1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Shared implementation of BlockFrequency for IR and Machine Instructions.
11 // See the documentation below for BlockFrequencyInfoImpl for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/Support/BlockFrequency.h"
23 #include "llvm/Support/BranchProbability.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ScaledNumber.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <deque>
28 #include <list>
29 #include <string>
30 #include <vector>
31 
32 #define DEBUG_TYPE "block-freq"
33 
34 namespace llvm {
35 
36 class BasicBlock;
37 class BranchProbabilityInfo;
38 class Function;
39 class Loop;
40 class LoopInfo;
41 class MachineBasicBlock;
42 class MachineBranchProbabilityInfo;
43 class MachineFunction;
44 class MachineLoop;
45 class MachineLoopInfo;
46 
47 namespace bfi_detail {
48 
49 struct IrreducibleGraph;
50 
51 // This is part of a workaround for a GCC 4.7 crash on lambdas.
52 template <class BT> struct BlockEdgesAdder;
53 
54 /// \brief Mass of a block.
55 ///
56 /// This class implements a sort of fixed-point fraction always between 0.0 and
57 /// 1.0.  getMass() == UINT64_MAX indicates a value of 1.0.
58 ///
59 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
60 /// so arithmetic operations never overflow or underflow.
61 ///
62 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
63 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
64 /// quite, maximum precision).
65 ///
66 /// Masses can be scaled by \a BranchProbability at maximum precision.
67 class BlockMass {
68   uint64_t Mass;
69 
70 public:
BlockMass()71   BlockMass() : Mass(0) {}
BlockMass(uint64_t Mass)72   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
73 
getEmpty()74   static BlockMass getEmpty() { return BlockMass(); }
getFull()75   static BlockMass getFull() { return BlockMass(UINT64_MAX); }
76 
getMass()77   uint64_t getMass() const { return Mass; }
78 
isFull()79   bool isFull() const { return Mass == UINT64_MAX; }
isEmpty()80   bool isEmpty() const { return !Mass; }
81 
82   bool operator!() const { return isEmpty(); }
83 
84   /// \brief Add another mass.
85   ///
86   /// Adds another mass, saturating at \a isFull() rather than overflowing.
87   BlockMass &operator+=(const BlockMass &X) {
88     uint64_t Sum = Mass + X.Mass;
89     Mass = Sum < Mass ? UINT64_MAX : Sum;
90     return *this;
91   }
92 
93   /// \brief Subtract another mass.
94   ///
95   /// Subtracts another mass, saturating at \a isEmpty() rather than
96   /// undeflowing.
97   BlockMass &operator-=(const BlockMass &X) {
98     uint64_t Diff = Mass - X.Mass;
99     Mass = Diff > Mass ? 0 : Diff;
100     return *this;
101   }
102 
103   BlockMass &operator*=(const BranchProbability &P) {
104     Mass = P.scale(Mass);
105     return *this;
106   }
107 
108   bool operator==(const BlockMass &X) const { return Mass == X.Mass; }
109   bool operator!=(const BlockMass &X) const { return Mass != X.Mass; }
110   bool operator<=(const BlockMass &X) const { return Mass <= X.Mass; }
111   bool operator>=(const BlockMass &X) const { return Mass >= X.Mass; }
112   bool operator<(const BlockMass &X) const { return Mass < X.Mass; }
113   bool operator>(const BlockMass &X) const { return Mass > X.Mass; }
114 
115   /// \brief Convert to scaled number.
116   ///
117   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
118   /// gives slightly above 0.0.
119   ScaledNumber<uint64_t> toScaled() const;
120 
121   void dump() const;
122   raw_ostream &print(raw_ostream &OS) const;
123 };
124 
125 inline BlockMass operator+(const BlockMass &L, const BlockMass &R) {
126   return BlockMass(L) += R;
127 }
128 inline BlockMass operator-(const BlockMass &L, const BlockMass &R) {
129   return BlockMass(L) -= R;
130 }
131 inline BlockMass operator*(const BlockMass &L, const BranchProbability &R) {
132   return BlockMass(L) *= R;
133 }
134 inline BlockMass operator*(const BranchProbability &L, const BlockMass &R) {
135   return BlockMass(R) *= L;
136 }
137 
138 inline raw_ostream &operator<<(raw_ostream &OS, const BlockMass &X) {
139   return X.print(OS);
140 }
141 
142 } // end namespace bfi_detail
143 
144 template <> struct isPodLike<bfi_detail::BlockMass> {
145   static const bool value = true;
146 };
147 
148 /// \brief Base class for BlockFrequencyInfoImpl
149 ///
150 /// BlockFrequencyInfoImplBase has supporting data structures and some
151 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
152 /// the block type (or that call such algorithms) are skipped here.
153 ///
154 /// Nevertheless, the majority of the overall algorithm documention lives with
155 /// BlockFrequencyInfoImpl.  See there for details.
156 class BlockFrequencyInfoImplBase {
157 public:
158   typedef ScaledNumber<uint64_t> Scaled64;
159   typedef bfi_detail::BlockMass BlockMass;
160 
161   /// \brief Representative of a block.
