1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file implements a class to represent arbitrary precision
12 /// integral constant values and operations on them.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_ADT_APINT_H
17 #define LLVM_ADT_APINT_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/MathExtras.h"
22 #include <cassert>
23 #include <climits>
24 #include <cstring>
25 #include <string>
26
27 namespace llvm {
28 class FoldingSetNodeID;
29 class StringRef;
30 class hash_code;
31 class raw_ostream;
32
33 template <typename T> class SmallVectorImpl;
34
35 // An unsigned host type used as a single part of a multi-part
36 // bignum.
37 typedef uint64_t integerPart;
38
39 const unsigned int host_char_bit = 8;
40 const unsigned int integerPartWidth =
41 host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
42
43 //===----------------------------------------------------------------------===//
44 // APInt Class
45 //===----------------------------------------------------------------------===//
46
47 /// \brief Class for arbitrary precision integers.
48 ///
49 /// APInt is a functional replacement for common case unsigned integer type like
50 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
51 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
52 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
53 /// and methods to manipulate integer values of any bit-width. It supports both
54 /// the typical integer arithmetic and comparison operations as well as bitwise
55 /// manipulation.
56 ///
57 /// The class has several invariants worth noting:
58 /// * All bit, byte, and word positions are zero-based.
59 /// * Once the bit width is set, it doesn't change except by the Truncate,
60 /// SignExtend, or ZeroExtend operations.
61 /// * All binary operators must be on APInt instances of the same bit width.
62 /// Attempting to use these operators on instances with different bit
63 /// widths will yield an assertion.
64 /// * The value is stored canonically as an unsigned value. For operations
65 /// where it makes a difference, there are both signed and unsigned variants
66 /// of the operation. For example, sdiv and udiv. However, because the bit
67 /// widths must be the same, operations such as Mul and Add produce the same
68 /// results regardless of whether the values are interpreted as signed or
69 /// not.
70 /// * In general, the class tries to follow the style of computation that LLVM
71 /// uses in its IR. This simplifies its use for LLVM.
72 ///
73 class APInt {
74 unsigned BitWidth; ///< The number of bits in this APInt.
75
76 /// This union is used to store the integer value. When the
77 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
78 union {
79 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
80 uint64_t *pVal; ///< Used to store the >64 bits integer value.
81 };
82
83 /// This enum is used to hold the constants we needed for APInt.
84 enum {
85 /// Bits in a word
86 APINT_BITS_PER_WORD =
87 static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
88 /// Byte size of a word
89 APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
90 };
91
92 friend struct DenseMapAPIntKeyInfo;
93
94 /// \brief Fast internal constructor
95 ///
96 /// This constructor is used only internally for speed of construction of
97 /// temporaries. It is unsafe for general use so it is not public.
APInt(uint64_t * val,unsigned bits)98 APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
99
100 /// \brief Determine if this APInt just has one word to store value.
101 ///
102 /// \returns true if the number of bits <= 64, false otherwise.
isSingleWord()103 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
104
105 /// \brief Determine which word a bit is in.
106 ///
107 /// \returns the word position for the specified bit position.
whichWord(unsigned bitPosition)108 static unsigned whichWord(unsigned bitPosition) {
109 return bitPosition / APINT_BITS_PER_WORD;
110 }
111
112 /// \brief Determine which bit in a word a bit is in.
113 ///
114 /// \returns the bit position in a word for the specified bit position
115 /// in the APInt.
whichBit(unsigned bitPosition)116 static unsigned whichBit(unsigned bitPosition) {
117 return bitPosition % APINT_BITS_PER_WORD;
118 }
119
120 /// \brief Get a single bit mask.
121 ///
122 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
123 /// This method generates and returns a uint64_t (word) mask for a single
124 /// bit at a specific bit position. This is used to mask the bit in the
125 /// corresponding word.
maskBit(unsigned bitPosition)126 static uint64_t maskBit(unsigned bitPosition) {
127 return 1ULL << whichBit(bitPosition);
128 }
129
130 /// \brief Clear unused high order bits
131 ///
132 /// This method is used internally to clear the to "N" bits in the high order
133 /// word that are not used by the APInt. This is needed after the most
134 /// significant word is assigned a value to ensure that those bits are
135 /// zero'd out.
clearUnusedBits()136 APInt &clearUnusedBits() {
137 // Compute how many bits are used in the final word
138 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
139 if (wordBits == 0)
140 // If all bits are used, we want to leave the value alone. This also
141 // avoids the undefined behavior of >> when the shift is the same size as
142 // the word size (64).
143 return *this;
144
145 // Mask out the high bits.
146 uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
147 if (isSingleWord())
148 VAL &= mask;
149 else
150 pVal[getNumWords() - 1] &= mask;
151 return *this;
152 }
153
154 /// \brief Get the word corresponding to a bit position
155 /// \returns the corresponding word for the specified bit position.
getWord(unsigned bitPosition)156 uint64_t getWord(unsigned bitPosition) const {
157 return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
158 }
159
160 /// \brief Convert a char array into an APInt
161 ///
162 /// \param radix 2, 8, 10, 16, or 36
163 /// Converts a string into a number. The string must be non-empty
164 /// and well-formed as a number of the given base. The bit-width
165 /// must be sufficient to hold the result.
166 ///
167 /// This is used by the constructors that take string arguments.
168 ///
169 /// StringRef::getAsInteger is superficially similar but (1) does
170 /// not assume that the string is well-formed and (2) grows the
171 /// result to hold the input.
172 void fromString(unsigned numBits, StringRef str, uint8_t radix);
173
174 /// \brief An internal division function for dividing APInts.
175 ///
176 /// This is used by the toString method to divide by the radix. It simply
177 /// provides a more convenient form of divide for internal use since KnuthDiv
178 /// has specific constraints on its inputs. If those constraints are not met
179 /// then it provides a simpler form of divide.
180 static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
181 unsigned rhsWords, APInt *Quotient, APInt *Remainder);
182
183 /// out-of-line slow case for inline constructor
184 void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
185
186 /// shared code between two array constructors
187 void initFromArray(ArrayRef<uint64_t> array);
188
189 /// out-of-line slow case for inline copy constructor
190 void initSlowCase(const APInt &that);
191
192 /// out-of-line slow case for shl
193 APInt shlSlowCase(unsigned shiftAmt) const;
194
195 /// out-of-line slow case for operator&
196 APInt AndSlowCase(const APInt &RHS) const;
197
198 /// out-of-line slow case for operator|
199 APInt OrSlowCase(const APInt &RHS) const;
200
201 /// out-of-line slow case for operator^
202 APInt XorSlowCase(const APInt &RHS) const;
203
204 /// out-of-line slow case for operator=
205 APInt &AssignSlowCase(const APInt &RHS);
206
207 /// out-of-line slow case for operator==
208 bool EqualSlowCase(const APInt &RHS) const;
209
210 /// out-of-line slow case for operator==
211 bool EqualSlowCase(uint64_t Val) const;
212
213 /// out-of-line slow case for countLeadingZeros
214 unsigned countLeadingZerosSlowCase() const;
215
216 /// out-of-line slow case for countTrailingOnes
217 unsigned countTrailingOnesSlowCase() const;
218
219 /// out-of-line slow case for countPopulation
220 unsigned countPopulationSlowCase() const;
221
222 public:
223 /// \name Constructors
224 /// @{
225
226 /// \brief Create a new APInt of numBits width, initialized as val.
227 ///
228 /// If isSigned is true then val is treated as if it were a signed value
229 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
230 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
231 /// the range of val are zero filled).
232 ///
233 /// \param numBits the bit width of the constructed APInt
234 /// \param val the initial value of the APInt
235 /// \param isSigned how to treat signedness of val
236 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)237 : BitWidth(numBits), VAL(0) {
238 assert(BitWidth && "bitwidth too small");
239 if (isSingleWord())
240 VAL = val;
241 else
242 initSlowCase(numBits, val, isSigned);
243 clearUnusedBits();
244 }
245
246 /// \brief Construct an APInt of numBits width, initialized as bigVal[].
