1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2014 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Copyright (c) 2014 libmv authors.
30 //
31 // Permission is hereby granted, free of charge, to any person obtaining a copy
32 // of this software and associated documentation files (the "Software"), to
33 // deal in the Software without restriction, including without limitation the
34 // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
35 // sell copies of the Software, and to permit persons to whom the Software is
36 // furnished to do so, subject to the following conditions:
37 //
38 // The above copyright notice and this permission notice shall be included in
39 // all copies or substantial portions of the Software.
40 //
41 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
42 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
43 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
44 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
45 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
46 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
47 // IN THE SOFTWARE.
48 //
49 // Author: sergey.vfx@gmail.com (Sergey Sharybin)
50 //
51 // This file demonstrates solving for a homography between two sets of points.
52 // A homography describes a transformation between a sets of points on a plane,
53 // perspectively projected into two images. The first step is to solve a
54 // homogeneous system of equations via singular value decompposition, giving an
55 // algebraic solution for the homography, then solving for a final solution by
56 // minimizing the symmetric transfer error in image space with Ceres (called the
57 // Gold Standard Solution in "Multiple View Geometry"). The routines are based on
58 // the routines from the Libmv library.
59 //
60 // This example demonstrates custom exit criterion by having a callback check
61 // for image-space error.
62
63 #include "ceres/ceres.h"
64 #include "glog/logging.h"
65
66 typedef Eigen::NumTraits<double> EigenDouble;
67
68 typedef Eigen::MatrixXd Mat;
69 typedef Eigen::VectorXd Vec;
70 typedef Eigen::Matrix<double, 3, 3> Mat3;
71 typedef Eigen::Matrix<double, 2, 1> Vec2;
72 typedef Eigen::Matrix<double, Eigen::Dynamic, 8> MatX8;
73 typedef Eigen::Vector3d Vec3;
74
75 namespace {
76
77 // This structure contains options that controls how the homography
78 // estimation operates.
79 //
80 // Defaults should be suitable for a wide range of use cases, but
81 // better performance and accuracy might require tweaking.
82 struct EstimateHomographyOptions {
83 // Default settings for homography estimation which should be suitable
84 // for a wide range of use cases.
EstimateHomographyOptions__anon2f9807130111::EstimateHomographyOptions85 EstimateHomographyOptions()
86 : max_num_iterations(50),
87 expected_average_symmetric_distance(1e-16) {}
88
89 // Maximal number of iterations for the refinement step.
90 int max_num_iterations;
91
92 // Expected average of symmetric geometric distance between
93 // actual destination points and original ones transformed by
94 // estimated homography matrix.
95 //
96 // Refinement will finish as soon as average of symmetric
97 // geometric distance is less or equal to this value.
98 //
99 // This distance is measured in the same units as input points are.
100 double expected_average_symmetric_distance;
101 };
102
103 // Calculate symmetric geometric cost terms:
104 //
105 // forward_error = D(H * x1, x2)
106 // backward_error = D(H^-1 * x2, x1)
107 //
108 // Templated to be used with autodifferenciation.