162   ///
163   /// This is a simple wrapper around an index into the reverse-post-order
164   /// traversal of the blocks.
165   ///
166   /// Unlike a block pointer, its order has meaning (location in the
167   /// topological sort) and it's class is the same regardless of block type.
168   struct BlockNode {
169     typedef uint32_t IndexType;
170     IndexType Index;
171 
172     bool operator==(const BlockNode &X) const { return Index == X.Index; }
173     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
174     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
175     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
176     bool operator<(const BlockNode &X) const { return Index < X.Index; }
177     bool operator>(const BlockNode &X) const { return Index > X.Index; }
178 
179     BlockNode() : Index(UINT32_MAX) {}
180     BlockNode(IndexType Index) : Index(Index) {}
181 
182     bool isValid() const { return Index <= getMaxIndex(); }
183     static size_t getMaxIndex() { return UINT32_MAX - 1; }
184   };
185 
186   /// \brief Stats about a block itself.
187   struct FrequencyData {
188     Scaled64 Scaled;
189     uint64_t Integer;
190   };
191 
192   /// \brief Data about a loop.
193   ///
194   /// Contains the data necessary to represent represent a loop as a
195   /// pseudo-node once it's packaged.
196   struct LoopData {
197     typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
198     typedef SmallVector<BlockNode, 4> NodeList;
199     LoopData *Parent;       ///< The parent loop.
200     bool IsPackaged;        ///< Whether this has been packaged.
201     uint32_t NumHeaders;    ///< Number of headers.
202     ExitMap Exits;          ///< Successor edges (and weights).
203     NodeList Nodes;         ///< Header and the members of the loop.
204     BlockMass BackedgeMass; ///< Mass returned to loop header.
205     BlockMass Mass;
206     Scaled64 Scale;
207 
208     LoopData(LoopData *Parent, const BlockNode &Header)
209         : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header) {}
210     template <class It1, class It2>
211     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
212              It2 LastOther)
213         : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
214       NumHeaders = Nodes.size();
215       Nodes.insert(Nodes.end(), FirstOther, LastOther);
216     }
217     bool isHeader(const BlockNode &Node) const {
218       if (isIrreducible())
219         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
220                                   Node);
221       return Node == Nodes[0];
222     }
223     BlockNode getHeader() const { return Nodes[0]; }
224     bool isIrreducible() const { return NumHeaders > 1; }
225 
226     NodeList::const_iterator members_begin() const {
227       return Nodes.begin() + NumHeaders;
228     }
229     NodeList::const_iterator members_end() const { return Nodes.end(); }
230     iterator_range<NodeList::const_iterator> members() const {
231       return make_range(members_begin(), members_end());
232     }
233   };
234 
235   /// \brief Index of loop information.
236   struct WorkingData {
237     BlockNode Node; ///< This node.
238     LoopData *Loop; ///< The loop this block is inside.
239     BlockMass Mass; ///< Mass distribution from the entry block.
240 
241     WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}
242 
243     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
244     bool isDoubleLoopHeader() const {
245       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
246              Loop->Parent->isHeader(Node);
247     }
248 
249     LoopData *getContainingLoop() const {
250       if (!isLoopHeader())
251         return Loop;
252       if (!isDoubleLoopHeader())
253         return Loop->Parent;
254       return Loop->Parent->Parent;
255     }
256 
257     /// \brief Resolve a node to its representative.
258     ///
259     /// Get the node currently representing Node, which could be a containing
260     /// loop.
261     ///
262     /// This function should only be called when distributing mass.  As long as
263     /// there are no irreducible edges to Node, then it will have complexity
264     /// O(1) in this context.
265     ///
266     /// In general, the complexity is O(L), where L is the number of loop
267     /// headers Node has been packaged into.  Since this method is called in
268     /// the context of distributing mass, L will be the number of loop headers
269     /// an early exit edge jumps out of.
270     BlockNode getResolvedNode() const {
271       auto L = getPackagedLoop();
272       return L ? L->getHeader() : Node;
273     }
274     LoopData *getPackagedLoop() const {
275       if (!Loop || !Loop->IsPackaged)
276         return nullptr;
277       auto L = Loop;
278       while (L->Parent && L->Parent->IsPackaged)
279         L = L->Parent;
280       return L;
281     }
282 
283     /// \brief Get the appropriate mass for a node.
284     ///
285     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
286     /// has been packaged), returns the mass of its pseudo-node.  If it's a
287     /// node inside a packaged loop, it returns the loop's mass.
288     BlockMass &getMass() {
289       if (!isAPackage())
290         return Mass;
291       if (!isADoublePackage())
292         return Loop->Mass;
293       return Loop->Parent->Mass;
294     }
295 
296     /// \brief Has ContainingLoop been packaged up?
297     bool isPackaged() const { return getResolvedNode() != Node; }
298     /// \brief Has Loop been packaged up?
299     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
300     /// \brief Has Loop been packaged up twice?
301     bool isADoublePackage() const {
302       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
303     }
304   };
305 
306   /// \brief Unscaled probability weight.
