1 //===-- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Generic implementation of equivalence classes through the use Tarjan's 11 // efficient union-find algorithm. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_ADT_EQUIVALENCECLASSES_H 16 #define LLVM_ADT_EQUIVALENCECLASSES_H 17 18 #include "llvm/Support/DataTypes.h" 19 #include <cassert> 20 #include <cstddef> 21 #include <set> 22 23 namespace llvm { 24 25 /// EquivalenceClasses - This represents a collection of equivalence classes and 26 /// supports three efficient operations: insert an element into a class of its 27 /// own, union two classes, and find the class for a given element. In 28 /// addition to these modification methods, it is possible to iterate over all 29 /// of the equivalence classes and all of the elements in a class. 30 /// 31 /// This implementation is an efficient implementation that only stores one copy 32 /// of the element being indexed per entry in the set, and allows any arbitrary 33 /// type to be indexed (as long as it can be ordered with operator<). 34 /// 35 /// Here is a simple example using integers: 36 /// 37 /// \code 38 /// EquivalenceClasses<int> EC; 39 /// EC.unionSets(1, 2); // insert 1, 2 into the same set 40 /// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets 41 /// EC.unionSets(5, 1); // merge the set for 1 with 5's set. 42 /// 43 /// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end(); 44 /// I != E; ++I) { // Iterate over all of the equivalence sets. 45 /// if (!I->isLeader()) continue; // Ignore non-leader sets. 46 /// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I); 47 /// MI != EC.member_end(); ++MI) // Loop over members in this set. 48 /// cerr << *MI << " "; // Print member. 49 /// cerr << "\n"; // Finish set. 50 /// } 51 /// \endcode 52 /// 53 /// This example prints: 54 /// 4 55 /// 5 1 2 56 /// 57 template <class ElemTy> 58 class EquivalenceClasses { 59 /// ECValue - The EquivalenceClasses data structure is just a set of these. 60 /// Each of these represents a relation for a value. First it stores the 61 /// value itself, which provides the ordering that the set queries. Next, it 62 /// provides a "next pointer", which is used to enumerate all of the elements 63 /// in the unioned set. Finally, it defines either a "end of list pointer" or 64 /// "leader pointer" depending on whether the value itself is a leader. A 65 /// "leader pointer" points to the node that is the leader for this element, 66 /// if the node is not a leader. A "end of list pointer" points to the last 67 /// node in the list of members of this list. Whether or not a node is a 68 /// leader is determined by a bit stolen from one of the pointers. 69 class ECValue { 70 friend class EquivalenceClasses; 71 mutable const ECValue *Leader, *Next; 72 ElemTy Data; 73 // ECValue ctor - Start out with EndOfList pointing to this node, Next is 74 // Null, isLeader = true. ECValue(const ElemTy & Elt)75 ECValue(const ElemTy &Elt) 76 : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {} 77 getLeader()78 const ECValue *getLeader() const { 79 if (isLeader()) return this; 80 if (Leader->isLeader()) return Leader; 81 // Path compression. 82 return Leader = Leader->getLeader(); 83 } getEndOfList()84 const ECValue *getEndOfList() const { 85 assert(isLeader() && "Cannot get the end of a list for a non-leader!"); 86 return Leader; 87 } 88 setNext(const ECValue * NewNext)89 void setNext(const ECValue *NewNext) const { 90 assert(getNext() == nullptr && "Already has a next pointer!"); 91 Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader()); 92 } 93 public: ECValue(const ECValue & RHS)94 ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1), 95 Data(RHS.Data) { 96 // Only support copying of singleton nodes. 97 assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!"); 98 } 99 100 bool operator<(const ECValue &UFN) const { return Data < UFN.Data; } 101 isLeader()102 bool isLeader() const { return (intptr_t)Next & 1; } getData()103 const ElemTy &getData() const { return Data; } 104 getNext()105 const ECValue *getNext() const { 106 return (ECValue*)((intptr_t)Next & ~(intptr_t)1); 107 } 108 109 template<typename T> 110 bool operator<(const T &Val) const { return Data < Val; } 111 }; 112 113 /// TheMapping - This implicitly provides a mapping from ElemTy values to the 114 /// ECValues, it just keeps the key as part of the value. 115 std::set<ECValue> TheMapping; 116 117 public: EquivalenceClasses()118 EquivalenceClasses() {} EquivalenceClasses(const EquivalenceClasses & RHS)119 EquivalenceClasses(const EquivalenceClasses &RHS) { 120 operator=(RHS); 121 } 122 123 const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) { 124 TheMapping.clear(); 125 for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 126 if (I->isLeader()) { 127 member_iterator MI = RHS.member_begin(I); 128 member_iterator LeaderIt = member_begin(insert(*MI)); 129 for (++MI; MI != member_end(); ++MI) 130 unionSets(LeaderIt, member_begin(insert(*MI))); 131 } 132 return *this; 133 } 134 135 //===--------------------------------------------------------------------===// 136 // Inspection methods 137 // 138 139 /// iterator* - Provides a way to iterate over all values in the set. 140 typedef typename std::set<ECValue>::const_iterator iterator; begin()141 iterator begin() const { return TheMapping.begin(); } end()142 iterator end() const { return TheMapping.end(); } 143 empty()144 bool empty() const { return TheMapping.empty(); } 145 146 /// member_* Iterate over the members of an equivalence class. 