1 //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ImutAVLTree and ImmutableSet classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_IMMUTABLESET_H
15 #define LLVM_ADT_IMMUTABLESET_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/Support/Allocator.h"
20 #include "llvm/Support/DataTypes.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <cassert>
23 #include <functional>
24 #include <vector>
25 
26 namespace llvm {
27 
28 //===----------------------------------------------------------------------===//
29 // Immutable AVL-Tree Definition.
30 //===----------------------------------------------------------------------===//
31 
32 template <typename ImutInfo> class ImutAVLFactory;
33 template <typename ImutInfo> class ImutIntervalAVLFactory;
34 template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
35 template <typename ImutInfo> class ImutAVLTreeGenericIterator;
36 
37 template <typename ImutInfo >
38 class ImutAVLTree {
39 public:
40   typedef typename ImutInfo::key_type_ref   key_type_ref;
41   typedef typename ImutInfo::value_type     value_type;
42   typedef typename ImutInfo::value_type_ref value_type_ref;
43 
44   typedef ImutAVLFactory<ImutInfo>          Factory;
45   friend class ImutAVLFactory<ImutInfo>;
46   friend class ImutIntervalAVLFactory<ImutInfo>;
47 
48   friend class ImutAVLTreeGenericIterator<ImutInfo>;
49 
50   typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;
51 
52   //===----------------------------------------------------===//
53   // Public Interface.
54   //===----------------------------------------------------===//
55 
56   /// Return a pointer to the left subtree.  This value
57   ///  is NULL if there is no left subtree.
getLeft()58   ImutAVLTree *getLeft() const { return left; }
59 
60   /// Return a pointer to the right subtree.  This value is
61   ///  NULL if there is no right subtree.
getRight()62   ImutAVLTree *getRight() const { return right; }
63 
64   /// getHeight - Returns the height of the tree.  A tree with no subtrees
65   ///  has a height of 1.
getHeight()66   unsigned getHeight() const { return height; }
67 
68   /// getValue - Returns the data value associated with the tree node.
getValue()69   const value_type& getValue() const { return value; }
70 
71   /// find - Finds the subtree associated with the specified key value.
72   ///  This method returns NULL if no matching subtree is found.
find(key_type_ref K)73   ImutAVLTree* find(key_type_ref K) {
74     ImutAVLTree *T = this;
75     while (T) {
76       key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
77       if (ImutInfo::isEqual(K,CurrentKey))
78         return T;
79       else if (ImutInfo::isLess(K,CurrentKey))
80         T = T->getLeft();
81       else
82         T = T->getRight();
83     }
84     return nullptr;
85   }
86 
87   /// getMaxElement - Find the subtree associated with the highest ranged
88   ///  key value.
getMaxElement()89   ImutAVLTree* getMaxElement() {
90     ImutAVLTree *T = this;
91     ImutAVLTree *Right = T->getRight();
92     while (Right) { T = Right; Right = T->getRight(); }
93     return T;
94   }
95 
96   /// size - Returns the number of nodes in the tree, which includes
97   ///  both leaves and non-leaf nodes.
size()98   unsigned size() const {
99     unsigned n = 1;
100     if (const ImutAVLTree* L = getLeft())
101       n += L->size();
102     if (const ImutAVLTree* R = getRight())
103       n += R->size();
104     return n;
105   }
106 
107   /// begin - Returns an iterator that iterates over the nodes of the tree
108   ///  in an inorder traversal.  The returned iterator thus refers to the
109   ///  the tree node with the minimum data element.
begin()110   iterator begin() const { return iterator(this); }
111 
112   /// end - Returns an iterator for the tree that denotes the end of an
113   ///  inorder traversal.
end()114   iterator end() const { return iterator(); }
115 
isElementEqual(value_type_ref V)116   bool isElementEqual(value_type_ref V) const {
117     // Compare the keys.
118     if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
119                            ImutInfo::KeyOfValue(V)))
120       return false;
121 
122     // Also compare the data values.
123     if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
124                                ImutInfo::DataOfValue(V)))
125       return false;
126 
127     return true;
128   }
129 
isElementEqual(const ImutAVLTree * RHS)130   bool isElementEqual(const ImutAVLTree* RHS) const {
131     return isElementEqual(RHS->getValue());
132   }
133 
134   /// isEqual - Compares two trees for structural equality and returns true
135   ///   if they are equal.  This worst case performance of this operation is
136   //    linear in the sizes of the trees.
isEqual(const ImutAVLTree & RHS)137   bool isEqual(const ImutAVLTree& RHS) const {
138     if (&RHS == this)
139       return true;
140 
141     iterator LItr = begin(), LEnd = end();
142     iterator RItr = RHS.begin(), REnd = RHS.end();
143 
144     while (LItr != LEnd && RItr != REnd) {
145       if (&*LItr == &*RItr) {
146         LItr.skipSubTree();
147         RItr.skipSubTree();
148         continue;
149       }
150 
151       if (!LItr->isElementEqual(&*RItr))
152         return false;
153 
154       ++LItr;
155       ++RItr;
156     }
157 
158     return LItr == LEnd && RItr == REnd;
159   }
160 
161   /// isNotEqual - Compares two trees for structural inequality.  Performance
162   ///  is the same is isEqual.
isNotEqual(const ImutAVLTree & RHS)163   bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
164 
165   /// contains - Returns true if this tree contains a subtree (node) that
166   ///  has an data element that matches the specified key.  Complexity
167   ///  is logarithmic in the size of the tree.
contains(key_type_ref K)168   bool contains(key_type_ref K) { return (bool) find(K); }
169 
170   /// foreach - A member template the accepts invokes operator() on a functor
171   ///  object (specifed by Callback) for every node/subtree in the tree.
