1 //===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines specializations of GraphTraits that allow Function and
11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_IR_CFG_H
16 #define LLVM_IR_CFG_H
17
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/InstrTypes.h"
22
23 namespace llvm {
24
25 //===----------------------------------------------------------------------===//
26 // BasicBlock pred_iterator definition
27 //===----------------------------------------------------------------------===//
28
29 template <class Ptr, class USE_iterator> // Predecessor Iterator
30 class PredIterator : public std::iterator<std::forward_iterator_tag,
31 Ptr, ptrdiff_t, Ptr*, Ptr*> {
32 typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
33 Ptr*> super;
34 typedef PredIterator<Ptr, USE_iterator> Self;
35 USE_iterator It;
36
advancePastNonTerminators()37 inline void advancePastNonTerminators() {
38 // Loop to ignore non-terminator uses (for example BlockAddresses).
39 while (!It.atEnd() && !isa<TerminatorInst>(*It))
40 ++It;
41 }
42
43 public:
44 typedef typename super::pointer pointer;
45 typedef typename super::reference reference;
46
PredIterator()47 PredIterator() {}
PredIterator(Ptr * bb)48 explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
49 advancePastNonTerminators();
50 }
PredIterator(Ptr * bb,bool)51 inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
52
53 inline bool operator==(const Self& x) const { return It == x.It; }
54 inline bool operator!=(const Self& x) const { return !operator==(x); }
55
56 inline reference operator*() const {
57 assert(!It.atEnd() && "pred_iterator out of range!");
58 return cast<TerminatorInst>(*It)->getParent();
59 }
60 inline pointer *operator->() const { return &operator*(); }
61
62 inline Self& operator++() { // Preincrement
63 assert(!It.atEnd() && "pred_iterator out of range!");
64 ++It; advancePastNonTerminators();
65 return *this;
66 }
67
68 inline Self operator++(int) { // Postincrement
69 Self tmp = *this; ++*this; return tmp;
70 }
71
72 /// getOperandNo - Return the operand number in the predecessor's
73 /// terminator of the successor.
getOperandNo()74 unsigned getOperandNo() const {
75 return It.getOperandNo();
76 }
77
78 /// getUse - Return the operand Use in the predecessor's terminator
79 /// of the successor.
getUse()80 Use &getUse() const {
81 return It.getUse();
82 }
83 };
84
85 typedef PredIterator<BasicBlock, Value::user_iterator> pred_iterator;
86 typedef PredIterator<const BasicBlock,
87 Value::const_user_iterator> const_pred_iterator;
88 typedef llvm::iterator_range<pred_iterator> pred_range;
89 typedef llvm::iterator_range<const_pred_iterator> pred_const_range;
90
pred_begin(BasicBlock * BB)91 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
pred_begin(const BasicBlock * BB)92 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
93 return const_pred_iterator(BB);
94 }
pred_end(BasicBlock * BB)95 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
pred_end(const BasicBlock * BB)96 inline const_pred_iterator pred_end(const BasicBlock *BB) {
97 return const_pred_iterator(BB, true);
98 }
pred_empty(const BasicBlock * BB)99 inline bool pred_empty(const BasicBlock *BB) {
100 return pred_begin(BB) == pred_end(BB);
101 }
predecessors(BasicBlock * BB)102 inline pred_range predecessors(BasicBlock *BB) {
103 return pred_range(pred_begin(BB), pred_end(BB));
104 }
predecessors(const BasicBlock * BB)105 inline pred_const_range predecessors(const BasicBlock *BB) {
106 return pred_const_range(pred_begin(BB), pred_end(BB));
107 }
108
109 //===----------------------------------------------------------------------===//
110 // BasicBlock succ_iterator definition
111 //===----------------------------------------------------------------------===//
112
113 template <class Term_, class BB_> // Successor Iterator
114 class SuccIterator : public std::iterator<std::random_access_iterator_tag, BB_,
115 int, BB_ *, BB_ *> {
116 typedef std::iterator<std::random_access_iterator_tag, BB_, int, BB_ *, BB_ *>
117 super;
118
119 public:
120 typedef typename super::pointer pointer;
121 typedef typename super::reference reference;
122
123 private:
124 Term_ Term;
125 unsigned idx;
126 typedef SuccIterator<Term_, BB_> Self;
127
index_is_valid(int idx)128 inline bool index_is_valid(int idx) {
129 return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
130 }
131
132 /// \brief Proxy object to allow write access in operator[]
133 class SuccessorProxy {
134 Self it;
135
136 public:
SuccessorProxy(const Self & it)137 explicit SuccessorProxy(const Self &it) : it(it) {}
138
139 SuccessorProxy(const SuccessorProxy&) = default;
140
141 SuccessorProxy &operator=(SuccessorProxy r) {
142 *this = reference(r);
143 return *this;
144 }
145
146 SuccessorProxy &operator=(reference r) {
147 it.Term->setSuccessor(it.idx, r);
148 return *this;
149 }
150
reference()151 operator reference() const { return *it; }
152 };
153
154 public:
SuccIterator(Term_ T)155 explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
156 }
SuccIterator(Term_ T,bool)157 inline SuccIterator(Term_ T, bool) // end iterator
158 : Term(T) {
159 if (Term)
160 idx = Term->getNumSuccessors();
161 else
162 // Term == NULL happens, if a basic block is not fully constructed and
163 // consequently getTerminator() returns NULL. In this case we construct a
164 // SuccIterator which describes a basic block that has zero successors.