109 template <typename T>
SymmetricGeometricDistanceTerms(const Eigen::Matrix<T,3,3> & H,const Eigen::Matrix<T,2,1> & x1,const Eigen::Matrix<T,2,1> & x2,T forward_error[2],T backward_error[2])110 void SymmetricGeometricDistanceTerms(const Eigen::Matrix<T, 3, 3> &H,
111 const Eigen::Matrix<T, 2, 1> &x1,
112 const Eigen::Matrix<T, 2, 1> &x2,
113 T forward_error[2],
114 T backward_error[2]) {
115 typedef Eigen::Matrix<T, 3, 1> Vec3;
116 Vec3 x(x1(0), x1(1), T(1.0));
117 Vec3 y(x2(0), x2(1), T(1.0));
118
119 Vec3 H_x = H * x;
120 Vec3 Hinv_y = H.inverse() * y;
121
122 H_x /= H_x(2);
123 Hinv_y /= Hinv_y(2);
124
125 forward_error[0] = H_x(0) - y(0);
126 forward_error[1] = H_x(1) - y(1);
127 backward_error[0] = Hinv_y(0) - x(0);
128 backward_error[1] = Hinv_y(1) - x(1);
129 }
130
131 // Calculate symmetric geometric cost:
132 //
133 // D(H * x1, x2)^2 + D(H^-1 * x2, x1)^2
134 //
SymmetricGeometricDistance(const Mat3 & H,const Vec2 & x1,const Vec2 & x2)135 double SymmetricGeometricDistance(const Mat3 &H,
136 const Vec2 &x1,
137 const Vec2 &x2) {
138 Vec2 forward_error, backward_error;
139 SymmetricGeometricDistanceTerms<double>(H,
140 x1,
141 x2,
142 forward_error.data(),
143 backward_error.data());
144 return forward_error.squaredNorm() +
145 backward_error.squaredNorm();
146 }
147
148 // A parameterization of the 2D homography matrix that uses 8 parameters so
149 // that the matrix is normalized (H(2,2) == 1).
150 // The homography matrix H is built from a list of 8 parameters (a, b,...g, h)
151 // as follows
152 //
153 // |a b c|
154 // H = |d e f|
155 // |g h 1|
156 //
157 template<typename T = double>
158 class Homography2DNormalizedParameterization {
159 public:
160 typedef Eigen::Matrix<T, 8, 1> Parameters; // a, b, ... g, h
161 typedef Eigen::Matrix<T, 3, 3> Parameterized; // H
162
163 // Convert from the 8 parameters to a H matrix.
To(const Parameters & p,Parameterized * h)164 static void To(const Parameters &p, Parameterized *h) {
165 *h << p(0), p(1), p(2),
166 p(3), p(4), p(5),
167 p(6), p(7), 1.0;
168 }
169
170 // Convert from a H matrix to the 8 parameters.
From(const Parameterized & h,Parameters * p)171 static void From(const Parameterized &h, Parameters *p) {
172 *p << h(0, 0), h(0, 1), h(0, 2),
173 h(1, 0), h(1, 1), h(1, 2),
174 h(2, 0), h(2, 1);
175 }
176 };
177
178 // 2D Homography transformation estimation in the case that points are in
179 // euclidean coordinates.
180 //
181 // x = H y
182 //
183 // x and y vector must have the same direction, we could write
184 //
185 // crossproduct(|x|, * H * |y| ) = |0|
186 //
187 // | 0 -1 x2| |a b c| |y1| |0|
188 // | 1 0 -x1| * |d e f| * |y2| = |0|
189 // |-x2 x1 0| |g h 1| |1 | |0|
190 //
191 // That gives:
192 //
193 // (-d+x2*g)*y1 + (-e+x2*h)*y2 + -f+x2 |0|
194 // (a-x1*g)*y1 + (b-x1*h)*y2 + c-x1 = |0|
195 // (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f |0|
196 //
Homography2DFromCorrespondencesLinearEuc(const Mat & x1,const Mat & x2,Mat3 * H,double expected_precision)197 bool Homography2DFromCorrespondencesLinearEuc(
198 const Mat &x1,
199 const Mat &x2,
200 Mat3 *H,
201 double expected_precision) {
202 assert(2 == x1.rows());
203 assert(4 <= x1.cols());
204 assert(x1.rows() == x2.rows());
205 assert(x1.cols() == x2.cols());
206
207 int n = x1.cols();
208 MatX8 L = Mat::Zero(n * 3, 8);
209 Mat b = Mat::Zero(n * 3, 1);
210 for (int i = 0; i < n; ++i) {
211 int j = 3 * i;
212 L(j, 0) = x1(0, i); // a
213 L(j, 1) = x1(1, i); // b
214 L(j, 2) = 1.0; // c
215 L(j, 6) = -x2(0, i) * x1(0, i); // g
216 L(j, 7) = -x2(0, i) * x1(1, i); // h
217 b(j, 0) = x2(0, i); // i
218
219 ++j;
220 L(j, 3) = x1(0, i); // d
221 L(j, 4) = x1(1, i); // e
222 L(j, 5) = 1.0; // f
223 L(j, 6) = -x2(1, i) * x1(0, i); // g
224 L(j, 7) = -x2(1, i) * x1(1, i); // h
225 b(j, 0) = x2(1, i); // i
226
227 // This ensures better stability
228 // TODO(julien) make a lite version without this 3rd set
229 ++j;
230 L(j, 0) = x2(1, i) * x1(0, i); // a
231 L(j, 1) = x2(1, i) * x1(1, i); // b
232 L(j, 2) = x2(1, i); // c
233 L(j, 3) = -x2(0, i) * x1(0, i); // d
234 L(j, 4) = -x2(0, i) * x1(1, i); // e
235 L(j, 5) = -x2(0, i); // f
236 }
237 // Solve Lx=B
238 const Vec h = L.fullPivLu().solve(b);
239 Homography2DNormalizedParameterization<double>::To(h, H);
240 return (L * h).isApprox(b, expected_precision);
241 }
242
243 // Cost functor which computes symmetric geometric distance
244 // used for homography matrix refinement.