307   ///
308   /// Probability weight for an edge in the graph (including the
309   /// successor/target node).
310   ///
311   /// All edges in the original function are 32-bit.  However, exit edges from
312   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
313   /// space in general.
314   ///
315   /// In addition to the raw weight amount, Weight stores the type of the edge
316   /// in the current context (i.e., the context of the loop being processed).
317   /// Is this a local edge within the loop, an exit from the loop, or a
318   /// backedge to the loop header?
319   struct Weight {
320     enum DistType { Local, Exit, Backedge };
321     DistType Type;
322     BlockNode TargetNode;
323     uint64_t Amount;
324     Weight() : Type(Local), Amount(0) {}
325     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
326         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
327   };
328 
329   /// \brief Distribution of unscaled probability weight.
330   ///
331   /// Distribution of unscaled probability weight to a set of successors.
332   ///
333   /// This class collates the successor edge weights for later processing.
334   ///
335   /// \a DidOverflow indicates whether \a Total did overflow while adding to
336   /// the distribution.  It should never overflow twice.
337   struct Distribution {
338     typedef SmallVector<Weight, 4> WeightList;
339     WeightList Weights;    ///< Individual successor weights.
340     uint64_t Total;        ///< Sum of all weights.
341     bool DidOverflow;      ///< Whether \a Total did overflow.
342 
343     Distribution() : Total(0), DidOverflow(false) {}
344     void addLocal(const BlockNode &Node, uint64_t Amount) {
345       add(Node, Amount, Weight::Local);
346     }
347     void addExit(const BlockNode &Node, uint64_t Amount) {
348       add(Node, Amount, Weight::Exit);
349     }
350     void addBackedge(const BlockNode &Node, uint64_t Amount) {
351       add(Node, Amount, Weight::Backedge);
352     }
353 
354     /// \brief Normalize the distribution.
355     ///
356     /// Combines multiple edges to the same \a Weight::TargetNode and scales
357     /// down so that \a Total fits into 32-bits.
358     ///
359     /// This is linear in the size of \a Weights.  For the vast majority of
360     /// cases, adjacent edge weights are combined by sorting WeightList and
361     /// combining adjacent weights.  However, for very large edge lists an
362     /// auxiliary hash table is used.
363     void normalize();
364 
365   private:
366     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
367   };
368 
369   /// \brief Data about each block.  This is used downstream.
370   std::vector<FrequencyData> Freqs;
371 
372   /// \brief Loop data: see initializeLoops().
373   std::vector<WorkingData> Working;
374 
375   /// \brief Indexed information about loops.
376   std::list<LoopData> Loops;
377 
378   /// \brief Add all edges out of a packaged loop to the distribution.
379   ///
380   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
381   /// successor edge.
382   ///
383   /// \return \c true unless there's an irreducible backedge.
384   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
385                                Distribution &Dist);
386 
387   /// \brief Add an edge to the distribution.
388   ///
389   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
390   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
391   /// every edge should be a local edge (since all the loops are packaged up).
392   ///
393   /// \return \c true unless aborted due to an irreducible backedge.
394   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
395                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
396 
397   LoopData &getLoopPackage(const BlockNode &Head) {
398     assert(Head.Index < Working.size());
399     assert(Working[Head.Index].isLoopHeader());
400     return *Working[Head.Index].Loop;
401   }
402 
403   /// \brief Analyze irreducible SCCs.
404   ///
405   /// Separate irreducible SCCs from \c G, which is an explict graph of \c
406   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
407   /// Insert them into \a Loops before \c Insert.
408   ///
409   /// \return the \c LoopData nodes representing the irreducible SCCs.
410   iterator_range<std::list<LoopData>::iterator>
411   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
412                      std::list<LoopData>::iterator Insert);
413 
414   /// \brief Update a loop after packaging irreducible SCCs inside of it.
415   ///
416   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
417   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
418   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
419   /// up need to be removed from \a OuterLoop::Nodes.
420   void updateLoopWithIrreducible(LoopData &OuterLoop);
421 
422   /// \brief Distribute mass according to a distribution.
423   ///
424   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
425   /// backedges and exits are stored in its entry in Loops.
426   ///
427   /// Mass is distributed in parallel from two copies of the source mass.
428   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
429                       Distribution &Dist);
430 
431   /// \brief Compute the loop scale for a loop.
432   void computeLoopScale(LoopData &Loop);
433 
434   /// \brief Package up a loop.
435   void packageLoop(LoopData &Loop);
436 
437   /// \brief Unwrap loops.
438   void unwrapLoops();
439 
440   /// \brief Finalize frequency metrics.
441   ///
442   /// Calculates final frequencies and cleans up no-longer-needed data
443   /// structures.
444   void finalizeMetrics();
445 
446   /// \brief Clear all memory.
