1 //===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file builds on the ADT/GraphTraits.h file to build generic depth
11 // first graph iterator.  This file exposes the following functions/types:
12 //
13 // df_begin/df_end/df_iterator
14 //   * Normal depth-first iteration - visit a node and then all of its children.
15 //
16 // idf_begin/idf_end/idf_iterator
17 //   * Depth-first iteration on the 'inverse' graph.
18 //
19 // df_ext_begin/df_ext_end/df_ext_iterator
20 //   * Normal depth-first iteration - visit a node and then all of its children.
21 //     This iterator stores the 'visited' set in an external set, which allows
22 //     it to be more efficient, and allows external clients to use the set for
23 //     other purposes.
24 //
25 // idf_ext_begin/idf_ext_end/idf_ext_iterator
26 //   * Depth-first iteration on the 'inverse' graph.
27 //     This iterator stores the 'visited' set in an external set, which allows
28 //     it to be more efficient, and allows external clients to use the set for
29 //     other purposes.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H
34 #define LLVM_ADT_DEPTHFIRSTITERATOR_H
35 
36 #include "llvm/ADT/GraphTraits.h"
37 #include "llvm/ADT/PointerIntPair.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include <set>
41 #include <vector>
42 
43 namespace llvm {
44 
45 // df_iterator_storage - A private class which is used to figure out where to
46 // store the visited set.
47 template<class SetType, bool External>   // Non-external set
48 class df_iterator_storage {
49 public:
50   SetType Visited;
51 };
52 
53 template<class SetType>
54 class df_iterator_storage<SetType, true> {
55 public:
df_iterator_storage(SetType & VSet)56   df_iterator_storage(SetType &VSet) : Visited(VSet) {}
df_iterator_storage(const df_iterator_storage & S)57   df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {}
58   SetType &Visited;
59 };
60 
61 
62 // Generic Depth First Iterator
63 template<class GraphT,
64 class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
65          bool ExtStorage = false, class GT = GraphTraits<GraphT> >
66 class df_iterator : public std::iterator<std::forward_iterator_tag,
67                                          typename GT::NodeType, ptrdiff_t>,
68                     public df_iterator_storage<SetType, ExtStorage> {
69   typedef std::iterator<std::forward_iterator_tag,
70                         typename GT::NodeType, ptrdiff_t> super;
71 
72   typedef typename GT::NodeType          NodeType;
73   typedef typename GT::ChildIteratorType ChildItTy;
74   typedef PointerIntPair<NodeType*, 1>   PointerIntTy;
75 
76   // VisitStack - Used to maintain the ordering.  Top = current block
77   // First element is node pointer, second is the 'next child' to visit
78   // if the int in PointerIntTy is 0, the 'next child' to visit is invalid
79   std::vector<std::pair<PointerIntTy, ChildItTy> > VisitStack;
80 private:
df_iterator(NodeType * Node)81   inline df_iterator(NodeType *Node) {
82     this->Visited.insert(Node);
83     VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0),
84                                         GT::child_begin(Node)));
85   }
df_iterator()86   inline df_iterator() {
87     // End is when stack is empty
88   }
df_iterator(NodeType * Node,SetType & S)89   inline df_iterator(NodeType *Node, SetType &S)
90     : df_iterator_storage<SetType, ExtStorage>(S) {
91     if (!S.count(Node)) {
92       VisitStack.push_back(std::make_pair(PointerIntTy(Node, 0),
93                                           GT::child_begin(Node)));
94       this->Visited.insert(Node);
95     }
96   }
df_iterator(SetType & S)97   inline df_iterator(SetType &S)
98     : df_iterator_storage<SetType, ExtStorage>(S) {
99     // End is when stack is empty
100   }
101 
toNext()102   inline void toNext() {
103     do {
104       std::pair<PointerIntTy, ChildItTy> &Top = VisitStack.back();
105       NodeType *Node = Top.first.getPointer();
106       ChildItTy &It  = Top.second;
107       if (!Top.first.getInt()) {
108         // now retrieve the real begin of the children before we dive in
109         It = GT::child_begin(Node);
110         Top.first.setInt(1);
111       }
112 
113       while (It != GT::child_end(Node)) {
114         NodeType *Next = *It++;
115         // Has our next sibling been visited?