172   ///  Nodes are visited using an inorder traversal.
173   template <typename Callback>
foreach(Callback & C)174   void foreach(Callback& C) {
175     if (ImutAVLTree* L = getLeft())
176       L->foreach(C);
177 
178     C(value);
179 
180     if (ImutAVLTree* R = getRight())
181       R->foreach(C);
182   }
183 
184   /// validateTree - A utility method that checks that the balancing and
185   ///  ordering invariants of the tree are satisifed.  It is a recursive
186   ///  method that returns the height of the tree, which is then consumed
187   ///  by the enclosing validateTree call.  External callers should ignore the
188   ///  return value.  An invalid tree will cause an assertion to fire in
189   ///  a debug build.
validateTree()190   unsigned validateTree() const {
191     unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
192     unsigned HR = getRight() ? getRight()->validateTree() : 0;
193     (void) HL;
194     (void) HR;
195 
196     assert(getHeight() == ( HL > HR ? HL : HR ) + 1
197             && "Height calculation wrong");
198 
199     assert((HL > HR ? HL-HR : HR-HL) <= 2
200            && "Balancing invariant violated");
201 
202     assert((!getLeft() ||
203             ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
204                              ImutInfo::KeyOfValue(getValue()))) &&
205            "Value in left child is not less that current value");
206 
207 
208     assert(!(getRight() ||
209              ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
210                               ImutInfo::KeyOfValue(getRight()->getValue()))) &&
211            "Current value is not less that value of right child");
212 
213     return getHeight();
214   }
215 
216   //===----------------------------------------------------===//
217   // Internal values.
218   //===----------------------------------------------------===//
219 
220 private:
221   Factory *factory;
222   ImutAVLTree *left;
223   ImutAVLTree *right;
224   ImutAVLTree *prev;
225   ImutAVLTree *next;
226 
227   unsigned height         : 28;
228   unsigned IsMutable      : 1;
229   unsigned IsDigestCached : 1;
230   unsigned IsCanonicalized : 1;
231 
232   value_type value;
233   uint32_t digest;
234   uint32_t refCount;
235 
236   //===----------------------------------------------------===//
237   // Internal methods (node manipulation; used by Factory).
238   //===----------------------------------------------------===//
239 
240 private:
241   /// ImutAVLTree - Internal constructor that is only called by
242   ///   ImutAVLFactory.
ImutAVLTree(Factory * f,ImutAVLTree * l,ImutAVLTree * r,value_type_ref v,unsigned height)243   ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
244               unsigned height)
245     : factory(f), left(l), right(r), prev(nullptr), next(nullptr),
246       height(height), IsMutable(true), IsDigestCached(false),
247       IsCanonicalized(0), value(v), digest(0), refCount(0)
248   {
249     if (left) left->retain();
250     if (right) right->retain();
251   }
252 
253   /// isMutable - Returns true if the left and right subtree references
254   ///  (as well as height) can be changed.  If this method returns false,
255   ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
256   ///  object should always have this method return true.  Further, if this
257   ///  method returns false for an instance of ImutAVLTree, all subtrees
258   ///  will also have this method return false.  The converse is not true.
isMutable()259   bool isMutable() const { return IsMutable; }
260 
261   /// hasCachedDigest - Returns true if the digest for this tree is cached.
262   ///  This can only be true if the tree is immutable.
hasCachedDigest()263   bool hasCachedDigest() const { return IsDigestCached; }
264 
265   //===----------------------------------------------------===//
266   // Mutating operations.  A tree root can be manipulated as
267   // long as its reference has not "escaped" from internal
268   // methods of a factory object (see below).  When a tree
269   // pointer is externally viewable by client code, the
270   // internal "mutable bit" is cleared to mark the tree
271   // immutable.  Note that a tree that still has its mutable
272   // bit set may have children (subtrees) that are themselves
273   // immutable.
274   //===----------------------------------------------------===//
275 
276   /// markImmutable - Clears the mutable flag for a tree.  After this happens,
277   ///   it is an error to call setLeft(), setRight(), and setHeight().
markImmutable()278   void markImmutable() {
279     assert(isMutable() && "Mutable flag already removed.");
280     IsMutable = false;
281   }
282 
283   /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
markedCachedDigest()284   void markedCachedDigest() {
285     assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
286     IsDigestCached = true;
287   }
288 
289   /// setHeight - Changes the height of the tree.  Used internally by
290   ///  ImutAVLFactory.
setHeight(unsigned h)291   void setHeight(unsigned h) {
292     assert(isMutable() && "Only a mutable tree can have its height changed.");
293     height = h;
294   }
295 
computeDigest(ImutAVLTree * L,ImutAVLTree * R,value_type_ref V)296   static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
297                                 value_type_ref V) {
298     uint32_t digest = 0;
299 
300     if (L)
301       digest += L->computeDigest();
302 
303     // Compute digest of stored data.