447   void clear();
448 
449   virtual std::string getBlockName(const BlockNode &Node) const;
450   std::string getLoopName(const LoopData &Loop) const;
451 
452   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
453   void dump() const { print(dbgs()); }
454 
455   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
456 
457   BlockFrequency getBlockFreq(const BlockNode &Node) const;
458 
459   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
460   raw_ostream &printBlockFreq(raw_ostream &OS,
461                               const BlockFrequency &Freq) const;
462 
463   uint64_t getEntryFreq() const {
464     assert(!Freqs.empty());
465     return Freqs[0].Integer;
466   }
467   /// \brief Virtual destructor.
468   ///
469   /// Need a virtual destructor to mask the compiler warning about
470   /// getBlockName().
471   virtual ~BlockFrequencyInfoImplBase() {}
472 };
473 
474 namespace bfi_detail {
475 template <class BlockT> struct TypeMap {};
476 template <> struct TypeMap<BasicBlock> {
477   typedef BasicBlock BlockT;
478   typedef Function FunctionT;
479   typedef BranchProbabilityInfo BranchProbabilityInfoT;
480   typedef Loop LoopT;
481   typedef LoopInfo LoopInfoT;
482 };
483 template <> struct TypeMap<MachineBasicBlock> {
484   typedef MachineBasicBlock BlockT;
485   typedef MachineFunction FunctionT;
486   typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
487   typedef MachineLoop LoopT;
488   typedef MachineLoopInfo LoopInfoT;
489 };
490 
491 /// \brief Get the name of a MachineBasicBlock.
492 ///
493 /// Get the name of a MachineBasicBlock.  It's templated so that including from
494 /// CodeGen is unnecessary (that would be a layering issue).
495 ///
496 /// This is used mainly for debug output.  The name is similar to
497 /// MachineBasicBlock::getFullName(), but skips the name of the function.
498 template <class BlockT> std::string getBlockName(const BlockT *BB) {
499   assert(BB && "Unexpected nullptr");
500   auto MachineName = "BB" + Twine(BB->getNumber());
501   if (BB->getBasicBlock())
502     return (MachineName + "[" + BB->getName() + "]").str();
503   return MachineName.str();
504 }
505 /// \brief Get the name of a BasicBlock.
506 template <> inline std::string getBlockName(const BasicBlock *BB) {
507   assert(BB && "Unexpected nullptr");
508   return BB->getName().str();
509 }
510 
511 /// \brief Graph of irreducible control flow.
512 ///
513 /// This graph is used for determining the SCCs in a loop (or top-level
514 /// function) that has irreducible control flow.
515 ///
516 /// During the block frequency algorithm, the local graphs are defined in a
517 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
518 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
519 /// latter only has successor information.
520 ///
521 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
522 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
523 /// and it explicitly lists predecessors and successors.  The initialization
524 /// that relies on \c MachineBasicBlock is defined in the header.
525 struct IrreducibleGraph {
526   typedef BlockFrequencyInfoImplBase BFIBase;
527 
528   BFIBase &BFI;
529 
530   typedef BFIBase::BlockNode BlockNode;
531   struct IrrNode {
532     BlockNode Node;
533     unsigned NumIn;
534     std::deque<const IrrNode *> Edges;
535     IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}
536 
537     typedef std::deque<const IrrNode *>::const_iterator iterator;
538     iterator pred_begin() const { return Edges.begin(); }
539     iterator succ_begin() const { return Edges.begin() + NumIn; }
540     iterator pred_end() const { return succ_begin(); }
541     iterator succ_end() const { return Edges.end(); }
542   };
543   BlockNode Start;
544   const IrrNode *StartIrr;
545   std::vector<IrrNode> Nodes;
546   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
547 
548   /// \brief Construct an explicit graph containing irreducible control flow.
549   ///
550   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
551   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
552   /// addBlockEdges to add block successors that have not been packaged into
553   /// loops.
554   ///
555   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
556   /// user of this.
557   template <class BlockEdgesAdder>
558   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
559                    BlockEdgesAdder addBlockEdges)
560       : BFI(BFI), StartIrr(nullptr) {
561     initialize(OuterLoop, addBlockEdges);
562   }
563 
564   template <class BlockEdgesAdder>
565   void initialize(const BFIBase::LoopData *OuterLoop,
566                   BlockEdgesAdder addBlockEdges);
567   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
568   void addNodesInFunction();
569   void addNode(const BlockNode &Node) {
570     Nodes.emplace_back(Node);
571     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
572   }
573   void indexNodes();
574   template <class BlockEdgesAdder>
575   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
576                 BlockEdgesAdder addBlockEdges);
577   void addEdge(IrrNode &Irr, const BlockNode &Succ,
578                const BFIBase::LoopData *OuterLoop);
579 };
580 template <class BlockEdgesAdder>
581 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
582                                   BlockEdgesAdder addBlockEdges) {
583   if (OuterLoop) {
584     addNodesInLoop(*OuterLoop);
585     for (auto N : OuterLoop->Nodes)
586       addEdges(N, OuterLoop, addBlockEdges);
587   } else {
588     addNodesInFunction();
589     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
590       addEdges(Index, OuterLoop, addBlockEdges);
591   }
592   StartIrr = Lookup[Start.Index];
593 }
594 template <class BlockEdgesAdder>
595 void IrreducibleGraph::addEdges(const BlockNode &Node,
596                                 const BFIBase::LoopData *OuterLoop,
597                                 BlockEdgesAdder addBlockEdges) {
598   auto L = Lookup.find(Node.Index);
599   if (L == Lookup.end())
600     return;
601   IrrNode &Irr = *L->second;
602   const auto &Working = BFI.Working[Node.Index];
603 
604   if (Working.isAPackage())
605     for (const auto &I : Working.Loop->Exits)
606       addEdge(Irr, I.first, OuterLoop);
607   else
608     addBlockEdges(*this, Irr, OuterLoop);
609 }
610 }
611 
612 /// \brief Shared implementation for block frequency analysis.
