lo, FieldLo);
1993 Hi = merge(Hi, FieldHi);
1994 if (Lo == Memory || Hi == Memory)
1995 break;
1996 }
1997
1998 postMerge(Size, Lo, Hi);
1999 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2000 return;
2001 }
2002
2003 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2004 uint64_t Size = getContext().getTypeSize(Ty);
2005
2006 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2007 // than four eightbytes, ..., it has class MEMORY.
2008 if (Size > 256)
2009 return;
2010
2011 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2012 // copy constructor or a non-trivial destructor, it is passed by invisible
2013 // reference.
2014 if (getRecordArgABI(RT, getCXXABI()))
2015 return;
2016
2017 const RecordDecl *RD = RT->getDecl();
2018
2019 // Assume variable sized types are passed in memory.
2020 if (RD->hasFlexibleArrayMember())
2021 return;
2022
2023 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2024
2025 // Reset Lo class, this will be recomputed.
2026 Current = NoClass;
2027
2028 // If this is a C++ record, classify the bases first.
2029 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2030 for (const auto &I : CXXRD->bases()) {
2031 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2032 "Unexpected base class!");
2033 const CXXRecordDecl *Base =
2034 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2035
2036 // Classify this field.
2037 //
2038 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2039 // single eightbyte, each is classified separately. Each eightbyte gets
2040 // initialized to class NO_CLASS.
2041 Class FieldLo, FieldHi;
2042 uint64_t Offset =
2043 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2044 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2045 Lo = merge(Lo, FieldLo);
2046 Hi = merge(Hi, FieldHi);
2047 if (Lo == Memory || Hi == Memory)
2048 break;
2049 }
2050 }
2051
2052 // Classify the fields one at a time, merging the results.
2053 unsigned idx = 0;
2054 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2055 i != e; ++i, ++idx) {
2056 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2057 bool BitField = i->isBitField();
2058
2059 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2060 // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2061 //
2062 // The only case a 256-bit wide vector could be used is when the struct
2063 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2064 // to work for sizes wider than 128, early check and fallback to memory.
2065 //
2066 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2067 Lo = Memory;
2068 return;
2069 }
2070 // Note, skip this test for bit-fields, see below.
2071 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2072 Lo = Memory;
2073 return;
2074 }
2075
2076 // Classify this field.
2077 //
2078 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2079 // exceeds a single eightbyte, each is classified
2080 // separately. Each eightbyte gets initialized to class
2081 // NO_CLASS.
2082 Class FieldLo, FieldHi;
2083
2084 // Bit-fields require special handling, they do not force the
2085 // structure to be passed in memory even if unaligned, and
2086 // therefore they can straddle an eightbyte.
2087 if (BitField) {
2088 // Ignore padding bit-fields.
2089 if (i->isUnnamedBitfield())
2090 continue;
2091
2092 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2093 uint64_t Size = i->getBitWidthValue(getContext());
2094
2095 uint64_t EB_Lo = Offset / 64;
2096 uint64_t EB_Hi = (Offset + Size - 1) / 64;
2097
2098 if (EB_Lo) {
2099 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2100 FieldLo = NoClass;
2101 FieldHi = Integer;
2102 } else {
2103 FieldLo = Integer;
2104 FieldHi = EB_Hi ? Integer : NoClass;
2105 }
2106 } else
2107 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2108 Lo = merge(Lo, FieldLo);
2109 Hi = merge(Hi, FieldHi);
2110 if (Lo == Memory || Hi == Memory)
2111 break;
2112 }
2113
2114 postMerge(Size, Lo, Hi);
2115 }
2116 }
2117
getIndirectReturnResult(QualType Ty) const2118 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2119 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2120 // place naturally.
2121 if (!isAggregateTypeForABI(Ty)) {
2122 // Treat an enum type as its underlying type.
2123 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2124 Ty = EnumTy->getDecl()->getIntegerType();
2125
2126 return (Ty->isPromotableIntegerType() ?
2127 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2128 }
2129
2130 return ABIArgInfo::getIndirect(0);
2131 }
2132
IsIllegalVectorType(QualType Ty) const2133 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2134 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2135 uint64_t Size = getContext().getTypeSize(VecTy);
2136 unsigned LargestVector = HasAVX ? 256 : 128;
2137 if (Size <= 64 || Size > LargestVector)
2138 return true;
2139 }
2140
2141 return false;
2142 }
2143
getIndirectResult(QualType Ty,unsigned freeIntRegs) const2144 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2145 unsigned freeIntRegs) const {
2146 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2147 // place naturally.
2148 //
2149 // This assumption is optimistic, as there could be free registers available
2150 // when we need to pass this argument in memory, and LLVM could try to pass
2151 // the argument in the free register. This does not seem to happen currently,
2152 // but this code would be much safer if we could mark the argument with
2153 // 'onstack'. See PR12193.
2154 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2155 // Treat an enum type as its underlying type.
2156 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2157 Ty = EnumTy->getDecl()->getIntegerType();
2158
2159 return (Ty->isPromotableIntegerType() ?
2160 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2161 }
2162
2163 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2164 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2165
2166 // Compute the byval alignment. We specify the alignment of the byval in all
2167 // cases so that the mid-level optimizer knows the alignment of the byval.
2168 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2169
2170 // Attempt to avoid passing indirect results using byval when possible. This
2171 // is important for good codegen.
2172 //
2173 // We do this by coercing the value into a scalar type which the backend can
2174 // handle naturally (i.e., without using byval).
2175 //
2176 // For simplicity, we currently only do this when we have exhausted all of the
2177 // free integer registers. Doing this when there are free integer registers
2178 // would require more care, as we would have to ensure that the coerced value
2179 // did not claim the unused register. That would require either reording the
2180 // arguments to the function (so that any subsequent inreg values came first),
2181 // or only doing this optimization when there were no following arguments that
2182 // might be inreg.
2183 //
2184 // We currently expect it to be rare (particularly in well written code) for
2185 // arguments to be passed on the stack when there are still free integer
2186 // registers available (this would typically imply large structs being passed
2187 // by value), so this seems like a fair tradeoff for now.
2188 //
2189 // We can revisit this if the backend grows support for 'onstack' parameter
2190 // attributes. See PR12193.
2191 if (freeIntRegs == 0) {
2192 uint64_t Size = getContext().getTypeSize(Ty);
2193
2194 // If this type fits in an eightbyte, coerce it into the matching integral
2195 // type, which will end up on the stack (with alignment 8).
2196 if (Align == 8 && Size <= 64)
2197 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2198 Size));
2199 }
2200
2201 return ABIArgInfo::getIndirect(Align);
2202 }
2203
2204 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2205 /// register. Pick an LLVM IR type that will be passed as a vector register.
GetByteVectorType(QualType Ty) const2206 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2207 // Wrapper structs/arrays that only contain vectors are passed just like
2208 // vectors; strip them off if present.
2209 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2210 Ty = QualType(InnerTy, 0);
2211
2212 llvm::Type *IRType = CGT.ConvertType(Ty);
2213 assert(isa<llvm::VectorType>(IRType) &&
2214 "Trying to return a non-vector type in a vector register!");
2215 return IRType;
2216 }
2217
2218 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2219 /// is known to either be off the end of the specified type or being in
2220 /// alignment padding. The user type specified is known to be at most 128 bits
2221 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2222 /// classification that put one of the two halves in the INTEGER class.
2223 ///
2224 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)2225 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2226 unsigned EndBit, ASTContext &Context) {
2227 // If the bytes being queried are off the end of the type, there is no user
2228 // data hiding here. This handles analysis of builtins, vectors and other
2229 // types that don't contain interesting padding.
2230 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2231 if (TySize <= StartBit)
2232 return true;
2233
2234 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2235 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2236 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2237
2238 // Check each element to see if the element overlaps with the queried range.
2239 for (unsigned i = 0; i != NumElts; ++i) {
2240 // If the element is after the span we care about, then we're done..
2241 unsigned EltOffset = i*EltSize;
2242 if (EltOffset >= EndBit) break;
2243
2244 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2245 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2246 EndBit-EltOffset, Context))
2247 return false;
2248 }
2249 // If it overlaps no elements, then it is safe to process as padding.
2250 return true;
2251 }
2252
2253 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2254 const RecordDecl *RD = RT->getDecl();
2255 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2256
2257 // If this is a C++ record, check the bases first.
2258 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2259 for (const auto &I : CXXRD->bases()) {
2260 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2261 "Unexpected base class!");
2262 const CXXRecordDecl *Base =
2263 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2264
2265 // If the base is after the span we care about, ignore it.
2266 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2267 if (BaseOffset >= EndBit) continue;
2268
2269 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2270 if (!BitsContainNoUserData(I.getType(), BaseStart,
2271 EndBit-BaseOffset, Context))
2272 return false;
2273 }
2274 }
2275
2276 // Verify that no field has data that overlaps the region of interest. Yes
2277 // this could be sped up a lot by being smarter about queried fields,
2278 // however we're only looking at structs up to 16 bytes, so we don't care
2279 // much.
2280 unsigned idx = 0;
2281 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2282 i != e; ++i, ++idx) {
2283 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2284
2285 // If we found a field after the region we care about, then we're done.
2286 if (FieldOffset >= EndBit) break;
2287
2288 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2289 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2290 Context))
2291 return false;
2292 }
2293
2294 // If nothing in this record overlapped the area of interest, then we're
2295 // clean.
2296 return true;
2297 }
2298
2299 return false;
2300 }
2301
2302 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2303 /// float member at the specified offset. For example, {int,{float}} has a
2304 /// float at offset 4. It is conservatively correct for this routine to return
2305 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::DataLayout & TD)2306 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2307 const llvm::DataLayout &TD) {
2308 // Base case if we find a float.
2309 if (IROffset == 0 && IRType->isFloatTy())
2310 return true;
2311
2312 // If this is a struct, recurse into the field at the specified offset.
2313 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2314 const llvm::StructLayout *SL = TD.getStructLayout(STy);
2315 unsigned Elt = SL->getElementContainingOffset(IROffset);
2316 IROffset -= SL->getElementOffset(Elt);
2317 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2318 }
2319
2320 // If this is an array, recurse into the field at the specified offset.
2321 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2322 llvm::Type *EltTy = ATy->getElementType();
2323 unsigned EltSize = TD.getTypeAllocSize(EltTy);
2324 IROffset -= IROffset/EltSize*EltSize;
2325 return ContainsFloatAtOffset(EltTy, IROffset, TD);
2326 }
2327
2328 return false;
2329 }
2330
2331
2332 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2333 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2334 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2335 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2336 QualType SourceTy, unsigned SourceOffset) const {
2337 // The only three choices we have are either double, <2 x float>, or float. We
2338 // pass as float if the last 4 bytes is just padding. This happens for
2339 // structs that contain 3 floats.
2340 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2341 SourceOffset*8+64, getContext()))
2342 return llvm::Type::getFloatTy(getVMContext());
2343
2344 // We want to pass as <2 x float> if the LLVM IR type contains a float at
2345 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
2346 // case.
2347 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2348 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2349 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2350
2351 return llvm::Type::getDoubleTy(getVMContext());
2352 }
2353
2354
2355 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2356 /// an 8-byte GPR. This means that we either have a scalar or we are talking
2357 /// about the high or low part of an up-to-16-byte struct. This routine picks
2358 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2359 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2360 /// etc).
2361 ///
2362 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2363 /// the source type. IROffset is an offset in bytes into the LLVM IR type that
2364 /// the 8-byte value references. PrefType may be null.
2365 ///
2366 /// SourceTy is the source-level type for the entire argument. SourceOffset is
2367 /// an offset into this that we're processing (which is always either 0 or 8).
2368 ///
2369 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2370 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2371 QualType SourceTy, unsigned SourceOffset) const {
2372 // If we're dealing with an un-offset LLVM IR type, then it means that we're
2373 // returning an 8-byte unit starting with it. See if we can safely use it.
2374 if (IROffset == 0) {
2375 // Pointers and int64's always fill the 8-byte unit.
2376 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2377 IRType->isIntegerTy(64))
2378 return IRType;
2379
2380 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2381 // goodness in the source type is just tail padding. This is allowed to
2382 // kick in for struct {double,int} on the int, but not on
2383 // struct{double,int,int} because we wouldn't return the second int. We
2384 // have to do this analysis on the source type because we can't depend on
2385 // unions being lowered a specific way etc.
2386 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2387 IRType->isIntegerTy(32) ||
2388 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2389 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2390 cast<llvm::IntegerType>(IRType)->getBitWidth();
2391
2392 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2393 SourceOffset*8+64, getContext()))
2394 return IRType;
2395 }
2396 }
2397
2398 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2399 // If this is a struct, recurse into the field at the specified offset.
2400 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2401 if (IROffset < SL->getSizeInBytes()) {
2402 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2403 IROffset -= SL->getElementOffset(FieldIdx);
2404
2405 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2406 SourceTy, SourceOffset);
2407 }
2408 }
2409
2410 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2411 llvm::Type *EltTy = ATy->getElementType();
2412 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2413 unsigned EltOffset = IROffset/EltSize*EltSize;
2414 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2415 SourceOffset);
2416 }
2417
2418 // Okay, we don't have any better idea of what to pass, so we pass this in an
2419 // integer register that isn't too big to fit the rest of the struct.
2420 unsigned TySizeInBytes =
2421 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2422
2423 assert(TySizeInBytes != SourceOffset && "Empty field?");
2424
2425 // It is always safe to classify this as an integer type up to i64 that
2426 // isn't larger than the structure.
2427 return llvm::IntegerType::get(getVMContext(),
2428 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2429 }
2430
2431
2432 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2433 /// be used as elements of a two register pair to pass or return, return a
2434 /// first class aggregate to represent them. For example, if the low part of
2435 /// a by-value argument should be passed as i32* and the high part as float,
2436 /// return {i32*, float}.
2437 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::DataLayout & TD)2438 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2439 const llvm::DataLayout &TD) {
2440 // In order to correctly satisfy the ABI, we need to the high part to start
2441 // at offset 8. If the high and low parts we inferred are both 4-byte types
2442 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2443 // the second element at offset 8. Check for this:
2444 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2445 unsigned HiAlign = TD.getABITypeAlignment(Hi);
2446 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2447 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2448
2449 // To handle this, we have to increase the size of the low part so that the
2450 // second element will start at an 8 byte offset. We can't increase the size
2451 // of the second element because it might make us access off the end of the
2452 // struct.
2453 if (HiStart != 8) {
2454 // There are only two sorts of types the ABI generation code can produce for
2455 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2456 // Promote these to a larger type.
2457 if (Lo->isFloatTy())
2458 Lo = llvm::Type::getDoubleTy(Lo->getContext());
2459 else {
2460 assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2461 Lo = llvm::Type::getInt64Ty(Lo->getContext());
2462 }
2463 }
2464
2465 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2466
2467
2468 // Verify that the second element is at an 8-byte offset.
2469 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2470 "Invalid x86-64 argument pair!");
2471 return Result;
2472 }
2473
2474 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const2475 classifyReturnType(QualType RetTy) const {
2476 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2477 // classification algorithm.
2478 X86_64ABIInfo::Class Lo, Hi;
2479 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2480
2481 // Check some invariants.
2482 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2483 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2484
2485 llvm::Type *ResType = nullptr;
2486 switch (Lo) {
2487 case NoClass:
2488 if (Hi == NoClass)
2489 return ABIArgInfo::getIgnore();
2490 // If the low part is just padding, it takes no register, leave ResType
2491 // null.
2492 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2493 "Unknown missing lo part");
2494 break;
2495
2496 case SSEUp:
2497 case X87Up:
2498 llvm_unreachable("Invalid classification for lo word.");
2499
2500 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2501 // hidden argument.
2502 case Memory:
2503 return getIndirectReturnResult(RetTy);
2504
2505 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2506 // available register of the sequence %rax, %rdx is used.
2507 case Integer:
2508 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2509
2510 // If we have a sign or zero extended integer, make sure to return Extend
2511 // so that the parameter gets the right LLVM IR attributes.
2512 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2513 // Treat an enum type as its underlying type.
2514 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2515 RetTy = EnumTy->getDecl()->getIntegerType();
2516
2517 if (RetTy->isIntegralOrEnumerationType() &&
2518 RetTy->isPromotableIntegerType())
2519 return ABIArgInfo::getExtend();
2520 }
2521 break;
2522
2523 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2524 // available SSE register of the sequence %xmm0, %xmm1 is used.
2525 case SSE:
2526 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2527 break;
2528
2529 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2530 // returned on the X87 stack in %st0 as 80-bit x87 number.
2531 case X87:
2532 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2533 break;
2534
2535 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2536 // part of the value is returned in %st0 and the imaginary part in
2537 // %st1.
2538 case ComplexX87:
2539 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2540 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2541 llvm::Type::getX86_FP80Ty(getVMContext()),
2542 nullptr);
2543 break;
2544 }
2545
2546 llvm::Type *HighPart = nullptr;
2547 switch (Hi) {
2548 // Memory was handled previously and X87 should
2549 // never occur as a hi class.
2550 case Memory:
2551 case X87:
2552 llvm_unreachable("Invalid classification for hi word.");
2553
2554 case ComplexX87: // Previously handled.
2555 case NoClass:
2556 break;
2557
2558 case Integer:
2559 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2560 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2561 return ABIArgInfo::getDirect(HighPart, 8);
2562 break;
2563 case SSE:
2564 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2565 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2566 return ABIArgInfo::getDirect(HighPart, 8);
2567 break;
2568
2569 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2570 // is passed in the next available eightbyte chunk if the last used
2571 // vector register.
2572 //
2573 // SSEUP should always be preceded by SSE, just widen.
2574 case SSEUp:
2575 assert(Lo == SSE && "Unexpected SSEUp classification.");
2576 ResType = GetByteVectorType(RetTy);
2577 break;
2578
2579 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2580 // returned together with the previous X87 value in %st0.
2581 case X87Up:
2582 // If X87Up is preceded by X87, we don't need to do
2583 // anything. However, in some cases with unions it may not be
2584 // preceded by X87. In such situations we follow gcc and pass the
2585 // extra bits in an SSE reg.
2586 if (Lo != X87) {
2587 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2588 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2589 return ABIArgInfo::getDirect(HighPart, 8);
2590 }
2591 break;
2592 }
2593
2594 // If a high part was specified, merge it together with the low part. It is
2595 // known to pass in the high eightbyte of the result. We do this by forming a
2596 // first class struct aggregate with the high and low part: {low, high}
2597 if (HighPart)
2598 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2599
2600 return ABIArgInfo::getDirect(ResType);
2601 }
2602
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE,bool isNamedArg) const2603 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2604 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2605 bool isNamedArg)
2606 const
2607 {
2608 Ty = useFirstFieldIfTransparentUnion(Ty);
2609
2610 X86_64ABIInfo::Class Lo, Hi;
2611 classify(Ty, 0, Lo, Hi, isNamedArg);
2612
2613 // Check some invariants.
2614 // FIXME: Enforce these by construction.
2615 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2616 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2617
2618 neededInt = 0;
2619 neededSSE = 0;
2620 llvm::Type *ResType = nullptr;
2621 switch (Lo) {
2622 case NoClass:
2623 if (Hi == NoClass)
2624 return ABIArgInfo::getIgnore();
2625 // If the low part is just padding, it takes no register, leave ResType
2626 // null.
2627 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2628 "Unknown missing lo part");
2629 break;
2630
2631 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2632 // on the stack.
2633 case Memory:
2634
2635 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2636 // COMPLEX_X87, it is passed in memory.