116         if (Next && this->Visited.insert(Next).second) {
117           // No, do it now.
118           VisitStack.push_back(std::make_pair(PointerIntTy(Next, 0),
119                                               GT::child_begin(Next)));
120           return;
121         }
122       }
123 
124       // Oops, ran out of successors... go up a level on the stack.
125       VisitStack.pop_back();
126     } while (!VisitStack.empty());
127   }
128 
129 public:
130   typedef typename super::pointer pointer;
131 
132   // Provide static begin and end methods as our public "constructors"
begin(const GraphT & G)133   static df_iterator begin(const GraphT &G) {
134     return df_iterator(GT::getEntryNode(G));
135   }
end(const GraphT & G)136   static df_iterator end(const GraphT &G) { return df_iterator(); }
137 
138   // Static begin and end methods as our public ctors for external iterators
begin(const GraphT & G,SetType & S)139   static df_iterator begin(const GraphT &G, SetType &S) {
140     return df_iterator(GT::getEntryNode(G), S);
141   }
end(const GraphT & G,SetType & S)142   static df_iterator end(const GraphT &G, SetType &S) { return df_iterator(S); }
143 
144   bool operator==(const df_iterator &x) const {
145     return VisitStack == x.VisitStack;
146   }
147   bool operator!=(const df_iterator &x) const { return !(*this == x); }
148 
149   pointer operator*() const { return VisitStack.back().first.getPointer(); }
150 
151   // This is a nonstandard operator-> that dereferences the pointer an extra
152   // time... so that you can actually call methods ON the Node, because
153   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
154   //
155   NodeType *operator->() const { return **this; }
156 
157   df_iterator &operator++() { // Preincrement
158     toNext();
159     return *this;
160   }
161 
162   // skips all children of the current node and traverses to next node
163   //
skipChildren()164   df_iterator &skipChildren() {
165     VisitStack.pop_back();
166     if (!VisitStack.empty())
167       toNext();
168     return *this;
169   }
170 
171   df_iterator operator++(int) { // Postincrement
172     df_iterator tmp = *this;
173     ++*this;
174     return tmp;
175   }
176 
177   // nodeVisited - return true if this iterator has already visited the
178   // specified node.  This is public, and will probably be used to iterate over
179   // nodes that a depth first iteration did not find: ie unreachable nodes.
180   //
nodeVisited(NodeType * Node)181   bool nodeVisited(NodeType *Node) const {
182     return this->Visited.count(Node) != 0;
183   }
184 
185   /// getPathLength - Return the length of the path from the entry node to the
186   /// current node, counting both nodes.
getPathLength()187   unsigned getPathLength() const { return VisitStack.size(); }
188 
189   /// getPath - Return the n'th node in the path from the entry node to the
190   /// current node.
getPath(unsigned n)191   NodeType *getPath(unsigned n) const {
192     return VisitStack[n].first.getPointer();
193   }
194 };
195 
196 
197 // Provide global constructors that automatically figure out correct types...
198 //
199 template <class T>
df_begin(const T & G)200 df_iterator<T> df_begin(const T& G) {
201   return df_iterator<T>::begin(G);
202 }
203 
204 template <class T>
df_end(const T & G)205 df_iterator<T> df_end(const T& G) {
206   return df_iterator<T>::end(G);
207 }
208 
209 // Provide an accessor method to use them in range-based patterns.
210 template <class T>
depth_first(const T & G)211 iterator_range<df_iterator<T>> depth_first(const T& G) {
212   return make_range(df_begin(G), df_end(G));
213 }
214 
215 // Provide global definitions of external depth first iterators...