304     FoldingSetNodeID ID;
305     ImutInfo::Profile(ID,V);
306     digest += ID.ComputeHash();
307 
308     if (R)
309       digest += R->computeDigest();
310 
311     return digest;
312   }
313 
computeDigest()314   uint32_t computeDigest() {
315     // Check the lowest bit to determine if digest has actually been
316     // pre-computed.
317     if (hasCachedDigest())
318       return digest;
319 
320     uint32_t X = computeDigest(getLeft(), getRight(), getValue());
321     digest = X;
322     markedCachedDigest();
323     return X;
324   }
325 
326   //===----------------------------------------------------===//
327   // Reference count operations.
328   //===----------------------------------------------------===//
329 
330 public:
retain()331   void retain() { ++refCount; }
release()332   void release() {
333     assert(refCount > 0);
334     if (--refCount == 0)
335       destroy();
336   }
destroy()337   void destroy() {
338     if (left)
339       left->release();
340     if (right)
341       right->release();
342     if (IsCanonicalized) {
343       if (next)
344         next->prev = prev;
345 
346       if (prev)
347         prev->next = next;
348       else
349         factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
350     }
351 
352     // We need to clear the mutability bit in case we are
353     // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
354     IsMutable = false;
355     factory->freeNodes.push_back(this);
356   }
357 };
358 
359 //===----------------------------------------------------------------------===//
360 // Immutable AVL-Tree Factory class.
361 //===----------------------------------------------------------------------===//
362 
363 template <typename ImutInfo >
364 class ImutAVLFactory {
365   friend class ImutAVLTree<ImutInfo>;
366   typedef ImutAVLTree<ImutInfo> TreeTy;
367   typedef typename TreeTy::value_type_ref value_type_ref;
368   typedef typename TreeTy::key_type_ref   key_type_ref;
369 
370   typedef DenseMap<unsigned, TreeTy*> CacheTy;
371 
372   CacheTy Cache;
373   uintptr_t Allocator;
374   std::vector<TreeTy*> createdNodes;
375   std::vector<TreeTy*> freeNodes;
376 
ownsAllocator()377   bool ownsAllocator() const {
378     return Allocator & 0x1 ? false : true;
379   }
380 
getAllocator()381   BumpPtrAllocator& getAllocator() const {
382     return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
383   }
384 
385   //===--------------------------------------------------===//
386   // Public interface.
387   //===--------------------------------------------------===//
388 
389 public:
ImutAVLFactory()390   ImutAVLFactory()
391     : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
392 
ImutAVLFactory(BumpPtrAllocator & Alloc)393   ImutAVLFactory(BumpPtrAllocator& Alloc)
394     : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
395 
~ImutAVLFactory()396   ~ImutAVLFactory() {
397     if (ownsAllocator()) delete &getAllocator();
398   }
399 
add(TreeTy * T,value_type_ref V)400   TreeTy* add(TreeTy* T, value_type_ref V) {
401     T = add_internal(V,T);
402     markImmutable(T);
403     recoverNodes();
404     return T;
405   }
406 
remove(TreeTy * T,key_type_ref V)407   TreeTy* remove(TreeTy* T, key_type_ref V) {
408     T = remove_internal(V,T);
409     markImmutable(T);
410     recoverNodes();
411     return T;
412   }
413 
getEmptyTree()414   TreeTy* getEmptyTree() const { return nullptr; }
415 
416 protected:
417 
418   //===--------------------------------------------------===//
419   // A bunch of quick helper functions used for reasoning
420   // about the properties of trees and their children.
421   // These have succinct names so that the balancing code
422   // is as terse (and readable) as possible.
423   //===--------------------------------------------------===//
424 
isEmpty(TreeTy * T)425   bool            isEmpty(TreeTy* T) const { return !T; }
getHeight(TreeTy * T)426   unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
getLeft(TreeTy * T)427   TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
getRight(TreeTy * T)428   TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
getValue(TreeTy * T)429   value_type_ref  getValue(TreeTy* T) const { return T->value; }
430 
431   // Make sure the index is not the Tombstone or Entry key of the DenseMap.
maskCacheIndex(unsigned I)432   static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
433 
incrementHeight(TreeTy * L,TreeTy * R)434   unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
435     unsigned hl = getHeight(L);
436     unsigned hr = getHeight(R);
437     return (hl > hr ? hl : hr) + 1;
438   }
439 
compareTreeWithSection(TreeTy * T,typename TreeTy::iterator & TI,typename TreeTy::iterator & TE)440   static bool compareTreeWithSection(TreeTy* T,
441                                      typename TreeTy::iterator& TI,
442                                      typename TreeTy::iterator& TE) {
443     typename TreeTy::iterator I = T->begin(), E = T->end();
444     for ( ; I!=E ; ++I, ++TI) {
445       if (TI == TE || !I->isElementEqual(&*TI))
446         return false;
447     }
448     return true;
449   }
450 
451   //===--------------------------------------------------===//
452   // "createNode" is used to generate new tree roots that link
453   // to other trees.  The functon may also simply move links
454   // in an existing root if that root is still marked mutable.