247 ///
248 /// Note that bigVal.size() can be smaller or larger than the corresponding
249 /// bit width but any extraneous bits will be dropped.
250 ///
251 /// \param numBits the bit width of the constructed APInt
252 /// \param bigVal a sequence of words to form the initial value of the APInt
253 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
254
255 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
256 /// deprecated because this constructor is prone to ambiguity with the
257 /// APInt(unsigned, uint64_t, bool) constructor.
258 ///
259 /// If this overload is ever deleted, care should be taken to prevent calls
260 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
261 /// constructor.
262 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
263
264 /// \brief Construct an APInt from a string representation.
265 ///
266 /// This constructor interprets the string \p str in the given radix. The
267 /// interpretation stops when the first character that is not suitable for the
268 /// radix is encountered, or the end of the string. Acceptable radix values
269 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
270 /// string to require more bits than numBits.
271 ///
272 /// \param numBits the bit width of the constructed APInt
273 /// \param str the string to be interpreted
274 /// \param radix the radix to use for the conversion
275 APInt(unsigned numBits, StringRef str, uint8_t radix);
276
277 /// Simply makes *this a copy of that.
278 /// @brief Copy Constructor.
APInt(const APInt & that)279 APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
280 if (isSingleWord())
281 VAL = that.VAL;
282 else
283 initSlowCase(that);
284 }
285
286 /// \brief Move Constructor.
APInt(APInt && that)287 APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
288 that.BitWidth = 0;
289 }
290
291 /// \brief Destructor.
~APInt()292 ~APInt() {
293 if (needsCleanup())
294 delete[] pVal;
295 }
296
297 /// \brief Default constructor that creates an uninitialized APInt.
298 ///
299 /// This is useful for object deserialization (pair this with the static
300 /// method Read).
APInt()301 explicit APInt() : BitWidth(1) {}
302
303 /// \brief Returns whether this instance allocated memory.
needsCleanup()304 bool needsCleanup() const { return !isSingleWord(); }
305
306 /// Used to insert APInt objects, or objects that contain APInt objects, into
307 /// FoldingSets.
308 void Profile(FoldingSetNodeID &id) const;
309
310 /// @}
311 /// \name Value Tests
312 /// @{
313
314 /// \brief Determine sign of this APInt.
315 ///
316 /// This tests the high bit of this APInt to determine if it is set.
317 ///
318 /// \returns true if this APInt is negative, false otherwise
isNegative()319 bool isNegative() const { return (*this)[BitWidth - 1]; }
320
321 /// \brief Determine if this APInt Value is non-negative (>= 0)
322 ///
323 /// This tests the high bit of the APInt to determine if it is unset.
isNonNegative()324 bool isNonNegative() const { return !isNegative(); }
325
326 /// \brief Determine if this APInt Value is positive.
327 ///
328 /// This tests if the value of this APInt is positive (> 0). Note
329 /// that 0 is not a positive value.
330 ///
331 /// \returns true if this APInt is positive.
isStrictlyPositive()332 bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
333
334 /// \brief Determine if all bits are set
335 ///
336 /// This checks to see if the value has all bits of the APInt are set or not.
isAllOnesValue()337 bool isAllOnesValue() const {
338 if (isSingleWord())
339 return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
340 return countPopulationSlowCase() == BitWidth;
341 }
342
343 /// \brief Determine if this is the largest unsigned value.
344 ///
345 /// This checks to see if the value of this APInt is the maximum unsigned
346 /// value for the APInt's bit width.
isMaxValue()347 bool isMaxValue() const { return isAllOnesValue(); }
348
349 /// \brief Determine if this is the largest signed value.
350 ///
351 /// This checks to see if the value of this APInt is the maximum signed
352 /// value for the APInt's bit width.
isMaxSignedValue()353 bool isMaxSignedValue() const {
354 return BitWidth == 1 ? VAL == 0
355 : !isNegative() && countPopulation() == BitWidth - 1;
356 }
357
358 /// \brief Determine if this is the smallest unsigned value.
359 ///
360 /// This checks to see if the value of this APInt is the minimum unsigned
361 /// value for the APInt's bit width.
isMinValue()362 bool isMinValue() const { return !*this; }
363
364 /// \brief Determine if this is the smallest signed value.
365 ///
366 /// This checks to see if the value of this APInt is the minimum signed
367 /// value for the APInt's bit width.
isMinSignedValue()368 bool isMinSignedValue() const {
369 return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
370 }
371
372 /// \brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)373 bool isIntN(unsigned N) const {
374 assert(N && "N == 0 ???");
375 return getActiveBits() <= N;
376 }
377
378 /// \brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)379 bool isSignedIntN(unsigned N) const {
380 assert(N && "N == 0 ???");
381 return getMinSignedBits() <= N;
382 }
383
384 /// \brief Check if this APInt's value is a power of two greater than zero.
385 ///
386 /// \returns true if the argument APInt value is a power of two > 0.
isPowerOf2()387 bool isPowerOf2() const {
388 if (isSingleWord())
389 return isPowerOf2_64(VAL);
390 return countPopulationSlowCase() == 1;
391 }
392
393 /// \brief Check if the APInt's value is returned by getSignBit.
394 ///
395 /// \returns true if this is the value returned by getSignBit.
isSignBit()396 bool isSignBit() const { return isMinSignedValue(); }
397
398 /// \brief Convert APInt to a boolean value.
399 ///
400 /// This converts the APInt to a boolean value as a test against zero.
getBoolValue()401 bool getBoolValue() const { return !!*this; }
402
403 /// If this value is smaller than the specified limit, return it, otherwise
404 /// return the limit value. This causes the value to saturate to the limit.
405 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
406 return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
407 : getZExtValue();
408 }
409
410 /// \brief Check if the APInt consists of a repeated bit pattern.
411 ///
412 /// e.g. 0x01010101 satisfies isSplat(8).
413 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
414 /// width without remainder.
415 bool isSplat(unsigned SplatSizeInBits) const;
416
417 /// @}
418 /// \name Value Generators
419 /// @{
420
421 /// \brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)422 static APInt getMaxValue(unsigned numBits) {
423 return getAllOnesValue(numBits);
424 }
425
426 /// \brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)427 static APInt getSignedMaxValue(unsigned numBits) {
428 APInt API = getAllOnesValue(numBits);
429 API.clearBit(numBits - 1);
430 return API;
431 }
432
433 /// \brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)434 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
435
436 /// \brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)437 static APInt getSignedMinValue(unsigned numBits) {
438 APInt API(numBits, 0);
439 API.setBit(numBits - 1);
440 return API;
441 }
442
443 /// \brief Get the SignBit for a specific bit width.
444 ///
445 /// This is just a wrapper function of getSignedMinValue(), and it helps code
446 /// readability when we want to get a SignBit.
getSignBit(unsigned BitWidth)447 static APInt getSignBit(unsigned BitWidth) {
448 return getSignedMinValue(BitWidth);
449 }
450
451 /// \brief Get the all-ones value.
452 ///
453 /// \returns the all-ones value for an APInt of the specified bit-width.
getAllOnesValue(unsigned numBits)454 static APInt getAllOnesValue(unsigned numBits) {
455 return APInt(numBits, UINT64_MAX, true);
456 }
457
458 /// \brief Get the '0' value.
459 ///
460 /// \returns the '0' value for an APInt of the specified bit-width.
getNullValue(unsigned numBits)461 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
462
463 /// \brief Compute an APInt containing numBits highbits from this APInt.
464 ///
465 /// Get an APInt with the same BitWidth as this APInt, just zero mask
466 /// the low bits and right shift to the least significant bit.
467 ///
468 /// \returns the high "numBits" bits of this APInt.
469 APInt getHiBits(unsigned numBits) const;
470
471 /// \brief Compute an APInt containing numBits lowbits from this APInt.
472 ///
473 /// Get an APInt with the same BitWidth as this APInt, just zero mask
474 /// the high bits.
475 ///
476 /// \returns the low "numBits" bits of this APInt.