613 ///
614 /// This is a shared implementation of BlockFrequencyInfo and
615 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
616 /// blocks.
617 ///
618 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
619 /// which is called the header.  A given loop, L, can have sub-loops, which are
620 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
621 /// consists of a single block that does not have a self-edge.)
622 ///
623 /// In addition to loops, this algorithm has limited support for irreducible
624 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
625 /// discovered on they fly, and modelled as loops with multiple headers.
626 ///
627 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
628 /// nodes that are targets of a backedge within it (excluding backedges within
629 /// true sub-loops).  Block frequency calculations act as if a block is
630 /// inserted that intercepts all the edges to the headers.  All backedges and
631 /// entries point to this block.  Its successors are the headers, which split
632 /// the frequency evenly.
633 ///
634 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
635 /// separates mass distribution from loop scaling, and dithers to eliminate
636 /// probability mass loss.
637 ///
638 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
639 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
640 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
641 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
642 /// reverse-post order.  This gives two advantages:  it's easy to compare the
643 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
644 /// by vectors.
645 ///
646 /// This algorithm is O(V+E), unless there is irreducible control flow, in
647 /// which case it's O(V*E) in the worst case.
648 ///
649 /// These are the main stages:
650 ///
651 ///  0. Reverse post-order traversal (\a initializeRPOT()).
652 ///
653 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
654 ///     All other stages make use of this ordering.  Save a lookup from BlockT
655 ///     to BlockNode (the index into RPOT) in Nodes.
656 ///
657 ///  1. Loop initialization (\a initializeLoops()).
658 ///
659 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
660 ///     the algorithm.  In particular, store the immediate members of each loop
661 ///     in reverse post-order.
662 ///
663 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
664 ///
665 ///     For each loop (bottom-up), distribute mass through the DAG resulting
666 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
667 ///     Track the backedge mass distributed to the loop header, and use it to
668 ///     calculate the loop scale (number of loop iterations).  Immediate
669 ///     members that represent sub-loops will already have been visited and
670 ///     packaged into a pseudo-node.
671 ///
672 ///     Distributing mass in a loop is a reverse-post-order traversal through
673 ///     the loop.  Start by assigning full mass to the Loop header.  For each
674 ///     node in the loop:
675 ///
676 ///         - Fetch and categorize the weight distribution for its successors.
677 ///           If this is a packaged-subloop, the weight distribution is stored
678 ///           in \a LoopData::Exits.  Otherwise, fetch it from
679 ///           BranchProbabilityInfo.
680 ///
681 ///         - Each successor is categorized as \a Weight::Local, a local edge
682 ///           within the current loop, \a Weight::Backedge, a backedge to the
683 ///           loop header, or \a Weight::Exit, any successor outside the loop.
684 ///           The weight, the successor, and its category are stored in \a
685 ///           Distribution.  There can be multiple edges to each successor.
686 ///
687 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
688 ///           The usual flow is temporarily aborted.  \a
689 ///           computeIrreducibleMass() finds the irreducible SCCs within the
690 ///           loop, packages them up, and restarts the flow.
691 ///
692 ///         - Normalize the distribution:  scale weights down so that their sum
693 ///           is 32-bits, and coalesce multiple edges to the same node.
694 ///
695 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
696 ///           as described in \a distributeMass().
697 ///
698 ///     Finally, calculate the loop scale from the accumulated backedge mass.
699 ///
700 ///  3. Distribute mass in the function (\a computeMassInFunction()).
701 ///
702 ///     Finally, distribute mass through the DAG resulting from packaging all
703 ///     loops in the function.  This uses the same algorithm as distributing
704 ///     mass in a loop, except that there are no exit or backedge edges.
705 ///
706 ///  4. Unpackage loops (\a unwrapLoops()).
707 ///
708 ///     Initialize each block's frequency to a floating point representation of
709 ///     its mass.
710 ///
711 ///     Visit loops top-down, scaling the frequencies of its immediate members
712 ///     by the loop's pseudo-node's frequency.
713 ///
714 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
715 ///
716 ///     Using the min and max frequencies as a guide, translate floating point
717 ///     frequencies to an appropriate range in uint64_t.
718 ///
719 /// It has some known flaws.
720 ///
721 ///   - The model of irreducible control flow is a rough approximation.
722 ///
723 ///     Modelling irreducible control flow exactly involves setting up and
724 ///     solving a group of infinite geometric series.  Such precision is
725 ///     unlikely to be worthwhile, since most of our algorithms give up on
726 ///     irreducible control flow anyway.