455   // This is necessary because otherwise our balancing code
456   // would leak memory as it would create nodes that are
457   // then discarded later before the finished tree is
458   // returned to the caller.
459   //===--------------------------------------------------===//
460 
createNode(TreeTy * L,value_type_ref V,TreeTy * R)461   TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
462     BumpPtrAllocator& A = getAllocator();
463     TreeTy* T;
464     if (!freeNodes.empty()) {
465       T = freeNodes.back();
466       freeNodes.pop_back();
467       assert(T != L);
468       assert(T != R);
469     } else {
470       T = (TreeTy*) A.Allocate<TreeTy>();
471     }
472     new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
473     createdNodes.push_back(T);
474     return T;
475   }
476 
createNode(TreeTy * newLeft,TreeTy * oldTree,TreeTy * newRight)477   TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
478     return createNode(newLeft, getValue(oldTree), newRight);
479   }
480 
recoverNodes()481   void recoverNodes() {
482     for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
483       TreeTy *N = createdNodes[i];
484       if (N->isMutable() && N->refCount == 0)
485         N->destroy();
486     }
487     createdNodes.clear();
488   }
489 
490   /// balanceTree - Used by add_internal and remove_internal to
491   ///  balance a newly created tree.
balanceTree(TreeTy * L,value_type_ref V,TreeTy * R)492   TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
493     unsigned hl = getHeight(L);
494     unsigned hr = getHeight(R);
495 
496     if (hl > hr + 2) {
497       assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
498 
499       TreeTy *LL = getLeft(L);
500       TreeTy *LR = getRight(L);
501 
502       if (getHeight(LL) >= getHeight(LR))
503         return createNode(LL, L, createNode(LR,V,R));
504 
505       assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
506 
507       TreeTy *LRL = getLeft(LR);
508       TreeTy *LRR = getRight(LR);
509 
510       return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
511     }
512 
513     if (hr > hl + 2) {
514       assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
515 
516       TreeTy *RL = getLeft(R);
517       TreeTy *RR = getRight(R);
518 
519       if (getHeight(RR) >= getHeight(RL))
520         return createNode(createNode(L,V,RL), R, RR);
521 
522       assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
523 
524       TreeTy *RLL = getLeft(RL);
525       TreeTy *RLR = getRight(RL);
526 
527       return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
528     }
529 
530     return createNode(L,V,R);
531   }
532 
533   /// add_internal - Creates a new tree that includes the specified
534   ///  data and the data from the original tree.  If the original tree
535   ///  already contained the data item, the original tree is returned.
add_internal(value_type_ref V,TreeTy * T)536   TreeTy* add_internal(value_type_ref V, TreeTy* T) {
537     if (isEmpty(T))
538       return createNode(T, V, T);
539     assert(!T->isMutable());
540 
541     key_type_ref K = ImutInfo::KeyOfValue(V);
542     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
543 
544     if (ImutInfo::isEqual(K,KCurrent))
545       return createNode(getLeft(T), V, getRight(T));
546     else if (ImutInfo::isLess(K,KCurrent))
547       return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
548     else
549       return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
550   }
551 
552   /// remove_internal - Creates a new tree that includes all the data
553   ///  from the original tree except the specified data.  If the
554   ///  specified data did not exist in the original tree, the original
555   ///  tree is returned.
remove_internal(key_type_ref K,TreeTy * T)556   TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
557     if (isEmpty(T))
558       return T;
559 
560     assert(!T->isMutable());
561 
562     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
563 
564     if (ImutInfo::isEqual(K,KCurrent)) {
565       return combineTrees(getLeft(T), getRight(T));
566     } else if (ImutInfo::isLess(K,KCurrent)) {
567       return balanceTree(remove_internal(K, getLeft(T)),
568                                             getValue(T), getRight(T));
569     } else {
570       return balanceTree(getLeft(T), getValue(T),
571                          remove_internal(K, getRight(T)));
572     }
573   }
574 
combineTrees(TreeTy * L,TreeTy * R)575   TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
576     if (isEmpty(L))
577       return R;
578     if (isEmpty(R))
579       return L;
580     TreeTy* OldNode;
581     TreeTy* newRight = removeMinBinding(R,OldNode);
582     return balanceTree(L, getValue(OldNode), newRight);
583   }
584 
removeMinBinding(TreeTy * T,TreeTy * & Noderemoved)585   TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
586     assert(!isEmpty(T));
587     if (isEmpty(getLeft(T))) {
588       Noderemoved = T;
589       return getRight(T);
590     }
591     return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
592                        getValue(T), getRight(T));
593   }
594 
595   /// markImmutable - Clears the mutable bits of a root and all of its
596   ///  descendants.