2637 case X87:
2638 case ComplexX87:
2639 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2640 ++neededInt;
2641 return getIndirectResult(Ty, freeIntRegs);
2642
2643 case SSEUp:
2644 case X87Up:
2645 llvm_unreachable("Invalid classification for lo word.");
2646
2647 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2648 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2649 // and %r9 is used.
2650 case Integer:
2651 ++neededInt;
2652
2653 // Pick an 8-byte type based on the preferred type.
2654 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2655
2656 // If we have a sign or zero extended integer, make sure to return Extend
2657 // so that the parameter gets the right LLVM IR attributes.
2658 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2659 // Treat an enum type as its underlying type.
2660 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2661 Ty = EnumTy->getDecl()->getIntegerType();
2662
2663 if (Ty->isIntegralOrEnumerationType() &&
2664 Ty->isPromotableIntegerType())
2665 return ABIArgInfo::getExtend();
2666 }
2667
2668 break;
2669
2670 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2671 // available SSE register is used, the registers are taken in the
2672 // order from %xmm0 to %xmm7.
2673 case SSE: {
2674 llvm::Type *IRType = CGT.ConvertType(Ty);
2675 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2676 ++neededSSE;
2677 break;
2678 }
2679 }
2680
2681 llvm::Type *HighPart = nullptr;
2682 switch (Hi) {
2683 // Memory was handled previously, ComplexX87 and X87 should
2684 // never occur as hi classes, and X87Up must be preceded by X87,
2685 // which is passed in memory.
2686 case Memory:
2687 case X87:
2688 case ComplexX87:
2689 llvm_unreachable("Invalid classification for hi word.");
2690
2691 case NoClass: break;
2692
2693 case Integer:
2694 ++neededInt;
2695 // Pick an 8-byte type based on the preferred type.
2696 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2697
2698 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2699 return ABIArgInfo::getDirect(HighPart, 8);
2700 break;
2701
2702 // X87Up generally doesn't occur here (long double is passed in
2703 // memory), except in situations involving unions.
2704 case X87Up:
2705 case SSE:
2706 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2707
2708 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2709 return ABIArgInfo::getDirect(HighPart, 8);
2710
2711 ++neededSSE;
2712 break;
2713
2714 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2715 // eightbyte is passed in the upper half of the last used SSE
2716 // register. This only happens when 128-bit vectors are passed.
2717 case SSEUp:
2718 assert(Lo == SSE && "Unexpected SSEUp classification");
2719 ResType = GetByteVectorType(Ty);
2720 break;
2721 }
2722
2723 // If a high part was specified, merge it together with the low part. It is
2724 // known to pass in the high eightbyte of the result. We do this by forming a
2725 // first class struct aggregate with the high and low part: {low, high}
2726 if (HighPart)
2727 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2728
2729 return ABIArgInfo::getDirect(ResType);
2730 }
2731
computeInfo(CGFunctionInfo & FI) const2732 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2733
2734 if (!getCXXABI().classifyReturnType(FI))
2735 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2736
2737 // Keep track of the number of assigned registers.
2738 unsigned freeIntRegs = 6, freeSSERegs = 8;
2739
2740 // If the return value is indirect, then the hidden argument is consuming one
2741 // integer register.
2742 if (FI.getReturnInfo().isIndirect())
2743 --freeIntRegs;
2744
2745 // The chain argument effectively gives us another free register.
2746 if (FI.isChainCall())
2747 ++freeIntRegs;
2748
2749 unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2750 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2751 // get assigned (in left-to-right order) for passing as follows...
2752 unsigned ArgNo = 0;
2753 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2754 it != ie; ++it, ++ArgNo) {
2755 bool IsNamedArg = ArgNo < NumRequiredArgs;
2756
2757 unsigned neededInt, neededSSE;
2758 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2759 neededSSE, IsNamedArg);
2760
2761 // AMD64-ABI 3.2.3p3: If there are no registers available for any
2762 // eightbyte of an argument, the whole argument is passed on the
2763 // stack. If registers have already been assigned for some
2764 // eightbytes of such an argument, the assignments get reverted.
2765 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2766 freeIntRegs -= neededInt;
2767 freeSSERegs -= neededSSE;
2768 } else {
2769 it->info = getIndirectResult(it->type, freeIntRegs);
2770 }
2771 }
2772 }
2773
EmitVAArgFromMemory(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF)2774 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2775 QualType Ty,
2776 CodeGenFunction &CGF) {
2777 llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP(
2778 nullptr, VAListAddr, 2, "overflow_arg_area_p");
2779 llvm::Value *overflow_arg_area =
2780 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2781
2782 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2783 // byte boundary if alignment needed by type exceeds 8 byte boundary.
2784 // It isn't stated explicitly in the standard, but in practice we use
2785 // alignment greater than 16 where necessary.
2786 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2787 if (Align > 8) {
2788 // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2789 llvm::Value *Offset =
2790 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2791 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2792 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2793 CGF.Int64Ty);
2794 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2795 overflow_arg_area =
2796 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2797 overflow_arg_area->getType(),
2798 "overflow_arg_area.align");
2799 }
2800
2801 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2802 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2803 llvm::Value *Res =
2804 CGF.Builder.CreateBitCast(overflow_arg_area,
2805 llvm::PointerType::getUnqual(LTy));
2806
2807 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2808 // l->overflow_arg_area + sizeof(type).
2809 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2810 // an 8 byte boundary.
2811
2812 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2813 llvm::Value *Offset =
2814 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
2815 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2816 "overflow_arg_area.next");
2817 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2818
2819 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2820 return Res;
2821 }
2822
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2823 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2824 CodeGenFunction &CGF) const {
2825 // Assume that va_list type is correct; should be pointer to LLVM type:
2826 // struct {
2827 // i32 gp_offset;
2828 // i32 fp_offset;
2829 // i8* overflow_arg_area;
2830 // i8* reg_save_area;
2831 // };
2832 unsigned neededInt, neededSSE;
2833
2834 Ty = CGF.getContext().getCanonicalType(Ty);
2835 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2836 /*isNamedArg*/false);
2837
2838 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2839 // in the registers. If not go to step 7.
2840 if (!neededInt && !neededSSE)
2841 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2842
2843 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2844 // general purpose registers needed to pass type and num_fp to hold
2845 // the number of floating point registers needed.
2846
2847 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2848 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2849 // l->fp_offset > 304 - num_fp * 16 go to step 7.
2850 //
2851 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2852 // register save space).
2853
2854 llvm::Value *InRegs = nullptr;
2855 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2856 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2857 if (neededInt) {
2858 gp_offset_p =
2859 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p");
2860 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2861 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2862 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2863 }
2864
2865 if (neededSSE) {
2866 fp_offset_p =
2867 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p");
2868 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2869 llvm::Value *FitsInFP =
2870 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2871 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2872 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2873 }
2874
2875 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2876 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2877 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2878 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2879
2880 // Emit code to load the value if it was passed in registers.
2881
2882 CGF.EmitBlock(InRegBlock);
2883
2884 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2885 // an offset of l->gp_offset and/or l->fp_offset. This may require
2886 // copying to a temporary location in case the parameter is passed
2887 // in different register classes or requires an alignment greater
2888 // than 8 for general purpose registers and 16 for XMM registers.
2889 //
2890 // FIXME: This really results in shameful code when we end up needing to
2891 // collect arguments from different places; often what should result in a
2892 // simple assembling of a structure from scattered addresses has many more
2893 // loads than necessary. Can we clean this up?
2894 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2895 llvm::Value *RegAddr = CGF.Builder.CreateLoad(
2896 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area");
2897 if (neededInt && neededSSE) {
2898 // FIXME: Cleanup.
2899 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2900 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2901 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2902 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2903 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2904 llvm::Type *TyLo = ST->getElementType(0);
2905 llvm::Type *TyHi = ST->getElementType(1);
2906 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2907 "Unexpected ABI info for mixed regs");
2908 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2909 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2910 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2911 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2912 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2913 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2914 llvm::Value *V =
2915 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2916 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
2917 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2918 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
2919
2920 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2921 llvm::PointerType::getUnqual(LTy));
2922 } else if (neededInt) {
2923 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2924 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2925 llvm::PointerType::getUnqual(LTy));
2926
2927 // Copy to a temporary if necessary to ensure the appropriate alignment.
2928 std::pair<CharUnits, CharUnits> SizeAlign =
2929 CGF.getContext().getTypeInfoInChars(Ty);
2930 uint64_t TySize = SizeAlign.first.getQuantity();
2931 unsigned TyAlign = SizeAlign.second.getQuantity();
2932 if (TyAlign > 8) {
2933 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2934 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2935 RegAddr = Tmp;
2936 }
2937 } else if (neededSSE == 1) {
2938 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2939 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2940 llvm::PointerType::getUnqual(LTy));
2941 } else {
2942 assert(neededSSE == 2 && "Invalid number of needed registers!");
2943 // SSE registers are spaced 16 bytes apart in the register save
2944 // area, we need to collect the two eightbytes together.
2945 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2946 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2947 llvm::Type *DoubleTy = CGF.DoubleTy;
2948 llvm::Type *DblPtrTy =
2949 llvm::PointerType::getUnqual(DoubleTy);
2950 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
2951 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2952 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2953 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2954 DblPtrTy));
2955 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
2956 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2957 DblPtrTy));
2958 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
2959 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2960 llvm::PointerType::getUnqual(LTy));
2961 }
2962
2963 // AMD64-ABI 3.5.7p5: Step 5. Set:
2964 // l->gp_offset = l->gp_offset + num_gp * 8
2965 // l->fp_offset = l->fp_offset + num_fp * 16.
2966 if (neededInt) {
2967 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2968 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2969 gp_offset_p);
2970 }
2971 if (neededSSE) {
2972 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2973 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2974 fp_offset_p);
2975 }
2976 CGF.EmitBranch(ContBlock);
2977
2978 // Emit code to load the value if it was passed in memory.
2979
2980 CGF.EmitBlock(InMemBlock);
2981 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2982
2983 // Return the appropriate result.
2984
2985 CGF.EmitBlock(ContBlock);
2986 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2987 "vaarg.addr");
2988 ResAddr->addIncoming(RegAddr, InRegBlock);
2989 ResAddr->addIncoming(MemAddr, InMemBlock);
2990 return ResAddr;
2991 }
2992
classify(QualType Ty,unsigned & FreeSSERegs,bool IsReturnType) const2993 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
2994 bool IsReturnType) const {
2995
2996 if (Ty->isVoidType())
2997 return ABIArgInfo::getIgnore();
2998
2999 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3000 Ty = EnumTy->getDecl()->getIntegerType();
3001
3002 TypeInfo Info = getContext().getTypeInfo(Ty);
3003 uint64_t Width = Info.Width;
3004 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
3005
3006 const RecordType *RT = Ty->getAs<RecordType>();
3007 if (RT) {
3008 if (!IsReturnType) {
3009 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3010 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3011 }
3012
3013 if (RT->getDecl()->hasFlexibleArrayMember())
3014 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3015
3016 // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3017 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3018 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3019 Width));
3020 }
3021
3022 // vectorcall adds the concept of a homogenous vector aggregate, similar to
3023 // other targets.
3024 const Type *Base = nullptr;
3025 uint64_t NumElts = 0;
3026 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3027 if (FreeSSERegs >= NumElts) {
3028 FreeSSERegs -= NumElts;
3029 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3030 return ABIArgInfo::getDirect();
3031 return ABIArgInfo::getExpand();
3032 }
3033 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3034 }
3035
3036
3037 if (Ty->isMemberPointerType()) {
3038 // If the member pointer is represented by an LLVM int or ptr, pass it
3039 // directly.
3040 llvm::Type *LLTy = CGT.ConvertType(Ty);
3041 if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3042 return ABIArgInfo::getDirect();
3043 }
3044
3045 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3046 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3047 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3048 if (Width > 64 || !llvm::isPowerOf2_64(Width))
3049 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3050
3051 // Otherwise, coerce it to a small integer.
3052 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3053 }
3054
3055 // Bool type is always extended to the ABI, other builtin types are not
3056 // extended.
3057 const BuiltinType *BT = Ty->getAs<BuiltinType>();
3058 if (BT && BT->getKind() == BuiltinType::Bool)
3059 return ABIArgInfo::getExtend();
3060
3061 return ABIArgInfo::getDirect();
3062 }
3063
computeInfo(CGFunctionInfo & FI) const3064 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3065 bool IsVectorCall =
3066 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3067
3068 // We can use up to 4 SSE return registers with vectorcall.
3069 unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3070 if (!getCXXABI().classifyReturnType(FI))
3071 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3072
3073 // We can use up to 6 SSE register parameters with vectorcall.
3074 FreeSSERegs = IsVectorCall ? 6 : 0;
3075 for (auto &I : FI.arguments())
3076 I.info = classify(I.type, FreeSSERegs, false);
3077 }
3078
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3079 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3080 CodeGenFunction &CGF) const {
3081 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3082
3083 CGBuilderTy &Builder = CGF.Builder;
3084 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3085 "ap");
3086 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3087 llvm::Type *PTy =
3088 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3089 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3090
3091 uint64_t Offset =
3092 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
3093 llvm::Value *NextAddr =
3094 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3095 "ap.next");
3096 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3097
3098 return AddrTyped;
3099 }
3100
3101 // PowerPC-32
3102 namespace {
3103 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3104 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3105 public:
PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT)3106 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3107
3108 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3109 CodeGenFunction &CGF) const override;
3110 };
3111
3112 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3113 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT)3114 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3115
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3116 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3117 // This is recovered from gcc output.
3118 return 1; // r1 is the dedicated stack pointer
3119 }
3120
3121 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3122 llvm::Value *Address) const override;
3123
getOpenMPSimdDefaultAlignment(QualType) const3124 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3125 return 16; // Natural alignment for Altivec vectors.
3126 }
3127 };
3128
3129 }
3130
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3131 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3132 QualType Ty,
3133 CodeGenFunction &CGF) const {
3134 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3135 // TODO: Implement this. For now ignore.
3136 (void)CTy;
3137 return nullptr;
3138 }
3139
3140 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3141 bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3142 llvm::Type *CharPtr = CGF.Int8PtrTy;
3143 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
3144
3145 CGBuilderTy &Builder = CGF.Builder;
3146 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
3147 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
3148 llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
3149 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
3150 llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
3151 llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
3152 llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
3153 llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
3154 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
3155 // Align GPR when TY is i64.
3156 if (isI64) {
3157 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
3158 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
3159 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
3160 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
3161 }
3162 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
3163 llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
3164 llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
3165 llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
3166 llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
3167
3168 llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
3169 Builder.getInt8(8), "cond");
3170
3171 llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
3172 Builder.getInt8(isInt ? 4 : 8));
3173
3174 llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
3175
3176 if (Ty->isFloatingType())
3177 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
3178
3179 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3180 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3181 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3182
3183 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3184
3185 CGF.EmitBlock(UsingRegs);
3186
3187 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3188 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
3189 // Increase the GPR/FPR indexes.
3190 if (isInt) {
3191 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
3192 Builder.CreateStore(GPR, GPRPtr);
3193 } else {
3194 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
3195 Builder.CreateStore(FPR, FPRPtr);
3196 }
3197 CGF.EmitBranch(Cont);
3198
3199 CGF.EmitBlock(UsingOverflow);
3200
3201 // Increase the overflow area.
3202 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
3203 OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
3204 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
3205 CGF.EmitBranch(Cont);
3206
3207 CGF.EmitBlock(Cont);
3208
3209 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
3210 Result->addIncoming(Result1, UsingRegs);
3211 Result->addIncoming(Result2, UsingOverflow);
3212
3213 if (Ty->isAggregateType()) {
3214 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr") ;
3215 return Builder.CreateLoad(AGGPtr, false, "aggr");
3216 }
3217
3218 return Result;
3219 }
3220
3221 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3222 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3223 llvm::Value *Address) const {
3224 // This is calculated from the LLVM and GCC tables and verified
3225 // against gcc output. AFAIK all ABIs use the same encoding.
3226
3227 CodeGen::CGBuilderTy &Builder = CGF.Builder;
3228
3229 llvm::IntegerType *i8 = CGF.Int8Ty;
3230 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3231 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3232 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3233
3234 // 0-31: r0-31, the 4-byte general-purpose registers
3235 AssignToArrayRange(Builder, Address, Four8, 0, 31);
3236
3237 // 32-63: fp0-31, the 8-byte floating-point registers
3238 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3239
3240 // 64-76 are various 4-byte special-purpose registers:
3241 // 64: mq
3242 // 65: lr
3243 // 66: ctr
3244 // 67: ap
3245 // 68-75 cr0-7
3246 // 76: xer
3247 AssignToArrayRange(Builder, Address, Four8, 64, 76);
3248
3249 // 77-108: v0-31, the 16-byte vector registers
3250 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3251
3252 // 109: vrsave
3253 // 110: vscr
3254 // 111: spe_acc
3255 // 112: spefscr
3256 // 113: sfp
3257 AssignToArrayRange(Builder, Address, Four8, 109, 113);
3258
3259 return false;
3260 }
3261
3262 // PowerPC-64
3263
3264 namespace {
3265 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3266 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3267 public:
3268 enum ABIKind {
3269 ELFv1 = 0,
3270 ELFv2
3271 };
3272
3273 private:
3274 static const unsigned GPRBits = 64;
3275 ABIKind Kind;
3276 bool HasQPX;
3277
3278 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3279 // will be passed in a QPX register.
IsQPXVectorTy(const Type * Ty) const3280 bool IsQPXVectorTy(const Type *Ty) const {
3281 if (!HasQPX)
3282 return false;
3283
3284 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3285 unsigned NumElements = VT->getNumElements();
3286 if (NumElements == 1)
3287 return false;
3288
3289 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3290 if (getContext().getTypeSize(Ty) <= 256)
3291 return true;
3292 } else if (VT->getElementType()->
3293 isSpecificBuiltinType(BuiltinType::Float)) {
3294 if (getContext().getTypeSize(Ty) <= 128)
3295 return true;
3296 }
3297 }
3298
3299 return false;
3300 }
3301
IsQPXVectorTy(QualType Ty) const3302 bool IsQPXVectorTy(QualType Ty) const {
3303 return IsQPXVectorTy(Ty.getTypePtr());
3304 }
3305
3306 public:
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,ABIKind Kind,bool HasQPX)3307 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3308 : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3309
3310 bool isPromotableTypeForABI(QualType Ty) const;
3311 bool isAlignedParamType(QualType Ty, bool &Align32) const;
3312
3313 ABIArgInfo classifyReturnType(QualType RetTy) const;
3314 ABIArgInfo classifyArgumentType(QualType Ty) const;
3315
3316 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3317 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3318 uint64_t Members) const override;
3319
3320 // TODO: We can add more logic to computeInfo to improve performance.
3321 // Example: For aggregate arguments that fit in a register, we could
3322 // use getDirectInReg (as is done below for structs containing a single
3323 // floating-point value) to avoid pushing them to memory on function
3324 // entry. This would require changing the logic in PPCISelLowering
3325 // when lowering the parameters in the caller and args in the callee.
computeInfo(CGFunctionInfo & FI) const3326 void computeInfo(CGFunctionInfo &FI) const override {
3327 if (!getCXXABI().classifyReturnType(FI))
3328 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3329 for (auto &I : FI.arguments()) {
3330 // We rely on the default argument classification for the most part.
3331 // One exception: An aggregate containing a single floating-point
3332 // or vector item must be passed in a register if one is available.
