1 //===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines specializations of GraphTraits that allow Function and
11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_CFG_H
16 #define LLVM_IR_CFG_H
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/InstrTypes.h"
22 
23 namespace llvm {
24 
25 //===----------------------------------------------------------------------===//
26 // BasicBlock pred_iterator definition
27 //===----------------------------------------------------------------------===//
28 
29 template <class Ptr, class USE_iterator> // Predecessor Iterator
30 class PredIterator : public std::iterator<std::forward_iterator_tag,
31                                           Ptr, ptrdiff_t, Ptr*, Ptr*> {
32   typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
33                                                                     Ptr*> super;
34   typedef PredIterator<Ptr, USE_iterator> Self;
35   USE_iterator It;
36 
advancePastNonTerminators()37   inline void advancePastNonTerminators() {
38     // Loop to ignore non-terminator uses (for example BlockAddresses).
39     while (!It.atEnd() && !isa<TerminatorInst>(*It))
40       ++It;
41   }
42 
43 public:
44   typedef typename super::pointer pointer;
45   typedef typename super::reference reference;
46 
PredIterator()47   PredIterator() {}
PredIterator(Ptr * bb)48   explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
49     advancePastNonTerminators();
50   }
PredIterator(Ptr * bb,bool)51   inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
52 
53   inline bool operator==(const Self& x) const { return It == x.It; }
54   inline bool operator!=(const Self& x) const { return !operator==(x); }
55 
56   inline reference operator*() const {
57     assert(!It.atEnd() && "pred_iterator out of range!");
58     return cast<TerminatorInst>(*It)->getParent();
59   }
60   inline pointer *operator->() const { return &operator*(); }
61 
62   inline Self& operator++() {   // Preincrement
63     assert(!It.atEnd() && "pred_iterator out of range!");
64     ++It; advancePastNonTerminators();
65     return *this;
66   }
67 
68   inline Self operator++(int) { // Postincrement
69     Self tmp = *this; ++*this; return tmp;
70   }
71 
72   /// getOperandNo - Return the operand number in the predecessor's
73   /// terminator of the successor.
getOperandNo()74   unsigned getOperandNo() const {
75     return It.getOperandNo();
76   }
77 
78   /// getUse - Return the operand Use in the predecessor's terminator
79   /// of the successor.
getUse()80   Use &getUse() const {
81     return It.getUse();
82   }
83 };
84 
85 typedef PredIterator<BasicBlock, Value::user_iterator> pred_iterator;
86 typedef PredIterator<const BasicBlock,
87                      Value::const_user_iterator> const_pred_iterator;
88 typedef llvm::iterator_range<pred_iterator> pred_range;
89 typedef llvm::iterator_range<const_pred_iterator> pred_const_range;
90 
pred_begin(BasicBlock * BB)91 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
pred_begin(const BasicBlock * BB)92 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
93   return const_pred_iterator(BB);
94 }
pred_end(BasicBlock * BB)95 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
pred_end(const BasicBlock * BB)96 inline const_pred_iterator pred_end(const BasicBlock *BB) {
97   return const_pred_iterator(BB, true);
98 }
pred_empty(const BasicBlock * BB)99 inline bool pred_empty(const BasicBlock *BB) {
100   return pred_begin(BB) == pred_end(BB);
101 }
predecessors(BasicBlock * BB)102 inline pred_range predecessors(BasicBlock *BB) {
103   return pred_range(pred_begin(BB), pred_end(BB));
104 }
predecessors(const BasicBlock * BB)105 inline pred_const_range predecessors(const BasicBlock *BB) {
106   return pred_const_range(pred_begin(BB), pred_end(BB));
107 }
108 
109 //===----------------------------------------------------------------------===//
110 // BasicBlock succ_iterator definition
111 //===----------------------------------------------------------------------===//
112 
113 template <class Term_, class BB_>           // Successor Iterator
114 class SuccIterator : public std::iterator<std::random_access_iterator_tag, BB_,
115                                           int, BB_ *, BB_ *> {
116   typedef std::iterator<std::random_access_iterator_tag, BB_, int, BB_ *, BB_ *>
117   super;
118 
119 public:
120   typedef typename super::pointer pointer;
121   typedef typename super::reference reference;
122 
123 private:
124   Term_ Term;
125   unsigned idx;
126   typedef SuccIterator<Term_, BB_> Self;
127 
index_is_valid(int idx)128   inline bool index_is_valid(int idx) {
129     return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
130   }
131 
132   /// \brief Proxy object to allow write access in operator[]
133   class SuccessorProxy {
134     Self it;
135 
136   public:
SuccessorProxy(const Self & it)137     explicit SuccessorProxy(const Self &it) : it(it) {}
138 
139     SuccessorProxy(const SuccessorProxy&) = default;
140 
141     SuccessorProxy &operator=(SuccessorProxy r) {
142       *this = reference(r);
143       return *this;
144     }
145 
146     SuccessorProxy &operator=(reference r) {
147       it.Term->setSuccessor(it.idx, r);
148       return *this;
149     }
150 
reference()151     operator reference() const { return *it; }
152   };
153 
154 public:
SuccIterator(Term_ T)155   explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
156   }
SuccIterator(Term_ T,bool)157   inline SuccIterator(Term_ T, bool)                       // end iterator
158     : Term(T) {
159     if (Term)
160       idx = Term->getNumSuccessors();
161     else
162       // Term == NULL happens, if a basic block is not fully constructed and
163       // consequently getTerminator() returns NULL. In this case we construct a
164       // SuccIterator which describes a basic block that has zero successors.