727 ///
728 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
729 ///     of TODO list for the model with diminishing returns, to be completed as
730 ///     necessary.
731 ///
732 ///       - The headers for the \a LoopData representing an irreducible SCC
733 ///         include non-entry blocks.  When these extra blocks exist, they
734 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
735 ///         as sub-loops, rather than arbitrarily shoving the problematic
736 ///         blocks into the headers of the main irreducible SCC.
737 ///
738 ///       - Backedge frequencies are assumed to be evenly split between the
739 ///         headers of a given irreducible SCC.  Instead, we could track the
740 ///         backedge mass separately for each header, and adjust their relative
741 ///         frequencies.
742 ///
743 ///       - Entry frequencies are assumed to be evenly split between the
744 ///         headers of a given irreducible SCC, which is the only option if we
745 ///         need to compute mass in the SCC before its parent loop.  Instead,
746 ///         we could partially compute mass in the parent loop, and stop when
747 ///         we get to the SCC.  Here, we have the correct ratio of entry
748 ///         masses, which we can use to adjust their relative frequencies.
749 ///         Compute mass in the SCC, and then continue propagation in the
750 ///         parent.
751 ///
752 ///       - We can propagate mass iteratively through the SCC, for some fixed
753 ///         number of iterations.  Each iteration starts by assigning the entry
754 ///         blocks their backedge mass from the prior iteration.  The final
755 ///         mass for each block (and each exit, and the total backedge mass
756 ///         used for computing loop scale) is the sum of all iterations.
757 ///         (Running this until fixed point would "solve" the geometric
758 ///         series by simulation.)
759 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
760   typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
761   typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
762   typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
763   BranchProbabilityInfoT;
764   typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
765   typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
766 
767   // This is part of a workaround for a GCC 4.7 crash on lambdas.
768   friend struct bfi_detail::BlockEdgesAdder<BT>;
769 
770   typedef GraphTraits<const BlockT *> Successor;
771   typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
772 
773   const BranchProbabilityInfoT *BPI;
774   const LoopInfoT *LI;
775   const FunctionT *F;
776 
777   // All blocks in reverse postorder.
778   std::vector<const BlockT *> RPOT;
779   DenseMap<const BlockT *, BlockNode> Nodes;
780 
781   typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
782 
783   rpot_iterator rpot_begin() const { return RPOT.begin(); }
784   rpot_iterator rpot_end() const { return RPOT.end(); }
785 
786   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
787 
788   BlockNode getNode(const rpot_iterator &I) const {
789     return BlockNode(getIndex(I));
790   }
791   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
792 
793   const BlockT *getBlock(const BlockNode &Node) const {
794     assert(Node.Index < RPOT.size());
795     return RPOT[Node.Index];
796   }
797 
798   /// \brief Run (and save) a post-order traversal.
799   ///
800   /// Saves a reverse post-order traversal of all the nodes in \a F.
801   void initializeRPOT();
802 
803   /// \brief Initialize loop data.
804   ///
805   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
806   /// each block to the deepest loop it's in, but we need the inverse.  For each
807   /// loop, we store in reverse post-order its "immediate" members, defined as
808   /// the header, the headers of immediate sub-loops, and all other blocks in
809   /// the loop that are not in sub-loops.
810   void initializeLoops();
811 
812   /// \brief Propagate to a block's successors.
813   ///
814   /// In the context of distributing mass through \c OuterLoop, divide the mass
815   /// currently assigned to \c Node between its successors.
816   ///
817   /// \return \c true unless there's an irreducible backedge.
818   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
819 
820   /// \brief Compute mass in a particular loop.
821   ///
822   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
823   /// reverse post-order, distribute mass to its successors.  Only visits nodes
824   /// that have not been packaged into sub-loops.
825   ///
826   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
827   /// \return \c true unless there's an irreducible backedge.
828   bool computeMassInLoop(LoopData &Loop);
829 
830   /// \brief Try to compute mass in the top-level function.
831   ///
832   /// Assign mass to the entry block, and then for each block in reverse
833   /// post-order, distribute mass to its successors.  Skips nodes that have
834   /// been packaged into loops.
835   ///
836   /// \pre \a computeMassInLoops() has been called.
837   /// \return \c true unless there's an irreducible backedge.
838   bool tryToComputeMassInFunction();
839 
840   /// \brief Compute mass in (and package up) irreducible SCCs.
841   ///
842   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
843   /// of \c Insert), and call \a computeMassInLoop() on each of them.
844   ///
845   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
846   ///
847   /// \pre \a computeMassInLoop() has been called for each subloop of \c
848   /// OuterLoop.
849   /// \pre \c Insert points at the the last loop successfully processed by \a
850   /// computeMassInLoop().
851   /// \pre \c OuterLoop has irreducible SCCs.
852   void computeIrreducibleMass(LoopData *OuterLoop,
853                               std::list<LoopData>::iterator Insert);
854 
855   /// \brief Compute mass in all loops.
