1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2014 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Copyright (c) 2014 libmv authors.
30 //
31 // Permission is hereby granted, free of charge, to any person obtaining a copy
32 // of this software and associated documentation files (the "Software"), to
33 // deal in the Software without restriction, including without limitation the
34 // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
35 // sell copies of the Software, and to permit persons to whom the Software is
36 // furnished to do so, subject to the following conditions:
37 //
38 // The above copyright notice and this permission notice shall be included in
39 // all copies or substantial portions of the Software.
40 //
41 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
42 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
43 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
44 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
45 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
46 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
47 // IN THE SOFTWARE.
48 //
49 // Author: sergey.vfx@gmail.com (Sergey Sharybin)
50 //
51 // This file demonstrates solving for a homography between two sets of points.
52 // A homography describes a transformation between a sets of points on a plane,
53 // perspectively projected into two images. The first step is to solve a
54 // homogeneous system of equations via singular value decompposition, giving an
55 // algebraic solution for the homography, then solving for a final solution by
56 // minimizing the symmetric transfer error in image space with Ceres (called the
57 // Gold Standard Solution in "Multiple View Geometry"). The routines are based on
58 // the routines from the Libmv library.
59 //
60 // This example demonstrates custom exit criterion by having a callback check
61 // for image-space error.
62 
63 #include "ceres/ceres.h"
64 #include "glog/logging.h"
65 
66 typedef Eigen::NumTraits<double> EigenDouble;
67 
68 typedef Eigen::MatrixXd Mat;
69 typedef Eigen::VectorXd Vec;
70 typedef Eigen::Matrix<double, 3, 3> Mat3;
71 typedef Eigen::Matrix<double, 2, 1> Vec2;
72 typedef Eigen::Matrix<double, Eigen::Dynamic,  8> MatX8;
73 typedef Eigen::Vector3d Vec3;
74 
75 namespace {
76 
77 // This structure contains options that controls how the homography
78 // estimation operates.
79 //
80 // Defaults should be suitable for a wide range of use cases, but
81 // better performance and accuracy might require tweaking.
82 struct EstimateHomographyOptions {
83   // Default settings for homography estimation which should be suitable
84   // for a wide range of use cases.
EstimateHomographyOptions__anon2f9807130111::EstimateHomographyOptions85   EstimateHomographyOptions()
86     :  max_num_iterations(50),
87        expected_average_symmetric_distance(1e-16) {}
88 
89   // Maximal number of iterations for the refinement step.
90   int max_num_iterations;
91 
92   // Expected average of symmetric geometric distance between
93   // actual destination points and original ones transformed by
94   // estimated homography matrix.
95   //
96   // Refinement will finish as soon as average of symmetric
97   // geometric distance is less or equal to this value.
98   //
99   // This distance is measured in the same units as input points are.
100   double expected_average_symmetric_distance;
101 };
102 
103 // Calculate symmetric geometric cost terms:
104 //
105 // forward_error = D(H * x1, x2)
106 // backward_error = D(H^-1 * x2, x1)
107 //
108 // Templated to be used with autodifferenciation.
109 template <typename T>
SymmetricGeometricDistanceTerms(const Eigen::Matrix<T,3,3> & H,const Eigen::Matrix<T,2,1> & x1,const Eigen::Matrix<T,2,1> & x2,T forward_error[2],T backward_error[2])110 void SymmetricGeometricDistanceTerms(const Eigen::Matrix<T, 3, 3> &H,
111                                      const Eigen::Matrix<T, 2, 1> &x1,
112                                      const Eigen::Matrix<T, 2, 1> &x2,
113                                      T forward_error[2],
114                                      T backward_error[2]) {
115   typedef Eigen::Matrix<T, 3, 1> Vec3;
116   Vec3 x(x1(0), x1(1), T(1.0));
117   Vec3 y(x2(0), x2(1), T(1.0));
118 
119   Vec3 H_x = H * x;
120   Vec3 Hinv_y = H.inverse() * y;
121 
122   H_x /= H_x(2);
123   Hinv_y /= Hinv_y(2);
124 
125   forward_error[0] = H_x(0) - y(0);
126   forward_error[1] = H_x(1) - y(1);
127   backward_error[0] = Hinv_y(0) - x(0);
128   backward_error[1] = Hinv_y(1) - x(1);
129 }
130 
131 // Calculate symmetric geometric cost:
132 //
133 //   D(H * x1, x2)^2 + D(H^-1 * x2, x1)^2
134 //
SymmetricGeometricDistance(const Mat3 & H,const Vec2 & x1,const Vec2 & x2)135 double SymmetricGeometricDistance(const Mat3 &H,
136                                   const Vec2 &x1,
137                                   const Vec2 &x2) {
138   Vec2 forward_error, backward_error;
139   SymmetricGeometricDistanceTerms<double>(H,
140                                           x1,
141                                           x2,
142                                           forward_error.data(),
143                                           backward_error.data());
144   return forward_error.squaredNorm() +
145          backward_error.squaredNorm();
146 }
147 
148 // A parameterization of the 2D homography matrix that uses 8 parameters so
149 // that the matrix is normalized (H(2,2) == 1).