165 // Defining SuccIterator for incomplete and malformed CFGs is especially
166 // useful for debugging.
167 idx = 0;
168 }
169
170 /// getSuccessorIndex - This is used to interface between code that wants to
171 /// operate on terminator instructions directly.
getSuccessorIndex()172 unsigned getSuccessorIndex() const { return idx; }
173
174 inline bool operator==(const Self& x) const { return idx == x.idx; }
175 inline bool operator!=(const Self& x) const { return !operator==(x); }
176
177 inline reference operator*() const { return Term->getSuccessor(idx); }
178 inline pointer operator->() const { return operator*(); }
179
180 inline Self& operator++() { ++idx; return *this; } // Preincrement
181
182 inline Self operator++(int) { // Postincrement
183 Self tmp = *this; ++*this; return tmp;
184 }
185
186 inline Self& operator--() { --idx; return *this; } // Predecrement
187 inline Self operator--(int) { // Postdecrement
188 Self tmp = *this; --*this; return tmp;
189 }
190
191 inline bool operator<(const Self& x) const {
192 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
193 return idx < x.idx;
194 }
195
196 inline bool operator<=(const Self& x) const {
197 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
198 return idx <= x.idx;
199 }
200 inline bool operator>=(const Self& x) const {
201 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
202 return idx >= x.idx;
203 }
204
205 inline bool operator>(const Self& x) const {
206 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
207 return idx > x.idx;
208 }
209
210 inline Self& operator+=(int Right) {
211 unsigned new_idx = idx + Right;
212 assert(index_is_valid(new_idx) && "Iterator index out of bound");
213 idx = new_idx;
214 return *this;
215 }
216
217 inline Self operator+(int Right) const {
218 Self tmp = *this;
219 tmp += Right;
220 return tmp;
221 }
222
223 inline Self& operator-=(int Right) {
224 return operator+=(-Right);
225 }
226
227 inline Self operator-(int Right) const {
228 return operator+(-Right);
229 }
230
231 inline int operator-(const Self& x) const {
232 assert(Term == x.Term && "Cannot work on iterators of different blocks!");
233 int distance = idx - x.idx;
234 return distance;
235 }
236
237 inline SuccessorProxy operator[](int offset) {
238 Self tmp = *this;
239 tmp += offset;
240 return SuccessorProxy(tmp);
241 }
242
243 /// Get the source BB of this iterator.
getSource()244 inline BB_ *getSource() {
245 assert(Term && "Source not available, if basic block was malformed");
246 return Term->getParent();
247 }
248 };
249
250 typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
251 typedef SuccIterator<const TerminatorInst*,
252 const BasicBlock> succ_const_iterator;
253 typedef llvm::iterator_range<succ_iterator> succ_range;
254 typedef llvm::iterator_range<succ_const_iterator> succ_const_range;
255
succ_begin(BasicBlock * BB)256 inline succ_iterator succ_begin(BasicBlock *BB) {
257 return succ_iterator(BB->getTerminator());
258 }
succ_begin(const BasicBlock * BB)259 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
260 return succ_const_iterator(BB->getTerminator());
261 }
succ_end(BasicBlock * BB)262 inline succ_iterator succ_end(BasicBlock *BB) {
263 return succ_iterator(BB->getTerminator(), true);
264 }
succ_end(const BasicBlock * BB)265 inline succ_const_iterator succ_end(const BasicBlock *BB) {
266 return succ_const_iterator(BB->getTerminator(), true);
267 }
succ_empty(const BasicBlock * BB)268 inline bool succ_empty(const BasicBlock *BB) {
269 return succ_begin(BB) == succ_end(BB);
270 }
successors(BasicBlock * BB)271 inline succ_range successors(BasicBlock *BB) {
272 return succ_range(succ_begin(BB), succ_end(BB));
273 }
successors(const BasicBlock * BB)274 inline succ_const_range successors(const BasicBlock *BB) {
275 return succ_const_range(succ_begin(BB), succ_end(BB));
276 }
277
278
279 template <typename T, typename U> struct isPodLike<SuccIterator<T, U> > {
280 static const bool value = isPodLike<T>::value;
281 };
282
283
284
285 //===--------------------------------------------------------------------===//
286 // GraphTraits specializations for basic block graphs (CFGs)
287 //===--------------------------------------------------------------------===//
288
289 // Provide specializations of GraphTraits to be able to treat a function as a
290 // graph of basic blocks...