856   ///
857   /// For each loop bottom-up, call \a computeMassInLoop().
858   ///
859   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
860   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
861   /// re-enter \a computeMassInLoop().
862   ///
863   /// \post \a computeMassInLoop() has returned \c true for every loop.
864   void computeMassInLoops();
865 
866   /// \brief Compute mass in the top-level function.
867   ///
868   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
869   /// compute mass in the top-level function.
870   ///
871   /// \post \a tryToComputeMassInFunction() has returned \c true.
872   void computeMassInFunction();
873 
874   std::string getBlockName(const BlockNode &Node) const override {
875     return bfi_detail::getBlockName(getBlock(Node));
876   }
877 
878 public:
879   const FunctionT *getFunction() const { return F; }
880 
881   void doFunction(const FunctionT *F, const BranchProbabilityInfoT *BPI,
882                   const LoopInfoT *LI);
883   BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {}
884 
885   using BlockFrequencyInfoImplBase::getEntryFreq;
886   BlockFrequency getBlockFreq(const BlockT *BB) const {
887     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
888   }
889   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
890     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
891   }
892 
893   /// \brief Print the frequencies for the current function.
894   ///
895   /// Prints the frequencies for the blocks in the current function.
896   ///
897   /// Blocks are printed in the natural iteration order of the function, rather
898   /// than reverse post-order.  This provides two advantages:  writing -analyze
899   /// tests is easier (since blocks come out in source order), and even
900   /// unreachable blocks are printed.
901   ///
902   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
903   /// we need to override it here.
904   raw_ostream &print(raw_ostream &OS) const override;
905   using BlockFrequencyInfoImplBase::dump;
906 
907   using BlockFrequencyInfoImplBase::printBlockFreq;
908   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
909     return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
910   }
911 };
912 
913 template <class BT>
914 void BlockFrequencyInfoImpl<BT>::doFunction(const FunctionT *F,
915                                             const BranchProbabilityInfoT *BPI,
916                                             const LoopInfoT *LI) {
917   // Save the parameters.
918   this->BPI = BPI;
919   this->LI = LI;
920   this->F = F;
921 
922   // Clean up left-over data structures.
923   BlockFrequencyInfoImplBase::clear();
924   RPOT.clear();
925   Nodes.clear();
926 
927   // Initialize.
928   DEBUG(dbgs() << "\nblock-frequency: " << F->getName() << "\n================="
929                << std::string(F->getName().size(), '=') << "\n");
930   initializeRPOT();
931   initializeLoops();
932 
933   // Visit loops in post-order to find thelocal mass distribution, and then do
934   // the full function.
935   computeMassInLoops();
936   computeMassInFunction();
937   unwrapLoops();
938   finalizeMetrics();
939 }
940 
941 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
942   const BlockT *Entry = F->begin();
943   RPOT.reserve(F->size());
944   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
945   std::reverse(RPOT.begin(), RPOT.end());
946 
947   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
948          "More nodes in function than Block Frequency Info supports");
949 
950   DEBUG(dbgs() << "reverse-post-order-traversal\n");
951   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
952     BlockNode Node = getNode(I);
953     DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
954     Nodes[*I] = Node;
955   }
956 
957   Working.reserve(RPOT.size());
958   for (size_t Index = 0; Index < RPOT.size(); ++Index)
959     Working.emplace_back(Index);
960   Freqs.resize(RPOT.size());
961 }
962 
963 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
964   DEBUG(dbgs() << "loop-detection\n");
965   if (LI->empty())
966     return;
967 
968   // Visit loops top down and assign them an index.
969   std::deque<std::pair<const LoopT *, LoopData *>> Q;
970   for (const LoopT *L : *LI)
971     Q.emplace_back(L, nullptr);
972   while (!Q.empty()) {
973     const LoopT *Loop = Q.front().first;
974     LoopData *Parent = Q.front().second;
975     Q.pop_front();
976 
977     BlockNode Header = getNode(Loop->getHeader());
978     assert(Header.isValid());
979 
980     Loops.emplace_back(Parent, Header);
981     Working[Header.Index].Loop = &Loops.back();
982     DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
983 
984     for (const LoopT *L : *Loop)
985       Q.emplace_back(L, &Loops.back());
986   }
987 
988   // Visit nodes in reverse post-order and add them to their deepest containing
989   // loop.
990   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
991     // Loop headers have already been mostly mapped.
992     if (Working[Index].isLoopHeader()) {
993       LoopData *ContainingLoop = Working[Index].getContainingLoop();
994       if (ContainingLoop)
995         ContainingLoop->Nodes.push_back(Index);
996       continue;
997     }
998 
999     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1000     if (!Loop)
1001       continue;
1002 
1003     // Add this node to its containing loop's member list.
1004     BlockNode Header = getNode(Loop->getHeader());
1005     assert(Header.isValid());
1006     const auto &HeaderData = Working[Header.Index];
1007     assert(HeaderData.isLoopHeader());
1008 
1009     Working[Index].Loop = HeaderData.Loop;
1010     HeaderData.Loop->Nodes.push_back(Index);
1011     DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1012                  << ": member = " << getBlockName(Index) << "\n");
1013   }
1014 }
1015 
1016 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1017   // Visit loops with the deepest first, and the top-level loops last.