150 // The homography matrix H is built from a list of 8 parameters (a, b,...g, h)
151 // as follows
152 //
153 //         |a b c|
154 //     H = |d e f|
155 //         |g h 1|
156 //
157 template<typename T = double>
158 class Homography2DNormalizedParameterization {
159  public:
160   typedef Eigen::Matrix<T, 8, 1> Parameters;     // a, b, ... g, h
161   typedef Eigen::Matrix<T, 3, 3> Parameterized;  // H
162 
163   // Convert from the 8 parameters to a H matrix.
To(const Parameters & p,Parameterized * h)164   static void To(const Parameters &p, Parameterized *h) {
165     *h << p(0), p(1), p(2),
166           p(3), p(4), p(5),
167           p(6), p(7), 1.0;
168   }
169 
170   // Convert from a H matrix to the 8 parameters.
From(const Parameterized & h,Parameters * p)171   static void From(const Parameterized &h, Parameters *p) {
172     *p << h(0, 0), h(0, 1), h(0, 2),
173           h(1, 0), h(1, 1), h(1, 2),
174           h(2, 0), h(2, 1);
175   }
176 };
177 
178 // 2D Homography transformation estimation in the case that points are in
179 // euclidean coordinates.
180 //
181 //   x = H y
182 //
183 // x and y vector must have the same direction, we could write
184 //
185 //   crossproduct(|x|, * H * |y| ) = |0|
186 //
187 //   | 0 -1  x2|   |a b c|   |y1|    |0|
188 //   | 1  0 -x1| * |d e f| * |y2| =  |0|
189 //   |-x2  x1 0|   |g h 1|   |1 |    |0|
190 //
191 // That gives:
192 //
193 //   (-d+x2*g)*y1    + (-e+x2*h)*y2 + -f+x2          |0|
194 //   (a-x1*g)*y1     + (b-x1*h)*y2  + c-x1         = |0|
195 //   (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f  |0|
196 //
Homography2DFromCorrespondencesLinearEuc(const Mat & x1,const Mat & x2,Mat3 * H,double expected_precision)197 bool Homography2DFromCorrespondencesLinearEuc(
198     const Mat &x1,
199     const Mat &x2,
200     Mat3 *H,
201     double expected_precision) {
202   assert(2 == x1.rows());
203   assert(4 <= x1.cols());
204   assert(x1.rows() == x2.rows());
205   assert(x1.cols() == x2.cols());
206 
207   int n = x1.cols();
208   MatX8 L = Mat::Zero(n * 3, 8);
209   Mat b = Mat::Zero(n * 3, 1);
210   for (int i = 0; i < n; ++i) {
211     int j = 3 * i;
212     L(j, 0) =  x1(0, i);             // a
213     L(j, 1) =  x1(1, i);             // b
214     L(j, 2) =  1.0;                  // c
215     L(j, 6) = -x2(0, i) * x1(0, i);  // g
216     L(j, 7) = -x2(0, i) * x1(1, i);  // h
217     b(j, 0) =  x2(0, i);             // i
218 
219     ++j;
220     L(j, 3) =  x1(0, i);             // d
221     L(j, 4) =  x1(1, i);             // e
222     L(j, 5) =  1.0;                  // f
223     L(j, 6) = -x2(1, i) * x1(0, i);  // g
224     L(j, 7) = -x2(1, i) * x1(1, i);  // h
225     b(j, 0) =  x2(1, i);             // i
226 
227     // This ensures better stability
228     // TODO(julien) make a lite version without this 3rd set
229     ++j;
230     L(j, 0) =  x2(1, i) * x1(0, i);  // a
231     L(j, 1) =  x2(1, i) * x1(1, i);  // b
232     L(j, 2) =  x2(1, i);             // c
233     L(j, 3) = -x2(0, i) * x1(0, i);  // d
234     L(j, 4) = -x2(0, i) * x1(1, i);  // e
235     L(j, 5) = -x2(0, i);             // f
236   }
237   // Solve Lx=B
238   const Vec h = L.fullPivLu().solve(b);
239   Homography2DNormalizedParameterization<double>::To(h, H);
240   return (L * h).isApprox(b, expected_precision);
241 }
242 
243 // Cost functor which computes symmetric geometric distance
244 // used for homography matrix refinement.