3333 const Type *T = isSingleElementStruct(I.type, getContext());
3334 if (T) {
3335 const BuiltinType *BT = T->getAs<BuiltinType>();
3336 if (IsQPXVectorTy(T) ||
3337 (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3338 (BT && BT->isFloatingPoint())) {
3339 QualType QT(T, 0);
3340 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3341 continue;
3342 }
3343 }
3344 I.info = classifyArgumentType(I.type);
3345 }
3346 }
3347
3348 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3349 CodeGenFunction &CGF) const override;
3350 };
3351
3352 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3353 bool HasQPX;
3354
3355 public:
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes & CGT,PPC64_SVR4_ABIInfo::ABIKind Kind,bool HasQPX)3356 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3357 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3358 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)),
3359 HasQPX(HasQPX) {}
3360
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3361 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3362 // This is recovered from gcc output.
3363 return 1; // r1 is the dedicated stack pointer
3364 }
3365
3366 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3367 llvm::Value *Address) const override;
3368
getOpenMPSimdDefaultAlignment(QualType QT) const3369 unsigned getOpenMPSimdDefaultAlignment(QualType QT) const override {
3370 if (HasQPX)
3371 if (const PointerType *PT = QT->getAs<PointerType>())
3372 if (PT->getPointeeType()->isSpecificBuiltinType(BuiltinType::Double))
3373 return 32; // Natural alignment for QPX doubles.
3374
3375 return 16; // Natural alignment for Altivec and VSX vectors.
3376 }
3377 };
3378
3379 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3380 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)3381 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3382
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3383 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3384 // This is recovered from gcc output.
3385 return 1; // r1 is the dedicated stack pointer
3386 }
3387
3388 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3389 llvm::Value *Address) const override;
3390
getOpenMPSimdDefaultAlignment(QualType) const3391 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3392 return 16; // Natural alignment for Altivec vectors.
3393 }
3394 };
3395
3396 }
3397
3398 // Return true if the ABI requires Ty to be passed sign- or zero-
3399 // extended to 64 bits.
3400 bool
isPromotableTypeForABI(QualType Ty) const3401 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3402 // Treat an enum type as its underlying type.
3403 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3404 Ty = EnumTy->getDecl()->getIntegerType();
3405
3406 // Promotable integer types are required to be promoted by the ABI.
3407 if (Ty->isPromotableIntegerType())
3408 return true;
3409
3410 // In addition to the usual promotable integer types, we also need to
3411 // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3412 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3413 switch (BT->getKind()) {
3414 case BuiltinType::Int:
3415 case BuiltinType::UInt:
3416 return true;
3417 default:
3418 break;
3419 }
3420
3421 return false;
3422 }
3423
3424 /// isAlignedParamType - Determine whether a type requires 16-byte
3425 /// alignment in the parameter area.
3426 bool
isAlignedParamType(QualType Ty,bool & Align32) const3427 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const {
3428 Align32 = false;
3429
3430 // Complex types are passed just like their elements.
3431 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3432 Ty = CTy->getElementType();
3433
3434 // Only vector types of size 16 bytes need alignment (larger types are
3435 // passed via reference, smaller types are not aligned).
3436 if (IsQPXVectorTy(Ty)) {
3437 if (getContext().getTypeSize(Ty) > 128)
3438 Align32 = true;
3439
3440 return true;
3441 } else if (Ty->isVectorType()) {
3442 return getContext().getTypeSize(Ty) == 128;
3443 }
3444
3445 // For single-element float/vector structs, we consider the whole type
3446 // to have the same alignment requirements as its single element.
3447 const Type *AlignAsType = nullptr;
3448 const Type *EltType = isSingleElementStruct(Ty, getContext());
3449 if (EltType) {
3450 const BuiltinType *BT = EltType->getAs<BuiltinType>();
3451 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3452 getContext().getTypeSize(EltType) == 128) ||
3453 (BT && BT->isFloatingPoint()))
3454 AlignAsType = EltType;
3455 }
3456
3457 // Likewise for ELFv2 homogeneous aggregates.
3458 const Type *Base = nullptr;
3459 uint64_t Members = 0;
3460 if (!AlignAsType && Kind == ELFv2 &&
3461 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3462 AlignAsType = Base;
3463
3464 // With special case aggregates, only vector base types need alignment.
3465 if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3466 if (getContext().getTypeSize(AlignAsType) > 128)
3467 Align32 = true;
3468
3469 return true;
3470 } else if (AlignAsType) {
3471 return AlignAsType->isVectorType();
3472 }
3473
3474 // Otherwise, we only need alignment for any aggregate type that
3475 // has an alignment requirement of >= 16 bytes.
3476 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3477 if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3478 Align32 = true;
3479 return true;
3480 }
3481
3482 return false;
3483 }
3484
3485 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3486 /// aggregate. Base is set to the base element type, and Members is set
3487 /// to the number of base elements.
isHomogeneousAggregate(QualType Ty,const Type * & Base,uint64_t & Members) const3488 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3489 uint64_t &Members) const {
3490 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3491 uint64_t NElements = AT->getSize().getZExtValue();
3492 if (NElements == 0)
3493 return false;
3494 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3495 return false;
3496 Members *= NElements;
3497 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3498 const RecordDecl *RD = RT->getDecl();
3499 if (RD->hasFlexibleArrayMember())
3500 return false;
3501
3502 Members = 0;
3503
3504 // If this is a C++ record, check the bases first.
3505 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3506 for (const auto &I : CXXRD->bases()) {
3507 // Ignore empty records.
3508 if (isEmptyRecord(getContext(), I.getType(), true))
3509 continue;
3510
3511 uint64_t FldMembers;
3512 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3513 return false;
3514
3515 Members += FldMembers;
3516 }
3517 }
3518
3519 for (const auto *FD : RD->fields()) {
3520 // Ignore (non-zero arrays of) empty records.
3521 QualType FT = FD->getType();
3522 while (const ConstantArrayType *AT =
3523 getContext().getAsConstantArrayType(FT)) {
3524 if (AT->getSize().getZExtValue() == 0)
3525 return false;
3526 FT = AT->getElementType();
3527 }
3528 if (isEmptyRecord(getContext(), FT, true))
3529 continue;
3530
3531 // For compatibility with GCC, ignore empty bitfields in C++ mode.
3532 if (getContext().getLangOpts().CPlusPlus &&
3533 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3534 continue;
3535
3536 uint64_t FldMembers;
3537 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3538 return false;
3539
3540 Members = (RD->isUnion() ?
3541 std::max(Members, FldMembers) : Members + FldMembers);
3542 }
3543
3544 if (!Base)
3545 return false;
3546
3547 // Ensure there is no padding.
3548 if (getContext().getTypeSize(Base) * Members !=
3549 getContext().getTypeSize(Ty))
3550 return false;
3551 } else {
3552 Members = 1;
3553 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3554 Members = 2;
3555 Ty = CT->getElementType();
3556 }
3557
3558 // Most ABIs only support float, double, and some vector type widths.
3559 if (!isHomogeneousAggregateBaseType(Ty))
3560 return false;
3561
3562 // The base type must be the same for all members. Types that
3563 // agree in both total size and mode (float vs. vector) are
3564 // treated as being equivalent here.
3565 const Type *TyPtr = Ty.getTypePtr();
3566 if (!Base)
3567 Base = TyPtr;
3568
3569 if (Base->isVectorType() != TyPtr->isVectorType() ||
3570 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3571 return false;
3572 }
3573 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3574 }
3575
isHomogeneousAggregateBaseType(QualType Ty) const3576 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3577 // Homogeneous aggregates for ELFv2 must have base types of float,
3578 // double, long double, or 128-bit vectors.
3579 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3580 if (BT->getKind() == BuiltinType::Float ||
3581 BT->getKind() == BuiltinType::Double ||
3582 BT->getKind() == BuiltinType::LongDouble)
3583 return true;
3584 }
3585 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3586 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3587 return true;
3588 }
3589 return false;
3590 }
3591
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const3592 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3593 const Type *Base, uint64_t Members) const {
3594 // Vector types require one register, floating point types require one
3595 // or two registers depending on their size.
3596 uint32_t NumRegs =
3597 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3598
3599 // Homogeneous Aggregates may occupy at most 8 registers.
3600 return Members * NumRegs <= 8;
3601 }
3602
3603 ABIArgInfo
classifyArgumentType(QualType Ty) const3604 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3605 Ty = useFirstFieldIfTransparentUnion(Ty);
3606
3607 if (Ty->isAnyComplexType())
3608 return ABIArgInfo::getDirect();
3609
3610 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3611 // or via reference (larger than 16 bytes).
3612 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3613 uint64_t Size = getContext().getTypeSize(Ty);
3614 if (Size > 128)
3615 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3616 else if (Size < 128) {
3617 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3618 return ABIArgInfo::getDirect(CoerceTy);
3619 }
3620 }
3621
3622 if (isAggregateTypeForABI(Ty)) {
3623 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3624 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3625
3626 bool Align32;
3627 uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ?
3628 (Align32 ? 32 : 16) : 8;
3629 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3630
3631 // ELFv2 homogeneous aggregates are passed as array types.
3632 const Type *Base = nullptr;
3633 uint64_t Members = 0;
3634 if (Kind == ELFv2 &&
3635 isHomogeneousAggregate(Ty, Base, Members)) {
3636 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3637 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3638 return ABIArgInfo::getDirect(CoerceTy);
3639 }
3640
3641 // If an aggregate may end up fully in registers, we do not
3642 // use the ByVal method, but pass the aggregate as array.
3643 // This is usually beneficial since we avoid forcing the
3644 // back-end to store the argument to memory.
3645 uint64_t Bits = getContext().getTypeSize(Ty);
3646 if (Bits > 0 && Bits <= 8 * GPRBits) {
3647 llvm::Type *CoerceTy;
3648
3649 // Types up to 8 bytes are passed as integer type (which will be
3650 // properly aligned in the argument save area doubleword).
3651 if (Bits <= GPRBits)
3652 CoerceTy = llvm::IntegerType::get(getVMContext(),
3653 llvm::RoundUpToAlignment(Bits, 8));
3654 // Larger types are passed as arrays, with the base type selected
3655 // according to the required alignment in the save area.
3656 else {
3657 uint64_t RegBits = ABIAlign * 8;
3658 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3659 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3660 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3661 }
3662
3663 return ABIArgInfo::getDirect(CoerceTy);
3664 }
3665
3666 // All other aggregates are passed ByVal.
3667 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3668 /*Realign=*/TyAlign > ABIAlign);
3669 }
3670
3671 return (isPromotableTypeForABI(Ty) ?
3672 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3673 }
3674
3675 ABIArgInfo
classifyReturnType(QualType RetTy) const3676 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3677 if (RetTy->isVoidType())
3678 return ABIArgInfo::getIgnore();
3679
3680 if (RetTy->isAnyComplexType())
3681 return ABIArgInfo::getDirect();
3682
3683 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3684 // or via reference (larger than 16 bytes).
3685 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
3686 uint64_t Size = getContext().getTypeSize(RetTy);
3687 if (Size > 128)
3688 return ABIArgInfo::getIndirect(0);
3689 else if (Size < 128) {
3690 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3691 return ABIArgInfo::getDirect(CoerceTy);
3692 }
3693 }
3694
3695 if (isAggregateTypeForABI(RetTy)) {
3696 // ELFv2 homogeneous aggregates are returned as array types.
3697 const Type *Base = nullptr;
3698 uint64_t Members = 0;
3699 if (Kind == ELFv2 &&
3700 isHomogeneousAggregate(RetTy, Base, Members)) {
3701 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3702 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3703 return ABIArgInfo::getDirect(CoerceTy);
3704 }
3705
3706 // ELFv2 small aggregates are returned in up to two registers.
3707 uint64_t Bits = getContext().getTypeSize(RetTy);
3708 if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3709 if (Bits == 0)
3710 return ABIArgInfo::getIgnore();
3711
3712 llvm::Type *CoerceTy;
3713 if (Bits > GPRBits) {
3714 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3715 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
3716 } else
3717 CoerceTy = llvm::IntegerType::get(getVMContext(),
3718 llvm::RoundUpToAlignment(Bits, 8));
3719 return ABIArgInfo::getDirect(CoerceTy);
3720 }
3721
3722 // All other aggregates are returned indirectly.
3723 return ABIArgInfo::getIndirect(0);
3724 }
3725
3726 return (isPromotableTypeForABI(RetTy) ?
3727 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3728 }
3729
3730 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3731 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3732 QualType Ty,
3733 CodeGenFunction &CGF) const {
3734 llvm::Type *BP = CGF.Int8PtrTy;
3735 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3736
3737 CGBuilderTy &Builder = CGF.Builder;
3738 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3739 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3740
3741 // Handle types that require 16-byte alignment in the parameter save area.
3742 bool Align32;
3743 if (isAlignedParamType(Ty, Align32)) {
3744 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3745 AddrAsInt = Builder.CreateAdd(AddrAsInt,
3746 Builder.getInt64(Align32 ? 31 : 15));
3747 AddrAsInt = Builder.CreateAnd(AddrAsInt,
3748 Builder.getInt64(Align32 ? -32 : -16));
3749 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3750 }
3751
3752 // Update the va_list pointer. The pointer should be bumped by the
3753 // size of the object. We can trust getTypeSize() except for a complex
3754 // type whose base type is smaller than a doubleword. For these, the
3755 // size of the object is 16 bytes; see below for further explanation.
3756 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3757 QualType BaseTy;
3758 unsigned CplxBaseSize = 0;
3759
3760 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3761 BaseTy = CTy->getElementType();
3762 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3763 if (CplxBaseSize < 8)
3764 SizeInBytes = 16;
3765 }
3766
3767 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3768 llvm::Value *NextAddr =
3769 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3770 "ap.next");
3771 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3772
3773 // If we have a complex type and the base type is smaller than 8 bytes,
3774 // the ABI calls for the real and imaginary parts to be right-adjusted
3775 // in separate doublewords. However, Clang expects us to produce a
3776 // pointer to a structure with the two parts packed tightly. So generate
3777 // loads of the real and imaginary parts relative to the va_list pointer,
3778 // and store them to a temporary structure.
3779 if (CplxBaseSize && CplxBaseSize < 8) {
3780 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3781 llvm::Value *ImagAddr = RealAddr;
3782 if (CGF.CGM.getDataLayout().isBigEndian()) {
3783 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3784 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3785 } else {
3786 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3787 }
3788 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3789 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3790 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3791 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3792 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3793 llvm::AllocaInst *Ptr =
3794 CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx");
3795 llvm::Value *RealPtr =
3796 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real");
3797 llvm::Value *ImagPtr =
3798 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag");
3799 Builder.CreateStore(Real, RealPtr, false);
3800 Builder.CreateStore(Imag, ImagPtr, false);
3801 return Ptr;
3802 }
3803
3804 // If the argument is smaller than 8 bytes, it is right-adjusted in
3805 // its doubleword slot. Adjust the pointer to pick it up from the
3806 // correct offset.
3807 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3808 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3809 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3810 Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3811 }
3812
3813 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3814 return Builder.CreateBitCast(Addr, PTy);
3815 }
3816
3817 static bool
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address)3818 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3819 llvm::Value *Address) {
3820 // This is calculated from the LLVM and GCC tables and verified
3821 // against gcc output. AFAIK all ABIs use the same encoding.
3822
3823 CodeGen::CGBuilderTy &Builder = CGF.Builder;
3824
3825 llvm::IntegerType *i8 = CGF.Int8Ty;
3826 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3827 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3828 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3829
3830 // 0-31: r0-31, the 8-byte general-purpose registers
3831 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3832
3833 // 32-63: fp0-31, the 8-byte floating-point registers
3834 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3835
3836 // 64-76 are various 4-byte special-purpose registers:
3837 // 64: mq
3838 // 65: lr
3839 // 66: ctr
3840 // 67: ap
3841 // 68-75 cr0-7
3842 // 76: xer
3843 AssignToArrayRange(Builder, Address, Four8, 64, 76);
3844
3845 // 77-108: v0-31, the 16-byte vector registers
3846 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3847
3848 // 109: vrsave
3849 // 110: vscr
3850 // 111: spe_acc
3851 // 112: spefscr
3852 // 113: sfp
3853 AssignToArrayRange(Builder, Address, Four8, 109, 113);
3854
3855 return false;
3856 }
3857
3858 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3859 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3860 CodeGen::CodeGenFunction &CGF,
3861 llvm::Value *Address) const {
3862
3863 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3864 }
3865
3866 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3867 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3868 llvm::Value *Address) const {
3869
3870 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3871 }
3872
3873 //===----------------------------------------------------------------------===//
3874 // AArch64 ABI Implementation
3875 //===----------------------------------------------------------------------===//
3876
3877 namespace {
3878
3879 class AArch64ABIInfo : public ABIInfo {
3880 public:
3881 enum ABIKind {
3882 AAPCS = 0,
3883 DarwinPCS
3884 };
3885
3886 private:
3887 ABIKind Kind;
3888
3889 public:
AArch64ABIInfo(CodeGenTypes & CGT,ABIKind Kind)3890 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3891
3892 private:
getABIKind() const3893 ABIKind getABIKind() const { return Kind; }
isDarwinPCS() const3894 bool isDarwinPCS() const { return Kind == DarwinPCS; }
3895
3896 ABIArgInfo classifyReturnType(QualType RetTy) const;
3897 ABIArgInfo classifyArgumentType(QualType RetTy) const;
3898 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3899 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3900 uint64_t Members) const override;
3901
3902 bool isIllegalVectorType(QualType Ty) const;
3903
computeInfo(CGFunctionInfo & FI) const3904 void computeInfo(CGFunctionInfo &FI) const override {
3905 if (!getCXXABI().classifyReturnType(FI))
3906 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3907
3908 for (auto &it : FI.arguments())
3909 it.info = classifyArgumentType(it.type);
3910 }
3911
3912 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3913 CodeGenFunction &CGF) const;
3914
3915 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3916 CodeGenFunction &CGF) const;
3917
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3918 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3919 CodeGenFunction &CGF) const override {
3920 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3921 : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3922 }
3923 };
3924
3925 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3926 public:
AArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind Kind)3927 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3928 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3929
getARCRetainAutoreleasedReturnValueMarker() const3930 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
3931 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3932 }
3933
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3934 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3935 return 31;
3936 }
3937
doesReturnSlotInterfereWithArgs() const3938 bool doesReturnSlotInterfereWithArgs() const override { return false; }
3939 };
3940 }
3941
classifyArgumentType(QualType Ty) const3942 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
3943 Ty = useFirstFieldIfTransparentUnion(Ty);
3944
3945 // Handle illegal vector types here.
3946 if (isIllegalVectorType(Ty)) {
3947 uint64_t Size = getContext().getTypeSize(Ty);
3948 // Android promotes <2 x i8> to i16, not i32
3949 if (Size <= 16) {
3950 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
3951 return ABIArgInfo::getDirect(ResType);
3952 }
3953 if (Size == 32) {
3954 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3955 return ABIArgInfo::getDirect(ResType);
3956 }
3957 if (Size == 64) {
3958 llvm::Type *ResType =
3959 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3960 return ABIArgInfo::getDirect(ResType);
3961 }
3962 if (Size == 128) {
3963 llvm::Type *ResType =
3964 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3965 return ABIArgInfo::getDirect(ResType);
3966 }
3967 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3968 }
3969
3970 if (!isAggregateTypeForABI(Ty)) {
3971 // Treat an enum type as its underlying type.