165       // Defining SuccIterator for incomplete and malformed CFGs is especially
166       // useful for debugging.
167       idx = 0;
168   }
169 
170   /// getSuccessorIndex - This is used to interface between code that wants to
171   /// operate on terminator instructions directly.
getSuccessorIndex()172   unsigned getSuccessorIndex() const { return idx; }
173 
174   inline bool operator==(const Self& x) const { return idx == x.idx; }
175   inline bool operator!=(const Self& x) const { return !operator==(x); }
176 
177   inline reference operator*() const { return Term->getSuccessor(idx); }
178   inline pointer operator->() const { return operator*(); }
179 
180   inline Self& operator++() { ++idx; return *this; } // Preincrement
181 
182   inline Self operator++(int) { // Postincrement
183     Self tmp = *this; ++*this; return tmp;
184   }
185 
186   inline Self& operator--() { --idx; return *this; }  // Predecrement
187   inline Self operator--(int) { // Postdecrement
188     Self tmp = *this; --*this; return tmp;
189   }
190 
191   inline bool operator<(const Self& x) const {
192     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
193     return idx < x.idx;
194   }
195 
196   inline bool operator<=(const Self& x) const {
197     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
198     return idx <= x.idx;
199   }
200   inline bool operator>=(const Self& x) const {
201     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
202     return idx >= x.idx;
203   }
204 
205   inline bool operator>(const Self& x) const {
206     assert(Term == x.Term && "Cannot compare iterators of different blocks!");
207     return idx > x.idx;
208   }
209 
210   inline Self& operator+=(int Right) {
211     unsigned new_idx = idx + Right;
212     assert(index_is_valid(new_idx) && "Iterator index out of bound");
213     idx = new_idx;
214     return *this;
215   }
216 
217   inline Self operator+(int Right) const {
218     Self tmp = *this;
219     tmp += Right;
220     return tmp;
221   }
222 
223   inline Self& operator-=(int Right) {
224     return operator+=(-Right);
225   }
226 
227   inline Self operator-(int Right) const {
228     return operator+(-Right);
229   }
230 
231   inline int operator-(const Self& x) const {
232     assert(Term == x.Term && "Cannot work on iterators of different blocks!");
233     int distance = idx - x.idx;
234     return distance;
235   }
236 
237   inline SuccessorProxy operator[](int offset) {
238    Self tmp = *this;
239    tmp += offset;
240    return SuccessorProxy(tmp);
241   }
242 
243   /// Get the source BB of this iterator.
getSource()244   inline BB_ *getSource() {
245     assert(Term && "Source not available, if basic block was malformed");
246     return Term->getParent();
247   }
248 };
249 
250 typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
251 typedef SuccIterator<const TerminatorInst*,
252                      const BasicBlock> succ_const_iterator;
253 typedef llvm::iterator_range<succ_iterator> succ_range;
254 typedef llvm::iterator_range<succ_const_iterator> succ_const_range;
255 
succ_begin(BasicBlock * BB)256 inline succ_iterator succ_begin(BasicBlock *BB) {
257   return succ_iterator(BB->getTerminator());
258 }
succ_begin(const BasicBlock * BB)259 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
260   return succ_const_iterator(BB->getTerminator());
261 }
succ_end(BasicBlock * BB)262 inline succ_iterator succ_end(BasicBlock *BB) {
263   return succ_iterator(BB->getTerminator(), true);
264 }
succ_end(const BasicBlock * BB)265 inline succ_const_iterator succ_end(const BasicBlock *BB) {
266   return succ_const_iterator(BB->getTerminator(), true);
267 }
succ_empty(const BasicBlock * BB)268 inline bool succ_empty(const BasicBlock *BB) {
269   return succ_begin(BB) == succ_end(BB);
270 }
successors(BasicBlock * BB)271 inline succ_range successors(BasicBlock *BB) {
272   return succ_range(succ_begin(BB), succ_end(BB));
273 }
successors(const BasicBlock * BB)274 inline succ_const_range successors(const BasicBlock *BB) {
275   return succ_const_range(succ_begin(BB), succ_end(BB));
276 }
277 
278 
279 template <typename T, typename U> struct isPodLike<SuccIterator<T, U> > {
280   static const bool value = isPodLike<T>::value;
281 };
282 
283 
284 
285 //===--------------------------------------------------------------------===//
286 // GraphTraits specializations for basic block graphs (CFGs)
287 //===--------------------------------------------------------------------===//
288 
289 // Provide specializations of GraphTraits to be able to treat a function as a
290 // graph of basic blocks...
