1 //===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
12 /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
13 /// algorithm.
14 ///
15 /// The SCC iterator has the important property that if a node in SCC S1 has an
16 /// edge to a node in SCC S2, then it visits S1 *after* S2.
17 ///
18 /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
19 /// This requires some simple wrappers and is not supported yet.)
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #ifndef LLVM_ADT_SCCITERATOR_H
24 #define LLVM_ADT_SCCITERATOR_H
25 
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/GraphTraits.h"
28 #include "llvm/ADT/iterator.h"
29 #include <vector>
30 
31 namespace llvm {
32 
33 /// \brief Enumerate the SCCs of a directed graph in reverse topological order
34 /// of the SCC DAG.
35 ///
36 /// This is implemented using Tarjan's DFS algorithm using an internal stack to
37 /// build up a vector of nodes in a particular SCC. Note that it is a forward
38 /// iterator and thus you cannot backtrack or re-visit nodes.
39 template <class GraphT, class GT = GraphTraits<GraphT>>
40 class scc_iterator
41     : public iterator_facade_base<
42           scc_iterator<GraphT, GT>, std::forward_iterator_tag,
43           const std::vector<typename GT::NodeType *>, ptrdiff_t> {
44   typedef typename GT::NodeType NodeType;
45   typedef typename GT::ChildIteratorType ChildItTy;
46   typedef std::vector<NodeType *> SccTy;
47   typedef typename scc_iterator::reference reference;
48 
49   /// Element of VisitStack during DFS.
50   struct StackElement {
51     NodeType *Node;       ///< The current node pointer.
52     ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
53     unsigned MinVisited;  ///< Minimum uplink value of all children of Node.
54 
StackElementStackElement55     StackElement(NodeType *Node, const ChildItTy &Child, unsigned Min)
56       : Node(Node), NextChild(Child), MinVisited(Min) {}
57 
58     bool operator==(const StackElement &Other) const {
59       return Node == Other.Node &&
60              NextChild == Other.NextChild &&
61              MinVisited == Other.MinVisited;
62     }
63   };
64 
65   /// The visit counters used to detect when a complete SCC is on the stack.
66   /// visitNum is the global counter.
67   ///
68   /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
69   unsigned visitNum;
70   DenseMap<NodeType *, unsigned> nodeVisitNumbers;
71 
72   /// Stack holding nodes of the SCC.
73   std::vector<NodeType *> SCCNodeStack;
74 
75   /// The current SCC, retrieved using operator*().
76   SccTy CurrentSCC;
77 
78   /// DFS stack, Used to maintain the ordering.  The top contains the current
79   /// node, the next child to visit, and the minimum uplink value of all child
80   std::vector<StackElement> VisitStack;
81 
82   /// A single "visit" within the non-recursive DFS traversal.
83   void DFSVisitOne(NodeType *N);
84 
85   /// The stack-based DFS traversal; defined below.
86   void DFSVisitChildren();
87 
88   /// Compute the next SCC using the DFS traversal.
89   void GetNextSCC();
90 
scc_iterator(NodeType * entryN)91   scc_iterator(NodeType *entryN) : visitNum(0) {
92     DFSVisitOne(entryN);
93     GetNextSCC();
94   }
95 
96   /// End is when the DFS stack is empty.
scc_iterator()97   scc_iterator() {}
98 
99 public:
begin(const GraphT & G)100   static scc_iterator begin(const GraphT &G) {
101     return scc_iterator(GT::getEntryNode(G));
102   }
end(const GraphT &)103   static scc_iterator end(const GraphT &) { return scc_iterator(); }
104 
105   /// \brief Direct loop termination test which is more efficient than
106   /// comparison with \c end().
isAtEnd()107   bool isAtEnd() const {
108     assert(!CurrentSCC.empty() || VisitStack.empty());
109     return CurrentSCC.empty();
110   }
111 
112   bool operator==(const scc_iterator &x) const {
113     return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
114   }
115 
116   scc_iterator &operator++() {
117     GetNextSCC();
118     return *this;
119   }
120 
121   reference operator*() const {
122     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
123     return CurrentSCC;
124   }
125 
126   /// \brief Test if the current SCC has a loop.
127   ///
128   /// If the SCC has more than one node, this is trivially true.  If not, it may
129   /// still contain a loop if the node has an edge back to itself.
130   bool hasLoop() const;
131 
132   /// This informs the \c scc_iterator that the specified \c Old node
133   /// has been deleted, and \c New is to be used in its place.