245 class HomographySymmetricGeometricCostFunctor {
246  public:
HomographySymmetricGeometricCostFunctor(const Vec2 & x,const Vec2 & y)247   HomographySymmetricGeometricCostFunctor(const Vec2 &x,
248                                           const Vec2 &y)
249       : x_(x), y_(y) { }
250 
251   template<typename T>
operator ()(const T * homography_parameters,T * residuals) const252   bool operator()(const T* homography_parameters, T* residuals) const {
253     typedef Eigen::Matrix<T, 3, 3> Mat3;
254     typedef Eigen::Matrix<T, 2, 1> Vec2;
255 
256     Mat3 H(homography_parameters);
257     Vec2 x(T(x_(0)), T(x_(1)));
258     Vec2 y(T(y_(0)), T(y_(1)));
259 
260     SymmetricGeometricDistanceTerms<T>(H,
261                                        x,
262                                        y,
263                                        &residuals[0],
264                                        &residuals[2]);
265     return true;
266   }
267 
268   const Vec2 x_;
269   const Vec2 y_;
270 };
271 
272 // Termination checking callback. This is needed to finish the
273 // optimization when an absolute error threshold is met, as opposed
274 // to Ceres's function_tolerance, which provides for finishing when
275 // successful steps reduce the cost function by a fractional amount.
276 // In this case, the callback checks for the absolute average reprojection
277 // error and terminates when it's below a threshold (for example all
278 // points < 0.5px error).
279 class TerminationCheckingCallback : public ceres::IterationCallback {
280  public:
TerminationCheckingCallback(const Mat & x1,const Mat & x2,const EstimateHomographyOptions & options,Mat3 * H)281   TerminationCheckingCallback(const Mat &x1, const Mat &x2,
282                               const EstimateHomographyOptions &options,
283                               Mat3 *H)
284       : options_(options), x1_(x1), x2_(x2), H_(H) {}
285 
operator ()(const ceres::IterationSummary & summary)286   virtual ceres::CallbackReturnType operator()(
287       const ceres::IterationSummary& summary) {
288     // If the step wasn't successful, there's nothing to do.
289     if (!summary.step_is_successful) {
290       return ceres::SOLVER_CONTINUE;
291     }
292 
293     // Calculate average of symmetric geometric distance.
294     double average_distance = 0.0;
295     for (int i = 0; i < x1_.cols(); i++) {
296       average_distance += SymmetricGeometricDistance(*H_,
297                                                      x1_.col(i),
298                                                      x2_.col(i));
299     }
300     average_distance /= x1_.cols();
301 
302     if (average_distance <= options_.expected_average_symmetric_distance) {
303       return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
304     }
305 
306     return ceres::SOLVER_CONTINUE;
307   }
308 
309  private:
310   const EstimateHomographyOptions &options_;
311   const Mat &x1_;
312   const Mat &x2_;
313   Mat3 *H_;
314 };
315 
EstimateHomography2DFromCorrespondences(const Mat & x1,const Mat & x2,const EstimateHomographyOptions & options,Mat3 * H)316 bool EstimateHomography2DFromCorrespondences(
317     const Mat &x1,
318     const Mat &x2,
319     const EstimateHomographyOptions &options,
320     Mat3 *H) {
321   assert(2 == x1.rows());
322   assert(4 <= x1.cols());
323   assert(x1.rows() == x2.rows());
324   assert(x1.cols() == x2.cols());
325 
326   // Step 1: Algebraic homography estimation.