markImmutable(TreeTy * T)597   void markImmutable(TreeTy* T) {
598     if (!T || !T->isMutable())
599       return;
600     T->markImmutable();
601     markImmutable(getLeft(T));
602     markImmutable(getRight(T));
603   }
604 
605 public:
getCanonicalTree(TreeTy * TNew)606   TreeTy *getCanonicalTree(TreeTy *TNew) {
607     if (!TNew)
608       return nullptr;
609 
610     if (TNew->IsCanonicalized)
611       return TNew;
612 
613     // Search the hashtable for another tree with the same digest, and
614     // if find a collision compare those trees by their contents.
615     unsigned digest = TNew->computeDigest();
616     TreeTy *&entry = Cache[maskCacheIndex(digest)];
617     do {
618       if (!entry)
619         break;
620       for (TreeTy *T = entry ; T != nullptr; T = T->next) {
621         // Compare the Contents('T') with Contents('TNew')
622         typename TreeTy::iterator TI = T->begin(), TE = T->end();
623         if (!compareTreeWithSection(TNew, TI, TE))
624           continue;
625         if (TI != TE)
626           continue; // T has more contents than TNew.
627         // Trees did match!  Return 'T'.
628         if (TNew->refCount == 0)
629           TNew->destroy();
630         return T;
631       }
632       entry->prev = TNew;
633       TNew->next = entry;
634     }
635     while (false);
636 
637     entry = TNew;
638     TNew->IsCanonicalized = true;
639     return TNew;
640   }
641 };
642 
643 //===----------------------------------------------------------------------===//
644 // Immutable AVL-Tree Iterators.
645 //===----------------------------------------------------------------------===//
646 
647 template <typename ImutInfo>
648 class ImutAVLTreeGenericIterator
649     : public std::iterator<std::bidirectional_iterator_tag,
650                            ImutAVLTree<ImutInfo>> {
651   SmallVector<uintptr_t,20> stack;
652 public:
653   enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
654                    Flags=0x3 };
655 
656   typedef ImutAVLTree<ImutInfo> TreeTy;
657 
ImutAVLTreeGenericIterator()658   ImutAVLTreeGenericIterator() {}
ImutAVLTreeGenericIterator(const TreeTy * Root)659   ImutAVLTreeGenericIterator(const TreeTy *Root) {
660     if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
661   }
662 
663   TreeTy &operator*() const {
664     assert(!stack.empty());
665     return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
666   }
667   TreeTy *operator->() const { return &*this; }
668 
getVisitState()669   uintptr_t getVisitState() const {
670     assert(!stack.empty());
671     return stack.back() & Flags;
672   }
673 
674 
atEnd()675   bool atEnd() const { return stack.empty(); }
676 
atBeginning()677   bool atBeginning() const {
678     return stack.size() == 1 && getVisitState() == VisitedNone;
679   }
680 
skipToParent()681   void skipToParent() {
682     assert(!stack.empty());
683     stack.pop_back();
684     if (stack.empty())
685       return;
686     switch (getVisitState()) {
687       case VisitedNone:
688         stack.back() |= VisitedLeft;
689         break;
690       case VisitedLeft:
691         stack.back() |= VisitedRight;
692         break;
693       default:
694         llvm_unreachable("Unreachable.");
695     }
696   }
697 
698   bool operator==(const ImutAVLTreeGenericIterator &x) const {
699     return stack == x.stack;
700   }
701 
702   bool operator!=(const ImutAVLTreeGenericIterator &x) const {
703     return !(*this == x);
704   }
705 
706   ImutAVLTreeGenericIterator &operator++() {
707     assert(!stack.empty());
708     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
709     assert(Current);
710     switch (getVisitState()) {
711       case VisitedNone:
712         if (TreeTy* L = Current->getLeft())
713           stack.push_back(reinterpret_cast<uintptr_t>(L));
714         else
715           stack.back() |= VisitedLeft;
716         break;
717       case VisitedLeft:
718         if (TreeTy* R = Current->getRight())
719           stack.push_back(reinterpret_cast<uintptr_t>(R));
720         else
721           stack.back() |= VisitedRight;
722         break;
723       case VisitedRight:
724         skipToParent();
725         break;
726       default:
727         llvm_unreachable("Unreachable.");
728     }
729     return *this;
730   }
731 
732   ImutAVLTreeGenericIterator &operator--() {
733     assert(!stack.empty());
734     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
735     assert(Current);
736     switch (getVisitState()) {
737       case VisitedNone:
738         stack.pop_back();
739         break;
740       case VisitedLeft:
741         stack.back() &= ~Flags; // Set state to "VisitedNone."