ReplaceNode(NodeType * Old,NodeType * New)134   void ReplaceNode(NodeType *Old, NodeType *New) {
135     assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
136     nodeVisitNumbers[New] = nodeVisitNumbers[Old];
137     nodeVisitNumbers.erase(Old);
138   }
139 };
140 
141 template <class GraphT, class GT>
DFSVisitOne(NodeType * N)142 void scc_iterator<GraphT, GT>::DFSVisitOne(NodeType *N) {
143   ++visitNum;
144   nodeVisitNumbers[N] = visitNum;
145   SCCNodeStack.push_back(N);
146   VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
147 #if 0 // Enable if needed when debugging.
148   dbgs() << "TarjanSCC: Node " << N <<
149         " : visitNum = " << visitNum << "\n";
150 #endif
151 }
152 
153 template <class GraphT, class GT>
DFSVisitChildren()154 void scc_iterator<GraphT, GT>::DFSVisitChildren() {
155   assert(!VisitStack.empty());
156   while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
157     // TOS has at least one more child so continue DFS
158     NodeType *childN = *VisitStack.back().NextChild++;
159     typename DenseMap<NodeType *, unsigned>::iterator Visited =
160         nodeVisitNumbers.find(childN);
161     if (Visited == nodeVisitNumbers.end()) {
162       // this node has never been seen.
163       DFSVisitOne(childN);
164       continue;
165     }
166 
167     unsigned childNum = Visited->second;
168     if (VisitStack.back().MinVisited > childNum)
169       VisitStack.back().MinVisited = childNum;
170   }
171 }
172 
GetNextSCC()173 template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
174   CurrentSCC.clear(); // Prepare to compute the next SCC
175   while (!VisitStack.empty()) {
176     DFSVisitChildren();
177 
178     // Pop the leaf on top of the VisitStack.
179     NodeType *visitingN = VisitStack.back().Node;
180     unsigned minVisitNum = VisitStack.back().MinVisited;
181     assert(VisitStack.back().NextChild == GT::child_end(visitingN));
182     VisitStack.pop_back();
183 
184     // Propagate MinVisitNum to parent so we can detect the SCC starting node.
185     if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
186       VisitStack.back().MinVisited = minVisitNum;
187 
188 #if 0 // Enable if needed when debugging.
189     dbgs() << "TarjanSCC: Popped node " << visitingN <<
190           " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
191           nodeVisitNumbers[visitingN] << "\n";
192 #endif
193 
194     if (minVisitNum != nodeVisitNumbers[visitingN])
195       continue;
196 
197     // A full SCC is on the SCCNodeStack!  It includes all nodes below
198     // visitingN on the stack.  Copy those nodes to CurrentSCC,
199     // reset their minVisit values, and return (this suspends
200     // the DFS traversal till the next ++).
201     do {
202       CurrentSCC.push_back(SCCNodeStack.back());
203       SCCNodeStack.pop_back();
204       nodeVisitNumbers[CurrentSCC.back()] = ~0U;
205     } while (CurrentSCC.back() != visitingN);
206     return;
207   }
208 }
209 
210 template <class GraphT, class GT>
hasLoop()211 bool scc_iterator<GraphT, GT>::hasLoop() const {
212     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
213     if (CurrentSCC.size() > 1)
214       return true;
215     NodeType *N = CurrentSCC.front();
216     for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
217          ++CI)
218       if (*CI == N)
219         return true;
220     return false;
221   }
222 
223 /// \brief Construct the begin iterator for a deduced graph type T.
scc_begin(const T & G)224 template <class T> scc_iterator<T> scc_begin(const T &G) {
225   return scc_iterator<T>::begin(G);
226 }
227 
228 /// \brief Construct the end iterator for a deduced graph type T.
scc_end(const T & G)229 template <class T> scc_iterator<T> scc_end(const T &G) {
230   return scc_iterator<T>::end(G);
231 }
232 
233 /// \brief Construct the begin iterator for a deduced graph type T's Inverse<T>.
scc_begin(const Inverse<T> & G)234 template <class T> scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) {
235   return scc_iterator<Inverse<T> >::begin(G);
236 }
237 
238 /// \brief Construct the end iterator for a deduced graph type T's Inverse<T>.
scc_end(const Inverse<T> & G)239 template <class T> scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) {
240   return scc_iterator<Inverse<T> >::end(G);
241 }
242 
243 } // End llvm namespace
244 
245 #endif
246