291 
292 template <> struct GraphTraits<BasicBlock*> {
293   typedef BasicBlock NodeType;
294   typedef succ_iterator ChildIteratorType;
295 
296   static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
297   static inline ChildIteratorType child_begin(NodeType *N) {
298     return succ_begin(N);
299   }
300   static inline ChildIteratorType child_end(NodeType *N) {
301     return succ_end(N);
302   }
303 };
304 
305 template <> struct GraphTraits<const BasicBlock*> {
306   typedef const BasicBlock NodeType;
307   typedef succ_const_iterator ChildIteratorType;
308 
309   static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
310 
311   static inline ChildIteratorType child_begin(NodeType *N) {
312     return succ_begin(N);
313   }
314   static inline ChildIteratorType child_end(NodeType *N) {
315     return succ_end(N);
316   }
317 };
318 
319 // Provide specializations of GraphTraits to be able to treat a function as a
320 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
321 // a function is considered to be when traversing the predecessor edges of a BB
322 // instead of the successor edges.
323 //
324 template <> struct GraphTraits<Inverse<BasicBlock*> > {
325   typedef BasicBlock NodeType;
326   typedef pred_iterator ChildIteratorType;
327   static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
328   static inline ChildIteratorType child_begin(NodeType *N) {
329     return pred_begin(N);
330   }
331   static inline ChildIteratorType child_end(NodeType *N) {
332     return pred_end(N);
333   }
334 };
335 
336 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
337   typedef const BasicBlock NodeType;
338   typedef const_pred_iterator ChildIteratorType;
339   static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
340     return G.Graph;
341   }
342   static inline ChildIteratorType child_begin(NodeType *N) {
343     return pred_begin(N);
344   }
345   static inline ChildIteratorType child_end(NodeType *N) {
346     return pred_end(N);
347   }
348 };
349 
350 
351 
352 //===--------------------------------------------------------------------===//
353 // GraphTraits specializations for function basic block graphs (CFGs)
354 //===--------------------------------------------------------------------===//
355 
356 // Provide specializations of GraphTraits to be able to treat a function as a
357 // graph of basic blocks... these are the same as the basic block iterators,
358 // except that the root node is implicitly the first node of the function.
359 //
360 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
361   static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
362 
363   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
364   typedef Function::iterator nodes_iterator;
365   static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
366   static nodes_iterator nodes_end  (Function *F) { return F->end(); }
367   static size_t         size       (Function *F) { return F->size(); }
368 };
369 template <> struct GraphTraits<const Function*> :
370   public GraphTraits<const BasicBlock*> {
371   static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
372 
373   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
374   typedef Function::const_iterator nodes_iterator;
375   static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
376   static nodes_iterator nodes_end  (const Function *F) { return F->end(); }
377   static size_t         size       (const Function *F) { return F->size(); }
378 };
379 
380 
381 // Provide specializations of GraphTraits to be able to treat a function as a
382 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
383 // a function is considered to be when traversing the predecessor edges of a BB
384 // instead of the successor edges.
385 //
386 template <> struct GraphTraits<Inverse<Function*> > :
387   public GraphTraits<Inverse<BasicBlock*> > {
388   static NodeType *getEntryNode(Inverse<Function*> G) {
389     return &G.Graph->getEntryBlock();
390   }
391 };
392 template <> struct GraphTraits<Inverse<const Function*> > :
393   public GraphTraits<Inverse<const BasicBlock*> > {
394   static NodeType *getEntryNode(Inverse<const Function *> G) {
395     return &G.Graph->getEntryBlock();
396   }
397 };
398 
399 } // End llvm namespace
400 
401 #endif
402