477 APInt getLoBits(unsigned numBits) const;
478
479 /// \brief Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)480 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
481 APInt Res(numBits, 0);
482 Res.setBit(BitNo);
483 return Res;
484 }
485
486 /// \brief Get a value with a block of bits set.
487 ///
488 /// Constructs an APInt value that has a contiguous range of bits set. The
489 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
490 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
491 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
492 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
493 ///
494 /// \param numBits the intended bit width of the result
495 /// \param loBit the index of the lowest bit set.
496 /// \param hiBit the index of the highest bit set.
497 ///
498 /// \returns An APInt value with the requested bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)499 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
500 assert(hiBit <= numBits && "hiBit out of range");
501 assert(loBit < numBits && "loBit out of range");
502 if (hiBit < loBit)
503 return getLowBitsSet(numBits, hiBit) |
504 getHighBitsSet(numBits, numBits - loBit);
505 return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
506 }
507
508 /// \brief Get a value with high bits set
509 ///
510 /// Constructs an APInt value that has the top hiBitsSet bits set.
511 ///
512 /// \param numBits the bitwidth of the result
513 /// \param hiBitsSet the number of high-order bits set in the result.
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)514 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
515 assert(hiBitsSet <= numBits && "Too many bits to set!");
516 // Handle a degenerate case, to avoid shifting by word size
517 if (hiBitsSet == 0)
518 return APInt(numBits, 0);
519 unsigned shiftAmt = numBits - hiBitsSet;
520 // For small values, return quickly
521 if (numBits <= APINT_BITS_PER_WORD)
522 return APInt(numBits, ~0ULL << shiftAmt);
523 return getAllOnesValue(numBits).shl(shiftAmt);
524 }
525
526 /// \brief Get a value with low bits set
527 ///
528 /// Constructs an APInt value that has the bottom loBitsSet bits set.
529 ///
530 /// \param numBits the bitwidth of the result
531 /// \param loBitsSet the number of low-order bits set in the result.
getLowBitsSet(unsigned numBits,unsigned loBitsSet)532 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
533 assert(loBitsSet <= numBits && "Too many bits to set!");
534 // Handle a degenerate case, to avoid shifting by word size
535 if (loBitsSet == 0)
536 return APInt(numBits, 0);
537 if (loBitsSet == APINT_BITS_PER_WORD)
538 return APInt(numBits, UINT64_MAX);
539 // For small values, return quickly.
540 if (loBitsSet <= APINT_BITS_PER_WORD)
541 return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
542 return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
543 }
544
545 /// \brief Return a value containing V broadcasted over NewLen bits.
getSplat(unsigned NewLen,const APInt & V)546 static APInt getSplat(unsigned NewLen, const APInt &V) {
547 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
548
549 APInt Val = V.zextOrSelf(NewLen);
550 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
551 Val |= Val << I;
552
553 return Val;
554 }
555
556 /// \brief Determine if two APInts have the same value, after zero-extending
557 /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)558 static bool isSameValue(const APInt &I1, const APInt &I2) {
559 if (I1.getBitWidth() == I2.getBitWidth())
560 return I1 == I2;
561
562 if (I1.getBitWidth() > I2.getBitWidth())
563 return I1 == I2.zext(I1.getBitWidth());
564
565 return I1.zext(I2.getBitWidth()) == I2;
566 }
567
568 /// \brief Overload to compute a hash_code for an APInt value.
569 friend hash_code hash_value(const APInt &Arg);
570
571 /// This function returns a pointer to the internal storage of the APInt.
572 /// This is useful for writing out the APInt in binary form without any
573 /// conversions.
getRawData()574 const uint64_t *getRawData() const {
575 if (isSingleWord())
576 return &VAL;
577 return &pVal[0];
578 }
579
580 /// @}
581 /// \name Unary Operators
582 /// @{
583
584 /// \brief Postfix increment operator.
585 ///
586 /// \returns a new APInt value representing *this incremented by one
587 const APInt operator++(int) {
588 APInt API(*this);
589 ++(*this);
590 return API;
591 }
592
593 /// \brief Prefix increment operator.
594 ///
595 /// \returns *this incremented by one
596 APInt &operator++();
597
598 /// \brief Postfix decrement operator.
599 ///
600 /// \returns a new APInt representing *this decremented by one.
601 const APInt operator--(int) {
602 APInt API(*this);
603 --(*this);
604 return API;
605 }
606
607 /// \brief Prefix decrement operator.
608 ///
609 /// \returns *this decremented by one.
610 APInt &operator--();
611
612 /// \brief Unary bitwise complement operator.
613 ///
614 /// Performs a bitwise complement operation on this APInt.
615 ///
616 /// \returns an APInt that is the bitwise complement of *this
617 APInt operator~() const {
618 APInt Result(*this);
619 Result.flipAllBits();
620 return Result;
621 }
622
623 /// \brief Unary negation operator
624 ///
625 /// Negates *this using two's complement logic.
626 ///
627 /// \returns An APInt value representing the negation of *this.
628 APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
629
630 /// \brief Logical negation operator.
631 ///
632 /// Performs logical negation operation on this APInt.
633 ///
634 /// \returns true if *this is zero, false otherwise.
635 bool operator!() const {
636 if (isSingleWord())
637 return !VAL;
638
639 for (unsigned i = 0; i != getNumWords(); ++i)
640 if (pVal[i])
641 return false;
642 return true;
643 }
644
645 /// @}
646 /// \name Assignment Operators
647 /// @{
648
649 /// \brief Copy assignment operator.
650 ///
651 /// \returns *this after assignment of RHS.
652 APInt &operator=(const APInt &RHS) {
653 // If the bitwidths are the same, we can avoid mucking with memory
654 if (isSingleWord() && RHS.isSingleWord()) {
655 VAL = RHS.VAL;
656 BitWidth = RHS.BitWidth;
657 return clearUnusedBits();
658 }
659
660 return AssignSlowCase(RHS);
661 }
662
663 /// @brief Move assignment operator.
664 APInt &operator=(APInt &&that) {
665 if (!isSingleWord()) {
666 // The MSVC STL shipped in 2013 requires that self move assignment be a
667 // no-op. Otherwise algorithms like stable_sort will produce answers
668 // where half of the output is left in a moved-from state.
669 if (this == &that)
670 return *this;
671 delete[] pVal;
672 }
673
674 // Use memcpy so that type based alias analysis sees both VAL and pVal
675 // as modified.
676 memcpy(&VAL, &that.VAL, sizeof(uint64_t));
677
678 // If 'this == &that', avoid zeroing our own bitwidth by storing to 'that'
679 // first.
680 unsigned ThatBitWidth = that.BitWidth;
681 that.BitWidth = 0;
682 BitWidth = ThatBitWidth;
683
684 return *this;
685 }
686
687 /// \brief Assignment operator.
688 ///
689 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
690 /// the bit width, the excess bits are truncated. If the bit width is larger
691 /// than 64, the value is zero filled in the unspecified high order bits.
692 ///
693 /// \returns *this after assignment of RHS value.
694 APInt &operator=(uint64_t RHS);
695
696 /// \brief Bitwise AND assignment operator.
697 ///
698 /// Performs a bitwise AND operation on this APInt and RHS. The result is
699 /// assigned to *this.
700 ///
701 /// \returns *this after ANDing with RHS.
702 APInt &operator&=(const APInt &RHS);
703
704 /// \brief Bitwise OR assignment operator.
705 ///
706 /// Performs a bitwise OR operation on this APInt and RHS. The result is
707 /// assigned *this;
708 ///
709 /// \returns *this after ORing with RHS.
710 APInt &operator|=(const APInt &RHS);
711
712 /// \brief Bitwise OR assignment operator.
713 ///
714 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
715 /// logically zero-extended or truncated to match the bit-width of
716 /// the LHS.
717 APInt &operator|=(uint64_t RHS) {
718 if (isSingleWord()) {
719 VAL |= RHS;
720 clearUnusedBits();
721 } else {
722 pVal[0] |= RHS;
723 }
724 return *this;
725 }
726
727 /// \brief Bitwise XOR assignment operator.
