1 //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ImutAVLTree and ImmutableSet classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ADT_IMMUTABLESET_H 15 #define LLVM_ADT_IMMUTABLESET_H 16 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/FoldingSet.h" 19 #include "llvm/Support/Allocator.h" 20 #include "llvm/Support/DataTypes.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include <cassert> 23 #include <functional> 24 #include <vector> 25 26 namespace llvm { 27 28 //===----------------------------------------------------------------------===// 29 // Immutable AVL-Tree Definition. 30 //===----------------------------------------------------------------------===// 31 32 template <typename ImutInfo> class ImutAVLFactory; 33 template <typename ImutInfo> class ImutIntervalAVLFactory; 34 template <typename ImutInfo> class ImutAVLTreeInOrderIterator; 35 template <typename ImutInfo> class ImutAVLTreeGenericIterator; 36 37 template <typename ImutInfo > 38 class ImutAVLTree { 39 public: 40 typedef typename ImutInfo::key_type_ref key_type_ref; 41 typedef typename ImutInfo::value_type value_type; 42 typedef typename ImutInfo::value_type_ref value_type_ref; 43 44 typedef ImutAVLFactory<ImutInfo> Factory; 45 friend class ImutAVLFactory<ImutInfo>; 46 friend class ImutIntervalAVLFactory<ImutInfo>; 47 48 friend class ImutAVLTreeGenericIterator<ImutInfo>; 49 50 typedef ImutAVLTreeInOrderIterator<ImutInfo> iterator; 51 52 //===----------------------------------------------------===// 53 // Public Interface. 54 //===----------------------------------------------------===// 55 56 /// Return a pointer to the left subtree. This value 57 /// is NULL if there is no left subtree. getLeft()58 ImutAVLTree *getLeft() const { return left; } 59 60 /// Return a pointer to the right subtree. This value is 61 /// NULL if there is no right subtree. getRight()62 ImutAVLTree *getRight() const { return right; } 63 64 /// getHeight - Returns the height of the tree. A tree with no subtrees 65 /// has a height of 1. getHeight()66 unsigned getHeight() const { return height; } 67 68 /// getValue - Returns the data value associated with the tree node. getValue()69 const value_type& getValue() const { return value; } 70 71 /// find - Finds the subtree associated with the specified key value. 72 /// This method returns NULL if no matching subtree is found. find(key_type_ref K)73 ImutAVLTree* find(key_type_ref K) { 74 ImutAVLTree *T = this; 75 while (T) { 76 key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue()); 77 if (ImutInfo::isEqual(K,CurrentKey)) 78 return T; 79 else if (ImutInfo::isLess(K,CurrentKey)) 80 T = T->getLeft(); 81 else 82 T = T->getRight(); 83 } 84 return nullptr; 85 } 86 87 /// getMaxElement - Find the subtree associated with the highest ranged 88 /// key value. getMaxElement()89 ImutAVLTree* getMaxElement() { 90 ImutAVLTree *T = this; 91 ImutAVLTree *Right = T->getRight(); 92 while (Right) { T = Right; Right = T->getRight(); } 93 return T; 94 } 95 96 /// size - Returns the number of nodes in the tree, which includes 97 /// both leaves and non-leaf nodes. size()98 unsigned size() const { 99 unsigned n = 1; 100 if (const ImutAVLTree* L = getLeft()) 101 n += L->size(); 102 if (const ImutAVLTree* R = getRight()) 103 n += R->size(); 104 return n; 105 } 106 107 /// begin - Returns an iterator that iterates over the nodes of the tree 108 /// in an inorder traversal. The returned iterator thus refers to the 109 /// the tree node with the minimum data element. begin()110 iterator begin() const { return iterator(this); } 111 112 /// end - Returns an iterator for the tree that denotes the end of an 113 /// inorder traversal. end()114 iterator end() const { return iterator(); } 115 isElementEqual(value_type_ref V)116 bool isElementEqual(value_type_ref V) const { 117 // Compare the keys. 118 if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()), 119 ImutInfo::KeyOfValue(V))) 120 return false; 121 122 // Also compare the data values. 123 if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()), 124 ImutInfo::DataOfValue(V))) 125 return false; 126 127 return true; 128 } 129 isElementEqual(const ImutAVLTree * RHS)130 bool isElementEqual(const ImutAVLTree* RHS) const { 131 return isElementEqual(RHS->getValue()); 132 } 133 134 /// isEqual - Compares two trees for structural equality and returns true 135 /// if they are equal. This worst case performance of this operation is 136 // linear in the sizes of the trees. isEqual(const ImutAVLTree & RHS)137 bool isEqual(const ImutAVLTree& RHS) const { 138 if (&RHS == this) 139 return true; 140 141 iterator LItr = begin(), LEnd = end(); 142 iterator RItr = RHS.begin(), REnd = RHS.end(); 143 144 while (LItr != LEnd && RItr != REnd) { 145 if (&*LItr == &*RItr) { 146 LItr.skipSubTree(); 147 RItr.skipSubTree(); 148 continue; 149 } 150 151 if (!LItr->isElementEqual(&*RItr)) 152 return false; 153 154 ++LItr; 155 ++RItr; 156 } 157 158 return LItr == LEnd && RItr == REnd; 159 } 160 161 /// isNotEqual - Compares two trees for structural inequality. Performance 162 /// is the same is isEqual. isNotEqual(const ImutAVLTree & RHS)163 bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); } 164 165 /// contains - Returns true if this tree contains a subtree (node) that 166 /// has an data element that matches the specified key. Complexity 167 /// is logarithmic in the size of the tree. contains(key_type_ref K)168 bool contains(key_type_ref K) { return (bool) find(K); } 169 170 /// foreach - A member template the accepts invokes operator() on a functor 171 /// object (specifed by Callback) for every node/subtree in the tree. 172 /// Nodes are visited using an inorder traversal. 