3972 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3973 Ty = EnumTy->getDecl()->getIntegerType();
3974
3975 return (Ty->isPromotableIntegerType() && isDarwinPCS()
3976 ? ABIArgInfo::getExtend()
3977 : ABIArgInfo::getDirect());
3978 }
3979
3980 // Structures with either a non-trivial destructor or a non-trivial
3981 // copy constructor are always indirect.
3982 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3983 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3984 CGCXXABI::RAA_DirectInMemory);
3985 }
3986
3987 // Empty records are always ignored on Darwin, but actually passed in C++ mode
3988 // elsewhere for GNU compatibility.
3989 if (isEmptyRecord(getContext(), Ty, true)) {
3990 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3991 return ABIArgInfo::getIgnore();
3992
3993 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3994 }
3995
3996 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3997 const Type *Base = nullptr;
3998 uint64_t Members = 0;
3999 if (isHomogeneousAggregate(Ty, Base, Members)) {
4000 return ABIArgInfo::getDirect(
4001 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4002 }
4003
4004 // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4005 uint64_t Size = getContext().getTypeSize(Ty);
4006 if (Size <= 128) {
4007 unsigned Alignment = getContext().getTypeAlign(Ty);
4008 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4009
4010 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4011 // For aggregates with 16-byte alignment, we use i128.
4012 if (Alignment < 128 && Size == 128) {
4013 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4014 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4015 }
4016 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4017 }
4018
4019 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4020 }
4021
classifyReturnType(QualType RetTy) const4022 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4023 if (RetTy->isVoidType())
4024 return ABIArgInfo::getIgnore();
4025
4026 // Large vector types should be returned via memory.
4027 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4028 return ABIArgInfo::getIndirect(0);
4029
4030 if (!isAggregateTypeForABI(RetTy)) {
4031 // Treat an enum type as its underlying type.
4032 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4033 RetTy = EnumTy->getDecl()->getIntegerType();
4034
4035 return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4036 ? ABIArgInfo::getExtend()
4037 : ABIArgInfo::getDirect());
4038 }
4039
4040 if (isEmptyRecord(getContext(), RetTy, true))
4041 return ABIArgInfo::getIgnore();
4042
4043 const Type *Base = nullptr;
4044 uint64_t Members = 0;
4045 if (isHomogeneousAggregate(RetTy, Base, Members))
4046 // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4047 return ABIArgInfo::getDirect();
4048
4049 // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4050 uint64_t Size = getContext().getTypeSize(RetTy);
4051 if (Size <= 128) {
4052 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4053 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4054 }
4055
4056 return ABIArgInfo::getIndirect(0);
4057 }
4058
4059 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
isIllegalVectorType(QualType Ty) const4060 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4061 if (const VectorType *VT = Ty->getAs<VectorType>()) {
4062 // Check whether VT is legal.
4063 unsigned NumElements = VT->getNumElements();
4064 uint64_t Size = getContext().getTypeSize(VT);
4065 // NumElements should be power of 2 between 1 and 16.
4066 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4067 return true;
4068 return Size != 64 && (Size != 128 || NumElements == 1);
4069 }
4070 return false;
4071 }
4072
isHomogeneousAggregateBaseType(QualType Ty) const4073 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4074 // Homogeneous aggregates for AAPCS64 must have base types of a floating
4075 // point type or a short-vector type. This is the same as the 32-bit ABI,
4076 // but with the difference that any floating-point type is allowed,
4077 // including __fp16.
4078 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4079 if (BT->isFloatingPoint())
4080 return true;
4081 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4082 unsigned VecSize = getContext().getTypeSize(VT);
4083 if (VecSize == 64 || VecSize == 128)
4084 return true;
4085 }
4086 return false;
4087 }
4088
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const4089 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4090 uint64_t Members) const {
4091 return Members <= 4;
4092 }
4093
EmitAAPCSVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4094 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
4095 QualType Ty,
4096 CodeGenFunction &CGF) const {
4097 ABIArgInfo AI = classifyArgumentType(Ty);
4098 bool IsIndirect = AI.isIndirect();
4099
4100 llvm::Type *BaseTy = CGF.ConvertType(Ty);
4101 if (IsIndirect)
4102 BaseTy = llvm::PointerType::getUnqual(BaseTy);
4103 else if (AI.getCoerceToType())
4104 BaseTy = AI.getCoerceToType();
4105
4106 unsigned NumRegs = 1;
4107 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4108 BaseTy = ArrTy->getElementType();
4109 NumRegs = ArrTy->getNumElements();
4110 }
4111 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4112
4113 // The AArch64 va_list type and handling is specified in the Procedure Call
4114 // Standard, section B.4:
4115 //
4116 // struct {
4117 // void *__stack;
4118 // void *__gr_top;
4119 // void *__vr_top;
4120 // int __gr_offs;
4121 // int __vr_offs;
4122 // };
4123
4124 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4125 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4126 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4127 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4128 auto &Ctx = CGF.getContext();
4129
4130 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
4131 int reg_top_index;
4132 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
4133 if (!IsFPR) {
4134 // 3 is the field number of __gr_offs
4135 reg_offs_p =
4136 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p");
4137 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4138 reg_top_index = 1; // field number for __gr_top
4139 RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4140 } else {
4141 // 4 is the field number of __vr_offs.
4142 reg_offs_p =
4143 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p");
4144 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4145 reg_top_index = 2; // field number for __vr_top
4146 RegSize = 16 * NumRegs;
4147 }
4148
4149 //=======================================
4150 // Find out where argument was passed
4151 //=======================================
4152
4153 // If reg_offs >= 0 we're already using the stack for this type of
4154 // argument. We don't want to keep updating reg_offs (in case it overflows,
4155 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4156 // whatever they get).
4157 llvm::Value *UsingStack = nullptr;
4158 UsingStack = CGF.Builder.CreateICmpSGE(
4159 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4160
4161 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4162
4163 // Otherwise, at least some kind of argument could go in these registers, the
4164 // question is whether this particular type is too big.
4165 CGF.EmitBlock(MaybeRegBlock);
4166
4167 // Integer arguments may need to correct register alignment (for example a
4168 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4169 // align __gr_offs to calculate the potential address.
4170 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4171 int Align = Ctx.getTypeAlign(Ty) / 8;
4172
4173 reg_offs = CGF.Builder.CreateAdd(
4174 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4175 "align_regoffs");
4176 reg_offs = CGF.Builder.CreateAnd(
4177 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4178 "aligned_regoffs");
4179 }
4180
4181 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4182 llvm::Value *NewOffset = nullptr;
4183 NewOffset = CGF.Builder.CreateAdd(
4184 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4185 CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4186
4187 // Now we're in a position to decide whether this argument really was in
4188 // registers or not.
4189 llvm::Value *InRegs = nullptr;
4190 InRegs = CGF.Builder.CreateICmpSLE(
4191 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4192
4193 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4194
4195 //=======================================
4196 // Argument was in registers
4197 //=======================================
4198
4199 // Now we emit the code for if the argument was originally passed in
4200 // registers. First start the appropriate block:
4201 CGF.EmitBlock(InRegBlock);
4202
4203 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
4204 reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index,
4205 "reg_top_p");
4206 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4207 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4208 llvm::Value *RegAddr = nullptr;
4209 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4210
4211 if (IsIndirect) {
4212 // If it's been passed indirectly (actually a struct), whatever we find from
4213 // stored registers or on the stack will actually be a struct **.
4214 MemTy = llvm::PointerType::getUnqual(MemTy);
4215 }
4216
4217 const Type *Base = nullptr;
4218 uint64_t NumMembers = 0;
4219 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4220 if (IsHFA && NumMembers > 1) {
4221 // Homogeneous aggregates passed in registers will have their elements split
4222 // and stored 16-bytes apart regardless of size (they're notionally in qN,
4223 // qN+1, ...). We reload and store into a temporary local variable
4224 // contiguously.
4225 assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4226 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4227 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4228 llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy);
4229 int Offset = 0;
4230
4231 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
4232 Offset = 16 - Ctx.getTypeSize(Base) / 8;
4233 for (unsigned i = 0; i < NumMembers; ++i) {
4234 llvm::Value *BaseOffset =
4235 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
4236 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4237 LoadAddr = CGF.Builder.CreateBitCast(
4238 LoadAddr, llvm::PointerType::getUnqual(BaseTy));
4239 llvm::Value *StoreAddr =
4240 CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i);
4241
4242 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4243 CGF.Builder.CreateStore(Elem, StoreAddr);
4244 }
4245
4246 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4247 } else {
4248 // Otherwise the object is contiguous in memory
4249 unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4250 if (CGF.CGM.getDataLayout().isBigEndian() &&
4251 (IsHFA || !isAggregateTypeForABI(Ty)) &&
4252 Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
4253 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
4254 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4255
4256 BaseAddr = CGF.Builder.CreateAdd(
4257 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4258
4259 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4260 }
4261
4262 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4263 }
4264
4265 CGF.EmitBranch(ContBlock);
4266
4267 //=======================================
4268 // Argument was on the stack
4269 //=======================================
4270 CGF.EmitBlock(OnStackBlock);
4271
4272 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4273 stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p");
4274 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4275
4276 // Again, stack arguments may need realigmnent. In this case both integer and
4277 // floating-point ones might be affected.
4278 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4279 int Align = Ctx.getTypeAlign(Ty) / 8;
4280
4281 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4282
4283 OnStackAddr = CGF.Builder.CreateAdd(
4284 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4285 "align_stack");
4286 OnStackAddr = CGF.Builder.CreateAnd(
4287 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4288 "align_stack");
4289
4290 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4291 }
4292
4293 uint64_t StackSize;
4294 if (IsIndirect)
4295 StackSize = 8;
4296 else
4297 StackSize = Ctx.getTypeSize(Ty) / 8;
4298
4299 // All stack slots are 8 bytes
4300 StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4301
4302 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4303 llvm::Value *NewStack =
4304 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4305
4306 // Write the new value of __stack for the next call to va_arg
4307 CGF.Builder.CreateStore(NewStack, stack_p);
4308
4309 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4310 Ctx.getTypeSize(Ty) < 64) {
4311 int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4312 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4313
4314 OnStackAddr = CGF.Builder.CreateAdd(
4315 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4316
4317 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4318 }
4319
4320 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4321
4322 CGF.EmitBranch(ContBlock);
4323
4324 //=======================================
4325 // Tidy up
4326 //=======================================
4327 CGF.EmitBlock(ContBlock);
4328
4329 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4330 ResAddr->addIncoming(RegAddr, InRegBlock);
4331 ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4332
4333 if (IsIndirect)
4334 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4335
4336 return ResAddr;
4337 }
4338
EmitDarwinVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4339 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
4340 CodeGenFunction &CGF) const {
4341 // We do not support va_arg for aggregates or illegal vector types.
4342 // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4343 // other cases.
4344 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4345 return nullptr;
4346
4347 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4348 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4349
4350 const Type *Base = nullptr;
4351 uint64_t Members = 0;
4352 bool isHA = isHomogeneousAggregate(Ty, Base, Members);
4353
4354 bool isIndirect = false;
4355 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4356 // be passed indirectly.
4357 if (Size > 16 && !isHA) {
4358 isIndirect = true;
4359 Size = 8;
4360 Align = 8;
4361 }
4362
4363 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4364 llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4365
4366 CGBuilderTy &Builder = CGF.Builder;
4367 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4368 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4369
4370 if (isEmptyRecord(getContext(), Ty, true)) {
4371 // These are ignored for parameter passing purposes.
4372 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4373 return Builder.CreateBitCast(Addr, PTy);
4374 }
4375
4376 const uint64_t MinABIAlign = 8;
4377 if (Align > MinABIAlign) {
4378 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4379 Addr = Builder.CreateGEP(Addr, Offset);
4380 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4381 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4382 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4383 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4384 }
4385
4386 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4387 llvm::Value *NextAddr = Builder.CreateGEP(
4388 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4389 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4390
4391 if (isIndirect)
4392 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4393 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4394 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4395
4396 return AddrTyped;
4397 }
4398
4399 //===----------------------------------------------------------------------===//
4400 // ARM ABI Implementation
4401 //===----------------------------------------------------------------------===//
4402
4403 namespace {
4404
4405 class ARMABIInfo : public ABIInfo {
4406 public:
4407 enum ABIKind {
4408 APCS = 0,
4409 AAPCS = 1,
4410 AAPCS_VFP
4411 };
4412
4413 private:
4414 ABIKind Kind;
4415
4416 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)4417 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4418 setCCs();
4419 }
4420
isEABI() const4421 bool isEABI() const {
4422 switch (getTarget().getTriple().getEnvironment()) {
4423 case llvm::Triple::Android:
4424 case llvm::Triple::EABI:
4425 case llvm::Triple::EABIHF:
4426 case llvm::Triple::GNUEABI:
4427 case llvm::Triple::GNUEABIHF:
4428 return true;
4429 default:
4430 return false;
4431 }
4432 }
4433
isEABIHF() const4434 bool isEABIHF() const {
4435 switch (getTarget().getTriple().getEnvironment()) {
4436 case llvm::Triple::EABIHF:
4437 case llvm::Triple::GNUEABIHF:
4438 return true;
4439 default:
4440 return false;
4441 }
4442 }
4443
getABIKind() const4444 ABIKind getABIKind() const { return Kind; }
4445
4446 private:
4447 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4448 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4449 bool isIllegalVectorType(QualType Ty) const;
4450
4451 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4452 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4453 uint64_t Members) const override;
4454
4455 void computeInfo(CGFunctionInfo &FI) const override;
4456
4457 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4458 CodeGenFunction &CGF) const override;
4459
4460 llvm::CallingConv::ID getLLVMDefaultCC() const;
4461 llvm::CallingConv::ID getABIDefaultCC() const;
4462 void setCCs();
4463 };
4464
4465 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4466 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)4467 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4468 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4469
getABIInfo() const4470 const ARMABIInfo &getABIInfo() const {
4471 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4472 }
4473
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4475 return 13;
4476 }
4477
getARCRetainAutoreleasedReturnValueMarker() const4478 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4479 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4480 }
4481
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4482 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4483 llvm::Value *Address) const override {
4484 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4485
4486 // 0-15 are the 16 integer registers.
4487 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4488 return false;
4489 }
4490
getSizeOfUnwindException() const4491 unsigned getSizeOfUnwindException() const override {
4492 if (getABIInfo().isEABI()) return 88;
4493 return TargetCodeGenInfo::getSizeOfUnwindException();
4494 }
4495
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4496 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4497 CodeGen::CodeGenModule &CGM) const override {
4498 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4499 if (!FD)
4500 return;
4501
4502 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4503 if (!Attr)
4504 return;
4505
4506 const char *Kind;
4507 switch (Attr->getInterrupt()) {
4508 case ARMInterruptAttr::Generic: Kind = ""; break;
4509 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
4510 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
4511 case ARMInterruptAttr::SWI: Kind = "SWI"; break;
4512 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
4513 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
4514 }
4515
4516 llvm::Function *Fn = cast<llvm::Function>(GV);
4517
4518 Fn->addFnAttr("interrupt", Kind);
4519
4520 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4521 return;
4522
4523 // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4524 // however this is not necessarily true on taking any interrupt. Instruct
4525 // the backend to perform a realignment as part of the function prologue.
4526 llvm::AttrBuilder B;
4527 B.addStackAlignmentAttr(8);
4528 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4529 llvm::AttributeSet::get(CGM.getLLVMContext(),
4530 llvm::AttributeSet::FunctionIndex,
4531 B));
4532 }
4533 };
4534
4535 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4536 void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4537 CodeGen::CodeGenModule &CGM) const;
4538
4539 public:
WindowsARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)4540 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4541 : ARMTargetCodeGenInfo(CGT, K) {}
4542
4543 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4544 CodeGen::CodeGenModule &CGM) const override;
4545 };
4546
addStackProbeSizeTargetAttribute(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4547 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4548 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4549 if (!isa<FunctionDecl>(D))
4550 return;
4551 if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4552 return;
4553
4554 llvm::Function *F = cast<llvm::Function>(GV);
4555 F->addFnAttr("stack-probe-size",
4556 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4557 }
4558
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4559 void WindowsARMTargetCodeGenInfo::SetTargetAttributes(
4560 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4561 ARMTargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
4562 addStackProbeSizeTargetAttribute(D, GV, CGM);
4563 }
4564 }
4565
computeInfo(CGFunctionInfo & FI) const4566 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4567 if (!getCXXABI().classifyReturnType(FI))
4568 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
4569
4570 for (auto &I : FI.arguments())
4571 I.info = classifyArgumentType(I.type, FI.isVariadic());
4572
4573 // Always honor user-specified calling convention.
4574 if (FI.getCallingConvention() != llvm::CallingConv::C)
4575 return;
4576
4577 llvm::CallingConv::ID cc = getRuntimeCC();
4578 if (cc != llvm::CallingConv::C)
4579 FI.setEffectiveCallingConvention(cc);
4580 }
4581
4582 /// Return the default calling convention that LLVM will use.
getLLVMDefaultCC() const4583 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4584 // The default calling convention that LLVM will infer.
4585 if (isEABIHF())
4586 return llvm::CallingConv::ARM_AAPCS_VFP;
4587 else if (isEABI())
4588 return llvm::CallingConv::ARM_AAPCS;
4589 else
4590 return llvm::CallingConv::ARM_APCS;
4591 }
4592
4593 /// Return the calling convention that our ABI would like us to use
4594 /// as the C calling convention.
getABIDefaultCC() const4595 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4596 switch (getABIKind()) {
4597 case APCS: return llvm::CallingConv::ARM_APCS;
4598 case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4599 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4600 }
4601 llvm_unreachable("bad ABI kind");
4602 }
4603
setCCs()4604 void ARMABIInfo::setCCs() {
4605 assert(getRuntimeCC() == llvm::CallingConv::C);
4606
4607 // Don't muddy up the IR with a ton of explicit annotations if
4608 // they'd just match what LLVM will infer from the triple.
4609 llvm::CallingConv::ID abiCC = getABIDefaultCC();
4610 if (abiCC != getLLVMDefaultCC())
4611 RuntimeCC = abiCC;
4612
4613 BuiltinCC = (getABIKind() == APCS ?
4614 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4615 }
4616
classifyArgumentType(QualType Ty,bool isVariadic) const4617 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4618 bool isVariadic) const {
4619 // 6.1.2.1 The following argument types are VFP CPRCs:
4620 // A single-precision floating-point type (including promoted
4621 // half-precision types); A double-precision floating-point type;
4622 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4623 // with a Base Type of a single- or double-precision floating-point type,
4624 // 64-bit containerized vectors or 128-bit containerized vectors with one
4625 // to four Elements.
4626 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4627
4628 Ty = useFirstFieldIfTransparentUnion(Ty);
4629
4630 // Handle illegal vector types here.
4631 if (isIllegalVectorType(Ty)) {
4632 uint64_t Size = getContext().getTypeSize(Ty);
4633 if (Size <= 32) {
4634 llvm::Type *ResType =
4635 llvm::Type::getInt32Ty(getVMContext());
4636 return ABIArgInfo::getDirect(ResType);
4637 }
4638 if (Size == 64) {
4639 llvm::Type *ResType = llvm::VectorType::get(
4640 llvm::Type::getInt32Ty(getVMContext()), 2);
4641 return ABIArgInfo::getDirect(ResType);
4642 }
4643 if (Size == 128) {
4644 llvm::Type *ResType = llvm::VectorType::get(
4645 llvm::Type::getInt32Ty(getVMContext()), 4);
4646 return ABIArgInfo::getDirect(ResType);
4647 }
4648 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4649 }
4650
4651 if (!isAggregateTypeForABI(Ty)) {
4652 // Treat an enum type as its underlying type.