245 class HomographySymmetricGeometricCostFunctor {
246 public:
HomographySymmetricGeometricCostFunctor(const Vec2 & x,const Vec2 & y)247 HomographySymmetricGeometricCostFunctor(const Vec2 &x,
248 const Vec2 &y)
249 : x_(x), y_(y) { }
250
251 template<typename T>
operator ()(const T * homography_parameters,T * residuals) const252 bool operator()(const T* homography_parameters, T* residuals) const {
253 typedef Eigen::Matrix<T, 3, 3> Mat3;
254 typedef Eigen::Matrix<T, 2, 1> Vec2;
255
256 Mat3 H(homography_parameters);
257 Vec2 x(T(x_(0)), T(x_(1)));
258 Vec2 y(T(y_(0)), T(y_(1)));
259
260 SymmetricGeometricDistanceTerms<T>(H,
261 x,
262 y,
263 &residuals[0],
264 &residuals[2]);
265 return true;
266 }
267
268 const Vec2 x_;
269 const Vec2 y_;
270 };
271
272 // Termination checking callback. This is needed to finish the
273 // optimization when an absolute error threshold is met, as opposed
274 // to Ceres's function_tolerance, which provides for finishing when
275 // successful steps reduce the cost function by a fractional amount.
276 // In this case, the callback checks for the absolute average reprojection
277 // error and terminates when it's below a threshold (for example all
278 // points < 0.5px error).
279 class TerminationCheckingCallback : public ceres::IterationCallback {
280 public:
TerminationCheckingCallback(const Mat & x1,const Mat & x2,const EstimateHomographyOptions & options,Mat3 * H)281 TerminationCheckingCallback(const Mat &x1, const Mat &x2,
282 const EstimateHomographyOptions &options,
283 Mat3 *H)
284 : options_(options), x1_(x1), x2_(x2), H_(H) {}
285
operator ()(const ceres::IterationSummary & summary)286 virtual ceres::CallbackReturnType operator()(
287 const ceres::IterationSummary& summary) {
288 // If the step wasn't successful, there's nothing to do.
289 if (!summary.step_is_successful) {
290 return ceres::SOLVER_CONTINUE;
291 }
292
293 // Calculate average of symmetric geometric distance.
294 double average_distance = 0.0;
295 for (int i = 0; i < x1_.cols(); i++) {
296 average_distance += SymmetricGeometricDistance(*H_,
297 x1_.col(i),
298 x2_.col(i));
299 }
300 average_distance /= x1_.cols();
301
302 if (average_distance <= options_.expected_average_symmetric_distance) {
303 return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
304 }
305
306 return ceres::SOLVER_CONTINUE;
307 }
308
309 private:
310 const EstimateHomographyOptions &options_;
311 const Mat &x1_;
312 const Mat &x2_;
313 Mat3 *H_;
314 };
315
EstimateHomography2DFromCorrespondences(const Mat & x1,const Mat & x2,const EstimateHomographyOptions & options,Mat3 * H)316 bool EstimateHomography2DFromCorrespondences(
317 const Mat &x1,
318 const Mat &x2,
319 const EstimateHomographyOptions &options,
320 Mat3 *H) {
321 assert(2 == x1.rows());
322 assert(4 <= x1.cols());
323 assert(x1.rows() == x2.rows());
324 assert(x1.cols() == x2.cols());
325
326 // Step 1: Algebraic homography estimation.