173 template <typename Callback> foreach(Callback & C)174 void foreach(Callback& C) { 175 if (ImutAVLTree* L = getLeft()) 176 L->foreach(C); 177 178 C(value); 179 180 if (ImutAVLTree* R = getRight()) 181 R->foreach(C); 182 } 183 184 /// validateTree - A utility method that checks that the balancing and 185 /// ordering invariants of the tree are satisifed. It is a recursive 186 /// method that returns the height of the tree, which is then consumed 187 /// by the enclosing validateTree call. External callers should ignore the 188 /// return value. An invalid tree will cause an assertion to fire in 189 /// a debug build. validateTree()190 unsigned validateTree() const { 191 unsigned HL = getLeft() ? getLeft()->validateTree() : 0; 192 unsigned HR = getRight() ? getRight()->validateTree() : 0; 193 (void) HL; 194 (void) HR; 195 196 assert(getHeight() == ( HL > HR ? HL : HR ) + 1 197 && "Height calculation wrong"); 198 199 assert((HL > HR ? HL-HR : HR-HL) <= 2 200 && "Balancing invariant violated"); 201 202 assert((!getLeft() || 203 ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), 204 ImutInfo::KeyOfValue(getValue()))) && 205 "Value in left child is not less that current value"); 206 207 208 assert(!(getRight() || 209 ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), 210 ImutInfo::KeyOfValue(getRight()->getValue()))) && 211 "Current value is not less that value of right child"); 212 213 return getHeight(); 214 } 215 216 //===----------------------------------------------------===// 217 // Internal values. 218 //===----------------------------------------------------===// 219 220 private: 221 Factory *factory; 222 ImutAVLTree *left; 223 ImutAVLTree *right; 224 ImutAVLTree *prev; 225 ImutAVLTree *next; 226 227 unsigned height : 28; 228 unsigned IsMutable : 1; 229 unsigned IsDigestCached : 1; 230 unsigned IsCanonicalized : 1; 231 232 value_type value; 233 uint32_t digest; 234 uint32_t refCount; 235 236 //===----------------------------------------------------===// 237 // Internal methods (node manipulation; used by Factory). 238 //===----------------------------------------------------===// 239 240 private: 241 /// ImutAVLTree - Internal constructor that is only called by 242 /// ImutAVLFactory. ImutAVLTree(Factory * f,ImutAVLTree * l,ImutAVLTree * r,value_type_ref v,unsigned height)243 ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, 244 unsigned height) 245 : factory(f), left(l), right(r), prev(nullptr), next(nullptr), 246 height(height), IsMutable(true), IsDigestCached(false), 247 IsCanonicalized(0), value(v), digest(0), refCount(0) 248 { 249 if (left) left->retain(); 250 if (right) right->retain(); 251 } 252 253 /// isMutable - Returns true if the left and right subtree references 254 /// (as well as height) can be changed. If this method returns false, 255 /// the tree is truly immutable. Trees returned from an ImutAVLFactory 256 /// object should always have this method return true. Further, if this 257 /// method returns false for an instance of ImutAVLTree, all subtrees 258 /// will also have this method return false. The converse is not true. isMutable()259 bool isMutable() const { return IsMutable; } 260 261 /// hasCachedDigest - Returns true if the digest for this tree is cached. 262 /// This can only be true if the tree is immutable. hasCachedDigest()263 bool hasCachedDigest() const { return IsDigestCached; } 264 265 //===----------------------------------------------------===// 266 // Mutating operations. A tree root can be manipulated as 267 // long as its reference has not "escaped" from internal 268 // methods of a factory object (see below). When a tree 269 // pointer is externally viewable by client code, the 270 // internal "mutable bit" is cleared to mark the tree 271 // immutable. Note that a tree that still has its mutable 272 // bit set may have children (subtrees) that are themselves 273 // immutable. 