216 template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeType*> >
217 struct df_ext_iterator : public df_iterator<T, SetTy, true> {
df_ext_iteratordf_ext_iterator218   df_ext_iterator(const df_iterator<T, SetTy, true> &V)
219     : df_iterator<T, SetTy, true>(V) {}
220 };
221 
222 template <class T, class SetTy>
df_ext_begin(const T & G,SetTy & S)223 df_ext_iterator<T, SetTy> df_ext_begin(const T& G, SetTy &S) {
224   return df_ext_iterator<T, SetTy>::begin(G, S);
225 }
226 
227 template <class T, class SetTy>
df_ext_end(const T & G,SetTy & S)228 df_ext_iterator<T, SetTy> df_ext_end(const T& G, SetTy &S) {
229   return df_ext_iterator<T, SetTy>::end(G, S);
230 }
231 
232 template <class T, class SetTy>
depth_first_ext(const T & G,SetTy & S)233 iterator_range<df_ext_iterator<T, SetTy>> depth_first_ext(const T& G,
234                                                           SetTy &S) {
235   return make_range(df_ext_begin(G, S), df_ext_end(G, S));
236 }
237 
238 
239 // Provide global definitions of inverse depth first iterators...
240 template <class T,
241   class SetTy = llvm::SmallPtrSet<typename GraphTraits<T>::NodeType*, 8>,
242           bool External = false>
243 struct idf_iterator : public df_iterator<Inverse<T>, SetTy, External> {
idf_iteratoridf_iterator244   idf_iterator(const df_iterator<Inverse<T>, SetTy, External> &V)
245     : df_iterator<Inverse<T>, SetTy, External>(V) {}
246 };
247 
248 template <class T>
idf_begin(const T & G)249 idf_iterator<T> idf_begin(const T& G) {
250   return idf_iterator<T>::begin(Inverse<T>(G));
251 }
252 
253 template <class T>
idf_end(const T & G)254 idf_iterator<T> idf_end(const T& G){
255   return idf_iterator<T>::end(Inverse<T>(G));
256 }
257 
258 // Provide an accessor method to use them in range-based patterns.
259 template <class T>
inverse_depth_first(const T & G)260 iterator_range<idf_iterator<T>> inverse_depth_first(const T& G) {
261   return make_range(idf_begin(G), idf_end(G));
262 }
263 
264 // Provide global definitions of external inverse depth first iterators...
265 template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeType*> >
266 struct idf_ext_iterator : public idf_iterator<T, SetTy, true> {
idf_ext_iteratoridf_ext_iterator267   idf_ext_iterator(const idf_iterator<T, SetTy, true> &V)
268     : idf_iterator<T, SetTy, true>(V) {}
idf_ext_iteratoridf_ext_iterator269   idf_ext_iterator(const df_iterator<Inverse<T>, SetTy, true> &V)
270     : idf_iterator<T, SetTy, true>(V) {}
271 };
272 
273 template <class T, class SetTy>
idf_ext_begin(const T & G,SetTy & S)274 idf_ext_iterator<T, SetTy> idf_ext_begin(const T& G, SetTy &S) {
275   return idf_ext_iterator<T, SetTy>::begin(Inverse<T>(G), S);
276 }
277 
278 template <class T, class SetTy>
idf_ext_end(const T & G,SetTy & S)279 idf_ext_iterator<T, SetTy> idf_ext_end(const T& G, SetTy &S) {
280   return idf_ext_iterator<T, SetTy>::end(Inverse<T>(G), S);
281 }
282 
283 template <class T, class SetTy>
inverse_depth_first_ext(const T & G,SetTy & S)284 iterator_range<idf_ext_iterator<T, SetTy>> inverse_depth_first_ext(const T& G,
285                                                                    SetTy &S) {
286   return make_range(idf_ext_begin(G, S), idf_ext_end(G, S));
287 }
288 
289 } // End llvm namespace
290 
291 #endif
292