1018   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1019     if (computeMassInLoop(*L))
1020       continue;
1021     auto Next = std::next(L);
1022     computeIrreducibleMass(&*L, L.base());
1023     L = std::prev(Next);
1024     if (computeMassInLoop(*L))
1025       continue;
1026     llvm_unreachable("unhandled irreducible control flow");
1027   }
1028 }
1029 
1030 template <class BT>
1031 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1032   // Compute mass in loop.
1033   DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1034 
1035   if (Loop.isIrreducible()) {
1036     BlockMass Remaining = BlockMass::getFull();
1037     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1038       auto &Mass = Working[Loop.Nodes[H].Index].getMass();
1039       Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
1040       Remaining -= Mass;
1041     }
1042     for (const BlockNode &M : Loop.Nodes)
1043       if (!propagateMassToSuccessors(&Loop, M))
1044         llvm_unreachable("unhandled irreducible control flow");
1045   } else {
1046     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1047     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1048       llvm_unreachable("irreducible control flow to loop header!?");
1049     for (const BlockNode &M : Loop.members())
1050       if (!propagateMassToSuccessors(&Loop, M))
1051         // Irreducible backedge.
1052         return false;
1053   }
1054 
1055   computeLoopScale(Loop);
1056   packageLoop(Loop);
1057   return true;
1058 }
1059 
1060 template <class BT>
1061 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1062   // Compute mass in function.
1063   DEBUG(dbgs() << "compute-mass-in-function\n");
1064   assert(!Working.empty() && "no blocks in function");
1065   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1066 
1067   Working[0].getMass() = BlockMass::getFull();
1068   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1069     // Check for nodes that have been packaged.
1070     BlockNode Node = getNode(I);
1071     if (Working[Node.Index].isPackaged())
1072       continue;
1073 
1074     if (!propagateMassToSuccessors(nullptr, Node))
1075       return false;
1076   }
1077   return true;
1078 }
1079 
1080 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1081   if (tryToComputeMassInFunction())
1082     return;
1083   computeIrreducibleMass(nullptr, Loops.begin());
1084   if (tryToComputeMassInFunction())
1085     return;
1086   llvm_unreachable("unhandled irreducible control flow");
1087 }
1088 
1089 /// \note This should be a lambda, but that crashes GCC 4.7.
1090 namespace bfi_detail {
1091 template <class BT> struct BlockEdgesAdder {
1092   typedef BT BlockT;
1093   typedef BlockFrequencyInfoImplBase::LoopData LoopData;
1094   typedef GraphTraits<const BlockT *> Successor;
1095 
1096   const BlockFrequencyInfoImpl<BT> &BFI;
1097   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1098       : BFI(BFI) {}
1099   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1100                   const LoopData *OuterLoop) {
1101     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1102     for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
1103          I != E; ++I)
1104       G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
1105   }
1106 };
1107 }
1108 template <class BT>
1109 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1110     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1111   DEBUG(dbgs() << "analyze-irreducible-in-";
1112         if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
1113         else dbgs() << "function\n");
1114 
1115   using namespace bfi_detail;
1116   // Ideally, addBlockEdges() would be declared here as a lambda, but that
1117   // crashes GCC 4.7.
1118   BlockEdgesAdder<BT> addBlockEdges(*this);
1119   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1120 
1121   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1122     computeMassInLoop(L);
1123 
1124   if (!OuterLoop)
1125     return;
1126   updateLoopWithIrreducible(*OuterLoop);
1127 }
1128 
1129 template <class BT>
1130 bool
1131 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1132                                                       const BlockNode &Node) {
1133   DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1134   // Calculate probability for successors.
1135   Distribution Dist;
1136   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1137     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1138     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1139       // Irreducible backedge.
1140       return false;
1141   } else {
1142     const BlockT *BB = getBlock(Node);
1143     for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
1144          SI != SE; ++SI)
1145       // Do not dereference SI, or getEdgeWeight() is linear in the number of
1146       // successors.
1147       if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
1148                      BPI->getEdgeWeight(BB, SI)))
1149         // Irreducible backedge.
1150         return false;
1151   }
1152 
1153   // Distribute mass to successors, saving exit and backedge data in the
1154   // loop header.
1155   distributeMass(Node, OuterLoop, Dist);
1156   return true;
1157 }
1158 
1159 template <class BT>
1160 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1161   if (!F)
1162     return OS;
1163   OS << "block-frequency-info: " << F->getName() << "\n";
1164   for (const BlockT &BB : *F)
1165     OS << " - " << bfi_detail::getBlockName(&BB)
1166        << ": float = " << getFloatingBlockFreq(&BB)
1167        << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
1168 
1169   // Add an extra newline for readability.
1170   OS << "\n";
1171   return OS;
1172 }
1173 
1174 } // end namespace llvm
1175 
1176 #undef DEBUG_TYPE
1177 
1178 #endif
1179