274 //===----------------------------------------------------===// 275 276 /// markImmutable - Clears the mutable flag for a tree. After this happens, 277 /// it is an error to call setLeft(), setRight(), and setHeight(). markImmutable()278 void markImmutable() { 279 assert(isMutable() && "Mutable flag already removed."); 280 IsMutable = false; 281 } 282 283 /// markedCachedDigest - Clears the NoCachedDigest flag for a tree. markedCachedDigest()284 void markedCachedDigest() { 285 assert(!hasCachedDigest() && "NoCachedDigest flag already removed."); 286 IsDigestCached = true; 287 } 288 289 /// setHeight - Changes the height of the tree. Used internally by 290 /// ImutAVLFactory. setHeight(unsigned h)291 void setHeight(unsigned h) { 292 assert(isMutable() && "Only a mutable tree can have its height changed."); 293 height = h; 294 } 295 computeDigest(ImutAVLTree * L,ImutAVLTree * R,value_type_ref V)296 static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R, 297 value_type_ref V) { 298 uint32_t digest = 0; 299 300 if (L) 301 digest += L->computeDigest(); 302 303 // Compute digest of stored data. 304 FoldingSetNodeID ID; 305 ImutInfo::Profile(ID,V); 306 digest += ID.ComputeHash(); 307 308 if (R) 309 digest += R->computeDigest(); 310 311 return digest; 312 } 313 computeDigest()314 uint32_t computeDigest() { 315 // Check the lowest bit to determine if digest has actually been 316 // pre-computed. 317 if (hasCachedDigest()) 318 return digest; 319 320 uint32_t X = computeDigest(getLeft(), getRight(), getValue()); 321 digest = X; 322 markedCachedDigest(); 323 return X; 324 } 325 326 //===----------------------------------------------------===// 327 // Reference count operations. 328 //===----------------------------------------------------===// 329 330 public: retain()331 void retain() { ++refCount; } release()332 void release() { 333 assert(refCount > 0); 334 if (--refCount == 0) 335 destroy(); 336 } destroy()337 void destroy() { 338 if (left) 339 left->release(); 340 if (right) 341 right->release(); 342 if (IsCanonicalized) { 343 if (next) 344 next->prev = prev; 345 346 if (prev) 347 prev->next = next; 348 else 349 factory->Cache[factory->maskCacheIndex(computeDigest())] = next; 350 } 351 352 // We need to clear the mutability bit in case we are 353 // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes(). 354 IsMutable = false; 355 factory->freeNodes.push_back(this); 356 } 357 }; 358 359 //===----------------------------------------------------------------------===// 360 // Immutable AVL-Tree Factory class. 361 //===----------------------------------------------------------------------===// 362 363 template <typename ImutInfo > 364 class ImutAVLFactory { 365 friend class ImutAVLTree<ImutInfo>; 366 typedef ImutAVLTree<ImutInfo> TreeTy; 367 typedef typename TreeTy::value_type_ref value_type_ref; 368 typedef typename TreeTy::key_type_ref key_type_ref; 369 370 typedef DenseMap<unsigned, TreeTy*> CacheTy; 371 372 CacheTy Cache; 373 uintptr_t Allocator; 374 std::vector<TreeTy*> createdNodes; 375 std::vector<TreeTy*> freeNodes; 376 ownsAllocator()377 bool ownsAllocator() const { 378 return Allocator & 0x1 ? false : true; 379 } 380 getAllocator()381 BumpPtrAllocator& getAllocator() const { 382 return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1); 383 } 384 385 //===--------------------------------------------------===// 386 // Public interface. 387 //===--------------------------------------------------===// 388 389 public: ImutAVLFactory()390 ImutAVLFactory() 391 : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {} 392 ImutAVLFactory(BumpPtrAllocator & Alloc)393 ImutAVLFactory(BumpPtrAllocator& Alloc) 394 : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {} 395 ~ImutAVLFactory()396 ~ImutAVLFactory() { 397 if (ownsAllocator()) delete &getAllocator(); 398 } 399 add(TreeTy * T,value_type_ref V)400 TreeTy* add(TreeTy* T, value_type_ref V) { 401 T = add_internal(V,T); 402 markImmutable(T); 403 recoverNodes(); 404 return T; 405 } 406 remove(TreeTy * T,key_type_ref V)407 TreeTy* remove(TreeTy* T, key_type_ref V) { 408 T = remove_internal(V,T); 409 markImmutable(T); 410 recoverNodes(); 411 return T; 412 } 413 getEmptyTree()414 TreeTy* getEmptyTree() const { return nullptr; } 415 416 protected: 417 418 //===--------------------------------------------------===// 419 // A bunch of quick helper functions used for reasoning 420 // about the properties of trees and their children. 421 // These have succinct names so that the balancing code 422 // is as terse (and readable) as possible. 423 //===--------------------------------------------------===// 424 isEmpty(TreeTy * T)425 bool isEmpty(TreeTy* T) const { return !T; } getHeight(TreeTy * T)426 unsigned getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; } getLeft(TreeTy * T)427 TreeTy* getLeft(TreeTy* T) const { return T->getLeft(); } getRight(TreeTy * T)428 TreeTy* getRight(TreeTy* T) const { return T->getRight(); } getValue(TreeTy * T)429 value_type_ref getValue(TreeTy* T) const { return T->value; } 430 431 // Make sure the index is not the Tombstone or Entry key of the DenseMap. maskCacheIndex(unsigned I)432 static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); } 433 incrementHeight(TreeTy * L,TreeTy * R)434 unsigned incrementHeight(TreeTy* L, TreeTy* R) const { 435 unsigned hl = getHeight(L); 436 unsigned hr = getHeight(R); 437 return (hl > hr ? hl : hr) + 1; 438 } 439 compareTreeWithSection(TreeTy * T,typename TreeTy::iterator & TI,typename TreeTy::iterator & TE)440 static bool compareTreeWithSection(TreeTy* T, 441 typename TreeTy::iterator& TI, 442 typename TreeTy::iterator& TE) { 443 typename TreeTy::iterator I = T->begin(), E = T->end(); 444 for ( ; I!