147 /// 148 class member_iterator; member_begin(iterator I)149 member_iterator member_begin(iterator I) const { 150 // Only leaders provide anything to iterate over. 151 return member_iterator(I->isLeader() ? &*I : nullptr); 152 } member_end()153 member_iterator member_end() const { 154 return member_iterator(nullptr); 155 } 156 157 /// findValue - Return an iterator to the specified value. If it does not 158 /// exist, end() is returned. findValue(const ElemTy & V)159 iterator findValue(const ElemTy &V) const { 160 return TheMapping.find(V); 161 } 162 163 /// getLeaderValue - Return the leader for the specified value that is in the 164 /// set. It is an error to call this method for a value that is not yet in 165 /// the set. For that, call getOrInsertLeaderValue(V). getLeaderValue(const ElemTy & V)166 const ElemTy &getLeaderValue(const ElemTy &V) const { 167 member_iterator MI = findLeader(V); 168 assert(MI != member_end() && "Value is not in the set!"); 169 return *MI; 170 } 171 172 /// getOrInsertLeaderValue - Return the leader for the specified value that is 173 /// in the set. If the member is not in the set, it is inserted, then 174 /// returned. getOrInsertLeaderValue(const ElemTy & V)175 const ElemTy &getOrInsertLeaderValue(const ElemTy &V) { 176 member_iterator MI = findLeader(insert(V)); 177 assert(MI != member_end() && "Value is not in the set!"); 178 return *MI; 179 } 180 181 /// getNumClasses - Return the number of equivalence classes in this set. 182 /// Note that this is a linear time operation. getNumClasses()183 unsigned getNumClasses() const { 184 unsigned NC = 0; 185 for (iterator I = begin(), E = end(); I != E; ++I) 186 if (I->isLeader()) ++NC; 187 return NC; 188 } 189 190 191 //===--------------------------------------------------------------------===// 192 // Mutation methods 193 194 /// insert - Insert a new value into the union/find set, ignoring the request 195 /// if the value already exists. insert(const ElemTy & Data)196 iterator insert(const ElemTy &Data) { 197 return TheMapping.insert(ECValue(Data)).first; 198 } 199 200 /// findLeader - Given a value in the set, return a member iterator for the 201 /// equivalence class it is in. This does the path-compression part that 202 /// makes union-find "union findy". This returns an end iterator if the value 203 /// is not in the equivalence class. 204 /// findLeader(iterator I)205 member_iterator findLeader(iterator I) const { 206 if (I == TheMapping.end()) return member_end(); 207 return member_iterator(I->getLeader()); 208 } findLeader(const ElemTy & V)209 member_iterator findLeader(const ElemTy &V) const { 210 return findLeader(TheMapping.find(V)); 211 } 212 213 214 /// union - Merge the two equivalence sets for the specified values, inserting 215 /// them if they do not already exist in the equivalence set. unionSets(const ElemTy & V1,const ElemTy & V2)216 member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) { 217 iterator V1I = insert(V1), V2I = insert(V2); 218 return unionSets(findLeader(V1I), findLeader(V2I)); 219 } unionSets(member_iterator L1,member_iterator L2)220 member_iterator unionSets(member_iterator L1, member_iterator L2) { 221 assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!"); 222 if (L1 == L2) return L1; // Unifying the same two sets, noop. 223 224 // Otherwise, this is a real union operation. Set the end of the L1 list to 225 // point to the L2 leader node. 226 const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node; 227 L1LV.getEndOfList()->setNext(&L2LV); 228 229 // Update L1LV's end of list pointer. 230 L1LV.Leader = L2LV.getEndOfList(); 231 232 // Clear L2's leader flag: 233 L2LV.Next = L2LV.getNext(); 234 235 // L2's leader is now L1. 236 L2LV.Leader = &L1LV; 237 return L1; 238 } 239 240 class member_iterator : public std::iterator<std::forward_iterator_tag, 241 const ElemTy, ptrdiff_t> { 242 typedef std::iterator<std::forward_iterator_tag, 243 const ElemTy, ptrdiff_t> super; 244 const ECValue *Node; 245 friend class EquivalenceClasses; 246 public: 247 typedef size_t size_type; 248 typedef typename super::pointer pointer; 249 typedef typename super::reference reference; 250 member_iterator()251 explicit member_iterator() {} member_iterator(const ECValue * N)252 explicit member_iterator(const ECValue *N) : Node(N) {} 253 254 reference operator*() const { 255 assert(Node != nullptr && "Dereferencing end()!"); 256 return Node->getData(); 257 } 258 pointer operator->() const { return &operator*(); } 259 260 member_iterator &operator++() { 261 assert(Node != nullptr && "++'d off the end of the list!"); 262 Node = Node->getNext(); 263 return *this; 264 } 265 266 member_iterator operator++(int) { // postincrement operators. 267 member_iterator tmp = *this; 268 ++*this; 269 return tmp; 270 } 271 272 bool operator==(const member_iterator &RHS) const { 273 return Node == RHS.Node; 274 } 275 bool operator!=(const member_iterator &RHS) const { 276 return Node != RHS.Node; 277 } 278 }; 279 }; 280 281 } // End llvm namespace 282 283 #endif 284