327 // Assume algebraic estimation always succeeds.
328 Homography2DFromCorrespondencesLinearEuc(x1,
329 x2,
330 H,
331 EigenDouble::dummy_precision());
332
333 LOG(INFO) << "Estimated matrix after algebraic estimation:\n" << *H;
334
335 // Step 2: Refine matrix using Ceres minimizer.
336 ceres::Problem problem;
337 for (int i = 0; i < x1.cols(); i++) {
338 HomographySymmetricGeometricCostFunctor
339 *homography_symmetric_geometric_cost_function =
340 new HomographySymmetricGeometricCostFunctor(x1.col(i),
341 x2.col(i));
342
343 problem.AddResidualBlock(
344 new ceres::AutoDiffCostFunction<
345 HomographySymmetricGeometricCostFunctor,
346 4, // num_residuals
347 9>(homography_symmetric_geometric_cost_function),
348 NULL,
349 H->data());
350 }
351
352 // Configure the solve.
353 ceres::Solver::Options solver_options;
354 solver_options.linear_solver_type = ceres::DENSE_QR;
355 solver_options.max_num_iterations = options.max_num_iterations;
356 solver_options.update_state_every_iteration = true;
357
358 // Terminate if the average symmetric distance is good enough.
359 TerminationCheckingCallback callback(x1, x2, options, H);
360 solver_options.callbacks.push_back(&callback);
361
362 // Run the solve.
363 ceres::Solver::Summary summary;
364 ceres::Solve(solver_options, &problem, &summary);
365
366 LOG(INFO) << "Summary:\n" << summary.FullReport();
367 LOG(INFO) << "Final refined matrix:\n" << *H;
368
369 return summary.IsSolutionUsable();
370 }
371
372 } // namespace libmv
373
main(int argc,char ** argv)374 int main(int argc, char **argv) {
375 google::InitGoogleLogging(argv[0]);
376
377 Mat x1(2, 100);
378 for (int i = 0; i < x1.cols(); ++i) {
379 x1(0, i) = rand() % 1024;
380 x1(1, i) = rand() % 1024;
381 }
382
383 Mat3 homography_matrix;
384 // This matrix has been dumped from a Blender test file of plane tracking.
385 homography_matrix << 1.243715, -0.461057, -111.964454,
386 0.0, 0.617589, -192.379252,
387 0.0, -0.000983, 1.0;
388
389 Mat x2 = x1;
390 for (int i = 0; i < x2.cols(); ++i) {
391 Vec3 homogenous_x1 = Vec3(x1(0, i), x1(1, i), 1.0);
392 Vec3 homogenous_x2 = homography_matrix * homogenous_x1;
393 x2(0, i) = homogenous_x2(0) / homogenous_x2(2);
394 x2(1, i) = homogenous_x2(1) / homogenous_x2(2);
395
396 // Apply some noise so algebraic estimation is not good enough.
397 x2(0, i) += static_cast<double>(rand() % 1000) / 5000.0;
398 x2(1, i) += static_cast<double>(rand() % 1000) / 5000.0;
399 }
400
401 Mat3 estimated_matrix;
402
403 EstimateHomographyOptions options;
404 options.expected_average_symmetric_distance = 0.02;
405 EstimateHomography2DFromCorrespondences(x1, x2, options, &estimated_matrix);
406
407 // Normalize the matrix for easier comparison.
408 estimated_matrix /= estimated_matrix(2 ,2);
409
410 std::cout << "Original matrix:\n" << homography_matrix << "\n";
411 std::cout << "Estimated matrix:\n" << estimated_matrix << "\n";
412
413 return EXIT_SUCCESS;
414 }
415