4653 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4654 Ty = EnumTy->getDecl()->getIntegerType();
4655 }
4656
4657 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4658 : ABIArgInfo::getDirect());
4659 }
4660
4661 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4662 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4663 }
4664
4665 // Ignore empty records.
4666 if (isEmptyRecord(getContext(), Ty, true))
4667 return ABIArgInfo::getIgnore();
4668
4669 if (IsEffectivelyAAPCS_VFP) {
4670 // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4671 // into VFP registers.
4672 const Type *Base = nullptr;
4673 uint64_t Members = 0;
4674 if (isHomogeneousAggregate(Ty, Base, Members)) {
4675 assert(Base && "Base class should be set for homogeneous aggregate");
4676 // Base can be a floating-point or a vector.
4677 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4678 }
4679 }
4680
4681 // Support byval for ARM.
4682 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4683 // most 8-byte. We realign the indirect argument if type alignment is bigger
4684 // than ABI alignment.
4685 uint64_t ABIAlign = 4;
4686 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4687 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4688 getABIKind() == ARMABIInfo::AAPCS)
4689 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4690
4691 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4692 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
4693 /*Realign=*/TyAlign > ABIAlign);
4694 }
4695
4696 // Otherwise, pass by coercing to a structure of the appropriate size.
4697 llvm::Type* ElemTy;
4698 unsigned SizeRegs;
4699 // FIXME: Try to match the types of the arguments more accurately where
4700 // we can.
4701 if (getContext().getTypeAlign(Ty) <= 32) {
4702 ElemTy = llvm::Type::getInt32Ty(getVMContext());
4703 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4704 } else {
4705 ElemTy = llvm::Type::getInt64Ty(getVMContext());
4706 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4707 }
4708
4709 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4710 }
4711
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)4712 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4713 llvm::LLVMContext &VMContext) {
4714 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4715 // is called integer-like if its size is less than or equal to one word, and
4716 // the offset of each of its addressable sub-fields is zero.
4717
4718 uint64_t Size = Context.getTypeSize(Ty);
4719
4720 // Check that the type fits in a word.
4721 if (Size > 32)
4722 return false;
4723
4724 // FIXME: Handle vector types!
4725 if (Ty->isVectorType())
4726 return false;
4727
4728 // Float types are never treated as "integer like".
4729 if (Ty->isRealFloatingType())
4730 return false;
4731
4732 // If this is a builtin or pointer type then it is ok.
4733 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4734 return true;
4735
4736 // Small complex integer types are "integer like".
4737 if (const ComplexType *CT = Ty->getAs<ComplexType>())
4738 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4739
4740 // Single element and zero sized arrays should be allowed, by the definition
4741 // above, but they are not.
4742
4743 // Otherwise, it must be a record type.
4744 const RecordType *RT = Ty->getAs<RecordType>();
4745 if (!RT) return false;
4746
4747 // Ignore records with flexible arrays.
4748 const RecordDecl *RD = RT->getDecl();
4749 if (RD->hasFlexibleArrayMember())
4750 return false;
4751
4752 // Check that all sub-fields are at offset 0, and are themselves "integer
4753 // like".
4754 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4755
4756 bool HadField = false;
4757 unsigned idx = 0;
4758 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4759 i != e; ++i, ++idx) {
4760 const FieldDecl *FD = *i;
4761
4762 // Bit-fields are not addressable, we only need to verify they are "integer
4763 // like". We still have to disallow a subsequent non-bitfield, for example:
4764 // struct { int : 0; int x }
4765 // is non-integer like according to gcc.
4766 if (FD->isBitField()) {
4767 if (!RD->isUnion())
4768 HadField = true;
4769
4770 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4771 return false;
4772
4773 continue;
4774 }
4775
4776 // Check if this field is at offset 0.
4777 if (Layout.getFieldOffset(idx) != 0)
4778 return false;
4779
4780 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4781 return false;
4782
4783 // Only allow at most one field in a structure. This doesn't match the
4784 // wording above, but follows gcc in situations with a field following an
4785 // empty structure.
4786 if (!RD->isUnion()) {
4787 if (HadField)
4788 return false;
4789
4790 HadField = true;
4791 }
4792 }
4793
4794 return true;
4795 }
4796
classifyReturnType(QualType RetTy,bool isVariadic) const4797 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4798 bool isVariadic) const {
4799 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4800
4801 if (RetTy->isVoidType())
4802 return ABIArgInfo::getIgnore();
4803
4804 // Large vector types should be returned via memory.
4805 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4806 return ABIArgInfo::getIndirect(0);
4807 }
4808
4809 if (!isAggregateTypeForABI(RetTy)) {
4810 // Treat an enum type as its underlying type.
4811 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4812 RetTy = EnumTy->getDecl()->getIntegerType();
4813
4814 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4815 : ABIArgInfo::getDirect();
4816 }
4817
4818 // Are we following APCS?
4819 if (getABIKind() == APCS) {
4820 if (isEmptyRecord(getContext(), RetTy, false))
4821 return ABIArgInfo::getIgnore();
4822
4823 // Complex types are all returned as packed integers.
4824 //
4825 // FIXME: Consider using 2 x vector types if the back end handles them
4826 // correctly.
4827 if (RetTy->isAnyComplexType())
4828 return ABIArgInfo::getDirect(llvm::IntegerType::get(
4829 getVMContext(), getContext().getTypeSize(RetTy)));
4830
4831 // Integer like structures are returned in r0.
4832 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4833 // Return in the smallest viable integer type.
4834 uint64_t Size = getContext().getTypeSize(RetTy);
4835 if (Size <= 8)
4836 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4837 if (Size <= 16)
4838 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4839 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4840 }
4841
4842 // Otherwise return in memory.
4843 return ABIArgInfo::getIndirect(0);
4844 }
4845
4846 // Otherwise this is an AAPCS variant.
4847
4848 if (isEmptyRecord(getContext(), RetTy, true))
4849 return ABIArgInfo::getIgnore();
4850
4851 // Check for homogeneous aggregates with AAPCS-VFP.
4852 if (IsEffectivelyAAPCS_VFP) {
4853 const Type *Base = nullptr;
4854 uint64_t Members;
4855 if (isHomogeneousAggregate(RetTy, Base, Members)) {
4856 assert(Base && "Base class should be set for homogeneous aggregate");
4857 // Homogeneous Aggregates are returned directly.
4858 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4859 }
4860 }
4861
4862 // Aggregates <= 4 bytes are returned in r0; other aggregates
4863 // are returned indirectly.
4864 uint64_t Size = getContext().getTypeSize(RetTy);
4865 if (Size <= 32) {
4866 if (getDataLayout().isBigEndian())
4867 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4868 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4869
4870 // Return in the smallest viable integer type.
4871 if (Size <= 8)
4872 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4873 if (Size <= 16)
4874 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4875 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4876 }
4877
4878 return ABIArgInfo::getIndirect(0);
4879 }
4880
4881 /// isIllegalVector - check whether Ty is an illegal vector type.
isIllegalVectorType(QualType Ty) const4882 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4883 if (const VectorType *VT = Ty->getAs<VectorType>()) {
4884 // Check whether VT is legal.
4885 unsigned NumElements = VT->getNumElements();
4886 // NumElements should be power of 2.
4887 if (((NumElements & (NumElements - 1)) != 0) && NumElements != 3)
4888 return true;
4889 }
4890 return false;
4891 }
4892
isHomogeneousAggregateBaseType(QualType Ty) const4893 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4894 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4895 // double, or 64-bit or 128-bit vectors.
4896 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4897 if (BT->getKind() == BuiltinType::Float ||
4898 BT->getKind() == BuiltinType::Double ||
4899 BT->getKind() == BuiltinType::LongDouble)
4900 return true;
4901 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4902 unsigned VecSize = getContext().getTypeSize(VT);
4903 if (VecSize == 64 || VecSize == 128)
4904 return true;
4905 }
4906 return false;
4907 }
4908
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const4909 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4910 uint64_t Members) const {
4911 return Members <= 4;
4912 }
4913
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4914 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4915 CodeGenFunction &CGF) const {
4916 llvm::Type *BP = CGF.Int8PtrTy;
4917 llvm::Type *BPP = CGF.Int8PtrPtrTy;
4918
4919 CGBuilderTy &Builder = CGF.Builder;
4920 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4921 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4922
4923 if (isEmptyRecord(getContext(), Ty, true)) {
4924 // These are ignored for parameter passing purposes.
4925 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4926 return Builder.CreateBitCast(Addr, PTy);
4927 }
4928
4929 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4930 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4931 bool IsIndirect = false;
4932
4933 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4934 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4935 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4936 getABIKind() == ARMABIInfo::AAPCS)
4937 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4938 else
4939 TyAlign = 4;
4940 // Use indirect if size of the illegal vector is bigger than 32 bytes.
4941 if (isIllegalVectorType(Ty) && Size > 32) {
4942 IsIndirect = true;
4943 Size = 4;
4944 TyAlign = 4;
4945 }
4946
4947 // Handle address alignment for ABI alignment > 4 bytes.
4948 if (TyAlign > 4) {
4949 assert((TyAlign & (TyAlign - 1)) == 0 &&
4950 "Alignment is not power of 2!");
4951 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
4952 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
4953 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
4954 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
4955 }
4956
4957 uint64_t Offset =
4958 llvm::RoundUpToAlignment(Size, 4);
4959 llvm::Value *NextAddr =
4960 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4961 "ap.next");
4962 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4963
4964 if (IsIndirect)
4965 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4966 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
4967 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
4968 // may not be correctly aligned for the vector type. We create an aligned
4969 // temporary space and copy the content over from ap.cur to the temporary
4970 // space. This is necessary if the natural alignment of the type is greater
4971 // than the ABI alignment.
4972 llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
4973 CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
4974 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
4975 "var.align");
4976 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
4977 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
4978 Builder.CreateMemCpy(Dst, Src,
4979 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
4980 TyAlign, false);
4981 Addr = AlignedTemp; //The content is in aligned location.
4982 }
4983 llvm::Type *PTy =
4984 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4985 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4986
4987 return AddrTyped;
4988 }
4989
4990 //===----------------------------------------------------------------------===//
4991 // NVPTX ABI Implementation
4992 //===----------------------------------------------------------------------===//
4993
4994 namespace {
4995
4996 class NVPTXABIInfo : public ABIInfo {
4997 public:
NVPTXABIInfo(CodeGenTypes & CGT)4998 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4999
5000 ABIArgInfo classifyReturnType(QualType RetTy) const;
5001 ABIArgInfo classifyArgumentType(QualType Ty) const;
5002
5003 void computeInfo(CGFunctionInfo &FI) const override;
5004 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5005 CodeGenFunction &CFG) const override;
5006 };
5007
5008 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5009 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)5010 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5011 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5012
5013 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5014 CodeGen::CodeGenModule &M) const override;
5015 private:
5016 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5017 // resulting MDNode to the nvvm.annotations MDNode.
5018 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5019 };
5020
classifyReturnType(QualType RetTy) const5021 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5022 if (RetTy->isVoidType())
5023 return ABIArgInfo::getIgnore();
5024
5025 // note: this is different from default ABI
5026 if (!RetTy->isScalarType())
5027 return ABIArgInfo::getDirect();
5028
5029 // Treat an enum type as its underlying type.
5030 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5031 RetTy = EnumTy->getDecl()->getIntegerType();
5032
5033 return (RetTy->isPromotableIntegerType() ?
5034 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5035 }
5036
classifyArgumentType(QualType Ty) const5037 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5038 // Treat an enum type as its underlying type.
5039 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5040 Ty = EnumTy->getDecl()->getIntegerType();
5041
5042 // Return aggregates type as indirect by value
5043 if (isAggregateTypeForABI(Ty))
5044 return ABIArgInfo::getIndirect(0, /* byval */ true);
5045
5046 return (Ty->isPromotableIntegerType() ?
5047 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5048 }
5049
computeInfo(CGFunctionInfo & FI) const5050 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5051 if (!getCXXABI().classifyReturnType(FI))
5052 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5053 for (auto &I : FI.arguments())
5054 I.info = classifyArgumentType(I.type);
5055
5056 // Always honor user-specified calling convention.
5057 if (FI.getCallingConvention() != llvm::CallingConv::C)
5058 return;
5059
5060 FI.setEffectiveCallingConvention(getRuntimeCC());
5061 }
5062
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CFG) const5063 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5064 CodeGenFunction &CFG) const {
5065 llvm_unreachable("NVPTX does not support varargs");
5066 }
5067
5068 void NVPTXTargetCodeGenInfo::
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5069 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5070 CodeGen::CodeGenModule &M) const{
5071 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5072 if (!FD) return;
5073
5074 llvm::Function *F = cast<llvm::Function>(GV);
5075
5076 // Perform special handling in OpenCL mode
5077 if (M.getLangOpts().OpenCL) {
5078 // Use OpenCL function attributes to check for kernel functions
5079 // By default, all functions are device functions
5080 if (FD->hasAttr<OpenCLKernelAttr>()) {
5081 // OpenCL __kernel functions get kernel metadata
5082 // Create !{<func-ref>, metadata !"kernel", i32 1} node
5083 addNVVMMetadata(F, "kernel", 1);
5084 // And kernel functions are not subject to inlining
5085 F->addFnAttr(llvm::Attribute::NoInline);
5086 }
5087 }
5088
5089 // Perform special handling in CUDA mode.
5090 if (M.getLangOpts().CUDA) {
5091 // CUDA __global__ functions get a kernel metadata entry. Since
5092 // __global__ functions cannot be called from the device, we do not
5093 // need to set the noinline attribute.
5094 if (FD->hasAttr<CUDAGlobalAttr>()) {
5095 // Create !{<func-ref>, metadata !"kernel", i32 1} node
5096 addNVVMMetadata(F, "kernel", 1);
5097 }
5098 if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
5099 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5100 addNVVMMetadata(F, "maxntidx",
5101 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
5102 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
5103 // zero value from getMinBlocks either means it was not specified in
5104 // __launch_bounds__ or the user specified a 0 value. In both cases, we
5105 // don't have to add a PTX directive.
5106 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
5107 if (MinCTASM > 0) {
5108 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5109 addNVVMMetadata(F, "minctasm", MinCTASM);
5110 }
5111 }
5112 }
5113 }
5114
addNVVMMetadata(llvm::Function * F,StringRef Name,int Operand)5115 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5116 int Operand) {
5117 llvm::Module *M = F->getParent();
5118 llvm::LLVMContext &Ctx = M->getContext();
5119
5120 // Get "nvvm.annotations" metadata node
5121 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5122
5123 llvm::Metadata *MDVals[] = {
5124 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5125 llvm::ConstantAsMetadata::get(
5126 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5127 // Append metadata to nvvm.annotations
5128 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5129 }
5130 }
5131
5132 //===----------------------------------------------------------------------===//
5133 // SystemZ ABI Implementation
5134 //===----------------------------------------------------------------------===//
5135
5136 namespace {
5137
5138 class SystemZABIInfo : public ABIInfo {
5139 public:
SystemZABIInfo(CodeGenTypes & CGT)5140 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5141
5142 bool isPromotableIntegerType(QualType Ty) const;
5143 bool isCompoundType(QualType Ty) const;
5144 bool isFPArgumentType(QualType Ty) const;
5145
5146 ABIArgInfo classifyReturnType(QualType RetTy) const;
5147 ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5148
computeInfo(CGFunctionInfo & FI) const5149 void computeInfo(CGFunctionInfo &FI) const override {
5150 if (!getCXXABI().classifyReturnType(FI))
5151 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5152 for (auto &I : FI.arguments())
5153 I.info = classifyArgumentType(I.type);
5154 }
5155
5156 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5157 CodeGenFunction &CGF) const override;
5158 };
5159
5160 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5161 public:
SystemZTargetCodeGenInfo(CodeGenTypes & CGT)5162 SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
5163 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
5164 };
5165
5166 }
5167
isPromotableIntegerType(QualType Ty) const5168 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5169 // Treat an enum type as its underlying type.
5170 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5171 Ty = EnumTy->getDecl()->getIntegerType();
5172
5173 // Promotable integer types are required to be promoted by the ABI.
5174 if (Ty->isPromotableIntegerType())
5175 return true;
5176
5177 // 32-bit values must also be promoted.
5178 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5179 switch (BT->getKind()) {
5180 case BuiltinType::Int:
5181 case BuiltinType::UInt:
5182 return true;
5183 default:
5184 return false;
5185 }
5186 return false;
5187 }
5188
isCompoundType(QualType Ty) const5189 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5190 return (Ty->isAnyComplexType() ||
5191 Ty->isVectorType() ||
5192 isAggregateTypeForABI(Ty));
5193 }
5194
isFPArgumentType(QualType Ty) const5195 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5196 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5197 switch (BT->getKind()) {
5198 case BuiltinType::Float:
5199 case BuiltinType::Double:
5200 return true;
5201 default:
5202 return false;
5203 }
5204
5205 if (const RecordType *RT = Ty->getAsStructureType()) {
5206 const RecordDecl *RD = RT->getDecl();
5207 bool Found = false;
5208
5209 // If this is a C++ record, check the bases first.
5210 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5211 for (const auto &I : CXXRD->bases()) {
5212 QualType Base = I.getType();
5213
5214 // Empty bases don't affect things either way.
5215 if (isEmptyRecord(getContext(), Base, true))
5216 continue;
5217
5218 if (Found)
5219 return false;
5220 Found = isFPArgumentType(Base);
5221 if (!Found)
5222 return false;
5223 }
5224
5225 // Check the fields.
5226 for (const auto *FD : RD->fields()) {
5227 // For compatibility with GCC, ignore empty bitfields in C++ mode.
5228 // Unlike isSingleElementStruct(), empty structure and array fields
5229 // do count. So do anonymous bitfields that aren't zero-sized.
5230 if (getContext().getLangOpts().CPlusPlus &&
5231 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5232 continue;
5233
5234 // Unlike isSingleElementStruct(), arrays do not count.
5235 // Nested isFPArgumentType structures still do though.
5236 if (Found)
5237 return false;
5238 Found = isFPArgumentType(FD->getType());
5239 if (!Found)
5240 return false;
5241 }
5242
5243 // Unlike isSingleElementStruct(), trailing padding is allowed.
5244 // An 8-byte aligned struct s { float f; } is passed as a double.
5245 return Found;
5246 }
5247
5248 return false;
5249 }
5250
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5251 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5252 CodeGenFunction &CGF) const {
5253 // Assume that va_list type is correct; should be pointer to LLVM type:
5254 // struct {
5255 // i64 __gpr;
5256 // i64 __fpr;
5257 // i8 *__overflow_arg_area;
5258 // i8 *__reg_save_area;
5259 // };
5260
5261 // Every argument occupies 8 bytes and is passed by preference in either
5262 // GPRs or FPRs.