728 ///
729 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
730 /// assigned to *this.
731 ///
732 /// \returns *this after XORing with RHS.
733 APInt &operator^=(const APInt &RHS);
734
735 /// \brief Multiplication assignment operator.
736 ///
737 /// Multiplies this APInt by RHS and assigns the result to *this.
738 ///
739 /// \returns *this
740 APInt &operator*=(const APInt &RHS);
741
742 /// \brief Addition assignment operator.
743 ///
744 /// Adds RHS to *this and assigns the result to *this.
745 ///
746 /// \returns *this
747 APInt &operator+=(const APInt &RHS);
748
749 /// \brief Subtraction assignment operator.
750 ///
751 /// Subtracts RHS from *this and assigns the result to *this.
752 ///
753 /// \returns *this
754 APInt &operator-=(const APInt &RHS);
755
756 /// \brief Left-shift assignment function.
757 ///
758 /// Shifts *this left by shiftAmt and assigns the result to *this.
759 ///
760 /// \returns *this after shifting left by shiftAmt
761 APInt &operator<<=(unsigned shiftAmt) {
762 *this = shl(shiftAmt);
763 return *this;
764 }
765
766 /// @}
767 /// \name Binary Operators
768 /// @{
769
770 /// \brief Bitwise AND operator.
771 ///
772 /// Performs a bitwise AND operation on *this and RHS.
773 ///
774 /// \returns An APInt value representing the bitwise AND of *this and RHS.
775 APInt operator&(const APInt &RHS) const {
776 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
777 if (isSingleWord())
778 return APInt(getBitWidth(), VAL & RHS.VAL);
779 return AndSlowCase(RHS);
780 }
And(const APInt & RHS)781 APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
782 return this->operator&(RHS);
783 }
784
785 /// \brief Bitwise OR operator.
786 ///
787 /// Performs a bitwise OR operation on *this and RHS.
788 ///
789 /// \returns An APInt value representing the bitwise OR of *this and RHS.
790 APInt operator|(const APInt &RHS) const {
791 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
792 if (isSingleWord())
793 return APInt(getBitWidth(), VAL | RHS.VAL);
794 return OrSlowCase(RHS);
795 }
796
797 /// \brief Bitwise OR function.
798 ///
799 /// Performs a bitwise or on *this and RHS. This is implemented bny simply
800 /// calling operator|.
801 ///
802 /// \returns An APInt value representing the bitwise OR of *this and RHS.
Or(const APInt & RHS)803 APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
804 return this->operator|(RHS);
805 }
806
807 /// \brief Bitwise XOR operator.
808 ///
809 /// Performs a bitwise XOR operation on *this and RHS.
810 ///
811 /// \returns An APInt value representing the bitwise XOR of *this and RHS.
812 APInt operator^(const APInt &RHS) const {
813 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
814 if (isSingleWord())
815 return APInt(BitWidth, VAL ^ RHS.VAL);
816 return XorSlowCase(RHS);
817 }
818
819 /// \brief Bitwise XOR function.
820 ///
821 /// Performs a bitwise XOR operation on *this and RHS. This is implemented
822 /// through the usage of operator^.
823 ///
824 /// \returns An APInt value representing the bitwise XOR of *this and RHS.
Xor(const APInt & RHS)825 APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
826 return this->operator^(RHS);
827 }
828
829 /// \brief Multiplication operator.
830 ///
831 /// Multiplies this APInt by RHS and returns the result.
832 APInt operator*(const APInt &RHS) const;
833
834 /// \brief Addition operator.
835 ///
836 /// Adds RHS to this APInt and returns the result.
837 APInt operator+(const APInt &RHS) const;
838 APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
839
840 /// \brief Subtraction operator.
841 ///
842 /// Subtracts RHS from this APInt and returns the result.
843 APInt operator-(const APInt &RHS) const;
844 APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
845
846 /// \brief Left logical shift operator.
847 ///
848 /// Shifts this APInt left by \p Bits and returns the result.
849 APInt operator<<(unsigned Bits) const { return shl(Bits); }
850
851 /// \brief Left logical shift operator.
852 ///
853 /// Shifts this APInt left by \p Bits and returns the result.
854 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
855
856 /// \brief Arithmetic right-shift function.
857 ///
858 /// Arithmetic right-shift this APInt by shiftAmt.
859 APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
860
861 /// \brief Logical right-shift function.
862 ///
863 /// Logical right-shift this APInt by shiftAmt.
864 APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
865
866 /// \brief Left-shift function.
867 ///
868 /// Left-shift this APInt by shiftAmt.
shl(unsigned shiftAmt)869 APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
870 assert(shiftAmt <= BitWidth && "Invalid shift amount");
871 if (isSingleWord()) {
872 if (shiftAmt >= BitWidth)
873 return APInt(BitWidth, 0); // avoid undefined shift results
874 return APInt(BitWidth, VAL << shiftAmt);
875 }
876 return shlSlowCase(shiftAmt);
877 }
878
879 /// \brief Rotate left by rotateAmt.
880 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
881
882 /// \brief Rotate right by rotateAmt.
883 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
884
885 /// \brief Arithmetic right-shift function.
886 ///
887 /// Arithmetic right-shift this APInt by shiftAmt.
888 APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
889
890 /// \brief Logical right-shift function.
891 ///
892 /// Logical right-shift this APInt by shiftAmt.
893 APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
894
895 /// \brief Left-shift function.
896 ///
897 /// Left-shift this APInt by shiftAmt.
898 APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
899
900 /// \brief Rotate left by rotateAmt.
901 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
902
903 /// \brief Rotate right by rotateAmt.
904 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
905
906 /// \brief Unsigned division operation.
907 ///
908 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
909 /// RHS are treated as unsigned quantities for purposes of this division.
910 ///
911 /// \returns a new APInt value containing the division result
912 APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
913
914 /// \brief Signed division function for APInt.
915 ///
916 /// Signed divide this APInt by APInt RHS.
917 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
918
919 /// \brief Unsigned remainder operation.
920 ///
921 /// Perform an unsigned remainder operation on this APInt with RHS being the
922 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
923 /// of this operation. Note that this is a true remainder operation and not a
924 /// modulo operation because the sign follows the sign of the dividend which
925 /// is *this.
926 ///
927 /// \returns a new APInt value containing the remainder result
928 APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
929
930 /// \brief Function for signed remainder operation.
931 ///
932 /// Signed remainder operation on APInt.
933 APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
934
935 /// \brief Dual division/remainder interface.
936 ///
937 /// Sometimes it is convenient to divide two APInt values and obtain both the
938 /// quotient and remainder. This function does both operations in the same
939 /// computation making it a little more efficient. The pair of input arguments
940 /// may overlap with the pair of output arguments. It is safe to call
941 /// udivrem(X, Y, X, Y), for example.
942 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
943 APInt &Remainder);
944
945 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
946 APInt &Remainder);
947
948 // Operations that return overflow indicators.
949 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
950 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
951 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
952 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
953 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
954 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
955 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
956 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
957 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
958
959 /// \brief Array-indexing support.
960 ///
961 /// \returns the bit value at bitPosition
962 bool operator[](unsigned bitPosition) const {
963 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
964 return (maskBit(bitPosition) &
965 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
966 0;
967 }
968
969 /// @}
970 /// \name Comparison Operators
971 /// @{
972
973 /// \brief Equality operator.
974 ///
975 /// Compares this APInt with RHS for the validity of the equality
976 /// relationship.
977 bool operator==(const APInt &RHS) const {
978 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
979 if (isSingleWord())
980 return VAL == RHS.VAL;
981 return EqualSlowCase(RHS);
982 }
983
984 /// \brief Equality operator.
985 ///
986 /// Compares this APInt with a uint64_t for the validity of the equality
987 /// relationship.
988 ///
989 /// \returns true if *this == Val
990 bool operator==(uint64_t Val) const {
991 if (isSingleWord())
992 return VAL == Val;
993 return EqualSlowCase(Val);
994 }
995
996 /// \brief Equality comparison.