742         if (TreeTy* L = Current->getLeft())
743           stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
744         break;
745       case VisitedRight:
746         stack.back() &= ~Flags;
747         stack.back() |= VisitedLeft;
748         if (TreeTy* R = Current->getRight())
749           stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
750         break;
751       default:
752         llvm_unreachable("Unreachable.");
753     }
754     return *this;
755   }
756 };
757 
758 template <typename ImutInfo>
759 class ImutAVLTreeInOrderIterator
760     : public std::iterator<std::bidirectional_iterator_tag,
761                            ImutAVLTree<ImutInfo>> {
762   typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
763   InternalIteratorTy InternalItr;
764 
765 public:
766   typedef ImutAVLTree<ImutInfo> TreeTy;
767 
ImutAVLTreeInOrderIterator(const TreeTy * Root)768   ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
769     if (Root)
770       ++*this; // Advance to first element.
771   }
772 
ImutAVLTreeInOrderIterator()773   ImutAVLTreeInOrderIterator() : InternalItr() {}
774 
775   bool operator==(const ImutAVLTreeInOrderIterator &x) const {
776     return InternalItr == x.InternalItr;
777   }
778 
779   bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
780     return !(*this == x);
781   }
782 
783   TreeTy &operator*() const { return *InternalItr; }
784   TreeTy *operator->() const { return &*InternalItr; }
785 
786   ImutAVLTreeInOrderIterator &operator++() {
787     do ++InternalItr;
788     while (!InternalItr.atEnd() &&
789            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
790 
791     return *this;
792   }
793 
794   ImutAVLTreeInOrderIterator &operator--() {
795     do --InternalItr;
796     while (!InternalItr.atBeginning() &&
797            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
798 
799     return *this;
800   }
801 
skipSubTree()802   void skipSubTree() {
803     InternalItr.skipToParent();
804 
805     while (!InternalItr.atEnd() &&
806            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
807       ++InternalItr;
808   }
809 };
810 
811 /// Generic iterator that wraps a T::TreeTy::iterator and exposes
812 /// iterator::getValue() on dereference.
813 template <typename T>
814 struct ImutAVLValueIterator
815     : iterator_adaptor_base<
816           ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
817           typename std::iterator_traits<
818               typename T::TreeTy::iterator>::iterator_category,
819           const typename T::value_type> {
820   ImutAVLValueIterator() = default;
ImutAVLValueIteratorImutAVLValueIterator821   explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
822       : ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
823 
824   typename ImutAVLValueIterator::reference operator*() const {
825     return this->I->getValue();
826   }
827 };
828 
829 //===----------------------------------------------------------------------===//
830 // Trait classes for Profile information.
831 //===----------------------------------------------------------------------===//
832 
833 /// Generic profile template.  The default behavior is to invoke the
834 /// profile method of an object.  Specializations for primitive integers
835 /// and generic handling of pointers is done below.
836 template <typename T>
837 struct ImutProfileInfo {
838   typedef const T  value_type;
839   typedef const T& value_type_ref;
840 
ProfileImutProfileInfo841   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
842     FoldingSetTrait<T>::Profile(X,ID);
843   }
844 };
845 
846 /// Profile traits for integers.
847 template <typename T>
848 struct ImutProfileInteger {
849   typedef const T  value_type;
850   typedef const T& value_type_ref;
851 
ProfileImutProfileInteger852   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
853     ID.AddInteger(X);
854   }
855 };
856 
857 #define PROFILE_INTEGER_INFO(X)\
858 template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
859 
860 PROFILE_INTEGER_INFO(char)
861 PROFILE_INTEGER_INFO(unsigned char)
862 PROFILE_INTEGER_INFO(short)
863 PROFILE_INTEGER_INFO(unsigned short)
864 PROFILE_INTEGER_INFO(unsigned)
865 PROFILE_INTEGER_INFO(signed)
866 PROFILE_INTEGER_INFO(long)
867 PROFILE_INTEGER_INFO(unsigned long)
868 PROFILE_INTEGER_INFO(long long)
869 PROFILE_INTEGER_INFO(unsigned long long)
870 
871 #undef PROFILE_INTEGER_INFO
872 
873 /// Profile traits for booleans.
874 template <>
875 struct ImutProfileInfo<bool> {
876   typedef const bool  value_type;
877   typedef const bool& value_type_ref;
878 
879   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
880     ID.AddBoolean(X);
881   }
882 };
883 
884 
885 /// Generic profile trait for pointer types.  We treat pointers as
886 /// references to unique objects.
887 template <typename T>
888 struct ImutProfileInfo<T*> {
889   typedef const T*   value_type;
890   typedef value_type value_type_ref;
891 
892   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
893     ID.AddPointer(X);
894   }
895 };
896 
897 //===----------------------------------------------------------------------===//
898 // Trait classes that contain element comparison operators and type
899 //  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
900 //  inherit from the profile traits (ImutProfileInfo) to include operations
901 //  for element profiling.
902 //===----------------------------------------------------------------------===//
903 
904 
905 /// ImutContainerInfo - Generic definition of comparison operations for
906 ///   elements of immutable containers that defaults to using
907 ///   std::equal_to<> and std::less<> to perform comparison of elements.