=E ; ++I, ++TI) { 445 if (TI == TE || !I->isElementEqual(&*TI)) 446 return false; 447 } 448 return true; 449 } 450 451 //===--------------------------------------------------===// 452 // "createNode" is used to generate new tree roots that link 453 // to other trees. The functon may also simply move links 454 // in an existing root if that root is still marked mutable. 455 // This is necessary because otherwise our balancing code 456 // would leak memory as it would create nodes that are 457 // then discarded later before the finished tree is 458 // returned to the caller. 459 //===--------------------------------------------------===// 460 createNode(TreeTy * L,value_type_ref V,TreeTy * R)461 TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) { 462 BumpPtrAllocator& A = getAllocator(); 463 TreeTy* T; 464 if (!freeNodes.empty()) { 465 T = freeNodes.back(); 466 freeNodes.pop_back(); 467 assert(T != L); 468 assert(T != R); 469 } else { 470 T = (TreeTy*) A.Allocate<TreeTy>(); 471 } 472 new (T) TreeTy(this, L, R, V, incrementHeight(L,R)); 473 createdNodes.push_back(T); 474 return T; 475 } 476 createNode(TreeTy * newLeft,TreeTy * oldTree,TreeTy * newRight)477 TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) { 478 return createNode(newLeft, getValue(oldTree), newRight); 479 } 480 recoverNodes()481 void recoverNodes() { 482 for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) { 483 TreeTy *N = createdNodes[i]; 484 if (N->isMutable() && N->refCount == 0) 485 N->destroy(); 486 } 487 createdNodes.clear(); 488 } 489 490 /// balanceTree - Used by add_internal and remove_internal to 491 /// balance a newly created tree. balanceTree(TreeTy * L,value_type_ref V,TreeTy * R)492 TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) { 493 unsigned hl = getHeight(L); 494 unsigned hr = getHeight(R); 495 496 if (hl > hr + 2) { 497 assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2"); 498 499 TreeTy *LL = getLeft(L); 500 TreeTy *LR = getRight(L); 501 502 if (getHeight(LL) >= getHeight(LR)) 503 return createNode(LL, L, createNode(LR,V,R)); 504 505 assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1"); 506 507 TreeTy *LRL = getLeft(LR); 508 TreeTy *LRR = getRight(LR); 509 510 return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R)); 511 } 512 513 if (hr > hl + 2) { 514 assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2"); 515 516 TreeTy *RL = getLeft(R); 517 TreeTy *RR = getRight(R); 518 519 if (getHeight(RR) >= getHeight(RL)) 520 return createNode(createNode(L,V,RL), R, RR); 521 522 assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1"); 523 524 TreeTy *RLL = getLeft(RL); 525 TreeTy *RLR = getRight(RL); 526 527 return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR)); 528 } 529 530 return createNode(L,V,R); 531 } 532 533 /// add_internal - Creates a new tree that includes the specified 534 /// data and the data from the original tree. If the original tree 535 /// already contained the data item, the original tree is returned. add_internal(value_type_ref V,TreeTy * T)536 TreeTy* add_internal(value_type_ref V, TreeTy* T) { 537 if (isEmpty(T)) 538 return createNode(T, V, T); 539 assert(!T->isMutable()); 540 541 key_type_ref K = ImutInfo::KeyOfValue(V); 542 key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); 543 544 if (ImutInfo::isEqual(K,KCurrent)) 545 return createNode(getLeft(T), V, getRight(T)); 546 else if (ImutInfo::isLess(K,KCurrent)) 547 return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T)); 548 else 549 return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T))); 550 } 551 552 /// remove_internal - Creates a new tree that includes all the data 553 /// from the original tree except the specified data. If the 554 /// specified data did not exist in the original tree, the original 555 /// tree is returned. remove_internal(key_type_ref K,TreeTy * T)556 TreeTy* remove_internal(key_type_ref K, TreeTy* T) { 557 if (isEmpty(T)) 558 return T; 559 560 assert(!T->isMutable()); 561 562 key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); 563 564 if (ImutInfo::isEqual(K,KCurrent)) { 565 return combineTrees(getLeft(T), getRight(T)); 566 } else if (ImutInfo::isLess(K,KCurrent)) { 567 return balanceTree(remove_internal(K, getLeft(T)), 568 getValue(T), getRight(T)); 569 } else { 570 return balanceTree(getLeft(T), getValue(T), 571 remove_internal(K, getRight(T))); 572 } 573 } 574 combineTrees(TreeTy * L,TreeTy * R)575 TreeTy* combineTrees(TreeTy* L, TreeTy* R) { 576 if (isEmpty(L)) 577 return R; 578 if (isEmpty(R)) 579 return L; 580 TreeTy* OldNode; 581 TreeTy* newRight = removeMinBinding(R,OldNode); 582 return balanceTree(L, getValue(OldNode), newRight); 583 } 584 removeMinBinding(TreeTy * T,TreeTy * & Noderemoved)585 TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) { 586 assert(!isEmpty(T)); 587 if (isEmpty(getLeft(T))) { 588 Noderemoved = T; 589 return getRight(T); 590 } 591 return balanceTree(removeMinBinding(getLeft(T), Noderemoved), 592 getValue(T), getRight(T)); 593 } 594 595 /// markImmutable - Clears the mutable bits of a root and all of its 596 /// descendants. markImmutable(TreeTy * T)597 void markImmutable(TreeTy* T) { 598 if (!T || !T->isMutable()) 599 return; 600 T->markImmutable(); 601 markImmutable(getLeft(T)); 602 markImmutable(getRight(T)); 603 } 604 605 public: getCanonicalTree(TreeTy * TNew)606 TreeTy *getCanonicalTree(TreeTy *TNew) { 607 if (!TNew) 608 return nullptr; 609 610 if (TNew->IsCanonicalized) 611 return TNew; 612 613 // Search the hashtable for another tree with the same digest, and 614 // if find a collision compare those trees by their contents. 