5263 Ty = CGF.getContext().getCanonicalType(Ty);
5264 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5265 llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy);
5266 ABIArgInfo AI = classifyArgumentType(Ty);
5267 bool IsIndirect = AI.isIndirect();
5268 bool InFPRs = false;
5269 unsigned UnpaddedBitSize;
5270 if (IsIndirect) {
5271 APTy = llvm::PointerType::getUnqual(APTy);
5272 UnpaddedBitSize = 64;
5273 } else {
5274 if (AI.getCoerceToType())
5275 ArgTy = AI.getCoerceToType();
5276 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5277 UnpaddedBitSize = getContext().getTypeSize(Ty);
5278 }
5279 unsigned PaddedBitSize = 64;
5280 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5281
5282 unsigned PaddedSize = PaddedBitSize / 8;
5283 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5284
5285 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5286 if (InFPRs) {
5287 MaxRegs = 4; // Maximum of 4 FPR arguments
5288 RegCountField = 1; // __fpr
5289 RegSaveIndex = 16; // save offset for f0
5290 RegPadding = 0; // floats are passed in the high bits of an FPR
5291 } else {
5292 MaxRegs = 5; // Maximum of 5 GPR arguments
5293 RegCountField = 0; // __gpr
5294 RegSaveIndex = 2; // save offset for r2
5295 RegPadding = Padding; // values are passed in the low bits of a GPR
5296 }
5297
5298 llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP(
5299 nullptr, VAListAddr, RegCountField, "reg_count_ptr");
5300 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5301 llvm::Type *IndexTy = RegCount->getType();
5302 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5303 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5304 "fits_in_regs");
5305
5306 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5307 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5308 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5309 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5310
5311 // Emit code to load the value if it was passed in registers.
5312 CGF.EmitBlock(InRegBlock);
5313
5314 // Work out the address of an argument register.
5315 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5316 llvm::Value *ScaledRegCount =
5317 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5318 llvm::Value *RegBase =
5319 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5320 llvm::Value *RegOffset =
5321 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5322 llvm::Value *RegSaveAreaPtr =
5323 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr");
5324 llvm::Value *RegSaveArea =
5325 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5326 llvm::Value *RawRegAddr =
5327 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5328 llvm::Value *RegAddr =
5329 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5330
5331 // Update the register count
5332 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5333 llvm::Value *NewRegCount =
5334 CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5335 CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5336 CGF.EmitBranch(ContBlock);
5337
5338 // Emit code to load the value if it was passed in memory.
5339 CGF.EmitBlock(InMemBlock);
5340
5341 // Work out the address of a stack argument.
5342 llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5343 nullptr, VAListAddr, 2, "overflow_arg_area_ptr");
5344 llvm::Value *OverflowArgArea =
5345 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5346 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5347 llvm::Value *RawMemAddr =
5348 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5349 llvm::Value *MemAddr =
5350 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5351
5352 // Update overflow_arg_area_ptr pointer
5353 llvm::Value *NewOverflowArgArea =
5354 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5355 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5356 CGF.EmitBranch(ContBlock);
5357
5358 // Return the appropriate result.
5359 CGF.EmitBlock(ContBlock);
5360 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5361 ResAddr->addIncoming(RegAddr, InRegBlock);
5362 ResAddr->addIncoming(MemAddr, InMemBlock);
5363
5364 if (IsIndirect)
5365 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5366
5367 return ResAddr;
5368 }
5369
classifyReturnType(QualType RetTy) const5370 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5371 if (RetTy->isVoidType())
5372 return ABIArgInfo::getIgnore();
5373 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5374 return ABIArgInfo::getIndirect(0);
5375 return (isPromotableIntegerType(RetTy) ?
5376 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5377 }
5378
classifyArgumentType(QualType Ty) const5379 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5380 // Handle the generic C++ ABI.
5381 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5382 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5383
5384 // Integers and enums are extended to full register width.
5385 if (isPromotableIntegerType(Ty))
5386 return ABIArgInfo::getExtend();
5387
5388 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5389 uint64_t Size = getContext().getTypeSize(Ty);
5390 if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5391 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5392
5393 // Handle small structures.
5394 if (const RecordType *RT = Ty->getAs<RecordType>()) {
5395 // Structures with flexible arrays have variable length, so really
5396 // fail the size test above.
5397 const RecordDecl *RD = RT->getDecl();
5398 if (RD->hasFlexibleArrayMember())
5399 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5400
5401 // The structure is passed as an unextended integer, a float, or a double.
5402 llvm::Type *PassTy;
5403 if (isFPArgumentType(Ty)) {
5404 assert(Size == 32 || Size == 64);
5405 if (Size == 32)
5406 PassTy = llvm::Type::getFloatTy(getVMContext());
5407 else
5408 PassTy = llvm::Type::getDoubleTy(getVMContext());
5409 } else
5410 PassTy = llvm::IntegerType::get(getVMContext(), Size);
5411 return ABIArgInfo::getDirect(PassTy);
5412 }
5413
5414 // Non-structure compounds are passed indirectly.
5415 if (isCompoundType(Ty))
5416 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5417
5418 return ABIArgInfo::getDirect(nullptr);
5419 }
5420
5421 //===----------------------------------------------------------------------===//
5422 // MSP430 ABI Implementation
5423 //===----------------------------------------------------------------------===//
5424
5425 namespace {
5426
5427 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5428 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)5429 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5430 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5431 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5432 CodeGen::CodeGenModule &M) const override;
5433 };
5434
5435 }
5436
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5437 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5438 llvm::GlobalValue *GV,
5439 CodeGen::CodeGenModule &M) const {
5440 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5441 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5442 // Handle 'interrupt' attribute:
5443 llvm::Function *F = cast<llvm::Function>(GV);
5444
5445 // Step 1: Set ISR calling convention.
5446 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5447
5448 // Step 2: Add attributes goodness.
5449 F->addFnAttr(llvm::Attribute::NoInline);
5450
5451 // Step 3: Emit ISR vector alias.
5452 unsigned Num = attr->getNumber() / 2;
5453 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5454 "__isr_" + Twine(Num), F);
5455 }
5456 }
5457 }
5458
5459 //===----------------------------------------------------------------------===//
5460 // MIPS ABI Implementation. This works for both little-endian and
5461 // big-endian variants.
5462 //===----------------------------------------------------------------------===//
5463
5464 namespace {
5465 class MipsABIInfo : public ABIInfo {
5466 bool IsO32;
5467 unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5468 void CoerceToIntArgs(uint64_t TySize,
5469 SmallVectorImpl<llvm::Type *> &ArgList) const;
5470 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5471 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5472 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5473 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)5474 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5475 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5476 StackAlignInBytes(IsO32 ? 8 : 16) {}
5477
5478 ABIArgInfo classifyReturnType(QualType RetTy) const;
5479 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5480 void computeInfo(CGFunctionInfo &FI) const override;
5481 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5482 CodeGenFunction &CGF) const override;
5483 };
5484
5485 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5486 unsigned SizeOfUnwindException;
5487 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)5488 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5489 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5490 SizeOfUnwindException(IsO32 ? 24 : 32) {}
5491
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const5492 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5493 return 29;
5494 }
5495
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5496 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5497 CodeGen::CodeGenModule &CGM) const override {
5498 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5499 if (!FD) return;
5500 llvm::Function *Fn = cast<llvm::Function>(GV);
5501 if (FD->hasAttr<Mips16Attr>()) {
5502 Fn->addFnAttr("mips16");
5503 }
5504 else if (FD->hasAttr<NoMips16Attr>()) {
5505 Fn->addFnAttr("nomips16");
5506 }
5507 }
5508
5509 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5510 llvm::Value *Address) const override;
5511
getSizeOfUnwindException() const5512 unsigned getSizeOfUnwindException() const override {
5513 return SizeOfUnwindException;
5514 }
5515 };
5516 }
5517
CoerceToIntArgs(uint64_t TySize,SmallVectorImpl<llvm::Type * > & ArgList) const5518 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5519 SmallVectorImpl<llvm::Type *> &ArgList) const {
5520 llvm::IntegerType *IntTy =
5521 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5522
5523 // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5524 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5525 ArgList.push_back(IntTy);
5526
5527 // If necessary, add one more integer type to ArgList.
5528 unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5529
5530 if (R)
5531 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5532 }
5533
5534 // In N32/64, an aligned double precision floating point field is passed in
5535 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const5536 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5537 SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5538
5539 if (IsO32) {
5540 CoerceToIntArgs(TySize, ArgList);
5541 return llvm::StructType::get(getVMContext(), ArgList);
5542 }
5543
5544 if (Ty->isComplexType())
5545 return CGT.ConvertType(Ty);
5546
5547 const RecordType *RT = Ty->getAs<RecordType>();
5548
5549 // Unions/vectors are passed in integer registers.
5550 if (!RT || !RT->isStructureOrClassType()) {
5551 CoerceToIntArgs(TySize, ArgList);
5552 return llvm::StructType::get(getVMContext(), ArgList);
5553 }
5554
5555 const RecordDecl *RD = RT->getDecl();
5556 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5557 assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5558
5559 uint64_t LastOffset = 0;
5560 unsigned idx = 0;
5561 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5562
5563 // Iterate over fields in the struct/class and check if there are any aligned
5564 // double fields.
5565 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5566 i != e; ++i, ++idx) {
5567 const QualType Ty = i->getType();
5568 const BuiltinType *BT = Ty->getAs<BuiltinType>();
5569
5570 if (!BT || BT->getKind() != BuiltinType::Double)
5571 continue;
5572
5573 uint64_t Offset = Layout.getFieldOffset(idx);
5574 if (Offset % 64) // Ignore doubles that are not aligned.
5575 continue;
5576
5577 // Add ((Offset - LastOffset) / 64) args of type i64.
5578 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5579 ArgList.push_back(I64);
5580
5581 // Add double type.
5582 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5583 LastOffset = Offset + 64;
5584 }
5585
5586 CoerceToIntArgs(TySize - LastOffset, IntArgList);
5587 ArgList.append(IntArgList.begin(), IntArgList.end());
5588
5589 return llvm::StructType::get(getVMContext(), ArgList);
5590 }
5591
getPaddingType(uint64_t OrigOffset,uint64_t Offset) const5592 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5593 uint64_t Offset) const {
5594 if (OrigOffset + MinABIStackAlignInBytes > Offset)
5595 return nullptr;
5596
5597 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5598 }
5599
5600 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const5601 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5602 Ty = useFirstFieldIfTransparentUnion(Ty);
5603
5604 uint64_t OrigOffset = Offset;
5605 uint64_t TySize = getContext().getTypeSize(Ty);
5606 uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5607
5608 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5609 (uint64_t)StackAlignInBytes);
5610 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5611 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5612
5613 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5614 // Ignore empty aggregates.
5615 if (TySize == 0)
5616 return ABIArgInfo::getIgnore();
5617
5618 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5619 Offset = OrigOffset + MinABIStackAlignInBytes;
5620 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5621 }
5622
5623 // If we have reached here, aggregates are passed directly by coercing to
5624 // another structure type. Padding is inserted if the offset of the
5625 // aggregate is unaligned.
5626 ABIArgInfo ArgInfo =
5627 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5628 getPaddingType(OrigOffset, CurrOffset));
5629 ArgInfo.setInReg(true);
5630 return ArgInfo;
5631 }
5632
5633 // Treat an enum type as its underlying type.
5634 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5635 Ty = EnumTy->getDecl()->getIntegerType();
5636
5637 // All integral types are promoted to the GPR width.
5638 if (Ty->isIntegralOrEnumerationType())
5639 return ABIArgInfo::getExtend();
5640
5641 return ABIArgInfo::getDirect(
5642 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5643 }
5644
5645 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const5646 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5647 const RecordType *RT = RetTy->getAs<RecordType>();
5648 SmallVector<llvm::Type*, 8> RTList;
5649
5650 if (RT && RT->isStructureOrClassType()) {
5651 const RecordDecl *RD = RT->getDecl();
5652 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5653 unsigned FieldCnt = Layout.getFieldCount();
5654
5655 // N32/64 returns struct/classes in floating point registers if the
5656 // following conditions are met:
5657 // 1. The size of the struct/class is no larger than 128-bit.
5658 // 2. The struct/class has one or two fields all of which are floating
5659 // point types.
5660 // 3. The offset of the first field is zero (this follows what gcc does).
5661 //
5662 // Any other composite results are returned in integer registers.
5663 //
5664 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5665 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5666 for (; b != e; ++b) {
5667 const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5668
5669 if (!BT || !BT->isFloatingPoint())
5670 break;
5671
5672 RTList.push_back(CGT.ConvertType(b->getType()));
5673 }
5674
5675 if (b == e)
5676 return llvm::StructType::get(getVMContext(), RTList,
5677 RD->hasAttr<PackedAttr>());
5678
5679 RTList.clear();
5680 }
5681 }
5682
5683 CoerceToIntArgs(Size, RTList);
5684 return llvm::StructType::get(getVMContext(), RTList);
5685 }
5686
classifyReturnType(QualType RetTy) const5687 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5688 uint64_t Size = getContext().getTypeSize(RetTy);
5689
5690 if (RetTy->isVoidType())
5691 return ABIArgInfo::getIgnore();
5692
5693 // O32 doesn't treat zero-sized structs differently from other structs.
5694 // However, N32/N64 ignores zero sized return values.
5695 if (!IsO32 && Size == 0)
5696 return ABIArgInfo::getIgnore();
5697
5698 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5699 if (Size <= 128) {
5700 if (RetTy->isAnyComplexType())
5701 return ABIArgInfo::getDirect();
5702
5703 // O32 returns integer vectors in registers and N32/N64 returns all small
5704 // aggregates in registers.
5705 if (!IsO32 ||
5706 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5707 ABIArgInfo ArgInfo =
5708 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5709 ArgInfo.setInReg(true);
5710 return ArgInfo;
5711 }
5712 }
5713
5714 return ABIArgInfo::getIndirect(0);
5715 }
5716
5717 // Treat an enum type as its underlying type.
5718 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5719 RetTy = EnumTy->getDecl()->getIntegerType();
5720
5721 return (RetTy->isPromotableIntegerType() ?
5722 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5723 }
5724
computeInfo(CGFunctionInfo & FI) const5725 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5726 ABIArgInfo &RetInfo = FI.getReturnInfo();
5727 if (!getCXXABI().classifyReturnType(FI))
5728 RetInfo = classifyReturnType(FI.getReturnType());
5729
5730 // Check if a pointer to an aggregate is passed as a hidden argument.
5731 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5732
5733 for (auto &I : FI.arguments())
5734 I.info = classifyArgumentType(I.type, Offset);
5735 }
5736
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5737 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5738 CodeGenFunction &CGF) const {
5739 llvm::Type *BP = CGF.Int8PtrTy;
5740 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5741
5742 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
5743 // Pointers are also promoted in the same way but this only matters for N32.
5744 unsigned SlotSizeInBits = IsO32 ? 32 : 64;
5745 unsigned PtrWidth = getTarget().getPointerWidth(0);
5746 if ((Ty->isIntegerType() &&
5747 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
5748 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
5749 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
5750 Ty->isSignedIntegerType());
5751 }
5752
5753 CGBuilderTy &Builder = CGF.Builder;
5754 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5755 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5756 int64_t TypeAlign =
5757 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5758 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5759 llvm::Value *AddrTyped;
5760 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5761
5762 if (TypeAlign > MinABIStackAlignInBytes) {
5763 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5764 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5765 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5766 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5767 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5768 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5769 }
5770 else
5771 AddrTyped = Builder.CreateBitCast(Addr, PTy);
5772
5773 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5774 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5775 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
5776 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
5777 llvm::Value *NextAddr =
5778 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5779 "ap.next");
5780 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5781
5782 return AddrTyped;
5783 }
5784
5785 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5786 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5787 llvm::Value *Address) const {
5788 // This information comes from gcc's implementation, which seems to
5789 // as canonical as it gets.
5790
5791 // Everything on MIPS is 4 bytes. Double-precision FP registers
5792 // are aliased to pairs of single-precision FP registers.
5793 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5794
5795 // 0-31 are the general purpose registers, $0 - $31.
5796 // 32-63 are the floating-point registers, $f0 - $f31.
5797 // 64 and 65 are the multiply/divide registers, $hi and $lo.
5798 // 66 is the (notional, I think) register for signal-handler return.
5799 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5800
5801 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5802 // They are one bit wide and ignored here.
5803
5804 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5805 // (coprocessor 1 is the FP unit)
5806 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5807 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5808 // 176-181 are the DSP accumulator registers.
5809 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5810 return false;
5811 }
5812
5813 //===----------------------------------------------------------------------===//
5814 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5815 // Currently subclassed only to implement custom OpenCL C function attribute
5816 // handling.
5817 //===----------------------------------------------------------------------===//
5818
5819 namespace {
5820
5821 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5822 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)5823 TCETargetCodeGenInfo(CodeGenTypes &CGT)
5824 : DefaultTargetCodeGenInfo(CGT) {}
5825
5826 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5827 CodeGen::CodeGenModule &M) const override;
5828 };
5829
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5830 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5831 llvm::GlobalValue *GV,
5832 CodeGen::CodeGenModule &M) const {
5833 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5834 if (!FD) return;
5835
5836 llvm::Function *F = cast<llvm::Function>(GV);
5837
5838 if (M.getLangOpts().OpenCL) {
5839 if (FD->hasAttr<OpenCLKernelAttr>()) {
5840 // OpenCL C Kernel functions are not subject to inlining
5841 F->addFnAttr(llvm::Attribute::NoInline);
5842 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5843 if (Attr) {
5844 // Convert the reqd_work_group_size() attributes to metadata.
5845 llvm::LLVMContext &Context = F->getContext();
5846 llvm::NamedMDNode *OpenCLMetadata =
5847 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5848
5849 SmallVector<llvm::Metadata *, 5> Operands;
5850 Operands.push_back(llvm::ConstantAsMetadata::get(F));
5851
5852 Operands.push_back(
5853 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5854 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
5855 Operands.push_back(
5856 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5857 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
5858 Operands.push_back(
5859 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5860 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
5861
5862 // Add a boolean constant operand for "required" (true) or "hint" (false)
5863 // for implementing the work_group_size_hint attr later. Currently
5864 // always true as the hint is not yet implemented.
5865 Operands.push_back(
5866 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
5867 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5868 }
5869 }
5870 }
5871 }
5872
5873 }
5874
5875 //===----------------------------------------------------------------------===//
5876 // Hexagon ABI Implementation
5877 //===----------------------------------------------------------------------===//
5878
5879 namespace {
5880
5881 class HexagonABIInfo : public ABIInfo {
5882
5883
5884 public:
HexagonABIInfo(CodeGenTypes & CGT)5885 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5886
5887 private:
5888
5889 ABIArgInfo classifyReturnType(QualType RetTy) const;
5890 ABIArgInfo classifyArgumentType(QualType RetTy) const;
5891
5892 void computeInfo(CGFunctionInfo &FI) const override;
5893
5894 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5895 CodeGenFunction &CGF) const override;
5896 };
5897
5898 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5899 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)5900 HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5901 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5902
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5903 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5904 return 29;
5905 }
5906 };
5907
5908 }
5909
computeInfo(CGFunctionInfo & FI) const5910 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5911 if (!getCXXABI().classifyReturnType(FI))
5912 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5913 for (auto &I : FI.arguments())
5914 I.info = classifyArgumentType(I.type);
5915 }
5916
classifyArgumentType(QualType Ty) const5917 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5918 if (!isAggregateTypeForABI(Ty)) {
5919 // Treat an enum type as its underlying type.
5920 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5921 Ty = EnumTy->getDecl()->getIntegerType();
5922
5923 return (Ty->isPromotableIntegerType() ?
5924 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5925 }
5926
5927 // Ignore empty records.
5928 if (isEmptyRecord(getContext(), Ty, true))
5929 return ABIArgInfo::getIgnore();
5930
5931 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5932 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5933
5934 uint64_t Size = getContext().getTypeSize(Ty);
5935 if (Size > 64)
5936 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5937 // Pass in the smallest viable integer type.