291
292 template <> struct GraphTraits<BasicBlock*> {
293 typedef BasicBlock NodeType;
294 typedef succ_iterator ChildIteratorType;
295
296 static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
297 static inline ChildIteratorType child_begin(NodeType *N) {
298 return succ_begin(N);
299 }
300 static inline ChildIteratorType child_end(NodeType *N) {
301 return succ_end(N);
302 }
303 };
304
305 template <> struct GraphTraits<const BasicBlock*> {
306 typedef const BasicBlock NodeType;
307 typedef succ_const_iterator ChildIteratorType;
308
309 static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
310
311 static inline ChildIteratorType child_begin(NodeType *N) {
312 return succ_begin(N);
313 }
314 static inline ChildIteratorType child_end(NodeType *N) {
315 return succ_end(N);
316 }
317 };
318
319 // Provide specializations of GraphTraits to be able to treat a function as a
320 // graph of basic blocks... and to walk it in inverse order. Inverse order for
321 // a function is considered to be when traversing the predecessor edges of a BB
322 // instead of the successor edges.
323 //
324 template <> struct GraphTraits<Inverse<BasicBlock*> > {
325 typedef BasicBlock NodeType;
326 typedef pred_iterator ChildIteratorType;
327 static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
328 static inline ChildIteratorType child_begin(NodeType *N) {
329 return pred_begin(N);
330 }
331 static inline ChildIteratorType child_end(NodeType *N) {
332 return pred_end(N);
333 }
334 };
335
336 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
337 typedef const BasicBlock NodeType;
338 typedef const_pred_iterator ChildIteratorType;
339 static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
340 return G.Graph;
341 }
342 static inline ChildIteratorType child_begin(NodeType *N) {
343 return pred_begin(N);
344 }
345 static inline ChildIteratorType child_end(NodeType *N) {
346 return pred_end(N);
347 }
348 };
349
350
351
352 //===--------------------------------------------------------------------===//
353 // GraphTraits specializations for function basic block graphs (CFGs)
354 //===--------------------------------------------------------------------===//
355
356 // Provide specializations of GraphTraits to be able to treat a function as a
357 // graph of basic blocks... these are the same as the basic block iterators,
358 // except that the root node is implicitly the first node of the function.
359 //
360 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
361 static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
362
363 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
364 typedef Function::iterator nodes_iterator;
365 static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
366 static nodes_iterator nodes_end (Function *F) { return F->end(); }
367 static size_t size (Function *F) { return F->size(); }
368 };
369 template <> struct GraphTraits<const Function*> :
370 public GraphTraits<const BasicBlock*> {
371 static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
372
373 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
374 typedef Function::const_iterator nodes_iterator;
375 static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
376 static nodes_iterator nodes_end (const Function *F) { return F->end(); }
377 static size_t size (const Function *F) { return F->size(); }
378 };
379
380
381 // Provide specializations of GraphTraits to be able to treat a function as a
382 // graph of basic blocks... and to walk it in inverse order. Inverse order for
383 // a function is considered to be when traversing the predecessor edges of a BB
384 // instead of the successor edges.
385 //
386 template <> struct GraphTraits<Inverse<Function*> > :
387 public GraphTraits<Inverse<BasicBlock*> > {
388 static NodeType *getEntryNode(Inverse<Function*> G) {
389 return &G.Graph->getEntryBlock();
390 }
391 };
392 template <> struct GraphTraits<Inverse<const Function*> > :
393 public GraphTraits<Inverse<const BasicBlock*> > {
394 static NodeType *getEntryNode(Inverse<const Function *> G) {
395 return &G.Graph->getEntryBlock();
396 }
397 };
398
399 } // End llvm namespace
400
401 #endif
402