615 unsigned digest = TNew->computeDigest(); 616 TreeTy *&entry = Cache[maskCacheIndex(digest)]; 617 do { 618 if (!entry) 619 break; 620 for (TreeTy *T = entry ; T != nullptr; T = T->next) { 621 // Compare the Contents('T') with Contents('TNew') 622 typename TreeTy::iterator TI = T->begin(), TE = T->end(); 623 if (!compareTreeWithSection(TNew, TI, TE)) 624 continue; 625 if (TI != TE) 626 continue; // T has more contents than TNew. 627 // Trees did match! Return 'T'. 628 if (TNew->refCount == 0) 629 TNew->destroy(); 630 return T; 631 } 632 entry->prev = TNew; 633 TNew->next = entry; 634 } 635 while (false); 636 637 entry = TNew; 638 TNew->IsCanonicalized = true; 639 return TNew; 640 } 641 }; 642 643 //===----------------------------------------------------------------------===// 644 // Immutable AVL-Tree Iterators. 645 //===----------------------------------------------------------------------===// 646 647 template <typename ImutInfo> 648 class ImutAVLTreeGenericIterator 649 : public std::iterator<std::bidirectional_iterator_tag, 650 ImutAVLTree<ImutInfo>> { 651 SmallVector<uintptr_t,20> stack; 652 public: 653 enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, 654 Flags=0x3 }; 655 656 typedef ImutAVLTree<ImutInfo> TreeTy; 657 ImutAVLTreeGenericIterator()658 ImutAVLTreeGenericIterator() {} ImutAVLTreeGenericIterator(const TreeTy * Root)659 ImutAVLTreeGenericIterator(const TreeTy *Root) { 660 if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root)); 661 } 662 663 TreeTy &operator*() const { 664 assert(!stack.empty()); 665 return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags); 666 } 667 TreeTy *operator->() const { return &*this; } 668 getVisitState()669 uintptr_t getVisitState() const { 670 assert(!stack.empty()); 671 return stack.back() & Flags; 672 } 673 674 atEnd()675 bool atEnd() const { return stack.empty(); } 676 atBeginning()677 bool atBeginning() const { 678 return stack.size() == 1 && getVisitState() == VisitedNone; 679 } 680 skipToParent()681 void skipToParent() { 682 assert(!stack.empty()); 683 stack.pop_back(); 684 if (stack.empty()) 685 return; 686 switch (getVisitState()) { 687 case VisitedNone: 688 stack.back() |= VisitedLeft; 689 break; 690 case VisitedLeft: 691 stack.back() |= VisitedRight; 692 break; 693 default: 694 llvm_unreachable("Unreachable."); 695 } 696 } 697 698 bool operator==(const ImutAVLTreeGenericIterator &x) const { 699 return stack == x.stack; 700 } 701 702 bool operator!=(const ImutAVLTreeGenericIterator &x) const { 703 return !(*this == x); 704 } 705 706 ImutAVLTreeGenericIterator &operator++() { 707 assert(!stack.empty()); 708 TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); 709 assert(Current); 710 switch (getVisitState()) { 711 case VisitedNone: 712 if (TreeTy* L = Current->getLeft()) 713 stack.push_back(reinterpret_cast<uintptr_t>(L)); 714 else 715 stack.back() |= VisitedLeft; 716 break; 717 case VisitedLeft: 718 if (TreeTy* R = Current->getRight()) 719 stack.push_back(reinterpret_cast<uintptr_t>(R)); 720 else 721 stack.back() |= VisitedRight; 722 break; 723 case VisitedRight: 724 skipToParent(); 725 break; 726 default: 727 llvm_unreachable("Unreachable."); 728 } 729 return *this; 730 } 731 732 ImutAVLTreeGenericIterator &operator--() { 733 assert(!stack.empty()); 734 TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); 735 assert(Current); 736 switch (getVisitState()) { 737 case VisitedNone: 738 stack.pop_back(); 739 break; 740 case VisitedLeft: 741 stack.back() &= ~Flags; // Set state to "VisitedNone." 742 if (TreeTy* L = Current->getLeft()) 743 stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight); 744 break; 745 case VisitedRight: 746 stack.back() &= ~Flags; 747 stack.back() |= VisitedLeft; 748 if (TreeTy* R = Current->getRight()) 749 stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight); 750 break; 751 default: 752 llvm_unreachable("Unreachable."); 753 } 754 return *this; 755 } 756 }; 757 758 template <typename ImutInfo> 759 class ImutAVLTreeInOrderIterator 760 : public std::iterator<std::bidirectional_iterator_tag, 761 ImutAVLTree<ImutInfo>> { 762 typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy; 763 InternalIteratorTy InternalItr; 764 765 public: 766 typedef ImutAVLTree<ImutInfo> TreeTy; 767 ImutAVLTreeInOrderIterator(const TreeTy * Root)768 ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { 769 if (Root) 770 ++*this; // Advance to first element. 