997 ///
998 /// Compares this APInt with RHS for the validity of the equality
999 /// relationship.
1000 ///
1001 /// \returns true if *this == Val
eq(const APInt & RHS)1002 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1003
1004 /// \brief Inequality operator.
1005 ///
1006 /// Compares this APInt with RHS for the validity of the inequality
1007 /// relationship.
1008 ///
1009 /// \returns true if *this != Val
1010 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1011
1012 /// \brief Inequality operator.
1013 ///
1014 /// Compares this APInt with a uint64_t for the validity of the inequality
1015 /// relationship.
1016 ///
1017 /// \returns true if *this != Val
1018 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1019
1020 /// \brief Inequality comparison
1021 ///
1022 /// Compares this APInt with RHS for the validity of the inequality
1023 /// relationship.
1024 ///
1025 /// \returns true if *this != Val
ne(const APInt & RHS)1026 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1027
1028 /// \brief Unsigned less than comparison
1029 ///
1030 /// Regards both *this and RHS as unsigned quantities and compares them for
1031 /// the validity of the less-than relationship.
1032 ///
1033 /// \returns true if *this < RHS when both are considered unsigned.
1034 bool ult(const APInt &RHS) const;
1035
1036 /// \brief Unsigned less than comparison
1037 ///
1038 /// Regards both *this as an unsigned quantity and compares it with RHS for
1039 /// the validity of the less-than relationship.
1040 ///
1041 /// \returns true if *this < RHS when considered unsigned.
ult(uint64_t RHS)1042 bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
1043
1044 /// \brief Signed less than comparison
1045 ///
1046 /// Regards both *this and RHS as signed quantities and compares them for
1047 /// validity of the less-than relationship.
1048 ///
1049 /// \returns true if *this < RHS when both are considered signed.
1050 bool slt(const APInt &RHS) const;
1051
1052 /// \brief Signed less than comparison
1053 ///
1054 /// Regards both *this as a signed quantity and compares it with RHS for
1055 /// the validity of the less-than relationship.
1056 ///
1057 /// \returns true if *this < RHS when considered signed.
slt(uint64_t RHS)1058 bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
1059
1060 /// \brief Unsigned less or equal comparison
1061 ///
1062 /// Regards both *this and RHS as unsigned quantities and compares them for
1063 /// validity of the less-or-equal relationship.
1064 ///
1065 /// \returns true if *this <= RHS when both are considered unsigned.
ule(const APInt & RHS)1066 bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
1067
1068 /// \brief Unsigned less or equal comparison
1069 ///
1070 /// Regards both *this as an unsigned quantity and compares it with RHS for
1071 /// the validity of the less-or-equal relationship.
1072 ///
1073 /// \returns true if *this <= RHS when considered unsigned.
ule(uint64_t RHS)1074 bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
1075
1076 /// \brief Signed less or equal comparison
1077 ///
1078 /// Regards both *this and RHS as signed quantities and compares them for
1079 /// validity of the less-or-equal relationship.
1080 ///
1081 /// \returns true if *this <= RHS when both are considered signed.
sle(const APInt & RHS)1082 bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
1083
1084 /// \brief Signed less or equal comparison
1085 ///
1086 /// Regards both *this as a signed quantity and compares it with RHS for the
1087 /// validity of the less-or-equal relationship.
1088 ///
1089 /// \returns true if *this <= RHS when considered signed.
sle(uint64_t RHS)1090 bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
1091
1092 /// \brief Unsigned greather than comparison
1093 ///
1094 /// Regards both *this and RHS as unsigned quantities and compares them for
1095 /// the validity of the greater-than relationship.
1096 ///
1097 /// \returns true if *this > RHS when both are considered unsigned.
ugt(const APInt & RHS)1098 bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
1099
1100 /// \brief Unsigned greater than comparison
1101 ///
1102 /// Regards both *this as an unsigned quantity and compares it with RHS for
1103 /// the validity of the greater-than relationship.
1104 ///
1105 /// \returns true if *this > RHS when considered unsigned.
ugt(uint64_t RHS)1106 bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
1107
1108 /// \brief Signed greather than comparison
1109 ///
1110 /// Regards both *this and RHS as signed quantities and compares them for the
1111 /// validity of the greater-than relationship.
1112 ///
1113 /// \returns true if *this > RHS when both are considered signed.
sgt(const APInt & RHS)1114 bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
1115
1116 /// \brief Signed greater than comparison
1117 ///
1118 /// Regards both *this as a signed quantity and compares it with RHS for
1119 /// the validity of the greater-than relationship.
1120 ///
1121 /// \returns true if *this > RHS when considered signed.
sgt(uint64_t RHS)1122 bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
1123
1124 /// \brief Unsigned greater or equal comparison
1125 ///
1126 /// Regards both *this and RHS as unsigned quantities and compares them for
1127 /// validity of the greater-or-equal relationship.
1128 ///
1129 /// \returns true if *this >= RHS when both are considered unsigned.
uge(const APInt & RHS)1130 bool uge(const APInt &RHS) const { return !ult(RHS); }
1131
1132 /// \brief Unsigned greater or equal comparison
1133 ///
1134 /// Regards both *this as an unsigned quantity and compares it with RHS for
1135 /// the validity of the greater-or-equal relationship.
1136 ///
1137 /// \returns true if *this >= RHS when considered unsigned.
uge(uint64_t RHS)1138 bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
1139
1140 /// \brief Signed greather or equal comparison
1141 ///
1142 /// Regards both *this and RHS as signed quantities and compares them for
1143 /// validity of the greater-or-equal relationship.
1144 ///
1145 /// \returns true if *this >= RHS when both are considered signed.
sge(const APInt & RHS)1146 bool sge(const APInt &RHS) const { return !slt(RHS); }
1147
1148 /// \brief Signed greater or equal comparison
1149 ///
1150 /// Regards both *this as a signed quantity and compares it with RHS for
1151 /// the validity of the greater-or-equal relationship.
1152 ///
1153 /// \returns true if *this >= RHS when considered signed.
sge(uint64_t RHS)1154 bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
1155
1156 /// This operation tests if there are any pairs of corresponding bits
1157 /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1158 bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
1159
1160 /// @}
1161 /// \name Resizing Operators
1162 /// @{
1163
1164 /// \brief Truncate to new width.
1165 ///
1166 /// Truncate the APInt to a specified width. It is an error to specify a width
1167 /// that is greater than or equal to the current width.
1168 APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
1169
1170 /// \brief Sign extend to a new width.
1171 ///
1172 /// This operation sign extends the APInt to a new width. If the high order
1173 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1174 /// It is an error to specify a width that is less than or equal to the
1175 /// current width.
1176 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
1177
1178 /// \brief Zero extend to a new width.
1179 ///
1180 /// This operation zero extends the APInt to a new width. The high order bits
1181 /// are filled with 0 bits. It is an error to specify a width that is less
1182 /// than or equal to the current width.
1183 APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
1184
1185 /// \brief Sign extend or truncate to width
1186 ///
1187 /// Make this APInt have the bit width given by \p width. The value is sign
1188 /// extended, truncated, or left alone to make it that width.
1189 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
1190
1191 /// \brief Zero extend or truncate to width
1192 ///
1193 /// Make this APInt have the bit width given by \p width. The value is zero
1194 /// extended, truncated, or left alone to make it that width.
1195 APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
1196
1197 /// \brief Sign extend or truncate to width
1198 ///
1199 /// Make this APInt have the bit width given by \p width. The value is sign
1200 /// extended, or left alone to make it that width.
1201 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
1202
1203 /// \brief Zero extend or truncate to width
1204 ///
1205 /// Make this APInt have the bit width given by \p width. The value is zero
1206 /// extended, or left alone to make it that width.
1207 APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
1208
1209 /// @}
1210 /// \name Bit Manipulation Operators
1211 /// @{
1212
1213 /// \brief Set every bit to 1.
setAllBits()1214 void setAllBits() {
1215 if (isSingleWord())
1216 VAL = UINT64_MAX;
1217 else {
1218 // Set all the bits in all the words.