908 template <typename T>
909 struct ImutContainerInfo : public ImutProfileInfo<T> {
910   typedef typename ImutProfileInfo<T>::value_type      value_type;
911   typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
912   typedef value_type      key_type;
913   typedef value_type_ref  key_type_ref;
914   typedef bool            data_type;
915   typedef bool            data_type_ref;
916 
917   static key_type_ref KeyOfValue(value_type_ref D) { return D; }
918   static data_type_ref DataOfValue(value_type_ref) { return true; }
919 
920   static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
921     return std::equal_to<key_type>()(LHS,RHS);
922   }
923 
924   static bool isLess(key_type_ref LHS, key_type_ref RHS) {
925     return std::less<key_type>()(LHS,RHS);
926   }
927 
928   static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
929 };
930 
931 /// ImutContainerInfo - Specialization for pointer values to treat pointers
932 ///  as references to unique objects.  Pointers are thus compared by
933 ///  their addresses.
934 template <typename T>
935 struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
936   typedef typename ImutProfileInfo<T*>::value_type      value_type;
937   typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
938   typedef value_type      key_type;
939   typedef value_type_ref  key_type_ref;
940   typedef bool            data_type;
941   typedef bool            data_type_ref;
942 
943   static key_type_ref KeyOfValue(value_type_ref D) { return D; }
944   static data_type_ref DataOfValue(value_type_ref) { return true; }
945 
946   static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
947 
948   static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
949 
950   static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
951 };
952 
953 //===----------------------------------------------------------------------===//
954 // Immutable Set
955 //===----------------------------------------------------------------------===//
956 
957 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
958 class ImmutableSet {
959 public:
960   typedef typename ValInfo::value_type      value_type;
961   typedef typename ValInfo::value_type_ref  value_type_ref;
962   typedef ImutAVLTree<ValInfo> TreeTy;
963 
964 private:
965   TreeTy *Root;
966 
967 public:
968   /// Constructs a set from a pointer to a tree root.  In general one
969   /// should use a Factory object to create sets instead of directly
970   /// invoking the constructor, but there are cases where make this
971   /// constructor public is useful.
972   explicit ImmutableSet(TreeTy* R) : Root(R) {
973     if (Root) { Root->retain(); }
974   }
975   ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
976     if (Root) { Root->retain(); }
977   }
978   ImmutableSet &operator=(const ImmutableSet &X) {
979     if (Root != X.Root) {
980       if (X.Root) { X.Root->retain(); }
981       if (Root) { Root->release(); }
982       Root = X.Root;
983     }
984     return *this;
985   }
986   ~ImmutableSet() {
987     if (Root) { Root->release(); }
988   }
989 
990   class Factory {
991     typename TreeTy::Factory F;
992     const bool Canonicalize;
993 
994   public:
995     Factory(bool canonicalize = true)
996       : Canonicalize(canonicalize) {}
997 
998     Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
999       : F(Alloc), Canonicalize(canonicalize) {}
1000 
1001     /// getEmptySet - Returns an immutable set that contains no elements.
1002     ImmutableSet getEmptySet() {
1003       return ImmutableSet(F.getEmptyTree());
1004     }
1005 
1006     /// add - Creates a new immutable set that contains all of the values
1007     ///  of the original set with the addition of the specified value.  If
1008     ///  the original set already included the value, then the original set is
1009     ///  returned and no memory is allocated.  The time and space complexity
1010     ///  of this operation is logarithmic in the size of the original set.
1011     ///  The memory allocated to represent the set is released when the
1012     ///  factory object that created the set is destroyed.
1013     ImmutableSet add(ImmutableSet Old, value_type_ref V) {
1014       TreeTy *NewT = F.add(Old.Root, V);
1015       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
1016     }
1017 
1018     /// remove - Creates a new immutable set that contains all of the values
1019     ///  of the original set with the exception of the specified value.  If
1020     ///  the original set did not contain the value, the original set is
1021     ///  returned and no memory is allocated.  The time and space complexity
1022     ///  of this operation is logarithmic in the size of the original set.
1023     ///  The memory allocated to represent the set is released when the
1024     ///  factory object that created the set is destroyed.
1025     ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
1026       TreeTy *NewT = F.remove(Old.Root, V);
1027       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
1028     }
1029 
1030     BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
1031 
1032     typename TreeTy::Factory *getTreeFactory() const {
1033       return const_cast<typename TreeTy::Factory *>(&F);
1034     }
1035 
1036   private:
1037     Factory(const Factory& RHS) = delete;
1038     void operator=(const Factory& RHS) = delete;
1039   };
1040 
1041   friend class Factory;
1042 
1043   /// Returns true if the set contains the specified value.
1044   bool contains(value_type_ref V) const {
1045     return Root ? Root->contains(V) : false;
1046   }
1047 
1048   bool operator==(const ImmutableSet &RHS) const {
1049     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
1050   }
1051 
1052   bool operator!=(const ImmutableSet &RHS) const {
1053     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
1054   }
1055 
1056   TreeTy *getRoot() {
1057     if (Root) { Root->retain(); }
1058     return Root;
1059   }
1060 
1061   TreeTy *getRootWithoutRetain() const {
1062     return Root;
1063   }
1064 
1065   /// isEmpty - Return true if the set contains no elements.