771 } 772 ImutAVLTreeInOrderIterator()773 ImutAVLTreeInOrderIterator() : InternalItr() {} 774 775 bool operator==(const ImutAVLTreeInOrderIterator &x) const { 776 return InternalItr == x.InternalItr; 777 } 778 779 bool operator!=(const ImutAVLTreeInOrderIterator &x) const { 780 return !(*this == x); 781 } 782 783 TreeTy &operator*() const { return *InternalItr; } 784 TreeTy *operator->() const { return &*InternalItr; } 785 786 ImutAVLTreeInOrderIterator &operator++() { 787 do ++InternalItr; 788 while (!InternalItr.atEnd() && 789 InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); 790 791 return *this; 792 } 793 794 ImutAVLTreeInOrderIterator &operator--() { 795 do --InternalItr; 796 while (!InternalItr.atBeginning() && 797 InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); 798 799 return *this; 800 } 801 skipSubTree()802 void skipSubTree() { 803 InternalItr.skipToParent(); 804 805 while (!InternalItr.atEnd() && 806 InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft) 807 ++InternalItr; 808 } 809 }; 810 811 /// Generic iterator that wraps a T::TreeTy::iterator and exposes 812 /// iterator::getValue() on dereference. 813 template <typename T> 814 struct ImutAVLValueIterator 815 : iterator_adaptor_base< 816 ImutAVLValueIterator<T>, typename T::TreeTy::iterator, 817 typename std::iterator_traits< 818 typename T::TreeTy::iterator>::iterator_category, 819 const typename T::value_type> { 820 ImutAVLValueIterator() = default; ImutAVLValueIteratorImutAVLValueIterator821 explicit ImutAVLValueIterator(typename T::TreeTy *Tree) 822 : ImutAVLValueIterator::iterator_adaptor_base(Tree) {} 823 824 typename ImutAVLValueIterator::reference operator*() const { 825 return this->I->getValue(); 826 } 827 }; 828 829 //===----------------------------------------------------------------------===// 830 // Trait classes for Profile information. 831 //===----------------------------------------------------------------------===// 832 833 /// Generic profile template. The default behavior is to invoke the 834 /// profile method of an object. Specializations for primitive integers 835 /// and generic handling of pointers is done below. 836 template <typename T> 837 struct ImutProfileInfo { 838 typedef const T value_type; 839 typedef const T& value_type_ref; 840 ProfileImutProfileInfo841 static void Profile(FoldingSetNodeID &ID, value_type_ref X) { 842 FoldingSetTrait<T>::Profile(X,ID); 843 } 844 }; 845 846 /// Profile traits for integers. 847 template <typename T> 848 struct ImutProfileInteger { 849 typedef const T value_type; 850 typedef const T& value_type_ref; 851 ProfileImutProfileInteger852 static void Profile(FoldingSetNodeID &ID, value_type_ref X) { 853 ID.AddInteger(X); 854 } 855 }; 856 857 #define PROFILE_INTEGER_INFO(X)\ 858 template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {}; 859 860 PROFILE_INTEGER_INFO(char) 861 PROFILE_INTEGER_INFO(unsigned char) 862 PROFILE_INTEGER_INFO(short) 863 PROFILE_INTEGER_INFO(unsigned short) 864 PROFILE_INTEGER_INFO(unsigned) 865 PROFILE_INTEGER_INFO(signed) 866 PROFILE_INTEGER_INFO(long) 867 PROFILE_INTEGER_INFO(unsigned long) 868 PROFILE_INTEGER_INFO(long long) 869 PROFILE_INTEGER_INFO(unsigned long long) 870 871 #undef PROFILE_INTEGER_INFO 872 873 /// Profile traits for booleans. 874 template <> 875 struct ImutProfileInfo<bool> { 876 typedef const bool value_type; 877 typedef const bool& value_type_ref; 878 879 static void Profile(FoldingSetNodeID &ID, value_type_ref X) { 880 ID.AddBoolean(X); 881 } 882 }; 883 884 885 /// Generic profile trait for pointer types. We treat pointers as 886 /// references to unique objects. 887 template <typename T> 888 struct ImutProfileInfo<T*> { 889 typedef const T* value_type; 890 typedef value_type value_type_ref; 891 892 static void Profile(FoldingSetNodeID &ID, value_type_ref X) { 893 ID.AddPointer(X); 894 } 895 }; 896 897 //===----------------------------------------------------------------------===// 898 // Trait classes that contain element comparison operators and type 899 // definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These 900 // inherit from the profile traits (ImutProfileInfo) to include operations 901 // for element profiling. 902 //===----------------------------------------------------------------------===// 903 904 905 /// ImutContainerInfo - Generic definition of comparison operations for 906 /// elements of immutable containers that defaults to using 907 /// std::equal_to<> and std::less<> to perform comparison of elements. 908 template <typename T> 909 struct ImutContainerInfo : public ImutProfileInfo<T> { 910 typedef typename ImutProfileInfo<T>::value_type value_type; 911 typedef typename ImutProfileInfo<T>::value_type_ref value_type_ref; 912 typedef value_type key_type; 913 typedef value_type_ref key_type_ref; 914 typedef bool data_type; 915 typedef bool data_type_ref; 916 917 static key_type_ref KeyOfValue(value_type_ref D) { return D; } 918 static data_type_ref DataOfValue(value_type_ref) { return true; } 919 920 static bool isEqual(key_type_ref LHS, key_type_ref RHS) { 921 return std::equal_to<key_type>()(LHS,RHS); 922 } 923 924 static bool isLess(key_type_ref LHS, key_type_ref RHS) { 925 return std::less<key_type>()(LHS,RHS); 926 } 927 928 static bool isDataEqual(data_type_ref, data_type_ref) { return true; } 929 }; 930 931 /// ImutContainerInfo - Specialization for pointer values to treat pointers 932 /// as references to unique objects. Pointers are thus compared by 933 /// their addresses. 