1219 for (unsigned i = 0; i < getNumWords(); ++i)
1220 pVal[i] = UINT64_MAX;
1221 }
1222 // Clear the unused ones
1223 clearUnusedBits();
1224 }
1225
1226 /// \brief Set a given bit to 1.
1227 ///
1228 /// Set the given bit to 1 whose position is given as "bitPosition".
1229 void setBit(unsigned bitPosition);
1230
1231 /// \brief Set every bit to 0.
clearAllBits()1232 void clearAllBits() {
1233 if (isSingleWord())
1234 VAL = 0;
1235 else
1236 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1237 }
1238
1239 /// \brief Set a given bit to 0.
1240 ///
1241 /// Set the given bit to 0 whose position is given as "bitPosition".
1242 void clearBit(unsigned bitPosition);
1243
1244 /// \brief Toggle every bit to its opposite value.
flipAllBits()1245 void flipAllBits() {
1246 if (isSingleWord())
1247 VAL ^= UINT64_MAX;
1248 else {
1249 for (unsigned i = 0; i < getNumWords(); ++i)
1250 pVal[i] ^= UINT64_MAX;
1251 }
1252 clearUnusedBits();
1253 }
1254
1255 /// \brief Toggles a given bit to its opposite value.
1256 ///
1257 /// Toggle a given bit to its opposite value whose position is given
1258 /// as "bitPosition".
1259 void flipBit(unsigned bitPosition);
1260
1261 /// @}
1262 /// \name Value Characterization Functions
1263 /// @{
1264
1265 /// \brief Return the number of bits in the APInt.
getBitWidth()1266 unsigned getBitWidth() const { return BitWidth; }
1267
1268 /// \brief Get the number of words.
1269 ///
1270 /// Here one word's bitwidth equals to that of uint64_t.
1271 ///
1272 /// \returns the number of words to hold the integer value of this APInt.
getNumWords()1273 unsigned getNumWords() const { return getNumWords(BitWidth); }
1274
1275 /// \brief Get the number of words.
1276 ///
1277 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1278 ///
1279 /// \returns the number of words to hold the integer value with a given bit
1280 /// width.
getNumWords(unsigned BitWidth)1281 static unsigned getNumWords(unsigned BitWidth) {
1282 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1283 }
1284
1285 /// \brief Compute the number of active bits in the value
1286 ///
1287 /// This function returns the number of active bits which is defined as the
1288 /// bit width minus the number of leading zeros. This is used in several
1289 /// computations to see how "wide" the value is.
getActiveBits()1290 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1291
1292 /// \brief Compute the number of active words in the value of this APInt.
1293 ///
1294 /// This is used in conjunction with getActiveData to extract the raw value of
1295 /// the APInt.
getActiveWords()1296 unsigned getActiveWords() const {
1297 unsigned numActiveBits = getActiveBits();
1298 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1299 }
1300
1301 /// \brief Get the minimum bit size for this signed APInt
1302 ///
1303 /// Computes the minimum bit width for this APInt while considering it to be a
1304 /// signed (and probably negative) value. If the value is not negative, this
1305 /// function returns the same value as getActiveBits()+1. Otherwise, it
1306 /// returns the smallest bit width that will retain the negative value. For
1307 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1308 /// for -1, this function will always return 1.
getMinSignedBits()1309 unsigned getMinSignedBits() const {
1310 if (isNegative())
1311 return BitWidth - countLeadingOnes() + 1;
1312 return getActiveBits() + 1;
1313 }
1314
1315 /// \brief Get zero extended value
1316 ///
1317 /// This method attempts to return the value of this APInt as a zero extended
1318 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1319 /// uint64_t. Otherwise an assertion will result.
getZExtValue()1320 uint64_t getZExtValue() const {
1321 if (isSingleWord())
1322 return VAL;
1323 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1324 return pVal[0];
1325 }
1326
1327 /// \brief Get sign extended value
1328 ///
1329 /// This method attempts to return the value of this APInt as a sign extended
1330 /// int64_t. The bit width must be <= 64 or the value must fit within an
1331 /// int64_t. Otherwise an assertion will result.
getSExtValue()1332 int64_t getSExtValue() const {
1333 if (isSingleWord())
1334 return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1335 (APINT_BITS_PER_WORD - BitWidth);
1336 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1337 return int64_t(pVal[0]);
1338 }
1339
1340 /// \brief Get bits required for string value.
1341 ///
1342 /// This method determines how many bits are required to hold the APInt
1343 /// equivalent of the string given by \p str.
1344 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1345
1346 /// \brief The APInt version of the countLeadingZeros functions in
1347 /// MathExtras.h.
1348 ///
1349 /// It counts the number of zeros from the most significant bit to the first
1350 /// one bit.
1351 ///
1352 /// \returns BitWidth if the value is zero, otherwise returns the number of
1353 /// zeros from the most significant bit to the first one bits.
countLeadingZeros()1354 unsigned countLeadingZeros() const {
1355 if (isSingleWord()) {
1356 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1357 return llvm::countLeadingZeros(VAL) - unusedBits;
1358 }
1359 return countLeadingZerosSlowCase();
1360 }
1361
1362 /// \brief Count the number of leading one bits.
1363 ///
1364 /// This function is an APInt version of the countLeadingOnes
1365 /// functions in MathExtras.h. It counts the number of ones from the most
1366 /// significant bit to the first zero bit.
1367 ///
1368 /// \returns 0 if the high order bit is not set, otherwise returns the number
1369 /// of 1 bits from the most significant to the least
1370 unsigned countLeadingOnes() const;
1371
1372 /// Computes the number of leading bits of this APInt that are equal to its
1373 /// sign bit.
getNumSignBits()1374 unsigned getNumSignBits() const {
1375 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1376 }
1377
1378 /// \brief Count the number of trailing zero bits.
1379 ///
1380 /// This function is an APInt version of the countTrailingZeros
1381 /// functions in MathExtras.h. It counts the number of zeros from the least
1382 /// significant bit to the first set bit.
1383 ///
1384 /// \returns BitWidth if the value is zero, otherwise returns the number of
1385 /// zeros from the least significant bit to the first one bit.
1386 unsigned countTrailingZeros() const;
1387
1388 /// \brief Count the number of trailing one bits.
1389 ///
1390 /// This function is an APInt version of the countTrailingOnes
1391 /// functions in MathExtras.h. It counts the number of ones from the least
1392 /// significant bit to the first zero bit.
1393 ///
1394 /// \returns BitWidth if the value is all ones, otherwise returns the number
1395 /// of ones from the least significant bit to the first zero bit.
countTrailingOnes()1396 unsigned countTrailingOnes() const {
1397 if (isSingleWord())
1398 return llvm::countTrailingOnes(VAL);
1399 return countTrailingOnesSlowCase();
1400 }
1401
1402 /// \brief Count the number of bits set.
1403 ///
1404 /// This function is an APInt version of the countPopulation functions
1405 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1406 ///
1407 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
countPopulation()1408 unsigned countPopulation() const {
1409 if (isSingleWord())
1410 return llvm::countPopulation(VAL);
1411 return countPopulationSlowCase();
1412 }
1413
1414 /// @}
1415 /// \name Conversion Functions
1416 /// @{
1417 void print(raw_ostream &OS, bool isSigned) const;
1418
1419 /// Converts an APInt to a string and append it to Str. Str is commonly a
1420 /// SmallString.
1421 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1422 bool formatAsCLiteral = false) const;
1423
1424 /// Considers the APInt to be unsigned and converts it into a string in the
1425 /// radix given. The radix can be 2, 8, 10 16, or 36.
1426 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1427 toString(Str, Radix, false, false);
1428 }
1429
1430 /// Considers the APInt to be signed and converts it into a string in the
1431 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1432 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1433 toString(Str, Radix, true, false);
1434 }
1435
1436 /// \brief Return the APInt as a std::string.