1066   bool isEmpty() const { return !Root; }
1067 
1068   /// isSingleton - Return true if the set contains exactly one element.
1069   ///   This method runs in constant time.
1070   bool isSingleton() const { return getHeight() == 1; }
1071 
1072   template <typename Callback>
1073   void foreach(Callback& C) { if (Root) Root->foreach(C); }
1074 
1075   template <typename Callback>
1076   void foreach() { if (Root) { Callback C; Root->foreach(C); } }
1077 
1078   //===--------------------------------------------------===//
1079   // Iterators.
1080   //===--------------------------------------------------===//
1081 
1082   typedef ImutAVLValueIterator<ImmutableSet> iterator;
1083 
1084   iterator begin() const { return iterator(Root); }
1085   iterator end() const { return iterator(); }
1086 
1087   //===--------------------------------------------------===//
1088   // Utility methods.
1089   //===--------------------------------------------------===//
1090 
1091   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
1092 
1093   static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
1094     ID.AddPointer(S.Root);
1095   }
1096 
1097   void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
1098 
1099   //===--------------------------------------------------===//
1100   // For testing.
1101   //===--------------------------------------------------===//
1102 
1103   void validateTree() const { if (Root) Root->validateTree(); }
1104 };
1105 
1106 // NOTE: This may some day replace the current ImmutableSet.
1107 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
1108 class ImmutableSetRef {
1109 public:
1110   typedef typename ValInfo::value_type      value_type;
1111   typedef typename ValInfo::value_type_ref  value_type_ref;
1112   typedef ImutAVLTree<ValInfo> TreeTy;
1113   typedef typename TreeTy::Factory          FactoryTy;
1114 
1115 private:
1116   TreeTy *Root;
1117   FactoryTy *Factory;
1118 
1119 public:
1120   /// Constructs a set from a pointer to a tree root.  In general one
1121   /// should use a Factory object to create sets instead of directly
1122   /// invoking the constructor, but there are cases where make this
1123   /// constructor public is useful.
1124   explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
1125     : Root(R),
1126       Factory(F) {
1127     if (Root) { Root->retain(); }
1128   }
1129   ImmutableSetRef(const ImmutableSetRef &X)
1130     : Root(X.Root),
1131       Factory(X.Factory) {
1132     if (Root) { Root->retain(); }
1133   }
1134   ImmutableSetRef &operator=(const ImmutableSetRef &X) {
1135     if (Root != X.Root) {
1136       if (X.Root) { X.Root->retain(); }
1137       if (Root) { Root->release(); }
1138       Root = X.Root;
1139       Factory = X.Factory;
1140     }
1141     return *this;
1142   }
1143   ~ImmutableSetRef() {
1144     if (Root) { Root->release(); }
1145   }
1146 
1147   static ImmutableSetRef getEmptySet(FactoryTy *F) {
1148     return ImmutableSetRef(0, F);
1149   }
1150 
1151   ImmutableSetRef add(value_type_ref V) {
1152     return ImmutableSetRef(Factory->add(Root, V), Factory);
1153   }
1154 
1155   ImmutableSetRef remove(value_type_ref V) {
1156     return ImmutableSetRef(Factory->remove(Root, V), Factory);
1157   }
1158 
1159   /// Returns true if the set contains the specified value.
1160   bool contains(value_type_ref V) const {
1161     return Root ? Root->contains(V) : false;
1162   }
1163 
1164   ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
1165     return ImmutableSet<ValT>(canonicalize ?
1166                               Factory->getCanonicalTree(Root) : Root);
1167   }
1168 
1169   TreeTy *getRootWithoutRetain() const {
1170     return Root;
1171   }
1172 
1173   bool operator==(const ImmutableSetRef &RHS) const {
1174     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
1175   }
1176 
1177   bool operator!=(const ImmutableSetRef &RHS) const {
1178     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
1179   }
1180 
1181   /// isEmpty - Return true if the set contains no elements.
1182   bool isEmpty() const { return !Root; }
1183 
1184   /// isSingleton - Return true if the set contains exactly one element.
1185   ///   This method runs in constant time.
1186   bool isSingleton() const { return getHeight() == 1; }
1187 
1188   //===--------------------------------------------------===//
1189   // Iterators.
1190   //===--------------------------------------------------===//
1191 
1192   typedef ImutAVLValueIterator<ImmutableSetRef> iterator;
1193 
1194   iterator begin() const { return iterator(Root); }
1195   iterator end() const { return iterator(); }
1196 
1197   //===--------------------------------------------------===//
1198   // Utility methods.
1199   //===--------------------------------------------------===//
1200 
1201   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
1202 
1203   static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
1204     ID.AddPointer(S.Root);
1205   }
1206 
1207   void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
1208 
1209   //===--------------------------------------------------===//
1210   // For testing.
1211   //===--------------------------------------------------===//
1212 
1213   void validateTree() const { if (Root) Root->validateTree(); }
1214 };
1215 
1216 } // end namespace llvm
1217 
1218 #endif
1219