934 template <typename T> 935 struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> { 936 typedef typename ImutProfileInfo<T*>::value_type value_type; 937 typedef typename ImutProfileInfo<T*>::value_type_ref value_type_ref; 938 typedef value_type key_type; 939 typedef value_type_ref key_type_ref; 940 typedef bool data_type; 941 typedef bool data_type_ref; 942 943 static key_type_ref KeyOfValue(value_type_ref D) { return D; } 944 static data_type_ref DataOfValue(value_type_ref) { return true; } 945 946 static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; } 947 948 static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; } 949 950 static bool isDataEqual(data_type_ref, data_type_ref) { return true; } 951 }; 952 953 //===----------------------------------------------------------------------===// 954 // Immutable Set 955 //===----------------------------------------------------------------------===// 956 957 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> > 958 class ImmutableSet { 959 public: 960 typedef typename ValInfo::value_type value_type; 961 typedef typename ValInfo::value_type_ref value_type_ref; 962 typedef ImutAVLTree<ValInfo> TreeTy; 963 964 private: 965 TreeTy *Root; 966 967 public: 968 /// Constructs a set from a pointer to a tree root. In general one 969 /// should use a Factory object to create sets instead of directly 970 /// invoking the constructor, but there are cases where make this 971 /// constructor public is useful. 972 explicit ImmutableSet(TreeTy* R) : Root(R) { 973 if (Root) { Root->retain(); } 974 } 975 ImmutableSet(const ImmutableSet &X) : Root(X.Root) { 976 if (Root) { Root->retain(); } 977 } 978 ImmutableSet &operator=(const ImmutableSet &X) { 979 if (Root != X.Root) { 980 if (X.Root) { X.Root->retain(); } 981 if (Root) { Root->release(); } 982 Root = X.Root; 983 } 984 return *this; 985 } 986 ~ImmutableSet() { 987 if (Root) { Root->release(); } 988 } 989 990 class Factory { 991 typename TreeTy::Factory F; 992 const bool Canonicalize; 993 994 public: 995 Factory(bool canonicalize = true) 996 : Canonicalize(canonicalize) {} 997 998 Factory(BumpPtrAllocator& Alloc, bool canonicalize = true) 999 : F(Alloc), Canonicalize(canonicalize) {} 1000 1001 /// getEmptySet - Returns an immutable set that contains no elements. 1002 ImmutableSet getEmptySet() { 1003 return ImmutableSet(F.getEmptyTree()); 1004 } 1005 1006 /// add - Creates a new immutable set that contains all of the values 1007 /// of the original set with the addition of the specified value. If 1008 /// the original set already included the value, then the original set is 1009 /// returned and no memory is allocated. The time and space complexity 1010 /// of this operation is logarithmic in the size of the original set. 1011 /// The memory allocated to represent the set is released when the 1012 /// factory object that created the set is destroyed. 1013 ImmutableSet add(ImmutableSet Old, value_type_ref V) { 1014 TreeTy *NewT = F.add(Old.Root, V); 1015 return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); 1016 } 1017 1018 /// remove - Creates a new immutable set that contains all of the values 1019 /// of the original set with the exception of the specified value. If 1020 /// the original set did not contain the value, the original set is 1021 /// returned and no memory is allocated. The time and space complexity 1022 /// of this operation is logarithmic in the size of the original set. 1023 /// The memory allocated to represent the set is released when the 1024 /// factory object that created the set is destroyed. 1025 ImmutableSet remove(ImmutableSet Old, value_type_ref V) { 1026 TreeTy *NewT = F.remove(Old.Root, V); 1027 return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); 1028 } 1029 1030 BumpPtrAllocator& getAllocator() { return F.getAllocator(); } 1031 1032 typename TreeTy::Factory *getTreeFactory() const { 1033 return const_cast<typename TreeTy::Factory *>(&F); 1034 } 1035 1036 private: 1037 Factory(const Factory& RHS) = delete; 1038 void operator=(const Factory& RHS) = delete; 1039 }; 1040 1041 friend class Factory; 1042 1043 /// Returns true if the set contains the specified value. 1044 bool contains(value_type_ref V) const { 1045 return Root ? Root->contains(V) : false; 1046 } 1047 1048 bool operator==(const ImmutableSet &RHS) const { 1049 return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; 1050 } 1051 1052 bool operator!=(const ImmutableSet &RHS) const { 1053 return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; 1054 } 1055 1056 TreeTy *getRoot() { 1057 if (Root) { Root->retain(); } 1058 return Root; 1059 } 1060 1061 TreeTy *getRootWithoutRetain() const { 1062 return Root; 1063 } 1064 1065 /// isEmpty - Return true if the set contains no elements. 