1437 ///
1438 /// Note that this is an inefficient method. It is better to pass in a
1439 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1440 /// for the string.
1441 std::string toString(unsigned Radix, bool Signed) const;
1442
1443 /// \returns a byte-swapped representation of this APInt Value.
1444 APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
1445
1446 /// \brief Converts this APInt to a double value.
1447 double roundToDouble(bool isSigned) const;
1448
1449 /// \brief Converts this unsigned APInt to a double value.
roundToDouble()1450 double roundToDouble() const { return roundToDouble(false); }
1451
1452 /// \brief Converts this signed APInt to a double value.
signedRoundToDouble()1453 double signedRoundToDouble() const { return roundToDouble(true); }
1454
1455 /// \brief Converts APInt bits to a double
1456 ///
1457 /// The conversion does not do a translation from integer to double, it just
1458 /// re-interprets the bits as a double. Note that it is valid to do this on
1459 /// any bit width. Exactly 64 bits will be translated.
bitsToDouble()1460 double bitsToDouble() const {
1461 union {
1462 uint64_t I;
1463 double D;
1464 } T;
1465 T.I = (isSingleWord() ? VAL : pVal[0]);
1466 return T.D;
1467 }
1468
1469 /// \brief Converts APInt bits to a double
1470 ///
1471 /// The conversion does not do a translation from integer to float, it just
1472 /// re-interprets the bits as a float. Note that it is valid to do this on
1473 /// any bit width. Exactly 32 bits will be translated.
bitsToFloat()1474 float bitsToFloat() const {
1475 union {
1476 unsigned I;
1477 float F;
1478 } T;
1479 T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1480 return T.F;
1481 }
1482
1483 /// \brief Converts a double to APInt bits.
1484 ///
1485 /// The conversion does not do a translation from double to integer, it just
1486 /// re-interprets the bits of the double.
doubleToBits(double V)1487 static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
1488 union {
1489 uint64_t I;
1490 double D;
1491 } T;
1492 T.D = V;
1493 return APInt(sizeof T * CHAR_BIT, T.I);
1494 }
1495
1496 /// \brief Converts a float to APInt bits.
1497 ///
1498 /// The conversion does not do a translation from float to integer, it just
1499 /// re-interprets the bits of the float.
floatToBits(float V)1500 static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
1501 union {
1502 unsigned I;
1503 float F;
1504 } T;
1505 T.F = V;
1506 return APInt(sizeof T * CHAR_BIT, T.I);
1507 }
1508
1509 /// @}
1510 /// \name Mathematics Operations
1511 /// @{
1512
1513 /// \returns the floor log base 2 of this APInt.
logBase2()1514 unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1515
1516 /// \returns the ceil log base 2 of this APInt.
ceilLogBase2()1517 unsigned ceilLogBase2() const {
1518 return BitWidth - (*this - 1).countLeadingZeros();
1519 }
1520
1521 /// \returns the nearest log base 2 of this APInt. Ties round up.
1522 ///
1523 /// NOTE: When we have a BitWidth of 1, we define:
1524 ///
1525 /// log2(0) = UINT32_MAX
1526 /// log2(1) = 0
1527 ///
1528 /// to get around any mathematical concerns resulting from
1529 /// referencing 2 in a space where 2 does no exist.
nearestLogBase2()1530 unsigned nearestLogBase2() const {
1531 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1532 // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
1533 // UINT32_MAX.
1534 if (BitWidth == 1)
1535 return VAL - 1;
1536
1537 // Handle the zero case.
1538 if (!getBoolValue())
1539 return UINT32_MAX;
1540
1541 // The non-zero case is handled by computing:
1542 //
1543 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1544 //
1545 // where x[i] is referring to the value of the ith bit of x.
1546 unsigned lg = logBase2();
1547 return lg + unsigned((*this)[lg - 1]);
1548 }
1549
1550 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1551 /// otherwise
exactLogBase2()1552 int32_t exactLogBase2() const {
1553 if (!isPowerOf2())
1554 return -1;
1555 return logBase2();
1556 }
1557
1558 /// \brief Compute the square root
1559 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
1560
1561 /// \brief Get the absolute value;
1562 ///
1563 /// If *this is < 0 then return -(*this), otherwise *this;
abs()1564 APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
1565 if (isNegative())
1566 return -(*this);
1567 return *this;
1568 }
1569
1570 /// \returns the multiplicative inverse for a given modulo.
1571 APInt multiplicativeInverse(const APInt &modulo) const;
1572
1573 /// @}
1574 /// \name Support for division by constant
1575 /// @{
1576
1577 /// Calculate the magic number for signed division by a constant.
1578 struct ms;
1579 ms magic() const;
1580
1581 /// Calculate the magic number for unsigned division by a constant.
1582 struct mu;
1583 mu magicu(unsigned LeadingZeros = 0) const;
1584
1585 /// @}
1586 /// \name Building-block Operations for APInt and APFloat
1587 /// @{
1588
1589 // These building block operations operate on a representation of arbitrary
1590 // precision, two's-complement, bignum integer values. They should be
1591 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1592 // generally a pointer to the base of an array of integer parts, representing
1593 // an unsigned bignum, and a count of how many parts there are.
1594
1595 /// Sets the least significant part of a bignum to the input value, and zeroes
1596 /// out higher parts.
1597 static void tcSet(integerPart *, integerPart, unsigned int);
1598
1599 /// Assign one bignum to another.
1600 static void tcAssign(integerPart *, const integerPart *, unsigned int);
1601
1602 /// Returns true if a bignum is zero, false otherwise.
1603 static bool tcIsZero(const integerPart *, unsigned int);
1604
1605 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1606 static int tcExtractBit(const integerPart *, unsigned int bit);
1607
1608 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1609 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1610 /// significant bit of DST. All high bits above srcBITS in DST are
1611 /// zero-filled.
1612 static void tcExtract(integerPart *, unsigned int dstCount,
1613 const integerPart *, unsigned int srcBits,
1614 unsigned int srcLSB);
1615
1616 /// Set the given bit of a bignum. Zero-based.
1617 static void tcSetBit(integerPart *, unsigned int bit);
1618
1619 /// Clear the given bit of a bignum. Zero-based.
1620 static void tcClearBit(integerPart *, unsigned int bit);
1621
1622 /// Returns the bit number of the least or most significant set bit of a
1623 /// number. If the input number has no bits set -1U is returned.
1624 static unsigned int tcLSB(const integerPart *, unsigned int);
1625 static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1626
1627 /// Negate a bignum in-place.
1628 static void tcNegate(integerPart *, unsigned int);
1629
1630 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1631 static integerPart tcAdd(integerPart *, const integerPart *,
1632 integerPart carry, unsigned);
1633
1634 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1635 static integerPart tcSubtract(integerPart *, const integerPart *,
1636 integerPart carry, unsigned);
1637
1638 /// DST += SRC * MULTIPLIER + PART if add is true
1639 /// DST = SRC * MULTIPLIER + PART if add is false
1640 ///
1641 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1642 /// start at the same point, i.e. DST == SRC.
1643 ///
1644 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1645 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1646 /// result, and if all of the omitted higher parts were zero return zero,
1647 /// otherwise overflow occurred and return one.
1648 static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1649 integerPart multiplier, integerPart carry,
1650 unsigned int srcParts, unsigned int dstParts,
1651 bool add);
1652
1653 /// DST = LHS * RHS, where DST has the same width as the operands and is
1654 /// filled with the least significant parts of the result. Returns one if
1655 /// overflow occurred, otherwise zero. DST must be disjoint from both
1656 /// operands.
1657 static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
1658 unsigned);
1659
1660 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1661 /// operands. No overflow occurs. DST must be disjoint from both
1662 /// operands. Returns the number of parts required to hold the result.
1663 static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1664 const integerPart *, unsigned, unsigned);
1665
1666 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1667 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1668 /// REMAINDER to the remainder, return zero. i.e.
1669 ///
1670 /// OLD_LHS = RHS * LHS + REMAINDER
1671 ///
1672 /// SCRATCH is a bignum of the same size as the operands and result for use by
1673 /// the routine; its contents need not be initialized and are destroyed. LHS,
1674 /// REMAINDER and SCRATCH must be distinct.