5938 else if (Size > 32)
5939 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5940 else if (Size > 16)
5941 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5942 else if (Size > 8)
5943 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5944 else
5945 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5946 }
5947
classifyReturnType(QualType RetTy) const5948 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5949 if (RetTy->isVoidType())
5950 return ABIArgInfo::getIgnore();
5951
5952 // Large vector types should be returned via memory.
5953 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5954 return ABIArgInfo::getIndirect(0);
5955
5956 if (!isAggregateTypeForABI(RetTy)) {
5957 // Treat an enum type as its underlying type.
5958 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5959 RetTy = EnumTy->getDecl()->getIntegerType();
5960
5961 return (RetTy->isPromotableIntegerType() ?
5962 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5963 }
5964
5965 if (isEmptyRecord(getContext(), RetTy, true))
5966 return ABIArgInfo::getIgnore();
5967
5968 // Aggregates <= 8 bytes are returned in r0; other aggregates
5969 // are returned indirectly.
5970 uint64_t Size = getContext().getTypeSize(RetTy);
5971 if (Size <= 64) {
5972 // Return in the smallest viable integer type.
5973 if (Size <= 8)
5974 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5975 if (Size <= 16)
5976 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5977 if (Size <= 32)
5978 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5979 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5980 }
5981
5982 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5983 }
5984
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5985 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5986 CodeGenFunction &CGF) const {
5987 // FIXME: Need to handle alignment
5988 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5989
5990 CGBuilderTy &Builder = CGF.Builder;
5991 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5992 "ap");
5993 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5994 llvm::Type *PTy =
5995 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5996 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5997
5998 uint64_t Offset =
5999 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
6000 llvm::Value *NextAddr =
6001 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
6002 "ap.next");
6003 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
6004
6005 return AddrTyped;
6006 }
6007
6008 //===----------------------------------------------------------------------===//
6009 // AMDGPU ABI Implementation
6010 //===----------------------------------------------------------------------===//
6011
6012 namespace {
6013
6014 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6015 public:
AMDGPUTargetCodeGenInfo(CodeGenTypes & CGT)6016 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6017 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6018 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6019 CodeGen::CodeGenModule &M) const override;
6020 };
6021
6022 }
6023
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const6024 void AMDGPUTargetCodeGenInfo::SetTargetAttributes(
6025 const Decl *D,
6026 llvm::GlobalValue *GV,
6027 CodeGen::CodeGenModule &M) const {
6028 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6029 if (!FD)
6030 return;
6031
6032 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6033 llvm::Function *F = cast<llvm::Function>(GV);
6034 uint32_t NumVGPR = Attr->getNumVGPR();
6035 if (NumVGPR != 0)
6036 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6037 }
6038
6039 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6040 llvm::Function *F = cast<llvm::Function>(GV);
6041 unsigned NumSGPR = Attr->getNumSGPR();
6042 if (NumSGPR != 0)
6043 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6044 }
6045 }
6046
6047
6048 //===----------------------------------------------------------------------===//
6049 // SPARC v9 ABI Implementation.
6050 // Based on the SPARC Compliance Definition version 2.4.1.
6051 //
6052 // Function arguments a mapped to a nominal "parameter array" and promoted to
6053 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6054 // the array, structs larger than 16 bytes are passed indirectly.
6055 //
6056 // One case requires special care:
6057 //
6058 // struct mixed {
6059 // int i;
6060 // float f;
6061 // };
6062 //
6063 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6064 // parameter array, but the int is passed in an integer register, and the float
6065 // is passed in a floating point register. This is represented as two arguments
6066 // with the LLVM IR inreg attribute:
6067 //
6068 // declare void f(i32 inreg %i, float inreg %f)
6069 //
6070 // The code generator will only allocate 4 bytes from the parameter array for
6071 // the inreg arguments. All other arguments are allocated a multiple of 8
6072 // bytes.
6073 //
6074 namespace {
6075 class SparcV9ABIInfo : public ABIInfo {
6076 public:
SparcV9ABIInfo(CodeGenTypes & CGT)6077 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6078
6079 private:
6080 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6081 void computeInfo(CGFunctionInfo &FI) const override;
6082 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6083 CodeGenFunction &CGF) const override;
6084
6085 // Coercion type builder for structs passed in registers. The coercion type
6086 // serves two purposes:
6087 //
6088 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6089 // in registers.
6090 // 2. Expose aligned floating point elements as first-level elements, so the
6091 // code generator knows to pass them in floating point registers.
6092 //
6093 // We also compute the InReg flag which indicates that the struct contains
6094 // aligned 32-bit floats.
6095 //
6096 struct CoerceBuilder {
6097 llvm::LLVMContext &Context;
6098 const llvm::DataLayout &DL;
6099 SmallVector<llvm::Type*, 8> Elems;
6100 uint64_t Size;
6101 bool InReg;
6102
CoerceBuilder__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6103 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6104 : Context(c), DL(dl), Size(0), InReg(false) {}
6105
6106 // Pad Elems with integers until Size is ToSize.
pad__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6107 void pad(uint64_t ToSize) {
6108 assert(ToSize >= Size && "Cannot remove elements");
6109 if (ToSize == Size)
6110 return;
6111
6112 // Finish the current 64-bit word.
6113 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6114 if (Aligned > Size && Aligned <= ToSize) {
6115 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6116 Size = Aligned;
6117 }
6118
6119 // Add whole 64-bit words.
6120 while (Size + 64 <= ToSize) {
6121 Elems.push_back(llvm::Type::getInt64Ty(Context));
6122 Size += 64;
6123 }
6124
6125 // Final in-word padding.
6126 if (Size < ToSize) {
6127 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6128 Size = ToSize;
6129 }
6130 }
6131
6132 // Add a floating point element at Offset.
addFloat__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6133 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6134 // Unaligned floats are treated as integers.
6135 if (Offset % Bits)
6136 return;
6137 // The InReg flag is only required if there are any floats < 64 bits.
6138 if (Bits < 64)
6139 InReg = true;
6140 pad(Offset);
6141 Elems.push_back(Ty);
6142 Size = Offset + Bits;
6143 }
6144
6145 // Add a struct type to the coercion type, starting at Offset (in bits).
addStruct__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6146 void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6147 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6148 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6149 llvm::Type *ElemTy = StrTy->getElementType(i);
6150 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6151 switch (ElemTy->getTypeID()) {
6152 case llvm::Type::StructTyID:
6153 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6154 break;
6155 case llvm::Type::FloatTyID:
6156 addFloat(ElemOffset, ElemTy, 32);
6157 break;
6158 case llvm::Type::DoubleTyID:
6159 addFloat(ElemOffset, ElemTy, 64);
6160 break;
6161 case llvm::Type::FP128TyID:
6162 addFloat(ElemOffset, ElemTy, 128);
6163 break;
6164 case llvm::Type::PointerTyID:
6165 if (ElemOffset % 64 == 0) {
6166 pad(ElemOffset);
6167 Elems.push_back(ElemTy);
6168 Size += 64;
6169 }
6170 break;
6171 default:
6172 break;
6173 }
6174 }
6175 }
6176
6177 // Check if Ty is a usable substitute for the coercion type.
isUsableType__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6178 bool isUsableType(llvm::StructType *Ty) const {
6179 return llvm::makeArrayRef(Elems) == Ty->elements();
6180 }
6181
6182 // Get the coercion type as a literal struct type.
getType__anona890a3f30e11::SparcV9ABIInfo::CoerceBuilder6183 llvm::Type *getType() const {
6184 if (Elems.size() == 1)
6185 return Elems.front();
6186 else
6187 return llvm::StructType::get(Context, Elems);
6188 }
6189 };
6190 };
6191 } // end anonymous namespace
6192
6193 ABIArgInfo
classifyType(QualType Ty,unsigned SizeLimit) const6194 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6195 if (Ty->isVoidType())
6196 return ABIArgInfo::getIgnore();
6197
6198 uint64_t Size = getContext().getTypeSize(Ty);
6199
6200 // Anything too big to fit in registers is passed with an explicit indirect
6201 // pointer / sret pointer.
6202 if (Size > SizeLimit)
6203 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6204
6205 // Treat an enum type as its underlying type.
6206 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6207 Ty = EnumTy->getDecl()->getIntegerType();
6208
6209 // Integer types smaller than a register are extended.
6210 if (Size < 64 && Ty->isIntegerType())
6211 return ABIArgInfo::getExtend();
6212
6213 // Other non-aggregates go in registers.
6214 if (!isAggregateTypeForABI(Ty))
6215 return ABIArgInfo::getDirect();
6216
6217 // If a C++ object has either a non-trivial copy constructor or a non-trivial
6218 // destructor, it is passed with an explicit indirect pointer / sret pointer.
6219 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6220 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6221
6222 // This is a small aggregate type that should be passed in registers.
6223 // Build a coercion type from the LLVM struct type.
6224 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6225 if (!StrTy)
6226 return ABIArgInfo::getDirect();
6227
6228 CoerceBuilder CB(getVMContext(), getDataLayout());
6229 CB.addStruct(0, StrTy);
6230 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6231
6232 // Try to use the original type for coercion.
6233 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6234
6235 if (CB.InReg)
6236 return ABIArgInfo::getDirectInReg(CoerceTy);
6237 else
6238 return ABIArgInfo::getDirect(CoerceTy);
6239 }
6240
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const6241 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6242 CodeGenFunction &CGF) const {
6243 ABIArgInfo AI = classifyType(Ty, 16 * 8);
6244 llvm::Type *ArgTy = CGT.ConvertType(Ty);
6245 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6246 AI.setCoerceToType(ArgTy);
6247
6248 llvm::Type *BPP = CGF.Int8PtrPtrTy;
6249 CGBuilderTy &Builder = CGF.Builder;
6250 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6251 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6252 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6253 llvm::Value *ArgAddr;
6254 unsigned Stride;
6255
6256 switch (AI.getKind()) {
6257 case ABIArgInfo::Expand:
6258 case ABIArgInfo::InAlloca:
6259 llvm_unreachable("Unsupported ABI kind for va_arg");
6260
6261 case ABIArgInfo::Extend:
6262 Stride = 8;
6263 ArgAddr = Builder
6264 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6265 "extend");
6266 break;
6267
6268 case ABIArgInfo::Direct:
6269 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6270 ArgAddr = Addr;
6271 break;
6272
6273 case ABIArgInfo::Indirect:
6274 Stride = 8;
6275 ArgAddr = Builder.CreateBitCast(Addr,
6276 llvm::PointerType::getUnqual(ArgPtrTy),
6277 "indirect");
6278 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6279 break;
6280
6281 case ABIArgInfo::Ignore:
6282 return llvm::UndefValue::get(ArgPtrTy);
6283 }
6284
6285 // Update VAList.
6286 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6287 Builder.CreateStore(Addr, VAListAddrAsBPP);
6288
6289 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6290 }
6291
computeInfo(CGFunctionInfo & FI) const6292 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6293 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6294 for (auto &I : FI.arguments())
6295 I.info = classifyType(I.type, 16 * 8);
6296 }
6297
6298 namespace {
6299 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6300 public:
SparcV9TargetCodeGenInfo(CodeGenTypes & CGT)6301 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6302 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6303
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const6304 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6305 return 14;
6306 }
6307
6308 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6309 llvm::Value *Address) const override;
6310 };
6311 } // end anonymous namespace
6312
6313 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const6314 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6315 llvm::Value *Address) const {
6316 // This is calculated from the LLVM and GCC tables and verified
6317 // against gcc output. AFAIK all ABIs use the same encoding.
6318
6319 CodeGen::CGBuilderTy &Builder = CGF.Builder;
6320
6321 llvm::IntegerType *i8 = CGF.Int8Ty;
6322 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6323 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6324
6325 // 0-31: the 8-byte general-purpose registers
6326 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6327
6328 // 32-63: f0-31, the 4-byte floating-point registers
6329 AssignToArrayRange(Builder, Address, Four8, 32, 63);
6330
6331 // Y = 64
6332 // PSR = 65
6333 // WIM = 66
6334 // TBR = 67
6335 // PC = 68
6336 // NPC = 69
6337 // FSR = 70
6338 // CSR = 71
6339 AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6340
6341 // 72-87: d0-15, the 8-byte floating-point registers
6342 AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6343
6344 return false;
6345 }
6346
6347
6348 //===----------------------------------------------------------------------===//
6349 // XCore ABI Implementation
6350 //===----------------------------------------------------------------------===//
6351
6352 namespace {
6353
6354 /// A SmallStringEnc instance is used to build up the TypeString by passing
6355 /// it by reference between functions that append to it.
6356 typedef llvm::SmallString<128> SmallStringEnc;
6357
6358 /// TypeStringCache caches the meta encodings of Types.
6359 ///
6360 /// The reason for caching TypeStrings is two fold:
6361 /// 1. To cache a type's encoding for later uses;
6362 /// 2. As a means to break recursive member type inclusion.
6363 ///
6364 /// A cache Entry can have a Status of:
6365 /// NonRecursive: The type encoding is not recursive;
6366 /// Recursive: The type encoding is recursive;
6367 /// Incomplete: An incomplete TypeString;
6368 /// IncompleteUsed: An incomplete TypeString that has been used in a
6369 /// Recursive type encoding.
6370 ///
6371 /// A NonRecursive entry will have all of its sub-members expanded as fully
6372 /// as possible. Whilst it may contain types which are recursive, the type
6373 /// itself is not recursive and thus its encoding may be safely used whenever
6374 /// the type is encountered.
6375 ///
6376 /// A Recursive entry will have all of its sub-members expanded as fully as
6377 /// possible. The type itself is recursive and it may contain other types which
6378 /// are recursive. The Recursive encoding must not be used during the expansion
6379 /// of a recursive type's recursive branch. For simplicity the code uses
6380 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6381 ///
6382 /// An Incomplete entry is always a RecordType and only encodes its
6383 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6384 /// are placed into the cache during type expansion as a means to identify and
6385 /// handle recursive inclusion of types as sub-members. If there is recursion
6386 /// the entry becomes IncompleteUsed.
6387 ///
6388 /// During the expansion of a RecordType's members:
6389 ///
6390 /// If the cache contains a NonRecursive encoding for the member type, the
6391 /// cached encoding is used;
6392 ///
6393 /// If the cache contains a Recursive encoding for the member type, the
6394 /// cached encoding is 'Swapped' out, as it may be incorrect, and...
6395 ///
6396 /// If the member is a RecordType, an Incomplete encoding is placed into the
6397 /// cache to break potential recursive inclusion of itself as a sub-member;
6398 ///
6399 /// Once a member RecordType has been expanded, its temporary incomplete
6400 /// entry is removed from the cache. If a Recursive encoding was swapped out
6401 /// it is swapped back in;
6402 ///
6403 /// If an incomplete entry is used to expand a sub-member, the incomplete
6404 /// entry is marked as IncompleteUsed. The cache keeps count of how many
6405 /// IncompleteUsed entries it currently contains in IncompleteUsedCount;
6406 ///
6407 /// If a member's encoding is found to be a NonRecursive or Recursive viz:
6408 /// IncompleteUsedCount==0, the member's encoding is added to the cache.
6409 /// Else the member is part of a recursive type and thus the recursion has
6410 /// been exited too soon for the encoding to be correct for the member.
6411 ///
6412 class TypeStringCache {
6413 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6414 struct Entry {
6415 std::string Str; // The encoded TypeString for the type.
6416 enum Status State; // Information about the encoding in 'Str'.
6417 std::string Swapped; // A temporary place holder for a Recursive encoding
6418 // during the expansion of RecordType's members.
6419 };
6420 std::map<const IdentifierInfo *, struct Entry> Map;
6421 unsigned IncompleteCount; // Number of Incomplete entries in the Map.
6422 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6423 public:
TypeStringCache()6424 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6425 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6426 bool removeIncomplete(const IdentifierInfo *ID);
6427 void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6428 bool IsRecursive);
6429 StringRef lookupStr(const IdentifierInfo *ID);
6430 };
6431
6432 /// TypeString encodings for enum & union fields must be order.
6433 /// FieldEncoding is a helper for this ordering process.
6434 class FieldEncoding {
6435 bool HasName;
6436 std::string Enc;
6437 public:
FieldEncoding(bool b,SmallStringEnc & e)6438 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
str()6439 StringRef str() {return Enc.c_str();};
operator <(const FieldEncoding & rhs) const6440 bool operator<(const FieldEncoding &rhs) const {
6441 if (HasName != rhs.HasName) return HasName;
6442 return Enc < rhs.Enc;
6443 }
6444 };
6445
6446 class XCoreABIInfo : public DefaultABIInfo {
6447 public:
XCoreABIInfo(CodeGen::CodeGenTypes & CGT)6448 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6449 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6450 CodeGenFunction &CGF) const override;
6451 };
6452
6453 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6454 mutable TypeStringCache TSC;
6455 public:
XCoreTargetCodeGenInfo(CodeGenTypes & CGT)6456 XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6457 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6458 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6459 CodeGen::CodeGenModule &M) const override;
6460 };
6461
6462 } // End anonymous namespace.
6463
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const6464 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6465 CodeGenFunction &CGF) const {
6466 CGBuilderTy &Builder = CGF.Builder;
6467
6468 // Get the VAList.
6469 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6470 CGF.Int8PtrPtrTy);
6471 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6472
6473 // Handle the argument.
6474 ABIArgInfo AI = classifyArgumentType(Ty);
6475 llvm::Type *ArgTy = CGT.ConvertType(Ty);
6476 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6477 AI.setCoerceToType(ArgTy);
6478 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6479 llvm::Value *Val;
6480 uint64_t ArgSize = 0;
6481 switch (AI.getKind()) {
6482 case ABIArgInfo::Expand:
6483 case ABIArgInfo::InAlloca:
6484 llvm_unreachable("Unsupported ABI kind for va_arg");
6485 case ABIArgInfo::Ignore:
6486 Val = llvm::UndefValue::get(ArgPtrTy);
6487 ArgSize = 0;
6488 break;
6489 case ABIArgInfo::Extend:
6490 case ABIArgInfo::Direct:
6491 Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6492 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6493 if (ArgSize < 4)
6494 ArgSize = 4;
6495 break;
6496 case ABIArgInfo::Indirect:
6497 llvm::Value *ArgAddr;
6498 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6499 ArgAddr = Builder.CreateLoad(ArgAddr);
6500 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6501 ArgSize = 4;
6502 break;
6503 }
6504
6505 // Increment the VAList.
6506 if (ArgSize) {
6507 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6508 Builder.CreateStore(APN, VAListAddrAsBPP);
6509 }
6510 return Val;
6511 }
6512
6513 /// During the expansion of a RecordType, an incomplete TypeString is placed
6514 /// into the cache as a means to identify and break recursion.
6515 /// If there is a Recursive encoding in the cache, it is swapped out and will
6516 /// be reinserted by removeIncomplete().
6517 /// All other types of encoding should have been used rather than arriving here.
addIncomplete(const IdentifierInfo * ID,std::string StubEnc)6518 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6519 std::string StubEnc) {
6520 if (!ID)
6521 return;
6522 Entry &E = Map[ID];
6523 assert( (E.Str.empty() || E.State == Recursive) &&
6524 "Incorrectly use of addIncomplete");
6525 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6526 E.Swapped.swap(E.Str); // swap out the Recursive
6527 E.Str.swap(StubEnc);
6528 E.State = Incomplete;
6529 ++IncompleteCount;
6530 }
6531
6532 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6533 /// must be removed from the cache.