327   // Assume algebraic estimation always succeeds.
328   Homography2DFromCorrespondencesLinearEuc(x1,
329                                            x2,
330                                            H,
331                                            EigenDouble::dummy_precision());
332 
333   LOG(INFO) << "Estimated matrix after algebraic estimation:\n" << *H;
334 
335   // Step 2: Refine matrix using Ceres minimizer.
336   ceres::Problem problem;
337   for (int i = 0; i < x1.cols(); i++) {
338     HomographySymmetricGeometricCostFunctor
339         *homography_symmetric_geometric_cost_function =
340             new HomographySymmetricGeometricCostFunctor(x1.col(i),
341                                                         x2.col(i));
342 
343     problem.AddResidualBlock(
344         new ceres::AutoDiffCostFunction<
345             HomographySymmetricGeometricCostFunctor,
346             4,  // num_residuals
347             9>(homography_symmetric_geometric_cost_function),
348         NULL,
349         H->data());
350   }
351 
352   // Configure the solve.
353   ceres::Solver::Options solver_options;
354   solver_options.linear_solver_type = ceres::DENSE_QR;
355   solver_options.max_num_iterations = options.max_num_iterations;
356   solver_options.update_state_every_iteration = true;
357 
358   // Terminate if the average symmetric distance is good enough.
359   TerminationCheckingCallback callback(x1, x2, options, H);
360   solver_options.callbacks.push_back(&callback);
361 
362   // Run the solve.
363   ceres::Solver::Summary summary;
364   ceres::Solve(solver_options, &problem, &summary);
365 
366   LOG(INFO) << "Summary:\n" << summary.FullReport();
367   LOG(INFO) << "Final refined matrix:\n" << *H;
368 
369   return summary.IsSolutionUsable();
370 }
371 
372 }  // namespace libmv
373 
main(int argc,char ** argv)374 int main(int argc, char **argv) {
375   google::InitGoogleLogging(argv[0]);
376 
377   Mat x1(2, 100);
378   for (int i = 0; i < x1.cols(); ++i) {
379     x1(0, i) = rand() % 1024;
380     x1(1, i) = rand() % 1024;
381   }
382 
383   Mat3 homography_matrix;
384   // This matrix has been dumped from a Blender test file of plane tracking.
385   homography_matrix << 1.243715, -0.461057, -111.964454,
386                        0.0,       0.617589, -192.379252,
387                        0.0,      -0.000983,    1.0;
388 
389   Mat x2 = x1;
390   for (int i = 0; i < x2.cols(); ++i) {
391     Vec3 homogenous_x1 = Vec3(x1(0, i), x1(1, i), 1.0);
392     Vec3 homogenous_x2 = homography_matrix * homogenous_x1;
393     x2(0, i) = homogenous_x2(0) / homogenous_x2(2);
394     x2(1, i) = homogenous_x2(1) / homogenous_x2(2);
395 
396     // Apply some noise so algebraic estimation is not good enough.
397     x2(0, i) += static_cast<double>(rand() % 1000) / 5000.0;
398     x2(1, i) += static_cast<double>(rand() % 1000) / 5000.0;
399   }
400 
401   Mat3 estimated_matrix;
402 
403   EstimateHomographyOptions options;
404   options.expected_average_symmetric_distance = 0.02;
405   EstimateHomography2DFromCorrespondences(x1, x2, options, &estimated_matrix);
406 
407   // Normalize the matrix for easier comparison.
408   estimated_matrix /= estimated_matrix(2 ,2);
409 
410   std::cout << "Original matrix:\n" << homography_matrix << "\n";
411   std::cout << "Estimated matrix:\n" << estimated_matrix << "\n";
412 
413   return EXIT_SUCCESS;
414 }
415