1675 static int tcDivide(integerPart *lhs, const integerPart *rhs,
1676 integerPart *remainder, integerPart *scratch,
1677 unsigned int parts);
1678
1679 /// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no
1680 /// restrictions on COUNT.
1681 static void tcShiftLeft(integerPart *, unsigned int parts,
1682 unsigned int count);
1683
1684 /// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no
1685 /// restrictions on COUNT.
1686 static void tcShiftRight(integerPart *, unsigned int parts,
1687 unsigned int count);
1688
1689 /// The obvious AND, OR and XOR and complement operations.
1690 static void tcAnd(integerPart *, const integerPart *, unsigned int);
1691 static void tcOr(integerPart *, const integerPart *, unsigned int);
1692 static void tcXor(integerPart *, const integerPart *, unsigned int);
1693 static void tcComplement(integerPart *, unsigned int);
1694
1695 /// Comparison (unsigned) of two bignums.
1696 static int tcCompare(const integerPart *, const integerPart *, unsigned int);
1697
1698 /// Increment a bignum in-place. Return the carry flag.
1699 static integerPart tcIncrement(integerPart *, unsigned int);
1700
1701 /// Decrement a bignum in-place. Return the borrow flag.
1702 static integerPart tcDecrement(integerPart *, unsigned int);
1703
1704 /// Set the least significant BITS and clear the rest.
1705 static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1706 unsigned int bits);
1707
1708 /// \brief debug method
1709 void dump() const;
1710
1711 /// @}
1712 };
1713
1714 /// Magic data for optimising signed division by a constant.
1715 struct APInt::ms {
1716 APInt m; ///< magic number
1717 unsigned s; ///< shift amount
1718 };
1719
1720 /// Magic data for optimising unsigned division by a constant.
1721 struct APInt::mu {
1722 APInt m; ///< magic number
1723 bool a; ///< add indicator
1724 unsigned s; ///< shift amount
1725 };
1726
1727 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1728
1729 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1730
1731 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1732 I.print(OS, true);
1733 return OS;
1734 }
1735
1736 namespace APIntOps {
1737
1738 /// \brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1739 inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
1740
1741 /// \brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1742 inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
1743
1744 /// \brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1745 inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
1746
1747 /// \brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1748 inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
1749
1750 /// \brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1751 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
1752
1753 /// \brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1754 inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
1755 return APIVal.isSignedIntN(N);
1756 }
1757
1758 /// \returns true if the argument APInt value is a sequence of ones starting at
1759 /// the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1760 inline bool isMask(unsigned numBits, const APInt &APIVal) {
1761 return numBits <= APIVal.getBitWidth() &&
1762 APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1763 }
1764
1765 /// \brief Return true if the argument APInt value contains a sequence of ones
1766 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1767 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
1768 return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
1769 }
1770
1771 /// \brief Returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1772 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
1773
1774 /// \brief Returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1775 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
1776
1777 /// \brief Compute GCD of two APInt values.
1778 ///
1779 /// This function returns the greatest common divisor of the two APInt values
1780 /// using Euclid's algorithm.
1781 ///
1782 /// \returns the greatest common divisor of Val1 and Val2
1783 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
1784
1785 /// \brief Converts the given APInt to a double value.
1786 ///
1787 /// Treats the APInt as an unsigned value for conversion purposes.
RoundAPIntToDouble(const APInt & APIVal)1788 inline double RoundAPIntToDouble(const APInt &APIVal) {
1789 return APIVal.roundToDouble();
1790 }
1791
1792 /// \brief Converts the given APInt to a double value.
1793 ///
1794 /// Treats the APInt as a signed value for conversion purposes.
RoundSignedAPIntToDouble(const APInt & APIVal)1795 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
1796 return APIVal.signedRoundToDouble();
1797 }
1798
1799 /// \brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1800 inline float RoundAPIntToFloat(const APInt &APIVal) {
1801 return float(RoundAPIntToDouble(APIVal));
1802 }
1803
1804 /// \brief Converts the given APInt to a float value.
1805 ///
1806 /// Treast the APInt as a signed value for conversion purposes.
RoundSignedAPIntToFloat(const APInt & APIVal)1807 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
1808 return float(APIVal.signedRoundToDouble());
1809 }
1810
1811 /// \brief Converts the given double value into a APInt.
1812 ///
1813 /// This function convert a double value to an APInt value.
1814 APInt RoundDoubleToAPInt(double Double, unsigned width);
1815
1816 /// \brief Converts a float value into a APInt.
1817 ///
1818 /// Converts a float value into an APInt value.
RoundFloatToAPInt(float Float,unsigned width)1819 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1820 return RoundDoubleToAPInt(double(Float), width);
1821 }
1822
1823 /// \brief Arithmetic right-shift function.
1824 ///
1825 /// Arithmetic right-shift the APInt by shiftAmt.
ashr(const APInt & LHS,unsigned shiftAmt)1826 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
1827 return LHS.ashr(shiftAmt);
1828 }
1829
1830 /// \brief Logical right-shift function.
1831 ///
1832 /// Logical right-shift the APInt by shiftAmt.
lshr(const APInt & LHS,unsigned shiftAmt)1833 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
1834 return LHS.lshr(shiftAmt);
1835 }
1836
1837 /// \brief Left-shift function.
1838 ///
1839 /// Left-shift the APInt by shiftAmt.
shl(const APInt & LHS,unsigned shiftAmt)1840 inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
1841 return LHS.shl(shiftAmt);
1842 }
1843
1844 /// \brief Signed division function for APInt.
1845 ///
1846 /// Signed divide APInt LHS by APInt RHS.
sdiv(const APInt & LHS,const APInt & RHS)1847 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
1848
1849 /// \brief Unsigned division function for APInt.
1850 ///
1851 /// Unsigned divide APInt LHS by APInt RHS.
udiv(const APInt & LHS,const APInt & RHS)1852 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
1853
1854 /// \brief Function for signed remainder operation.
1855 ///
1856 /// Signed remainder operation on APInt.
srem(const APInt & LHS,const APInt & RHS)1857 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
1858
1859 /// \brief Function for unsigned remainder operation.
1860 ///
1861 /// Unsigned remainder operation on APInt.
urem(const APInt & LHS,const APInt & RHS)1862 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
1863
1864 /// \brief Function for multiplication operation.
1865 ///
1866 /// Performs multiplication on APInt values.
mul(const APInt & LHS,const APInt & RHS)1867 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
1868
1869 /// \brief Function for addition operation.
1870 ///
1871 /// Performs addition on APInt values.
add(const APInt & LHS,const APInt & RHS)1872 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
1873
1874 /// \brief Function for subtraction operation.
1875 ///
1876 /// Performs subtraction on APInt values.
sub(const APInt & LHS,const APInt & RHS)1877 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
1878
1879 /// \brief Bitwise AND function for APInt.
1880 ///
1881 /// Performs bitwise AND operation on APInt LHS and
1882 /// APInt RHS.
And(const APInt & LHS,const APInt & RHS)1883 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
1884
1885 /// \brief Bitwise OR function for APInt.
1886 ///
1887 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
Or(const APInt & LHS,const APInt & RHS)1888 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
1889
1890 /// \brief Bitwise XOR function for APInt.
1891 ///
1892 /// Performs bitwise XOR operation on APInt.
Xor(const APInt & LHS,const APInt & RHS)1893 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
1894
1895 /// \brief Bitwise complement function.
1896 ///
1897 /// Performs a bitwise complement operation on APInt.
Not(const APInt & APIVal)1898 inline APInt Not(const APInt &APIVal) { return ~APIVal; }
1899
1900 } // End of APIntOps namespace
1901
1902 // See friend declaration above. This additional declaration is required in
1903 // order to compile LLVM with IBM xlC compiler.
1904 hash_code hash_value(const APInt &Arg);
1905 } // End of llvm namespace
1906
1907 #endif
1908