1066 bool isEmpty() const { return !Root; } 1067 1068 /// isSingleton - Return true if the set contains exactly one element. 1069 /// This method runs in constant time. 1070 bool isSingleton() const { return getHeight() == 1; } 1071 1072 template <typename Callback> 1073 void foreach(Callback& C) { if (Root) Root->foreach(C); } 1074 1075 template <typename Callback> 1076 void foreach() { if (Root) { Callback C; Root->foreach(C); } } 1077 1078 //===--------------------------------------------------===// 1079 // Iterators. 1080 //===--------------------------------------------------===// 1081 1082 typedef ImutAVLValueIterator<ImmutableSet> iterator; 1083 1084 iterator begin() const { return iterator(Root); } 1085 iterator end() const { return iterator(); } 1086 1087 //===--------------------------------------------------===// 1088 // Utility methods. 1089 //===--------------------------------------------------===// 1090 1091 unsigned getHeight() const { return Root ? Root->getHeight() : 0; } 1092 1093 static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) { 1094 ID.AddPointer(S.Root); 1095 } 1096 1097 void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); } 1098 1099 //===--------------------------------------------------===// 1100 // For testing. 1101 //===--------------------------------------------------===// 1102 1103 void validateTree() const { if (Root) Root->validateTree(); } 1104 }; 1105 1106 // NOTE: This may some day replace the current ImmutableSet. 1107 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> > 1108 class ImmutableSetRef { 1109 public: 1110 typedef typename ValInfo::value_type value_type; 1111 typedef typename ValInfo::value_type_ref value_type_ref; 1112 typedef ImutAVLTree<ValInfo> TreeTy; 1113 typedef typename TreeTy::Factory FactoryTy; 1114 1115 private: 1116 TreeTy *Root; 1117 FactoryTy *Factory; 1118 1119 public: 1120 /// Constructs a set from a pointer to a tree root. In general one 1121 /// should use a Factory object to create sets instead of directly 1122 /// invoking the constructor, but there are cases where make this 1123 /// constructor public is useful. 1124 explicit ImmutableSetRef(TreeTy* R, FactoryTy *F) 1125 : Root(R), 1126 Factory(F) { 1127 if (Root) { Root->retain(); } 1128 } 1129 ImmutableSetRef(const ImmutableSetRef &X) 1130 : Root(X.Root), 1131 Factory(X.Factory) { 1132 if (Root) { Root->retain(); } 1133 } 1134 ImmutableSetRef &operator=(const ImmutableSetRef &X) { 1135 if (Root != X.Root) { 1136 if (X.Root) { X.Root->retain(); } 1137 if (Root) { Root->release(); } 1138 Root = X.Root; 1139 Factory = X.Factory; 1140 } 1141 return *this; 1142 } 1143 ~ImmutableSetRef() { 1144 if (Root) { Root->release(); } 1145 } 1146 1147 static ImmutableSetRef getEmptySet(FactoryTy *F) { 1148 return ImmutableSetRef(0, F); 1149 } 1150 1151 ImmutableSetRef add(value_type_ref V) { 1152 return ImmutableSetRef(Factory->add(Root, V), Factory); 1153 } 1154 1155 ImmutableSetRef remove(value_type_ref V) { 1156 return ImmutableSetRef(Factory->remove(Root, V), Factory); 1157 } 1158 1159 /// Returns true if the set contains the specified value. 1160 bool contains(value_type_ref V) const { 1161 return Root ? Root->contains(V) : false; 1162 } 1163 1164 ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const { 1165 return ImmutableSet<ValT>(canonicalize ? 1166 Factory->getCanonicalTree(Root) : Root); 1167 } 1168 1169 TreeTy *getRootWithoutRetain() const { 1170 return Root; 1171 } 1172 1173 bool operator==(const ImmutableSetRef &RHS) const { 1174 return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; 1175 } 1176 1177 bool operator!=(const ImmutableSetRef &RHS) const { 1178 return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; 1179 } 1180 1181 /// isEmpty - Return true if the set contains no elements. 1182 bool isEmpty() const { return !Root; } 1183 1184 /// isSingleton - Return true if the set contains exactly one element. 1185 /// This method runs in constant time. 1186 bool isSingleton() const { return getHeight() == 1; } 1187 1188 //===--------------------------------------------------===// 1189 // Iterators. 1190 //===--------------------------------------------------===// 1191 1192 typedef ImutAVLValueIterator<ImmutableSetRef> iterator; 1193 1194 iterator begin() const { return iterator(Root); } 1195 iterator end() const { return iterator(); } 1196 1197 //===--------------------------------------------------===// 1198 // Utility methods. 1199 //===--------------------------------------------------===// 1200 1201 unsigned getHeight() const { return Root ? Root->getHeight() : 0; } 1202 1203 static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) { 1204 ID.AddPointer(S.Root); 1205 } 1206 1207 void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); } 1208 1209 //===--------------------------------------------------===// 1210 // For testing. 1211 //===--------------------------------------------------===// 1212 1213 void validateTree() const { if (Root) Root->validateTree(); } 1214 }; 1215 1216 } // end namespace llvm 1217 1218 #endif 1219