6534 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6535 /// Returns true if the RecordType was defined recursively.
removeIncomplete(const IdentifierInfo * ID)6536 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6537 if (!ID)
6538 return false;
6539 auto I = Map.find(ID);
6540 assert(I != Map.end() && "Entry not present");
6541 Entry &E = I->second;
6542 assert( (E.State == Incomplete ||
6543 E.State == IncompleteUsed) &&
6544 "Entry must be an incomplete type");
6545 bool IsRecursive = false;
6546 if (E.State == IncompleteUsed) {
6547 // We made use of our Incomplete encoding, thus we are recursive.
6548 IsRecursive = true;
6549 --IncompleteUsedCount;
6550 }
6551 if (E.Swapped.empty())
6552 Map.erase(I);
6553 else {
6554 // Swap the Recursive back.
6555 E.Swapped.swap(E.Str);
6556 E.Swapped.clear();
6557 E.State = Recursive;
6558 }
6559 --IncompleteCount;
6560 return IsRecursive;
6561 }
6562
6563 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6564 /// Recursive (viz: all sub-members were expanded as fully as possible).
addIfComplete(const IdentifierInfo * ID,StringRef Str,bool IsRecursive)6565 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6566 bool IsRecursive) {
6567 if (!ID || IncompleteUsedCount)
6568 return; // No key or it is is an incomplete sub-type so don't add.
6569 Entry &E = Map[ID];
6570 if (IsRecursive && !E.Str.empty()) {
6571 assert(E.State==Recursive && E.Str.size() == Str.size() &&
6572 "This is not the same Recursive entry");
6573 // The parent container was not recursive after all, so we could have used
6574 // this Recursive sub-member entry after all, but we assumed the worse when
6575 // we started viz: IncompleteCount!=0.
6576 return;
6577 }
6578 assert(E.Str.empty() && "Entry already present");
6579 E.Str = Str.str();
6580 E.State = IsRecursive? Recursive : NonRecursive;
6581 }
6582
6583 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6584 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6585 /// encoding is Recursive, return an empty StringRef.
lookupStr(const IdentifierInfo * ID)6586 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6587 if (!ID)
6588 return StringRef(); // We have no key.
6589 auto I = Map.find(ID);
6590 if (I == Map.end())
6591 return StringRef(); // We have no encoding.
6592 Entry &E = I->second;
6593 if (E.State == Recursive && IncompleteCount)
6594 return StringRef(); // We don't use Recursive encodings for member types.
6595
6596 if (E.State == Incomplete) {
6597 // The incomplete type is being used to break out of recursion.
6598 E.State = IncompleteUsed;
6599 ++IncompleteUsedCount;
6600 }
6601 return E.Str.c_str();
6602 }
6603
6604 /// The XCore ABI includes a type information section that communicates symbol
6605 /// type information to the linker. The linker uses this information to verify
6606 /// safety/correctness of things such as array bound and pointers et al.
6607 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6608 /// This type information (TypeString) is emitted into meta data for all global
6609 /// symbols: definitions, declarations, functions & variables.
6610 ///
6611 /// The TypeString carries type, qualifier, name, size & value details.
6612 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6613 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6614 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6615 ///
6616 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6617 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6618
6619 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
emitTargetMD(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const6620 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6621 CodeGen::CodeGenModule &CGM) const {
6622 SmallStringEnc Enc;
6623 if (getTypeString(Enc, D, CGM, TSC)) {
6624 llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6625 llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6626 MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6627 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6628 llvm::NamedMDNode *MD =
6629 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6630 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6631 }
6632 }
6633
6634 static bool appendType(SmallStringEnc &Enc, QualType QType,
6635 const CodeGen::CodeGenModule &CGM,
6636 TypeStringCache &TSC);
6637
6638 /// Helper function for appendRecordType().
6639 /// Builds a SmallVector containing the encoded field types in declaration order.
extractFieldType(SmallVectorImpl<FieldEncoding> & FE,const RecordDecl * RD,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6640 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6641 const RecordDecl *RD,
6642 const CodeGen::CodeGenModule &CGM,
6643 TypeStringCache &TSC) {
6644 for (const auto *Field : RD->fields()) {
6645 SmallStringEnc Enc;
6646 Enc += "m(";
6647 Enc += Field->getName();
6648 Enc += "){";
6649 if (Field->isBitField()) {
6650 Enc += "b(";
6651 llvm::raw_svector_ostream OS(Enc);
6652 OS.resync();
6653 OS << Field->getBitWidthValue(CGM.getContext());
6654 OS.flush();
6655 Enc += ':';
6656 }
6657 if (!appendType(Enc, Field->getType(), CGM, TSC))
6658 return false;
6659 if (Field->isBitField())
6660 Enc += ')';
6661 Enc += '}';
6662 FE.push_back(FieldEncoding(!Field->getName().empty(), Enc));
6663 }
6664 return true;
6665 }
6666
6667 /// Appends structure and union types to Enc and adds encoding to cache.
6668 /// Recursively calls appendType (via extractFieldType) for each field.
6669 /// Union types have their fields ordered according to the ABI.
appendRecordType(SmallStringEnc & Enc,const RecordType * RT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,const IdentifierInfo * ID)6670 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6671 const CodeGen::CodeGenModule &CGM,
6672 TypeStringCache &TSC, const IdentifierInfo *ID) {
6673 // Append the cached TypeString if we have one.
6674 StringRef TypeString = TSC.lookupStr(ID);
6675 if (!TypeString.empty()) {
6676 Enc += TypeString;
6677 return true;
6678 }
6679
6680 // Start to emit an incomplete TypeString.
6681 size_t Start = Enc.size();
6682 Enc += (RT->isUnionType()? 'u' : 's');
6683 Enc += '(';
6684 if (ID)
6685 Enc += ID->getName();
6686 Enc += "){";
6687
6688 // We collect all encoded fields and order as necessary.
6689 bool IsRecursive = false;
6690 const RecordDecl *RD = RT->getDecl()->getDefinition();
6691 if (RD && !RD->field_empty()) {
6692 // An incomplete TypeString stub is placed in the cache for this RecordType
6693 // so that recursive calls to this RecordType will use it whilst building a
6694 // complete TypeString for this RecordType.
6695 SmallVector<FieldEncoding, 16> FE;
6696 std::string StubEnc(Enc.substr(Start).str());
6697 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
6698 TSC.addIncomplete(ID, std::move(StubEnc));
6699 if (!extractFieldType(FE, RD, CGM, TSC)) {
6700 (void) TSC.removeIncomplete(ID);
6701 return false;
6702 }
6703 IsRecursive = TSC.removeIncomplete(ID);
6704 // The ABI requires unions to be sorted but not structures.
6705 // See FieldEncoding::operator< for sort algorithm.
6706 if (RT->isUnionType())
6707 std::sort(FE.begin(), FE.end());
6708 // We can now complete the TypeString.
6709 unsigned E = FE.size();
6710 for (unsigned I = 0; I != E; ++I) {
6711 if (I)
6712 Enc += ',';
6713 Enc += FE[I].str();
6714 }
6715 }
6716 Enc += '}';
6717 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6718 return true;
6719 }
6720
6721 /// Appends enum types to Enc and adds the encoding to the cache.
appendEnumType(SmallStringEnc & Enc,const EnumType * ET,TypeStringCache & TSC,const IdentifierInfo * ID)6722 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6723 TypeStringCache &TSC,
6724 const IdentifierInfo *ID) {
6725 // Append the cached TypeString if we have one.
6726 StringRef TypeString = TSC.lookupStr(ID);
6727 if (!TypeString.empty()) {
6728 Enc += TypeString;
6729 return true;
6730 }
6731
6732 size_t Start = Enc.size();
6733 Enc += "e(";
6734 if (ID)
6735 Enc += ID->getName();
6736 Enc += "){";
6737
6738 // We collect all encoded enumerations and order them alphanumerically.
6739 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6740 SmallVector<FieldEncoding, 16> FE;
6741 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6742 ++I) {
6743 SmallStringEnc EnumEnc;
6744 EnumEnc += "m(";
6745 EnumEnc += I->getName();
6746 EnumEnc += "){";
6747 I->getInitVal().toString(EnumEnc);
6748 EnumEnc += '}';
6749 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6750 }
6751 std::sort(FE.begin(), FE.end());
6752 unsigned E = FE.size();
6753 for (unsigned I = 0; I != E; ++I) {
6754 if (I)
6755 Enc += ',';
6756 Enc += FE[I].str();
6757 }
6758 }
6759 Enc += '}';
6760 TSC.addIfComplete(ID, Enc.substr(Start), false);
6761 return true;
6762 }
6763
6764 /// Appends type's qualifier to Enc.
6765 /// This is done prior to appending the type's encoding.
appendQualifier(SmallStringEnc & Enc,QualType QT)6766 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6767 // Qualifiers are emitted in alphabetical order.
6768 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6769 int Lookup = 0;
6770 if (QT.isConstQualified())
6771 Lookup += 1<<0;
6772 if (QT.isRestrictQualified())
6773 Lookup += 1<<1;
6774 if (QT.isVolatileQualified())
6775 Lookup += 1<<2;
6776 Enc += Table[Lookup];
6777 }
6778
6779 /// Appends built-in types to Enc.
appendBuiltinType(SmallStringEnc & Enc,const BuiltinType * BT)6780 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6781 const char *EncType;
6782 switch (BT->getKind()) {
6783 case BuiltinType::Void:
6784 EncType = "0";
6785 break;
6786 case BuiltinType::Bool:
6787 EncType = "b";
6788 break;
6789 case BuiltinType::Char_U:
6790 EncType = "uc";
6791 break;
6792 case BuiltinType::UChar:
6793 EncType = "uc";
6794 break;
6795 case BuiltinType::SChar:
6796 EncType = "sc";
6797 break;
6798 case BuiltinType::UShort:
6799 EncType = "us";
6800 break;
6801 case BuiltinType::Short:
6802 EncType = "ss";
6803 break;
6804 case BuiltinType::UInt:
6805 EncType = "ui";
6806 break;
6807 case BuiltinType::Int:
6808 EncType = "si";
6809 break;
6810 case BuiltinType::ULong:
6811 EncType = "ul";
6812 break;
6813 case BuiltinType::Long:
6814 EncType = "sl";
6815 break;
6816 case BuiltinType::ULongLong:
6817 EncType = "ull";
6818 break;
6819 case BuiltinType::LongLong:
6820 EncType = "sll";
6821 break;
6822 case BuiltinType::Float:
6823 EncType = "ft";
6824 break;
6825 case BuiltinType::Double:
6826 EncType = "d";
6827 break;
6828 case BuiltinType::LongDouble:
6829 EncType = "ld";
6830 break;
6831 default:
6832 return false;
6833 }
6834 Enc += EncType;
6835 return true;
6836 }
6837
6838 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
appendPointerType(SmallStringEnc & Enc,const PointerType * PT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6839 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6840 const CodeGen::CodeGenModule &CGM,
6841 TypeStringCache &TSC) {
6842 Enc += "p(";
6843 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6844 return false;
6845 Enc += ')';
6846 return true;
6847 }
6848
6849 /// Appends array encoding to Enc before calling appendType for the element.
appendArrayType(SmallStringEnc & Enc,QualType QT,const ArrayType * AT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,StringRef NoSizeEnc)6850 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6851 const ArrayType *AT,
6852 const CodeGen::CodeGenModule &CGM,
6853 TypeStringCache &TSC, StringRef NoSizeEnc) {
6854 if (AT->getSizeModifier() != ArrayType::Normal)
6855 return false;
6856 Enc += "a(";
6857 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6858 CAT->getSize().toStringUnsigned(Enc);
6859 else
6860 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6861 Enc += ':';
6862 // The Qualifiers should be attached to the type rather than the array.
6863 appendQualifier(Enc, QT);
6864 if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6865 return false;
6866 Enc += ')';
6867 return true;
6868 }
6869
6870 /// Appends a function encoding to Enc, calling appendType for the return type
6871 /// and the arguments.
appendFunctionType(SmallStringEnc & Enc,const FunctionType * FT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6872 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6873 const CodeGen::CodeGenModule &CGM,
6874 TypeStringCache &TSC) {
6875 Enc += "f{";
6876 if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6877 return false;
6878 Enc += "}(";
6879 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6880 // N.B. we are only interested in the adjusted param types.
6881 auto I = FPT->param_type_begin();
6882 auto E = FPT->param_type_end();
6883 if (I != E) {
6884 do {
6885 if (!appendType(Enc, *I, CGM, TSC))
6886 return false;
6887 ++I;
6888 if (I != E)
6889 Enc += ',';
6890 } while (I != E);
6891 if (FPT->isVariadic())
6892 Enc += ",va";
6893 } else {
6894 if (FPT->isVariadic())
6895 Enc += "va";
6896 else
6897 Enc += '0';
6898 }
6899 }
6900 Enc += ')';
6901 return true;
6902 }
6903
6904 /// Handles the type's qualifier before dispatching a call to handle specific
6905 /// type encodings.
appendType(SmallStringEnc & Enc,QualType QType,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6906 static bool appendType(SmallStringEnc &Enc, QualType QType,
6907 const CodeGen::CodeGenModule &CGM,
6908 TypeStringCache &TSC) {
6909
6910 QualType QT = QType.getCanonicalType();
6911
6912 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
6913 // The Qualifiers should be attached to the type rather than the array.
6914 // Thus we don't call appendQualifier() here.
6915 return appendArrayType(Enc, QT, AT, CGM, TSC, "");
6916
6917 appendQualifier(Enc, QT);
6918
6919 if (const BuiltinType *BT = QT->getAs<BuiltinType>())
6920 return appendBuiltinType(Enc, BT);
6921
6922 if (const PointerType *PT = QT->getAs<PointerType>())
6923 return appendPointerType(Enc, PT, CGM, TSC);
6924
6925 if (const EnumType *ET = QT->getAs<EnumType>())
6926 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
6927
6928 if (const RecordType *RT = QT->getAsStructureType())
6929 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6930
6931 if (const RecordType *RT = QT->getAsUnionType())
6932 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6933
6934 if (const FunctionType *FT = QT->getAs<FunctionType>())
6935 return appendFunctionType(Enc, FT, CGM, TSC);
6936
6937 return false;
6938 }
6939
getTypeString(SmallStringEnc & Enc,const Decl * D,CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6940 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6941 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
6942 if (!D)
6943 return false;
6944
6945 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6946 if (FD->getLanguageLinkage() != CLanguageLinkage)
6947 return false;
6948 return appendType(Enc, FD->getType(), CGM, TSC);
6949 }
6950
6951 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6952 if (VD->getLanguageLinkage() != CLanguageLinkage)
6953 return false;
6954 QualType QT = VD->getType().getCanonicalType();
6955 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
6956 // Global ArrayTypes are given a size of '*' if the size is unknown.
6957 // The Qualifiers should be attached to the type rather than the array.
6958 // Thus we don't call appendQualifier() here.
6959 return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
6960 }
6961 return appendType(Enc, QT, CGM, TSC);
6962 }
6963 return false;
6964 }
6965
6966
6967 //===----------------------------------------------------------------------===//
6968 // Driver code
6969 //===----------------------------------------------------------------------===//
6970
getTriple() const6971 const llvm::Triple &CodeGenModule::getTriple() const {
6972 return getTarget().getTriple();
6973 }
6974
supportsCOMDAT() const6975 bool CodeGenModule::supportsCOMDAT() const {
6976 return !getTriple().isOSBinFormatMachO();
6977 }
6978
getTargetCodeGenInfo()6979 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
6980 if (TheTargetCodeGenInfo)
6981 return *TheTargetCodeGenInfo;
6982
6983 const llvm::Triple &Triple = getTarget().getTriple();
6984 switch (Triple.getArch()) {
6985 default:
6986 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
6987
6988 case llvm::Triple::le32:
6989 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
6990 case llvm::Triple::mips:
6991 case llvm::Triple::mipsel:
6992 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
6993
6994 case llvm::Triple::mips64:
6995 case llvm::Triple::mips64el:
6996 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
6997
6998 case llvm::Triple::aarch64:
6999 case llvm::Triple::aarch64_be: {
7000 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7001 if (getTarget().getABI() == "darwinpcs")
7002 Kind = AArch64ABIInfo::DarwinPCS;
7003
7004 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7005 }
7006
7007 case llvm::Triple::arm:
7008 case llvm::Triple::armeb:
7009 case llvm::Triple::thumb:
7010 case llvm::Triple::thumbeb:
7011 {
7012 if (Triple.getOS() == llvm::Triple::Win32) {
7013 TheTargetCodeGenInfo =
7014 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7015 return *TheTargetCodeGenInfo;
7016 }
7017
7018 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7019 if (getTarget().getABI() == "apcs-gnu")
7020 Kind = ARMABIInfo::APCS;
7021 else if (CodeGenOpts.FloatABI == "hard" ||
7022 (CodeGenOpts.FloatABI != "soft" &&
7023 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7024 Kind = ARMABIInfo::AAPCS_VFP;
7025
7026 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7027 }
7028
7029 case llvm::Triple::ppc:
7030 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7031 case llvm::Triple::ppc64:
7032 if (Triple.isOSBinFormatELF()) {
7033 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7034 if (getTarget().getABI() == "elfv2")
7035 Kind = PPC64_SVR4_ABIInfo::ELFv2;
7036 bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7037
7038 return *(TheTargetCodeGenInfo =
7039 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7040 } else
7041 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7042 case llvm::Triple::ppc64le: {
7043 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7044 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7045 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7046 Kind = PPC64_SVR4_ABIInfo::ELFv1;
7047 bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7048
7049 return *(TheTargetCodeGenInfo =
7050 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7051 }
7052
7053 case llvm::Triple::nvptx:
7054 case llvm::Triple::nvptx64:
7055 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7056
7057 case llvm::Triple::msp430:
7058 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7059
7060 case llvm::Triple::systemz:
7061 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
7062
7063 case llvm::Triple::tce:
7064 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7065
7066 case llvm::Triple::x86: {
7067 bool IsDarwinVectorABI = Triple.isOSDarwin();
7068 bool IsSmallStructInRegABI =
7069 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7070 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7071
7072 if (Triple.getOS() == llvm::Triple::Win32) {
7073 return *(TheTargetCodeGenInfo =
7074 new WinX86_32TargetCodeGenInfo(Types,
7075 IsDarwinVectorABI, IsSmallStructInRegABI,
7076 IsWin32FloatStructABI,
7077 CodeGenOpts.NumRegisterParameters));
7078 } else {
7079 return *(TheTargetCodeGenInfo =
7080 new X86_32TargetCodeGenInfo(Types,
7081 IsDarwinVectorABI, IsSmallStructInRegABI,
7082 IsWin32FloatStructABI,
7083 CodeGenOpts.NumRegisterParameters));
7084 }
7085 }
7086
7087 case llvm::Triple::x86_64: {
7088 bool HasAVX = getTarget().getABI() == "avx";
7089
7090 switch (Triple.getOS()) {
7091 case llvm::Triple::Win32:
7092 return *(TheTargetCodeGenInfo =
7093 new WinX86_64TargetCodeGenInfo(Types, HasAVX));
7094 case llvm::Triple::PS4:
7095 return *(TheTargetCodeGenInfo = new PS4TargetCodeGenInfo(Types, HasAVX));
7096 default:
7097 return *(TheTargetCodeGenInfo =
7098 new X86_64TargetCodeGenInfo(Types, HasAVX));
7099 }
7100 }
7101 case llvm::Triple::hexagon:
7102 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7103 case llvm::Triple::r600:
7104 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7105 case llvm::Triple::amdgcn:
7106 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7107 case llvm::Triple::sparcv9:
7108 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7109 case llvm::Triple::xcore:
7110 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7111 }
7112 }
7113